xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 5ce4e92264102de21760c94db9166afe8f71fcf6)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
37 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
38 #include "llvm/Debuginfod/BuildIDFetcher.h"
39 #include "llvm/Debuginfod/Debuginfod.h"
40 #include "llvm/Debuginfod/HTTPClient.h"
41 #include "llvm/Demangle/Demangle.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCContext.h"
44 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
45 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
46 #include "llvm/MC/MCInst.h"
47 #include "llvm/MC/MCInstPrinter.h"
48 #include "llvm/MC/MCInstrAnalysis.h"
49 #include "llvm/MC/MCInstrInfo.h"
50 #include "llvm/MC/MCObjectFileInfo.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/MC/MCSubtargetInfo.h"
53 #include "llvm/MC/MCTargetOptions.h"
54 #include "llvm/MC/TargetRegistry.h"
55 #include "llvm/Object/Archive.h"
56 #include "llvm/Object/BuildID.h"
57 #include "llvm/Object/COFF.h"
58 #include "llvm/Object/COFFImportFile.h"
59 #include "llvm/Object/ELFObjectFile.h"
60 #include "llvm/Object/ELFTypes.h"
61 #include "llvm/Object/FaultMapParser.h"
62 #include "llvm/Object/MachO.h"
63 #include "llvm/Object/MachOUniversal.h"
64 #include "llvm/Object/ObjectFile.h"
65 #include "llvm/Object/OffloadBinary.h"
66 #include "llvm/Object/Wasm.h"
67 #include "llvm/Option/Arg.h"
68 #include "llvm/Option/ArgList.h"
69 #include "llvm/Option/Option.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/Errc.h"
73 #include "llvm/Support/FileSystem.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/GraphWriter.h"
77 #include "llvm/Support/Host.h"
78 #include "llvm/Support/InitLLVM.h"
79 #include "llvm/Support/MemoryBuffer.h"
80 #include "llvm/Support/SourceMgr.h"
81 #include "llvm/Support/StringSaver.h"
82 #include "llvm/Support/TargetSelect.h"
83 #include "llvm/Support/WithColor.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include <algorithm>
86 #include <cctype>
87 #include <cstring>
88 #include <optional>
89 #include <system_error>
90 #include <unordered_map>
91 #include <utility>
92 
93 using namespace llvm;
94 using namespace llvm::object;
95 using namespace llvm::objdump;
96 using namespace llvm::opt;
97 
98 namespace {
99 
100 class CommonOptTable : public opt::OptTable {
101 public:
102   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103                  const char *Description)
104       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
111                              ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr std::initializer_list<StringLiteral> NAME = VALUE;
125 #include "ObjdumpOpts.inc"
126 #undef PREFIX
127 
128 static constexpr std::initializer_list<opt::OptTable::Info> ObjdumpInfoTable = {
129 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
130                HELPTEXT, METAVAR, VALUES)                                      \
131   {PREFIX,          NAME,         HELPTEXT,                                    \
132    METAVAR,         OBJDUMP_##ID, opt::Option::KIND##Class,                    \
133    PARAM,           FLAGS,        OBJDUMP_##GROUP,                             \
134    OBJDUMP_##ALIAS, ALIASARGS,    VALUES},
135 #include "ObjdumpOpts.inc"
136 #undef OPTION
137 };
138 } // namespace objdump_opt
139 
140 class ObjdumpOptTable : public CommonOptTable {
141 public:
142   ObjdumpOptTable()
143       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
144                        " [options] <input object files>",
145                        "llvm object file dumper") {}
146 };
