xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 5fba45ad1107903e37a80e47bfb21477b7ee5062)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
30 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrAnalysis.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCObjectFileInfo.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/Object/Archive.h"
39 #include "llvm/Object/COFF.h"
40 #include "llvm/Object/COFFImportFile.h"
41 #include "llvm/Object/ELFObjectFile.h"
42 #include "llvm/Object/MachO.h"
43 #include "llvm/Object/ObjectFile.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/Errc.h"
48 #include "llvm/Support/FileSystem.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/Host.h"
52 #include "llvm/Support/ManagedStatic.h"
53 #include "llvm/Support/MemoryBuffer.h"
54 #include "llvm/Support/PrettyStackTrace.h"
55 #include "llvm/Support/Signals.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <utility>
65 #include <unordered_map>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 cl::opt<bool>
88 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
89 
90 cl::opt<bool>
91 llvm::SectionContents("s", cl::desc("Display the content of each section"));
92 
93 cl::opt<bool>
94 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
95 
96 cl::opt<bool>
97 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
98 
99 cl::opt<bool>
100 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
101 
102 cl::opt<bool>
103 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
104 
105 cl::opt<bool>
106 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
107 
108 cl::opt<bool>
109 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
110 
111 cl::opt<bool>
112 llvm::RawClangAST("raw-clang-ast",
113     cl::desc("Dump the raw binary contents of the clang AST section"));
114 
115 static cl::opt<bool>
116 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
117 static cl::alias
118 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
119 
120 cl::opt<std::string>
121 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
122                                     "see -version for available targets"));
123 
124 cl::opt<std::string>
125 llvm::MCPU("mcpu",
126      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
127      cl::value_desc("cpu-name"),
128      cl::init(""));
129 
130 cl::opt<std::string>
131 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
132                                 "see -version for available targets"));
133 
134 cl::opt<bool>
135 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
136                                                  "headers for each section."));
137 static cl::alias
138 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
139                     cl::aliasopt(SectionHeaders));
140 static cl::alias
141 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
142                       cl::aliasopt(SectionHeaders));
143 
144 cl::list<std::string>
145 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
146                                          "With -macho dump segment,section"));
147 cl::alias
148 static FilterSectionsj("j", cl::desc("Alias for --section"),
149                  cl::aliasopt(llvm::FilterSections));
150 
151 cl::list<std::string>
152 llvm::MAttrs("mattr",
153   cl::CommaSeparated,
154   cl::desc("Target specific attributes"),
155   cl::value_desc("a1,+a2,-a3,..."));
156 
157 cl::opt<bool>
158 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
159                                                  "instructions, do not print "
160                                                  "the instruction bytes."));
161 
162 cl::opt<bool>
163 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
164 
165 static cl::alias
166 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
167                 cl::aliasopt(UnwindInfo));
168 
169 cl::opt<bool>
170 llvm::PrivateHeaders("private-headers",
171                      cl::desc("Display format specific file headers"));
172 
173 cl::opt<bool>
174 llvm::FirstPrivateHeader("private-header",
175                          cl::desc("Display only the first format specific file "
176                                   "header"));
177 
178 static cl::alias
179 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
180                     cl::aliasopt(PrivateHeaders));
181 
182 cl::opt<bool>
183     llvm::PrintImmHex("print-imm-hex",
184                       cl::desc("Use hex format for immediate values"));
185 
186 cl::opt<bool> PrintFaultMaps("fault-map-section",
187                              cl::desc("Display contents of faultmap section"));
188 
189 cl::opt<DIDumpType> llvm::DwarfDumpType(
190     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
191     cl::values(clEnumValN(DIDT_Frames, "frames", ".debug_frame")));
192 
193 cl::opt<bool> PrintSource(
194     "source",
195     cl::desc(
196         "Display source inlined with disassembly. Implies disassmble object"));
197 
198 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
199                            cl::aliasopt(PrintSource));
200 
201 cl::opt<bool> PrintLines("line-numbers",
202                          cl::desc("Display source line numbers with "
203                                   "disassembly. Implies disassemble object"));
204 
205 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
206                           cl::aliasopt(PrintLines));
207 
208 cl::opt<unsigned long long>
209     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
210                  cl::value_desc("address"), cl::init(0));
211 cl::opt<unsigned long long>
212     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
213                 cl::value_desc("address"), cl::init(UINT64_MAX));
214 static StringRef ToolName;
215 
216 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
217 
218 namespace {
219 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
220 
221 class SectionFilterIterator {
222 public:
223   SectionFilterIterator(FilterPredicate P,
224                         llvm::object::section_iterator const &I,
225                         llvm::object::section_iterator const &E)
226       : Predicate(std::move(P)), Iterator(I), End(E) {
227     ScanPredicate();
228   }
229   const llvm::object::SectionRef &operator*() const { return *Iterator; }
230   SectionFilterIterator &operator++() {
231     ++Iterator;
232     ScanPredicate();
233     return *this;
234   }
235   bool operator!=(SectionFilterIterator const &Other) const {
236     return Iterator != Other.Iterator;
237   }
238 
239 private:
240   void ScanPredicate() {
241     while (Iterator != End && !Predicate(*Iterator)) {
242       ++Iterator;
243     }
244   }
245   FilterPredicate Predicate;
246   llvm::object::section_iterator Iterator;
247   llvm::object::section_iterator End;
248 };
249 
250 class SectionFilter {
251 public:
252   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
253       : Predicate(std::move(P)), Object(O) {}
254   SectionFilterIterator begin() {
255     return SectionFilterIterator(Predicate, Object.section_begin(),
256                                  Object.section_end());
257   }
258   SectionFilterIterator end() {
259     return SectionFilterIterator(Predicate, Object.section_end(),
260                                  Object.section_end());
261   }
262 
263 private:
264   FilterPredicate Predicate;
265   llvm::object::ObjectFile const &Object;
266 };
267 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
268   return SectionFilter(
269       [](llvm::object::SectionRef const &S) {
270         if (FilterSections.empty())
271           return true;
272         llvm::StringRef String;
273         std::error_code error = S.getName(String);
274         if (error)
275           return false;
276         return is_contained(FilterSections, String);
277       },
278       O);
279 }
280 }
281 
282 void llvm::error(std::error_code EC) {
283   if (!EC)
284     return;
285 
286   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
287   errs().flush();
288   exit(1);
289 }
290 
291 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
292   errs() << ToolName << ": " << Message << ".\n";
293   errs().flush();
294   exit(1);
295 }
296 
297 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
298                                                 Twine Message) {
299   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
300   exit(1);
301 }
302 
303 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
304                                                 std::error_code EC) {
305   assert(EC);
306   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
307   exit(1);
308 }
309 
310 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
311                                                 llvm::Error E) {
312   assert(E);
313   std::string Buf;
314   raw_string_ostream OS(Buf);
315   logAllUnhandledErrors(std::move(E), OS, "");
316   OS.flush();
317   errs() << ToolName << ": '" << File << "': " << Buf;
318   exit(1);
319 }
320 
321 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
322                                                 StringRef FileName,
323                                                 llvm::Error E,
324                                                 StringRef ArchitectureName) {
325   assert(E);
326   errs() << ToolName << ": ";
327   if (ArchiveName != "")
328     errs() << ArchiveName << "(" << FileName << ")";
329   else
330     errs() << "'" << FileName << "'";
331   if (!ArchitectureName.empty())
332     errs() << " (for architecture " << ArchitectureName << ")";
333   std::string Buf;
334   raw_string_ostream OS(Buf);
335   logAllUnhandledErrors(std::move(E), OS, "");
336   OS.flush();
337   errs() << ": " << Buf;
338   exit(1);
339 }
340 
341 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
342                                                 const object::Archive::Child &C,
343                                                 llvm::Error E,
344                                                 StringRef ArchitectureName) {
345   Expected<StringRef> NameOrErr = C.getName();
346   // TODO: if we have a error getting the name then it would be nice to print
347   // the index of which archive member this is and or its offset in the
348   // archive instead of "???" as the name.
349   if (!NameOrErr) {
350     consumeError(NameOrErr.takeError());
351     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
352   } else
353     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
354                        ArchitectureName);
355 }
356 
357 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
358   // Figure out the target triple.
359   llvm::Triple TheTriple("unknown-unknown-unknown");
360   if (TripleName.empty()) {
361     if (Obj) {
362       auto Arch = Obj->getArch();
363       TheTriple.setArch(Triple::ArchType(Arch));
364 
365       // For ARM targets, try to use the build attributes to build determine
366       // the build target. Target features are also added, but later during
367       // disassembly.
368       if (Arch == Triple::arm || Arch == Triple::armeb) {
369         Obj->setARMSubArch(TheTriple);
370       }
371 
372       // TheTriple defaults to ELF, and COFF doesn't have an environment:
373       // the best we can do here is indicate that it is mach-o.
374       if (Obj->isMachO())
375         TheTriple.setObjectFormat(Triple::MachO);
376 
377       if (Obj->isCOFF()) {
378         const auto COFFObj = dyn_cast<COFFObjectFile>(Obj);
379         if (COFFObj->getArch() == Triple::thumb)
380           TheTriple.setTriple("thumbv7-windows");
381       }
382     }
383   } else {
384     TheTriple.setTriple(Triple::normalize(TripleName));
385     // Use the triple, but also try to combine with ARM build attributes.
386     if (Obj) {
387       auto Arch = Obj->getArch();
388       if (Arch == Triple::arm || Arch == Triple::armeb) {
389         Obj->setARMSubArch(TheTriple);
390       }
391     }
392   }
393 
394   // Get the target specific parser.
395   std::string Error;
396   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
397                                                          Error);
398   if (!TheTarget) {
399     if (Obj)
400       report_error(Obj->getFileName(), "can't find target: " + Error);
401     else
402       error("can't find target: " + Error);
403   }
404 
405   // Update the triple name and return the found target.
406   TripleName = TheTriple.getTriple();
407   return TheTarget;
408 }
409 
410 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
411   return a.getOffset() < b.getOffset();
412 }
413 
414 namespace {
415 class SourcePrinter {
416 protected:
417   DILineInfo OldLineInfo;
418   const ObjectFile *Obj;
419   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
420   // File name to file contents of source
421   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
422   // Mark the line endings of the cached source
423   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
424 
425 private:
426   bool cacheSource(std::string File);
427 
428 public:
429   virtual ~SourcePrinter() {}
430   SourcePrinter() : Obj(nullptr), Symbolizer(nullptr) {}
431   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
432     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
433         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
434         DefaultArch);
435     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
436   }
437   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
438                                StringRef Delimiter = "; ");
439 };
440 
441 bool SourcePrinter::cacheSource(std::string File) {
442   auto BufferOrError = MemoryBuffer::getFile(File);
443   if (!BufferOrError)
444     return false;
445   // Chomp the file to get lines
446   size_t BufferSize = (*BufferOrError)->getBufferSize();
447   const char *BufferStart = (*BufferOrError)->getBufferStart();
448   for (const char *Start = BufferStart, *End = BufferStart;
449        End < BufferStart + BufferSize; End++)
450     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
451         (*End == '\r' && *(End + 1) == '\n')) {
452       LineCache[File].push_back(StringRef(Start, End - Start));
453       if (*End == '\r')
454         End++;
455       Start = End + 1;
456     }
457   SourceCache[File] = std::move(*BufferOrError);
458   return true;
459 }
460 
461 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
462                                     StringRef Delimiter) {
463   if (!Symbolizer)
464     return;
465   DILineInfo LineInfo = DILineInfo();
466   auto ExpectecLineInfo =
467       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
468   if (!ExpectecLineInfo)
469     consumeError(ExpectecLineInfo.takeError());
470   else
471     LineInfo = *ExpectecLineInfo;
472 
473   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
474       LineInfo.Line == 0)
475     return;
476 
477   if (PrintLines)
478     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
479   if (PrintSource) {
480     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
481       if (!cacheSource(LineInfo.FileName))
482         return;
483     auto FileBuffer = SourceCache.find(LineInfo.FileName);
484     if (FileBuffer != SourceCache.end()) {
485       auto LineBuffer = LineCache.find(LineInfo.FileName);
486       if (LineBuffer != LineCache.end())
487         // Vector begins at 0, line numbers are non-zero
488         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
489            << "\n";
490     }
491   }
492   OldLineInfo = LineInfo;
493 }
494 
495 static bool isArmElf(const ObjectFile *Obj) {
496   return (Obj->isELF() &&
497           (Obj->getArch() == Triple::aarch64 ||
498            Obj->getArch() == Triple::aarch64_be ||
499            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
500            Obj->getArch() == Triple::thumb ||
501            Obj->getArch() == Triple::thumbeb));
502 }
503 
504 class PrettyPrinter {
505 public:
506   virtual ~PrettyPrinter(){}
507   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
508                          ArrayRef<uint8_t> Bytes, uint64_t Address,
509                          raw_ostream &OS, StringRef Annot,
510                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
511     if (SP && (PrintSource || PrintLines))
512       SP->printSourceLine(OS, Address);
513     OS << format("%8" PRIx64 ":", Address);
514     if (!NoShowRawInsn) {
515       OS << "\t";
516       dumpBytes(Bytes, OS);
517     }
518     if (MI)
519       IP.printInst(MI, OS, "", STI);
520     else
521       OS << " <unknown>";
522   }
523 };
524 PrettyPrinter PrettyPrinterInst;
525 class HexagonPrettyPrinter : public PrettyPrinter {
526 public:
527   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
528                  raw_ostream &OS) {
529     uint32_t opcode =
530       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
531     OS << format("%8" PRIx64 ":", Address);
532     if (!NoShowRawInsn) {
533       OS << "\t";
534       dumpBytes(Bytes.slice(0, 4), OS);
535       OS << format("%08" PRIx32, opcode);
536     }
537   }
538   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
539                  uint64_t Address, raw_ostream &OS, StringRef Annot,
540                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
541     if (SP && (PrintSource || PrintLines))
542       SP->printSourceLine(OS, Address, "");
543     if (!MI) {
544       printLead(Bytes, Address, OS);
545       OS << " <unknown>";
546       return;
547     }
548     std::string Buffer;
549     {
550       raw_string_ostream TempStream(Buffer);
551       IP.printInst(MI, TempStream, "", STI);
552     }
553     StringRef Contents(Buffer);
554     // Split off bundle attributes
555     auto PacketBundle = Contents.rsplit('\n');
556     // Split off first instruction from the rest
557     auto HeadTail = PacketBundle.first.split('\n');
558     auto Preamble = " { ";
559     auto Separator = "";
560     while(!HeadTail.first.empty()) {
561       OS << Separator;
562       Separator = "\n";
563       if (SP && (PrintSource || PrintLines))
564         SP->printSourceLine(OS, Address, "");
565       printLead(Bytes, Address, OS);
566       OS << Preamble;
567       Preamble = "   ";
568       StringRef Inst;
569       auto Duplex = HeadTail.first.split('\v');
570       if(!Duplex.second.empty()){
571         OS << Duplex.first;
572         OS << "; ";
573         Inst = Duplex.second;
574       }
575       else
576         Inst = HeadTail.first;
577       OS << Inst;
578       Bytes = Bytes.slice(4);
579       Address += 4;
580       HeadTail = HeadTail.second.split('\n');
581     }
582     OS << " } " << PacketBundle.second;
583   }
584 };
585 HexagonPrettyPrinter HexagonPrettyPrinterInst;
586 
587 class AMDGCNPrettyPrinter : public PrettyPrinter {
588 public:
589   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
590                  uint64_t Address, raw_ostream &OS, StringRef Annot,
591                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
592     if (!MI) {
593       OS << " <unknown>";
594       return;
595     }
596 
597     SmallString<40> InstStr;
598     raw_svector_ostream IS(InstStr);
599 
600     IP.printInst(MI, IS, "", STI);
601 
602     OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address);
603     typedef support::ulittle32_t U32;
604     for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
605                                Bytes.size() / sizeof(U32)))
606       // D should be explicitly casted to uint32_t here as it is passed
607       // by format to snprintf as vararg.