147 
148 enum OtoolOptID {
149   OTOOL_INVALID = 0, // This is not an option ID.
150 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
151                HELPTEXT, METAVAR, VALUES)                                      \
152   OTOOL_##ID,
153 #include "OtoolOpts.inc"
154 #undef OPTION
155 };
156 
157 namespace otool {
158 #define PREFIX(NAME, VALUE)                                                    \
159   constexpr std::initializer_list<StringLiteral> NAME = VALUE;
160 #include "OtoolOpts.inc"
161 #undef PREFIX
162 
163 static constexpr std::initializer_list<opt::OptTable::Info> OtoolInfoTable = {
164 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
165                HELPTEXT, METAVAR, VALUES)                                      \
166   {PREFIX,        NAME,       HELPTEXT,                                        \
167    METAVAR,       OTOOL_##ID, opt::Option::KIND##Class,                        \
168    PARAM,         FLAGS,      OTOOL_##GROUP,                                   \
169    OTOOL_##ALIAS, ALIASARGS,  VALUES},
170 #include "OtoolOpts.inc"
171 #undef OPTION
172 };
173 } // namespace otool
174 
175 class OtoolOptTable : public CommonOptTable {
176 public:
177   OtoolOptTable()
178       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
179                        "Mach-O object file displaying tool") {}
180 };
181 
182 } // namespace
183 
184 #define DEBUG_TYPE "objdump"
185 
186 static uint64_t AdjustVMA;
187 static bool AllHeaders;
188 static std::string ArchName;
189 bool objdump::ArchiveHeaders;
190 bool objdump::Demangle;
191 bool objdump::Disassemble;
192 bool objdump::DisassembleAll;
193 bool objdump::SymbolDescription;
194 static std::vector<std::string> DisassembleSymbols;
195 static bool DisassembleZeroes;
196 static std::vector<std::string> DisassemblerOptions;
197 DIDumpType objdump::DwarfDumpType;
198 static bool DynamicRelocations;
199 static bool FaultMapSection;
200 static bool FileHeaders;
201 bool objdump::SectionContents;
202 static std::vector<std::string> InputFilenames;
203 bool objdump::PrintLines;
204 static bool MachOOpt;
205 std::string objdump::MCPU;
206 std::vector<std::string> objdump::MAttrs;
207 bool objdump::ShowRawInsn;
208 bool objdump::LeadingAddr;
209 static bool Offloading;
210 static bool RawClangAST;
211 bool objdump::Relocations;
212 bool objdump::PrintImmHex;
213 bool objdump::PrivateHeaders;
214 std::vector<std::string> objdump::FilterSections;
215 bool objdump::SectionHeaders;
216 static bool ShowAllSymbols;
217 static bool ShowLMA;
218 bool objdump::PrintSource;
219 
220 static uint64_t StartAddress;
221 static bool HasStartAddressFlag;
222 static uint64_t StopAddress = UINT64_MAX;
223 static bool HasStopAddressFlag;
224 
225 bool objdump::SymbolTable;
226 static bool SymbolizeOperands;
227 static bool DynamicSymbolTable;
228 std::string objdump::TripleName;
229 bool objdump::UnwindInfo;
230 static bool Wide;
231 std::string objdump::Prefix;
232 uint32_t objdump::PrefixStrip;
233 
234 DebugVarsFormat objdump::DbgVariables = DVDisabled;
235 
236 int objdump::DbgIndent = 52;
237 
238 static StringSet<> DisasmSymbolSet;
239 StringSet<> objdump::FoundSectionSet;
240 static StringRef ToolName;
241 
242 std::unique_ptr<BuildIDFetcher> BIDFetcher;
243 ExitOnError ExitOnErr;
244 
245 namespace {
246 struct FilterResult {
247   // True if the section should not be skipped.
248   bool Keep;
249 
250   // True if the index counter should be incremented, even if the section should
251   // be skipped. For example, sections may be skipped if they are not included
252   // in the --section flag, but we still want those to count toward the section
253   // count.
254   bool IncrementIndex;
255 };
256 } // namespace
257 
258 static FilterResult checkSectionFilter(object::SectionRef S) {
259   if (FilterSections.empty())
260     return {/*Keep=*/true, /*IncrementIndex=*/true};
261 
262   Expected<StringRef> SecNameOrErr = S.getName();
263   if (!SecNameOrErr) {
264     consumeError(SecNameOrErr.takeError());
265     return {/*Keep=*/false, /*IncrementIndex=*/false};
266   }
267   StringRef SecName = *SecNameOrErr;
268 
269   // StringSet does not allow empty key so avoid adding sections with
270   // no name (such as the section with index 0) here.
271   if (!SecName.empty())
272     FoundSectionSet.insert(SecName);
273 
274   // Only show the section if it's in the FilterSections list, but always
275   // increment so the indexing is stable.
276   return {/*Keep=*/is_contained(FilterSections, SecName),
277           /*IncrementIndex=*/true};
278 }
279 
280 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
281                                          uint64_t *Idx) {
282   // Start at UINT64_MAX so that the first index returned after an increment is
283   // zero (after the unsigned wrap).