608       OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
609 
610     if (!Annot.empty())
611       OS << "// " << Annot;
612   }
613 };
614 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
615 
616 class BPFPrettyPrinter : public PrettyPrinter {
617 public:
618   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
619                  uint64_t Address, raw_ostream &OS, StringRef Annot,
620                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
621     if (SP && (PrintSource || PrintLines))
622       SP->printSourceLine(OS, Address);
623     OS << format("%8" PRId64 ":", Address / 8);
624     if (!NoShowRawInsn) {
625       OS << "\t";
626       dumpBytes(Bytes, OS);
627     }
628     if (MI)
629       IP.printInst(MI, OS, "", STI);
630     else
631       OS << " <unknown>";
632   }
633 };
634 BPFPrettyPrinter BPFPrettyPrinterInst;
635 
636 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
637   switch(Triple.getArch()) {
638   default:
639     return PrettyPrinterInst;
640   case Triple::hexagon:
641     return HexagonPrettyPrinterInst;
642   case Triple::amdgcn:
643     return AMDGCNPrettyPrinterInst;
644   case Triple::bpfel:
645   case Triple::bpfeb:
646     return BPFPrettyPrinterInst;
647   }
648 }
649 }
650 
651 template <class ELFT>
652 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
653                                                 const RelocationRef &RelRef,
654                                                 SmallVectorImpl<char> &Result) {
655   DataRefImpl Rel = RelRef.getRawDataRefImpl();
656 
657   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
658   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
659   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
660 
661   const ELFFile<ELFT> &EF = *Obj->getELFFile();
662 
663   auto SecOrErr = EF.getSection(Rel.d.a);
664   if (!SecOrErr)
665     return errorToErrorCode(SecOrErr.takeError());
666   const Elf_Shdr *Sec = *SecOrErr;
667   auto SymTabOrErr = EF.getSection(Sec->sh_link);
668   if (!SymTabOrErr)
669     return errorToErrorCode(SymTabOrErr.takeError());
670   const Elf_Shdr *SymTab = *SymTabOrErr;
671   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
672          SymTab->sh_type == ELF::SHT_DYNSYM);
673   auto StrTabSec = EF.getSection(SymTab->sh_link);
674   if (!StrTabSec)
675     return errorToErrorCode(StrTabSec.takeError());
676   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
677   if (!StrTabOrErr)
678     return errorToErrorCode(StrTabOrErr.takeError());
679   StringRef StrTab = *StrTabOrErr;
680   uint8_t type = RelRef.getType();
681   StringRef res;
682   int64_t addend = 0;
683   switch (Sec->sh_type) {
684   default:
685     return object_error::parse_failed;
686   case ELF::SHT_REL: {
687     // TODO: Read implicit addend from section data.
688     break;
689   }
690   case ELF::SHT_RELA: {
691     const Elf_Rela *ERela = Obj->getRela(Rel);
692     addend = ERela->r_addend;
693     break;
694   }
695   }
696   symbol_iterator SI = RelRef.getSymbol();
697   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
698   StringRef Target;
699   if (symb->getType() == ELF::STT_SECTION) {
700     Expected<section_iterator> SymSI = SI->getSection();
701     if (!SymSI)
702       return errorToErrorCode(SymSI.takeError());
703     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
704     auto SecName = EF.getSectionName(SymSec);
705     if (!SecName)
706       return errorToErrorCode(SecName.takeError());
707     Target = *SecName;
708   } else {
709     Expected<StringRef> SymName = symb->getName(StrTab);
710     if (!SymName)
711       return errorToErrorCode(SymName.takeError());
712     Target = *SymName;
713   }
714   switch (EF.getHeader()->e_machine) {
715   case ELF::EM_X86_64:
716     switch (type) {
717     case ELF::R_X86_64_PC8:
718     case ELF::R_X86_64_PC16:
719     case ELF::R_X86_64_PC32: {
720       std::string fmtbuf;
721       raw_string_ostream fmt(fmtbuf);
722       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
723       fmt.flush();
724       Result.append(fmtbuf.begin(), fmtbuf.end());
725     } break;
726     case ELF::R_X86_64_8:
727     case ELF::R_X86_64_16:
728     case ELF::R_X86_64_32:
729     case ELF::R_X86_64_32S:
730     case ELF::R_X86_64_64: {
731       std::string fmtbuf;
732       raw_string_ostream fmt(fmtbuf);
733       fmt << Target << (addend < 0 ? "" : "+") << addend;
734       fmt.flush();
735       Result.append(fmtbuf.begin(), fmtbuf.end());
736     } break;
737     default:
738       res = "Unknown";
739     }
740     break;
741   case ELF::EM_LANAI:
742   case ELF::EM_AVR:
743   case ELF::EM_AARCH64: {
744     std::string fmtbuf;
745     raw_string_ostream fmt(fmtbuf);
746     fmt << Target;
747     if (addend != 0)
748       fmt << (addend < 0 ? "" : "+") << addend;
749     fmt.flush();
750     Result.append(fmtbuf.begin(), fmtbuf.end());
751     break;
752   }
753   case ELF::EM_386:
754   case ELF::EM_IAMCU:
755   case ELF::EM_ARM:
756   case ELF::EM_HEXAGON:
757   case ELF::EM_MIPS:
758   case ELF::EM_BPF:
759   case ELF::EM_RISCV:
760     res = Target;
761     break;
762   case ELF::EM_WEBASSEMBLY:
763     switch (type) {
764     case ELF::R_WEBASSEMBLY_DATA: {
765       std::string fmtbuf;
766       raw_string_ostream fmt(fmtbuf);
767       fmt << Target << (addend < 0 ? "" : "+") << addend;
768       fmt.flush();
769       Result.append(fmtbuf.begin(), fmtbuf.end());
770       break;
771     }
772     case ELF::R_WEBASSEMBLY_FUNCTION:
773       res = Target;
774       break;
775     default:
776       res = "Unknown";
777     }
778     break;
779   default:
780     res = "Unknown";
781   }
782   if (Result.empty())
783     Result.append(res.begin(), res.end());
784   return std::error_code();
785 }
786 
787 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
788                                                 const RelocationRef &Rel,
789                                                 SmallVectorImpl<char> &Result) {
790   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
791     return getRelocationValueString(ELF32LE, Rel, Result);
792   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
793     return getRelocationValueString(ELF64LE, Rel, Result);
794   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
795     return getRelocationValueString(ELF32BE, Rel, Result);
796   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
797   return getRelocationValueString(ELF64BE, Rel, Result);
798 }
799 
800 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
801                                                 const RelocationRef &Rel,
802                                                 SmallVectorImpl<char> &Result) {
803   symbol_iterator SymI = Rel.getSymbol();
804   Expected<StringRef> SymNameOrErr = SymI->getName();
805   if (!SymNameOrErr)
806     return errorToErrorCode(SymNameOrErr.takeError());
807   StringRef SymName = *SymNameOrErr;
808   Result.append(SymName.begin(), SymName.end());
809   return std::error_code();
810 }
811 
812 static void printRelocationTargetName(const MachOObjectFile *O,
813                                       const MachO::any_relocation_info &RE,
814                                       raw_string_ostream &fmt) {
815   bool IsScattered = O->isRelocationScattered(RE);
816 
817   // Target of a scattered relocation is an address.  In the interest of
818   // generating pretty output, scan through the symbol table looking for a
819   // symbol that aligns with that address.  If we find one, print it.
820   // Otherwise, we just print the hex address of the target.
821   if (IsScattered) {
822     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
823 
824     for (const SymbolRef &Symbol : O->symbols()) {
825       std::error_code ec;
826       Expected<uint64_t> Addr = Symbol.getAddress();
827       if (!Addr)
828         report_error(O->getFileName(), Addr.takeError());
829       if (*Addr != Val)
830         continue;
831       Expected<StringRef> Name = Symbol.getName();
832       if (!Name)
833         report_error(O->getFileName(), Name.takeError());
834       fmt << *Name;
835       return;
836     }
837 
838     // If we couldn't find a symbol that this relocation refers to, try
839     // to find a section beginning instead.
840     for (const SectionRef &Section : ToolSectionFilter(*O)) {
841       std::error_code ec;
842 
843       StringRef Name;
844       uint64_t Addr = Section.getAddress();
845       if (Addr != Val)
846         continue;
847       if ((ec = Section.getName(Name)))
848         report_error(O->getFileName(), ec);
849       fmt << Name;
850       return;
851     }
852 
853     fmt << format("0x%x", Val);
854     return;
855   }
856 
857   StringRef S;
858   bool isExtern = O->getPlainRelocationExternal(RE);
859   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
860 
861   if (isExtern) {
862     symbol_iterator SI = O->symbol_begin();
863     advance(SI, Val);
864     Expected<StringRef> SOrErr = SI->getName();
865     if (!SOrErr)
866       report_error(O->getFileName(), SOrErr.takeError());
867     S = *SOrErr;
868   } else {
869     section_iterator SI = O->section_begin();
870     // Adjust for the fact that sections are 1-indexed.
871     advance(SI, Val - 1);
872     SI->getName(S);
873   }
874 
875   fmt << S;
876 }
877 
878 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
879                                                 const RelocationRef &RelRef,
880                                                 SmallVectorImpl<char> &Result) {
881   DataRefImpl Rel = RelRef.getRawDataRefImpl();
882   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
883 
884   unsigned Arch = Obj->getArch();
885 
886   std::string fmtbuf;
887   raw_string_ostream fmt(fmtbuf);
888   unsigned Type = Obj->getAnyRelocationType(RE);
889   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
890 
891   // Determine any addends that should be displayed with the relocation.
892   // These require decoding the relocation type, which is triple-specific.
893 
894   // X86_64 has entirely custom relocation types.
895   if (Arch == Triple::x86_64) {
896     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
897 
898     switch (Type) {
899     case MachO::X86_64_RELOC_GOT_LOAD:
900     case MachO::X86_64_RELOC_GOT: {
901       printRelocationTargetName(Obj, RE, fmt);
902       fmt << "@GOT";
903       if (isPCRel)
904         fmt << "PCREL";
905       break;
906     }
907     case MachO::X86_64_RELOC_SUBTRACTOR: {
908       DataRefImpl RelNext = Rel;
909       Obj->moveRelocationNext(RelNext);
910       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
911 
912       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
913       // X86_64_RELOC_UNSIGNED.
914       // NOTE: Scattered relocations don't exist on x86_64.
915       unsigned RType = Obj->getAnyRelocationType(RENext);
916       if (RType != MachO::X86_64_RELOC_UNSIGNED)
917         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
918                      "X86_64_RELOC_SUBTRACTOR.");
919 
920       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
921       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
922       printRelocationTargetName(Obj, RENext, fmt);
923       fmt << "-";
924       printRelocationTargetName(Obj, RE, fmt);
925       break;
926     }
927     case MachO::X86_64_RELOC_TLV:
928       printRelocationTargetName(Obj, RE, fmt);
929       fmt << "@TLV";
930       if (isPCRel)
931         fmt << "P";
932       break;
933     case MachO::X86_64_RELOC_SIGNED_1:
934       printRelocationTargetName(Obj, RE, fmt);
935       fmt << "-1";
936       break;
937     case MachO::X86_64_RELOC_SIGNED_2:
938       printRelocationTargetName(Obj, RE, fmt);
939       fmt << "-2";
940       break;
941     case MachO::X86_64_RELOC_SIGNED_4:
942       printRelocationTargetName(Obj, RE, fmt);
943       fmt << "-4";
944       break;
945     default:
946       printRelocationTargetName(Obj, RE, fmt);
947       break;
948     }
949     // X86 and ARM share some relocation types in common.
950   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
951              Arch == Triple::ppc) {
952     // Generic relocation types...
953     switch (Type) {
954     case MachO::GENERIC_RELOC_PAIR: // prints no info
955       return std::error_code();
956     case MachO::GENERIC_RELOC_SECTDIFF: {
957       DataRefImpl RelNext = Rel;
958       Obj->moveRelocationNext(RelNext);
959       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
960 
961       // X86 sect diff's must be followed by a relocation of type
962       // GENERIC_RELOC_PAIR.
963       unsigned RType = Obj->getAnyRelocationType(RENext);
964 
965       if (RType != MachO::GENERIC_RELOC_PAIR)
966         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
967                      "GENERIC_RELOC_SECTDIFF.");
968 
969       printRelocationTargetName(Obj, RE, fmt);
970       fmt << "-";
971       printRelocationTargetName(Obj, RENext, fmt);
972       break;
973     }
974     }
975 
976     if (Arch == Triple::x86 || Arch == Triple::ppc) {
977       switch (Type) {
978       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
979         DataRefImpl RelNext = Rel;
980         Obj->moveRelocationNext(RelNext);
981         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
982 
983         // X86 sect diff's must be followed by a relocation of type
984         // GENERIC_RELOC_PAIR.
985         unsigned RType = Obj->getAnyRelocationType(RENext);
986         if (RType != MachO::GENERIC_RELOC_PAIR)
987           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
988                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
989 
990         printRelocationTargetName(Obj, RE, fmt);
991         fmt << "-";
992         printRelocationTargetName(Obj, RENext, fmt);
993         break;
994       }
995       case MachO::GENERIC_RELOC_TLV: {
996         printRelocationTargetName(Obj, RE, fmt);
997         fmt << "@TLV";
998         if (IsPCRel)
999           fmt << "P";
1000         break;
1001       }
1002       default:
1003         printRelocationTargetName(Obj, RE, fmt);
1004       }
1005     } else { // ARM-specific relocations
1006       switch (Type) {
1007       case MachO::ARM_RELOC_HALF:
1008       case MachO::ARM_RELOC_HALF_SECTDIFF: {
1009         // Half relocations steal a bit from the length field to encode
1010         // whether this is an upper16 or a lower16 relocation.
1011         bool isUpper = Obj->getAnyRelocationLength(RE) >> 1;
1012 
1013         if (isUpper)
1014           fmt << ":upper16:(";
1015         else
1016           fmt << ":lower16:(";
1017         printRelocationTargetName(Obj, RE, fmt);
1018 
1019         DataRefImpl RelNext = Rel;
1020         Obj->moveRelocationNext(RelNext);
1021         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1022 
1023         // ARM half relocs must be followed by a relocation of type
1024         // ARM_RELOC_PAIR.
1025         unsigned RType = Obj->getAnyRelocationType(RENext);
1026         if (RType != MachO::ARM_RELOC_PAIR)
1027           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
1028                        "ARM_RELOC_HALF");
1029 
1030         // NOTE: The half of the target virtual address is stashed in the
1031         // address field of the secondary relocation, but we can't reverse
1032         // engineer the constant offset from it without decoding the movw/movt
1033         // instruction to find the other half in its immediate field.
1034 
1035         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
1036         // symbol/section pointer of the follow-on relocation.
1037         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1038           fmt << "-";
1039           printRelocationTargetName(Obj, RENext, fmt);
1040         }
1041 
1042         fmt << ")";
1043         break;
1044       }
1045       default: { printRelocationTargetName(Obj, RE, fmt); }
1046       }
1047     }
1048   } else
1049     printRelocationTargetName(Obj, RE, fmt);
1050 
1051   fmt.flush();
1052   Result.append(fmtbuf.begin(), fmtbuf.end());
1053   return std::error_code();
1054 }
1055 
1056 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1057                                                 SmallVectorImpl<char> &Result) {
1058   const ObjectFile *Obj = Rel.getObject();
1059   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1060     return getRelocationValueString(ELF, Rel, Result);
1061   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1062     return getRelocationValueString(COFF, Rel, Result);
1063   auto *MachO = cast<MachOObjectFile>(Obj);
1064   return getRelocationValueString(MachO, Rel, Result);
1065 }
1066 
1067 /// @brief Indicates whether this relocation should hidden when listing
1068 /// relocations, usually because it is the trailing part of a multipart
1069 /// relocation that will be printed as part of the leading relocation.
1070 static bool getHidden(RelocationRef RelRef) {
1071   const ObjectFile *Obj = RelRef.getObject();
1072   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1073   if (!MachO)
1074     return false;
1075 
1076   unsigned Arch = MachO->getArch();
1077   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1078   uint64_t Type = MachO->getRelocationType(Rel);
1079 
1080   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1081   // is always hidden.
1082   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1083     if (Type == MachO::GENERIC_RELOC_PAIR)
1084       return true;
1085   } else if (Arch == Triple::x86_64) {
1086     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1087     // an X86_64_RELOC_SUBTRACTOR.
1088     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1089       DataRefImpl RelPrev = Rel;
1090       RelPrev.d.a--;
1091       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1092       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1093         return true;
1094     }
1095   }
1096 
1097   return false;
1098 }
1099 
1100 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1101   assert(Obj->isELF());
1102   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1103     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1104   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1105     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1106   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1107     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1108   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1109     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1110   llvm_unreachable("Unsupported binary format");
1111 }
1112 
1113 template <class ELFT> static void
1114 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1115                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1116   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1117     uint8_t SymbolType = Symbol.getELFType();
1118     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1119       continue;
1120 
1121     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1122     if (!AddressOrErr)
1123       report_error(Obj->getFileName(), AddressOrErr.takeError());
1124     uint64_t Address = *AddressOrErr;
1125 
1126     Expected<StringRef> Name = Symbol.getName();
1127     if (!Name)
1128       report_error(Obj->getFileName(), Name.takeError());
1129     if (Name->empty())
1130       continue;
1131 
1132     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1133     if (!SectionOrErr)
1134       report_error(Obj->getFileName(), SectionOrErr.takeError());
1135     section_iterator SecI = *SectionOrErr;
1136     if (SecI == Obj->section_end())
1137       continue;
1138 
1139     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1140   }
1141 }
1142 
1143 static void
1144 addDynamicElfSymbols(const ObjectFile *Obj,
1145                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1146   assert(Obj->isELF());
1147   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1148     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1149   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1150     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1151   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1152     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1153   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1154     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1155   else
1156     llvm_unreachable("Unsupported binary format");
1157 }
1158 
1159 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1160   if (StartAddress > StopAddress)
1161     error("Start address should be less than stop address");
1162 
1163   const Target *TheTarget = getTarget(Obj);
1164 
1165   // Package up features to be passed to target/subtarget
1166   SubtargetFeatures Features = Obj->getFeatures();
1167   if (MAttrs.size()) {
1168     for (unsigned i = 0; i != MAttrs.size(); ++i)
1169       Features.AddFeature(MAttrs[i]);
1170   }
1171 
1172   std::unique_ptr<const MCRegisterInfo> MRI(
1173       TheTarget->createMCRegInfo(TripleName));
1174   if (!MRI)
1175     report_error(Obj->getFileName(), "no register info for target " +
1176                  TripleName);
1177 
1178   // Set up disassembler.