284   if (Idx)
285     *Idx = UINT64_MAX;
286   return SectionFilter(
287       [Idx](object::SectionRef S) {
288         FilterResult Result = checkSectionFilter(S);
289         if (Idx != nullptr && Result.IncrementIndex)
290           *Idx += 1;
291         return Result.Keep;
292       },
293       O);
294 }
295 
296 std::string objdump::getFileNameForError(const object::Archive::Child &C,
297                                          unsigned Index) {
298   Expected<StringRef> NameOrErr = C.getName();
299   if (NameOrErr)
300     return std::string(NameOrErr.get());
301   // If we have an error getting the name then we print the index of the archive
302   // member. Since we are already in an error state, we just ignore this error.
303   consumeError(NameOrErr.takeError());
304   return "<file index: " + std::to_string(Index) + ">";
305 }
306 
307 void objdump::reportWarning(const Twine &Message, StringRef File) {
308   // Output order between errs() and outs() matters especially for archive
309   // files where the output is per member object.
310   outs().flush();
311   WithColor::warning(errs(), ToolName)
312       << "'" << File << "': " << Message << "\n";
313 }
314 
315 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
316   outs().flush();
317   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
318   exit(1);
319 }
320 
321 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
322                                        StringRef ArchiveName,
323                                        StringRef ArchitectureName) {
324   assert(E);
325   outs().flush();
326   WithColor::error(errs(), ToolName);
327   if (ArchiveName != "")
328     errs() << ArchiveName << "(" << FileName << ")";
329   else
330     errs() << "'" << FileName << "'";
331   if (!ArchitectureName.empty())
332     errs() << " (for architecture " << ArchitectureName << ")";
333   errs() << ": ";
334   logAllUnhandledErrors(std::move(E), errs());
335   exit(1);
336 }
337 
338 static void reportCmdLineWarning(const Twine &Message) {
339   WithColor::warning(errs(), ToolName) << Message << "\n";
340 }
341 
342 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
343   WithColor::error(errs(), ToolName) << Message << "\n";
344   exit(1);
345 }
346 
347 static void warnOnNoMatchForSections() {
348   SetVector<StringRef> MissingSections;
349   for (StringRef S : FilterSections) {
350     if (FoundSectionSet.count(S))
351       return;
352     // User may specify a unnamed section. Don't warn for it.
353     if (!S.empty())
354       MissingSections.insert(S);
355   }
356 
357   // Warn only if no section in FilterSections is matched.
358   for (StringRef S : MissingSections)
359     reportCmdLineWarning("section '" + S +
360                          "' mentioned in a -j/--section option, but not "
361                          "found in any input file");
362 }
363 
364 static const Target *getTarget(const ObjectFile *Obj) {
365   // Figure out the target triple.
366   Triple TheTriple("unknown-unknown-unknown");
367   if (TripleName.empty()) {
368     TheTriple = Obj->makeTriple();
369   } else {
370     TheTriple.setTriple(Triple::normalize(TripleName));
371     auto Arch = Obj->getArch();
372     if (Arch == Triple::arm || Arch == Triple::armeb)
373       Obj->setARMSubArch(TheTriple);
374   }
375 
376   // Get the target specific parser.
377   std::string Error;
378   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
379                                                          Error);
380   if (!TheTarget)
381     reportError(Obj->getFileName(), "can't find target: " + Error);
382 
383   // Update the triple name and return the found target.
384   TripleName = TheTriple.getTriple();
385   return TheTarget;
386 }
387 
388 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
389   return A.getOffset() < B.getOffset();
390 }
391 
392 static Error getRelocationValueString(const RelocationRef &Rel,
393                                       SmallVectorImpl<char> &Result) {
394   const ObjectFile *Obj = Rel.getObject();
395   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
396     return getELFRelocationValueString(ELF, Rel, Result);
397   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
398     return getCOFFRelocationValueString(COFF, Rel, Result);
399   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
400     return getWasmRelocationValueString(Wasm, Rel, Result);
401   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
402     return getMachORelocationValueString(MachO, Rel, Result);
403   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
404     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
405   llvm_unreachable("unknown object file format");
406 }
407 
408 /// Indicates whether this relocation should hidden when listing
409 /// relocations, usually because it is the trailing part of a multipart
410 /// relocation that will be printed as part of the leading relocation.