1179   std::unique_ptr<const MCAsmInfo> AsmInfo(
1180       TheTarget->createMCAsmInfo(*MRI, TripleName));
1181   if (!AsmInfo)
1182     report_error(Obj->getFileName(), "no assembly info for target " +
1183                  TripleName);
1184   std::unique_ptr<const MCSubtargetInfo> STI(
1185       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1186   if (!STI)
1187     report_error(Obj->getFileName(), "no subtarget info for target " +
1188                  TripleName);
1189   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1190   if (!MII)
1191     report_error(Obj->getFileName(), "no instruction info for target " +
1192                  TripleName);
1193   MCObjectFileInfo MOFI;
1194   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1195   // FIXME: for now initialize MCObjectFileInfo with default values
1196   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, CodeModel::Default, Ctx);
1197 
1198   std::unique_ptr<MCDisassembler> DisAsm(
1199     TheTarget->createMCDisassembler(*STI, Ctx));
1200   if (!DisAsm)
1201     report_error(Obj->getFileName(), "no disassembler for target " +
1202                  TripleName);
1203 
1204   std::unique_ptr<const MCInstrAnalysis> MIA(
1205       TheTarget->createMCInstrAnalysis(MII.get()));
1206 
1207   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1208   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1209       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1210   if (!IP)
1211     report_error(Obj->getFileName(), "no instruction printer for target " +
1212                  TripleName);
1213   IP->setPrintImmHex(PrintImmHex);
1214   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1215 
1216   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1217                                                  "\t\t\t%08" PRIx64 ":  ";
1218 
1219   SourcePrinter SP(Obj, TheTarget->getName());
1220 
1221   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1222   // in RelocSecs contain the relocations for section S.
1223   std::error_code EC;
1224   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1225   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1226     section_iterator Sec2 = Section.getRelocatedSection();
1227     if (Sec2 != Obj->section_end())
1228       SectionRelocMap[*Sec2].push_back(Section);
1229   }
1230 
1231   // Create a mapping from virtual address to symbol name.  This is used to
1232   // pretty print the symbols while disassembling.
1233   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1234   for (const SymbolRef &Symbol : Obj->symbols()) {
1235     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1236     if (!AddressOrErr)
1237       report_error(Obj->getFileName(), AddressOrErr.takeError());
1238     uint64_t Address = *AddressOrErr;
1239 
1240     Expected<StringRef> Name = Symbol.getName();
1241     if (!Name)
1242       report_error(Obj->getFileName(), Name.takeError());
1243     if (Name->empty())
1244       continue;
1245 
1246     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1247     if (!SectionOrErr)
1248       report_error(Obj->getFileName(), SectionOrErr.takeError());
1249     section_iterator SecI = *SectionOrErr;
1250     if (SecI == Obj->section_end())
1251       continue;
1252 
1253     uint8_t SymbolType = ELF::STT_NOTYPE;
1254     if (Obj->isELF())
1255       SymbolType = getElfSymbolType(Obj, Symbol);
1256 
1257     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1258 
1259   }
1260   if (AllSymbols.empty() && Obj->isELF())
1261     addDynamicElfSymbols(Obj, AllSymbols);
1262 
1263   // Create a mapping from virtual address to section.
1264   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1265   for (SectionRef Sec : Obj->sections())
1266     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1267   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1268 
1269   // Linked executables (.exe and .dll files) typically don't include a real
1270   // symbol table but they might contain an export table.
1271   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1272     for (const auto &ExportEntry : COFFObj->export_directories()) {
1273       StringRef Name;
1274       error(ExportEntry.getSymbolName(Name));
1275       if (Name.empty())
1276         continue;
1277       uint32_t RVA;
1278       error(ExportEntry.getExportRVA(RVA));
1279 
1280       uint64_t VA = COFFObj->getImageBase() + RVA;
1281       auto Sec = std::upper_bound(
1282           SectionAddresses.begin(), SectionAddresses.end(), VA,
1283           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1284             return LHS < RHS.first;
1285           });
1286       if (Sec != SectionAddresses.begin())
1287         --Sec;
1288       else
1289         Sec = SectionAddresses.end();
1290 
1291       if (Sec != SectionAddresses.end())
1292         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1293     }
1294   }
1295 
1296   // Sort all the symbols, this allows us to use a simple binary search to find
1297   // a symbol near an address.
1298   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1299     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1300 
1301   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1302     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1303       continue;
1304 
1305     uint64_t SectionAddr = Section.getAddress();
1306     uint64_t SectSize = Section.getSize();
1307     if (!SectSize)
1308       continue;
1309 
1310     // Get the list of all the symbols in this section.
1311     SectionSymbolsTy &Symbols = AllSymbols[Section];
1312     std::vector<uint64_t> DataMappingSymsAddr;
1313     std::vector<uint64_t> TextMappingSymsAddr;
1314     if (isArmElf(Obj)) {
1315       for (const auto &Symb : Symbols) {
1316         uint64_t Address = std::get<0>(Symb);
1317         StringRef Name = std::get<1>(Symb);
1318         if (Name.startswith("$d"))
1319           DataMappingSymsAddr.push_back(Address - SectionAddr);
1320         if (Name.startswith("$x"))
1321           TextMappingSymsAddr.push_back(Address - SectionAddr);
1322         if (Name.startswith("$a"))
1323           TextMappingSymsAddr.push_back(Address - SectionAddr);
1324         if (Name.startswith("$t"))
1325           TextMappingSymsAddr.push_back(Address - SectionAddr);
1326       }
1327     }
1328 
1329     std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1330     std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1331 
1332     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1333       // AMDGPU disassembler uses symbolizer for printing labels
1334       std::unique_ptr<MCRelocationInfo> RelInfo(
1335         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1336       if (RelInfo) {
1337         std::unique_ptr<MCSymbolizer> Symbolizer(
1338           TheTarget->createMCSymbolizer(
1339             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1340         DisAsm->setSymbolizer(std::move(Symbolizer));
1341       }
1342     }
1343 
1344     // Make a list of all the relocations for this section.
1345     std::vector<RelocationRef> Rels;
1346     if (InlineRelocs) {
1347       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1348         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1349           Rels.push_back(Reloc);
1350         }
1351       }
1352     }
1353 
1354     // Sort relocations by address.
1355     std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1356 
1357     StringRef SegmentName = "";
1358     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1359       DataRefImpl DR = Section.getRawDataRefImpl();
1360       SegmentName = MachO->getSectionFinalSegmentName(DR);
1361     }
1362     StringRef name;
1363     error(Section.getName(name));
1364 
1365     if ((SectionAddr <= StopAddress) &&
1366         (SectionAddr + SectSize) >= StartAddress) {
1367     outs() << "Disassembly of section ";
1368     if (!SegmentName.empty())
1369       outs() << SegmentName << ",";
1370     outs() << name << ':';
1371     }
1372 
1373     // If the section has no symbol at the start, just insert a dummy one.
1374     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1375       Symbols.insert(Symbols.begin(),
1376                      std::make_tuple(SectionAddr, name, Section.isText()
1377                                                             ? ELF::STT_FUNC
1378                                                             : ELF::STT_OBJECT));
1379     }
1380 
1381     SmallString<40> Comments;
1382     raw_svector_ostream CommentStream(Comments);
1383 
1384     StringRef BytesStr;
1385     error(Section.getContents(BytesStr));
1386     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1387                             BytesStr.size());
1388 
1389     uint64_t Size;
1390     uint64_t Index;
1391 
1392     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1393     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1394     // Disassemble symbol by symbol.
1395     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1396       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1397       // The end is either the section end or the beginning of the next
1398       // symbol.
1399       uint64_t End =
1400           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1401       // Don't try to disassemble beyond the end of section contents.
1402       if (End > SectSize)
1403         End = SectSize;
1404       // If this symbol has the same address as the next symbol, then skip it.
1405       if (Start >= End)
1406         continue;
1407 
1408       // Check if we need to skip symbol
1409       // Skip if the symbol's data is not between StartAddress and StopAddress
1410       if (End + SectionAddr < StartAddress ||
1411           Start + SectionAddr > StopAddress) {
1412         continue;
1413       }
1414 
1415       // Stop disassembly at the stop address specified
1416       if (End + SectionAddr > StopAddress)
1417         End = StopAddress - SectionAddr;
1418 
1419       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1420         // make size 4 bytes folded
1421         End = Start + ((End - Start) & ~0x3ull);
1422         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1423           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1424           Start += 256;
1425         }
1426         if (si == se - 1 ||
1427             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1428           // cut trailing zeroes at the end of kernel
1429           // cut up to 256 bytes
1430           const uint64_t EndAlign = 256;
1431           const auto Limit = End - (std::min)(EndAlign, End - Start);
1432           while (End > Limit &&
1433             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1434             End -= 4;
1435         }
1436       }
1437 
1438       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1439 
1440 #ifndef NDEBUG
1441       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1442 #else
1443       raw_ostream &DebugOut = nulls();
1444 #endif
1445 
1446       for (Index = Start; Index < End; Index += Size) {
1447         MCInst Inst;
1448 
1449         if (Index + SectionAddr < StartAddress ||
1450             Index + SectionAddr > StopAddress) {
1451           // skip byte by byte till StartAddress is reached
1452           Size = 1;
1453           continue;
1454         }
1455         // AArch64 ELF binaries can interleave data and text in the
1456         // same section. We rely on the markers introduced to
1457         // understand what we need to dump. If the data marker is within a
1458         // function, it is denoted as a word/short etc
1459         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1460             !DisassembleAll) {
1461           uint64_t Stride = 0;
1462 
1463           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1464                                       DataMappingSymsAddr.end(), Index);
1465           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1466             // Switch to data.
1467             while (Index < End) {
1468               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1469               outs() << "\t";
1470               if (Index + 4 <= End) {
1471                 Stride = 4;
1472                 dumpBytes(Bytes.slice(Index, 4), outs());
1473                 outs() << "\t.word\t";
1474                 uint32_t Data = 0;
1475                 if (Obj->isLittleEndian()) {
1476                   const auto Word =
1477                       reinterpret_cast<const support::ulittle32_t *>(
1478                           Bytes.data() + Index);
1479                   Data = *Word;
1480                 } else {
1481                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1482                       Bytes.data() + Index);
1483                   Data = *Word;
1484                 }
1485                 outs() << "0x" << format("%08" PRIx32, Data);
1486               } else if (Index + 2 <= End) {
1487                 Stride = 2;
1488                 dumpBytes(Bytes.slice(Index, 2), outs());
1489                 outs() << "\t\t.short\t";
1490                 uint16_t Data = 0;
1491                 if (Obj->isLittleEndian()) {
1492                   const auto Short =
1493                       reinterpret_cast<const support::ulittle16_t *>(
1494                           Bytes.data() + Index);
1495                   Data = *Short;
1496                 } else {
1497                   const auto Short =
1498                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1499                                                                   Index);
1500                   Data = *Short;
1501                 }
1502                 outs() << "0x" << format("%04" PRIx16, Data);
1503               } else {
1504                 Stride = 1;
1505                 dumpBytes(Bytes.slice(Index, 1), outs());
1506                 outs() << "\t\t.byte\t";
1507                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1508               }
1509               Index += Stride;
1510               outs() << "\n";
1511               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1512                                           TextMappingSymsAddr.end(), Index);
1513               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1514                 break;
1515             }
1516           }
1517         }
1518 
1519         // If there is a data symbol inside an ELF text section and we are only
1520         // disassembling text (applicable all architectures),
1521         // we are in a situation where we must print the data and not
1522         // disassemble it.
1523         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1524             !DisassembleAll && Section.isText()) {
1525           // print out data up to 8 bytes at a time in hex and ascii
1526           uint8_t AsciiData[9] = {'\0'};
1527           uint8_t Byte;
1528           int NumBytes = 0;
1529 
1530           for (Index = Start; Index < End; Index += 1) {
1531             if (((SectionAddr + Index) < StartAddress) ||
1532                 ((SectionAddr + Index) > StopAddress))
1533               continue;
1534             if (NumBytes == 0) {
1535               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1536               outs() << "\t";
1537             }
1538             Byte = Bytes.slice(Index)[0];
1539             outs() << format(" %02x", Byte);
1540             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1541 
1542             uint8_t IndentOffset = 0;
1543             NumBytes++;
1544             if (Index == End - 1 || NumBytes > 8) {
1545               // Indent the space for less than 8 bytes data.
1546               // 2 spaces for byte and one for space between bytes
1547               IndentOffset = 3 * (8 - NumBytes);
1548               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1549                 AsciiData[Excess] = '\0';
1550               NumBytes = 8;
1551             }
1552             if (NumBytes == 8) {
1553               AsciiData[8] = '\0';
1554               outs() << std::string(IndentOffset, ' ') << "         ";
1555               outs() << reinterpret_cast<char *>(AsciiData);
1556               outs() << '\n';
1557               NumBytes = 0;
1558             }
1559           }
1560         }
1561         if (Index >= End)
1562           break;
1563 
1564         // Disassemble a real instruction or a data when disassemble all is
1565         // provided
1566         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1567                                                    SectionAddr + Index, DebugOut,
1568                                                    CommentStream);
1569         if (Size == 0)
1570           Size = 1;
1571 
1572         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1573                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1574                       *STI, &SP);
1575         outs() << CommentStream.str();
1576         Comments.clear();
1577 
1578         // Try to resolve the target of a call, tail call, etc. to a specific
1579         // symbol.
1580         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1581                     MIA->isConditionalBranch(Inst))) {
1582           uint64_t Target;
1583           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1584             // In a relocatable object, the target's section must reside in
1585             // the same section as the call instruction or it is accessed
1586             // through a relocation.
1587             //
1588             // In a non-relocatable object, the target may be in any section.
1589             //
1590             // N.B. We don't walk the relocations in the relocatable case yet.
1591             auto *TargetSectionSymbols = &Symbols;
1592             if (!Obj->isRelocatableObject()) {
1593               auto SectionAddress = std::upper_bound(
1594                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1595                   [](uint64_t LHS,
1596                       const std::pair<uint64_t, SectionRef> &RHS) {
1597                     return LHS < RHS.first;
1598                   });
1599               if (SectionAddress != SectionAddresses.begin()) {
1600                 --SectionAddress;
1601                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1602               } else {
1603                 TargetSectionSymbols = nullptr;
1604               }
1605             }
1606 
1607             // Find the first symbol in the section whose offset is less than
1608             // or equal to the target.
1609             if (TargetSectionSymbols) {
1610               auto TargetSym = std::upper_bound(
1611                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1612                   Target, [](uint64_t LHS,
1613                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1614                     return LHS < std::get<0>(RHS);
1615                   });
1616               if (TargetSym != TargetSectionSymbols->begin()) {
1617                 --TargetSym;
1618                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1619                 StringRef TargetName = std::get<1>(*TargetSym);
1620                 outs() << " <" << TargetName;
1621                 uint64_t Disp = Target - TargetAddress;
1622                 if (Disp)
1623                   outs() << "+0x" << utohexstr(Disp);
1624                 outs() << '>';
1625               }
1626             }
1627           }
1628         }
1629         outs() << "\n";
1630 
1631         // Print relocation for instruction.
1632         while (rel_cur != rel_end) {
1633           bool hidden = getHidden(*rel_cur);
1634           uint64_t addr = rel_cur->getOffset();
1635           SmallString<16> name;
1636           SmallString<32> val;
1637 
1638           // If this relocation is hidden, skip it.
1639           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1640             ++rel_cur;
1641             continue;
1642           }
1643 
1644           // Stop when rel_cur's address is past the current instruction.
1645           if (addr >= Index + Size) break;
1646           rel_cur->getTypeName(name);
1647           error(getRelocationValueString(*rel_cur, val));
1648           outs() << format(Fmt.data(), SectionAddr + addr) << name
1649                  << "\t" << val << "\n";
1650           ++rel_cur;
1651         }
1652       }
1653     }
1654   }
1655 }
1656 
1657 void llvm::PrintRelocations(const ObjectFile *Obj) {
1658   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1659                                                  "%08" PRIx64;
1660   // Regular objdump doesn't print relocations in non-relocatable object
1661   // files.