411 static bool getHidden(RelocationRef RelRef) {
412   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
413   if (!MachO)
414     return false;
415 
416   unsigned Arch = MachO->getArch();
417   DataRefImpl Rel = RelRef.getRawDataRefImpl();
418   uint64_t Type = MachO->getRelocationType(Rel);
419 
420   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
421   // is always hidden.
422   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
423     return Type == MachO::GENERIC_RELOC_PAIR;
424 
425   if (Arch == Triple::x86_64) {
426     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
427     // an X86_64_RELOC_SUBTRACTOR.
428     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
429       DataRefImpl RelPrev = Rel;
430       RelPrev.d.a--;
431       uint64_t PrevType = MachO->getRelocationType(RelPrev);
432       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
433         return true;
434     }
435   }
436 
437   return false;
438 }
439 
440 namespace {
441 
442 /// Get the column at which we want to start printing the instruction
443 /// disassembly, taking into account anything which appears to the left of it.
444 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
445   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
446 }
447 
448 static bool isAArch64Elf(const ObjectFile &Obj) {
449   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
450   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
451 }
452 
453 static bool isArmElf(const ObjectFile &Obj) {
454   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
455   return Elf && Elf->getEMachine() == ELF::EM_ARM;
456 }
457 
458 static bool isCSKYElf(const ObjectFile &Obj) {
459   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
460   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
461 }
462 
463 static bool hasMappingSymbols(const ObjectFile &Obj) {
464   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
465 }
466 
467 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
468   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
469          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
470 }
471 
472 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
473                             const RelocationRef &Rel, uint64_t Address,
474                             bool Is64Bits) {
475   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
476   SmallString<16> Name;
477   SmallString<32> Val;
478   Rel.getTypeName(Name);
479   if (Error E = getRelocationValueString(Rel, Val))
480     reportError(std::move(E), FileName);
481   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
482   if (LeadingAddr)
483     OS << format(Fmt.data(), Address);
484   OS << Name << "\t" << Val;
485 }
486 
487 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
488                                    raw_ostream &OS) {
489   // The output of printInst starts with a tab. Print some spaces so that
490   // the tab has 1 column and advances to the target tab stop.
491   unsigned TabStop = getInstStartColumn(STI);
492   unsigned Column = OS.tell() - Start;
493   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
494 }
495 
496 class PrettyPrinter {
497 public:
498   virtual ~PrettyPrinter() = default;
499   virtual void
500   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
501             object::SectionedAddress Address, formatted_raw_ostream &OS,
502             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
503             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
504             LiveVariablePrinter &LVP) {
505     if (SP && (PrintSource || PrintLines))
506       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
507     LVP.printBetweenInsts(OS, false);
508 
509     size_t Start = OS.tell();
510     if (LeadingAddr)
511       OS << format("%8" PRIx64 ":", Address.Address);
512     if (ShowRawInsn) {
513       OS << ' ';
514       dumpBytes(Bytes, OS);
515     }
516 
517     AlignToInstStartColumn(Start, STI, OS);
518 
519     if (MI) {
520       // See MCInstPrinter::printInst. On targets where a PC relative immediate
521       // is relative to the next instruction and the length of a MCInst is
522       // difficult to measure (x86), this is the address of the next
523       // instruction.
524       uint64_t Addr =
525           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
526       IP.printInst(MI, Addr, "", STI, OS);
527     } else
528       OS << "\t<unknown>";
529   }
530 };
531 PrettyPrinter PrettyPrinterInst;
532 
533 class HexagonPrettyPrinter : public PrettyPrinter {
534 public:
535   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
536                  formatted_raw_ostream &OS) {
537     uint32_t opcode =
538       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
539     if (LeadingAddr)
540       OS << format("%8" PRIx64 ":", Address);
541     if (ShowRawInsn) {
542       OS << "\t";
543       dumpBytes(Bytes.slice(0, 4), OS);
544       OS << format("\t%08" PRIx32, opcode);
545     }
546   }
547   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
548                  object::SectionedAddress Address, formatted_raw_ostream &OS,
549                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
550                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
551                  LiveVariablePrinter &LVP) override {
552     if (SP && (PrintSource || PrintLines))
553       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
554     if (!MI) {
555       printLead(Bytes, Address.Address, OS);
556       OS << " <unknown>";
557       return;
558     }
559     std::string Buffer;
560     {
561       raw_string_ostream TempStream(Buffer);
562       IP.printInst(MI, Address.Address, "", STI, TempStream);
563     }
564     StringRef Contents(Buffer);
565     // Split off bundle attributes
566     auto PacketBundle = Contents.rsplit('\n');
567     // Split off first instruction from the rest
568     auto HeadTail = PacketBundle.first.split('\n');
569     auto Preamble = " { ";
570     auto Separator = "";
571 
572     // Hexagon's packets require relocations to be inline rather than
573     // clustered at the end of the packet.