1662   if (!Obj->isRelocatableObject())
1663     return;
1664 
1665   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1666     if (Section.relocation_begin() == Section.relocation_end())
1667       continue;
1668     StringRef secname;
1669     error(Section.getName(secname));
1670     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1671     for (const RelocationRef &Reloc : Section.relocations()) {
1672       bool hidden = getHidden(Reloc);
1673       uint64_t address = Reloc.getOffset();
1674       SmallString<32> relocname;
1675       SmallString<32> valuestr;
1676       if (address < StartAddress || address > StopAddress || hidden)
1677         continue;
1678       Reloc.getTypeName(relocname);
1679       error(getRelocationValueString(Reloc, valuestr));
1680       outs() << format(Fmt.data(), address) << " " << relocname << " "
1681              << valuestr << "\n";
1682     }
1683     outs() << "\n";
1684   }
1685 }
1686 
1687 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1688   outs() << "Sections:\n"
1689             "Idx Name          Size      Address          Type\n";
1690   unsigned i = 0;
1691   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1692     StringRef Name;
1693     error(Section.getName(Name));
1694     uint64_t Address = Section.getAddress();
1695     uint64_t Size = Section.getSize();
1696     bool Text = Section.isText();
1697     bool Data = Section.isData();
1698     bool BSS = Section.isBSS();
1699     std::string Type = (std::string(Text ? "TEXT " : "") +
1700                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1701     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1702                      Name.str().c_str(), Size, Address, Type.c_str());
1703     ++i;
1704   }
1705 }
1706 
1707 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1708   std::error_code EC;
1709   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1710     StringRef Name;
1711     StringRef Contents;
1712     error(Section.getName(Name));
1713     uint64_t BaseAddr = Section.getAddress();
1714     uint64_t Size = Section.getSize();
1715     if (!Size)
1716       continue;
1717 
1718     outs() << "Contents of section " << Name << ":\n";
1719     if (Section.isBSS()) {
1720       outs() << format("<skipping contents of bss section at [%04" PRIx64
1721                        ", %04" PRIx64 ")>\n",
1722                        BaseAddr, BaseAddr + Size);
1723       continue;
1724     }
1725 
1726     error(Section.getContents(Contents));
1727 
1728     // Dump out the content as hex and printable ascii characters.
1729     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1730       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1731       // Dump line of hex.
1732       for (std::size_t i = 0; i < 16; ++i) {
1733         if (i != 0 && i % 4 == 0)
1734           outs() << ' ';
1735         if (addr + i < end)
1736           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1737                  << hexdigit(Contents[addr + i] & 0xF, true);
1738         else
1739           outs() << "  ";
1740       }
1741       // Print ascii.
1742       outs() << "  ";
1743       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1744         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1745           outs() << Contents[addr + i];
1746         else
1747           outs() << ".";
1748       }
1749       outs() << "\n";
1750     }
1751   }
1752 }
1753 
1754 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1755                             StringRef ArchitectureName) {
1756   outs() << "SYMBOL TABLE:\n";
1757 
1758   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1759     printCOFFSymbolTable(coff);
1760     return;
1761   }
1762   for (const SymbolRef &Symbol : o->symbols()) {
1763     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1764     if (!AddressOrError)
1765       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1766                    ArchitectureName);
1767     uint64_t Address = *AddressOrError;
1768     if ((Address < StartAddress) || (Address > StopAddress))
1769       continue;
1770     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1771     if (!TypeOrError)
1772       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1773                    ArchitectureName);
1774     SymbolRef::Type Type = *TypeOrError;
1775     uint32_t Flags = Symbol.getFlags();
1776     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1777     if (!SectionOrErr)
1778       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1779                    ArchitectureName);
1780     section_iterator Section = *SectionOrErr;
1781     StringRef Name;
1782     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1783       Section->getName(Name);
1784     } else {
1785       Expected<StringRef> NameOrErr = Symbol.getName();
1786       if (!NameOrErr)
1787         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1788                      ArchitectureName);
1789       Name = *NameOrErr;
1790     }
1791 
1792     bool Global = Flags & SymbolRef::SF_Global;
1793     bool Weak = Flags & SymbolRef::SF_Weak;
1794     bool Absolute = Flags & SymbolRef::SF_Absolute;
1795     bool Common = Flags & SymbolRef::SF_Common;
1796     bool Hidden = Flags & SymbolRef::SF_Hidden;
1797 
1798     char GlobLoc = ' ';
1799     if (Type != SymbolRef::ST_Unknown)
1800       GlobLoc = Global ? 'g' : 'l';
1801     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1802                  ? 'd' : ' ';
1803     char FileFunc = ' ';
1804     if (Type == SymbolRef::ST_File)
1805       FileFunc = 'f';
1806     else if (Type == SymbolRef::ST_Function)
1807       FileFunc = 'F';
1808 
1809     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1810                                                    "%08" PRIx64;
1811 
1812     outs() << format(Fmt, Address) << " "
1813            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1814            << (Weak ? 'w' : ' ') // Weak?
1815            << ' ' // Constructor. Not supported yet.
1816            << ' ' // Warning. Not supported yet.
1817            << ' ' // Indirect reference to another symbol.
1818            << Debug // Debugging (d) or dynamic (D) symbol.
1819            << FileFunc // Name of function (F), file (f) or object (O).
1820            << ' ';
1821     if (Absolute) {
1822       outs() << "*ABS*";
1823     } else if (Common) {
1824       outs() << "*COM*";
1825     } else if (Section == o->section_end()) {
1826       outs() << "*UND*";
1827     } else {
1828       if (const MachOObjectFile *MachO =
1829           dyn_cast<const MachOObjectFile>(o)) {
1830         DataRefImpl DR = Section->getRawDataRefImpl();
1831         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1832         outs() << SegmentName << ",";
1833       }
1834       StringRef SectionName;
1835       error(Section->getName(SectionName));
1836       outs() << SectionName;
1837     }
1838 
1839     outs() << '\t';
1840     if (Common || isa<ELFObjectFileBase>(o)) {
1841       uint64_t Val =
1842           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1843       outs() << format("\t %08" PRIx64 " ", Val);
1844     }
1845 
1846     if (Hidden) {
1847       outs() << ".hidden ";
1848     }
1849     outs() << Name
1850            << '\n';
1851   }
1852 }
1853 
1854 static void PrintUnwindInfo(const ObjectFile *o) {
1855   outs() << "Unwind info:\n\n";
1856 
1857   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1858     printCOFFUnwindInfo(coff);
1859   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1860     printMachOUnwindInfo(MachO);
1861   else {
1862     // TODO: Extract DWARF dump tool to objdump.
1863     errs() << "This operation is only currently supported "
1864               "for COFF and MachO object files.\n";
1865     return;
1866   }
1867 }
1868 
1869 void llvm::printExportsTrie(const ObjectFile *o) {
1870   outs() << "Exports trie:\n";
1871   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1872     printMachOExportsTrie(MachO);
1873   else {
1874     errs() << "This operation is only currently supported "
1875               "for Mach-O executable files.\n";
1876     return;
1877   }
1878 }
1879 
1880 void llvm::printRebaseTable(const ObjectFile *o) {
1881   outs() << "Rebase table:\n";
1882   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1883     printMachORebaseTable(MachO);
1884   else {
1885     errs() << "This operation is only currently supported "
1886               "for Mach-O executable files.\n";
1887     return;
1888   }
1889 }
1890 
1891 void llvm::printBindTable(const ObjectFile *o) {
1892   outs() << "Bind table:\n";
1893   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1894     printMachOBindTable(MachO);
1895   else {
1896     errs() << "This operation is only currently supported "
1897               "for Mach-O executable files.\n";
1898     return;
1899   }
1900 }
1901 
1902 void llvm::printLazyBindTable(const ObjectFile *o) {
1903   outs() << "Lazy bind table:\n";
1904   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1905     printMachOLazyBindTable(MachO);
1906   else {
1907     errs() << "This operation is only currently supported "
1908               "for Mach-O executable files.\n";
1909     return;
1910   }
1911 }
1912 
1913 void llvm::printWeakBindTable(const ObjectFile *o) {
1914   outs() << "Weak bind table:\n";
1915   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1916     printMachOWeakBindTable(MachO);
1917   else {
1918     errs() << "This operation is only currently supported "
1919               "for Mach-O executable files.\n";
1920     return;
1921   }
1922 }
1923 
1924 /// Dump the raw contents of the __clangast section so the output can be piped
1925 /// into llvm-bcanalyzer.
1926 void llvm::printRawClangAST(const ObjectFile *Obj) {
1927   if (outs().is_displayed()) {
1928     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1929               "the clang ast section.\n"
1930               "Please redirect the output to a file or another program such as "
1931               "llvm-bcanalyzer.\n";
1932     return;
1933   }
1934 
1935   StringRef ClangASTSectionName("__clangast");
1936   if (isa<COFFObjectFile>(Obj)) {
1937     ClangASTSectionName = "clangast";
1938   }
1939 
1940   Optional<object::SectionRef> ClangASTSection;
1941   for (auto Sec : ToolSectionFilter(*Obj)) {
1942     StringRef Name;
1943     Sec.getName(Name);
1944     if (Name == ClangASTSectionName) {
1945       ClangASTSection = Sec;
1946       break;
1947     }
1948   }
1949   if (!ClangASTSection)
1950     return;
1951 
1952   StringRef ClangASTContents;
1953   error(ClangASTSection.getValue().getContents(ClangASTContents));
1954   outs().write(ClangASTContents.data(), ClangASTContents.size());
1955 }
1956 
1957 static void printFaultMaps(const ObjectFile *Obj) {
1958   const char *FaultMapSectionName = nullptr;
1959 
1960   if (isa<ELFObjectFileBase>(Obj)) {
1961     FaultMapSectionName = ".llvm_faultmaps";
1962   } else if (isa<MachOObjectFile>(Obj)) {
1963     FaultMapSectionName = "__llvm_faultmaps";
1964   } else {
1965     errs() << "This operation is only currently supported "
1966               "for ELF and Mach-O executable files.\n";
1967     return;
1968   }
1969 
1970   Optional<object::SectionRef> FaultMapSection;
1971 
1972   for (auto Sec : ToolSectionFilter(*Obj)) {
1973     StringRef Name;
1974     Sec.getName(Name);
1975     if (Name == FaultMapSectionName) {
1976       FaultMapSection = Sec;
1977       break;
1978     }
1979   }
1980 
1981   outs() << "FaultMap table:\n";
1982 
1983   if (!FaultMapSection.hasValue()) {
1984     outs() << "<not found>\n";
1985     return;
1986   }
1987 
1988   StringRef FaultMapContents;
1989   error(FaultMapSection.getValue().getContents(FaultMapContents));
1990 
1991   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1992                      FaultMapContents.bytes_end());
1993 
1994   outs() << FMP;
1995 }
1996 
1997 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
1998   if (o->isELF())
1999     return printELFFileHeader(o);
2000   if (o->isCOFF())
2001     return printCOFFFileHeader(o);
2002   if (o->isWasm())
2003     return printWasmFileHeader(o);
2004   if (o->isMachO()) {
2005     printMachOFileHeader(o);
2006     if (!onlyFirst)
2007       printMachOLoadCommands(o);
2008     return;
2009   }
2010   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2011 }
2012 
2013 static void DumpObject(const ObjectFile *o, const Archive *a = nullptr) {
2014   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2015   // Avoid other output when using a raw option.
2016   if (!RawClangAST) {
2017     outs() << '\n';
2018     if (a)
2019       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2020     else
2021       outs() << o->getFileName();
2022     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2023   }
2024 
2025   if (Disassemble)
2026     DisassembleObject(o, Relocations);
2027   if (Relocations && !Disassemble)
2028     PrintRelocations(o);
2029   if (SectionHeaders)
2030     PrintSectionHeaders(o);
2031   if (SectionContents)
2032     PrintSectionContents(o);
2033   if (SymbolTable)
2034     PrintSymbolTable(o, ArchiveName);
2035   if (UnwindInfo)
2036     PrintUnwindInfo(o);
2037   if (PrivateHeaders || FirstPrivateHeader)
2038     printPrivateFileHeaders(o, FirstPrivateHeader);
2039   if (ExportsTrie)
2040     printExportsTrie(o);
2041   if (Rebase)
2042     printRebaseTable(o);
2043   if (Bind)
2044     printBindTable(o);
2045   if (LazyBind)
2046     printLazyBindTable(o);
2047   if (WeakBind)
2048     printWeakBindTable(o);
2049   if (RawClangAST)
2050     printRawClangAST(o);
2051   if (PrintFaultMaps)
2052     printFaultMaps(o);
2053   if (DwarfDumpType != DIDT_Null) {
2054     std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*o));
2055     // Dump the complete DWARF structure.
2056     DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */);
2057   }
2058 }
2059 
2060 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2061   StringRef ArchiveName = A ? A->getFileName() : "";
2062 
2063   // Avoid other output when using a raw option.
2064   if (!RawClangAST)
2065     outs() << '\n'
2066            << ArchiveName << "(" << I->getFileName() << ")"
2067            << ":\tfile format COFF-import-file"
2068            << "\n\n";
2069 
2070   if (SymbolTable)
2071     printCOFFSymbolTable(I);
2072 }
2073 
2074 /// @brief Dump each object file in \a a;
2075 static void DumpArchive(const Archive *a) {
2076   Error Err = Error::success();
2077   for (auto &C : a->children(Err)) {
2078     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2079     if (!ChildOrErr) {
2080       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2081         report_error(a->getFileName(), C, std::move(E));
2082       continue;
2083     }
2084     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2085       DumpObject(o, a);
2086     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2087       DumpObject(I, a);
2088     else
2089       report_error(a->getFileName(), object_error::invalid_file_type);
2090   }
2091   if (Err)
2092     report_error(a->getFileName(), std::move(Err));
2093 }
2094 
2095 /// @brief Open file and figure out how to dump it.
2096 static void DumpInput(StringRef file) {
2097 
2098   // If we are using the Mach-O specific object file parser, then let it parse
2099   // the file and process the command line options.  So the -arch flags can
2100   // be used to select specific slices, etc.
2101   if (MachOOpt) {
2102     ParseInputMachO(file);
2103     return;
2104   }
2105 
2106   // Attempt to open the binary.
2107   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2108   if (!BinaryOrErr)
2109     report_error(file, BinaryOrErr.takeError());
2110   Binary &Binary = *BinaryOrErr.get().getBinary();
2111 
2112   if (Archive *a = dyn_cast<Archive>(&Binary))
2113     DumpArchive(a);
2114   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2115     DumpObject(o);
2116   else
2117     report_error(file, object_error::invalid_file_type);
2118 }
2119 
2120 int main(int argc, char **argv) {
2121   // Print a stack trace if we signal out.
2122   sys::PrintStackTraceOnErrorSignal(argv[0]);
2123   PrettyStackTraceProgram X(argc, argv);
2124   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
2125 
2126   // Initialize targets and assembly printers/parsers.
2127   llvm::InitializeAllTargetInfos();
2128   llvm::InitializeAllTargetMCs();
2129   llvm::InitializeAllDisassemblers();
2130 
2131   // Register the target printer for --version.
2132   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2133 
2134   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2135   TripleName = Triple::normalize(TripleName);
2136 
2137   ToolName = argv[0];
2138 
2139   // Defaults to a.out if no filenames specified.
2140   if (InputFilenames.size() == 0)
2141     InputFilenames.push_back("a.out");
2142 
2143   if (DisassembleAll || PrintSource || PrintLines)
2144     Disassemble = true;
2145   if (!Disassemble
2146       && !Relocations
2147       && !SectionHeaders
2148       && !SectionContents
2149       && !SymbolTable
2150       && !UnwindInfo
2151       && !PrivateHeaders
2152       && !FirstPrivateHeader
2153       && !ExportsTrie
2154       && !Rebase
2155       && !Bind
2156       && !LazyBind
2157       && !WeakBind
2158       && !RawClangAST
2159       && !(UniversalHeaders && MachOOpt)
2160       && !(ArchiveHeaders && MachOOpt)
2161       && !(IndirectSymbols && MachOOpt)
2162       && !(DataInCode && MachOOpt)
2163       && !(LinkOptHints && MachOOpt)
2164       && !(InfoPlist && MachOOpt)
2165       && !(DylibsUsed && MachOOpt)
2166       && !(DylibId && MachOOpt)
2167       && !(ObjcMetaData && MachOOpt)
2168       && !(FilterSections.size() != 0 && MachOOpt)
2169       && !PrintFaultMaps
2170       && DwarfDumpType == DIDT_Null) {
2171     cl::PrintHelpMessage();
2172     return 2;
2173   }
2174 
2175   std::for_each(InputFilenames.begin(), InputFilenames.end(),
2176                 DumpInput);
2177 
2178   return EXIT_SUCCESS;
2179 }
2180