574     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
575     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
576     auto PrintReloc = [&]() -> void {
577       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
578         if (RelCur->getOffset() == Address.Address) {
579           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
580           return;
581         }
582         ++RelCur;
583       }
584     };
585 
586     while (!HeadTail.first.empty()) {
587       OS << Separator;
588       Separator = "\n";
589       if (SP && (PrintSource || PrintLines))
590         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
591       printLead(Bytes, Address.Address, OS);
592       OS << Preamble;
593       Preamble = "   ";
594       StringRef Inst;
595       auto Duplex = HeadTail.first.split('\v');
596       if (!Duplex.second.empty()) {
597         OS << Duplex.first;
598         OS << "; ";
599         Inst = Duplex.second;
600       }
601       else
602         Inst = HeadTail.first;
603       OS << Inst;
604       HeadTail = HeadTail.second.split('\n');
605       if (HeadTail.first.empty())
606         OS << " } " << PacketBundle.second;
607       PrintReloc();
608       Bytes = Bytes.slice(4);
609       Address.Address += 4;
610     }
611   }
612 };
613 HexagonPrettyPrinter HexagonPrettyPrinterInst;
614 
615 class AMDGCNPrettyPrinter : public PrettyPrinter {
616 public:
617   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
618                  object::SectionedAddress Address, formatted_raw_ostream &OS,
619                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
620                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
621                  LiveVariablePrinter &LVP) override {
622     if (SP && (PrintSource || PrintLines))
623       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
624 
625     if (MI) {
626       SmallString<40> InstStr;
627       raw_svector_ostream IS(InstStr);
628 
629       IP.printInst(MI, Address.Address, "", STI, IS);
630 
631       OS << left_justify(IS.str(), 60);
632     } else {
633       // an unrecognized encoding - this is probably data so represent it
634       // using the .long directive, or .byte directive if fewer than 4 bytes
635       // remaining
636       if (Bytes.size() >= 4) {
637         OS << format("\t.long 0x%08" PRIx32 " ",
638                      support::endian::read32<support::little>(Bytes.data()));
639         OS.indent(42);
640       } else {
641           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
642           for (unsigned int i = 1; i < Bytes.size(); i++)
643             OS << format(", 0x%02" PRIx8, Bytes[i]);
644           OS.indent(55 - (6 * Bytes.size()));
645       }
646     }
647 
648     OS << format("// %012" PRIX64 ":", Address.Address);
649     if (Bytes.size() >= 4) {
650       // D should be casted to uint32_t here as it is passed by format to
651       // snprintf as vararg.
652       for (uint32_t D : makeArrayRef(
653                reinterpret_cast<const support::little32_t *>(Bytes.data()),
654                Bytes.size() / 4))
655         OS << format(" %08" PRIX32, D);
656     } else {
657       for (unsigned char B : Bytes)
658         OS << format(" %02" PRIX8, B);
659     }
660 
661     if (!Annot.empty())
662       OS << " // " << Annot;
663   }
664 };
665 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
666 
667 class BPFPrettyPrinter : public PrettyPrinter {
668 public:
669   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
670                  object::SectionedAddress Address, formatted_raw_ostream &OS,
671                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
672                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
673                  LiveVariablePrinter &LVP) override {
674     if (SP && (PrintSource || PrintLines))
675       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
676     if (LeadingAddr)
677       OS << format("%8" PRId64 ":", Address.Address / 8);
678     if (ShowRawInsn) {
679       OS << "\t";
680       dumpBytes(Bytes, OS);
681     }
682     if (MI)
683       IP.printInst(MI, Address.Address, "", STI, OS);
684     else
685       OS << "\t<unknown>";
686   }
687 };
688 BPFPrettyPrinter BPFPrettyPrinterInst;
689 
690 class ARMPrettyPrinter : public PrettyPrinter {
691 public:
692   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
693                  object::SectionedAddress Address, formatted_raw_ostream &OS,
694                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
695                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
696                  LiveVariablePrinter &LVP) override {
697     if (SP && (PrintSource || PrintLines))
698       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
699     LVP.printBetweenInsts(OS, false);
700 
701     size_t Start = OS.tell();
702     if (LeadingAddr)
703       OS << format("%8" PRIx64 ":", Address.Address);
704     if (ShowRawInsn) {
705       size_t Pos = 0, End = Bytes.size();
706       if (STI.checkFeatures("+thumb-mode")) {
707         for (; Pos + 2 <= End; Pos += 2)
708           OS << ' '
709              << format_hex_no_prefix(
710                     llvm::support::endian::read<uint16_t>(
711                         Bytes.data() + Pos, InstructionEndianness),
712                     4);
713       } else {
714         for (; Pos + 4 <= End; Pos += 4)
715           OS << ' '
716              << format_hex_no_prefix(
717                     llvm::support::endian::read<uint32_t>(
718                         Bytes.data() + Pos, InstructionEndianness),
719                     8);
720       }
721       if (Pos < End) {
722         OS << ' ';
723         dumpBytes(Bytes.slice(Pos), OS);
724       }
725     }
726 
727     AlignToInstStartColumn(Start, STI, OS);
728 
729     if (MI) {
730       IP.printInst(MI, Address.Address, "", STI, OS);
731     } else
732       OS << "\t<unknown>";
733   }
734 
735   void setInstructionEndianness(llvm::support::endianness Endianness) {
736     InstructionEndianness = Endianness;
737   }
738 
739 private:
740   llvm::support::endianness InstructionEndianness = llvm::support::little;
741 };
742 ARMPrettyPrinter ARMPrettyPrinterInst;
743 
744 class AArch64PrettyPrinter : public PrettyPrinter {
745 public:
746   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
747                  object::SectionedAddress Address, formatted_raw_ostream &OS,
748                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
749                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
750                  LiveVariablePrinter &LVP) override {
751     if (SP && (PrintSource || PrintLines))
752       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
753     LVP.printBetweenInsts(OS, false);
754 
755     size_t Start = OS.tell();
756     if (LeadingAddr)
757       OS << format("%8" PRIx64 ":", Address.Address);
758     if (ShowRawInsn) {
759       size_t Pos = 0, End = Bytes.size();
760       for (; Pos + 4 <= End; Pos += 4)
761         OS << ' '
762            << format_hex_no_prefix(
763                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
764                                                         llvm::support::little),
765                   8);
766       if (Pos < End) {
767         OS << ' ';
768         dumpBytes(Bytes.slice(Pos), OS);
769       }
770     }
771 
772     AlignToInstStartColumn(Start, STI, OS);
773 
774     if (MI) {
775       IP.printInst(MI, Address.Address, "", STI, OS);
776     } else
777       OS << "\t<unknown>";
778   }
779 };
780 AArch64PrettyPrinter AArch64PrettyPrinterInst;
781 
782 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
783   switch(Triple.getArch()) {
784   default:
785     return PrettyPrinterInst;
786   case Triple::hexagon:
787     return HexagonPrettyPrinterInst;
788   case Triple::amdgcn:
789     return AMDGCNPrettyPrinterInst;
790   case Triple::bpfel:
791   case Triple::bpfeb:
792     return BPFPrettyPrinterInst;
793   case Triple::arm:
794   case Triple::armeb:
795   case Triple::thumb:
796   case Triple::thumbeb:
797     return ARMPrettyPrinterInst;
798   case Triple::aarch64:
799   case Triple::aarch64_be:
800   case Triple::aarch64_32:
801     return AArch64PrettyPrinterInst;
802   }
803 }
804 }
805 
806 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
807   assert(Obj.isELF());
808   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
809     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
810                          Obj.getFileName())
811         ->getType();
812   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
813     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
814                          Obj.getFileName())
815         ->getType();
816   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
817     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
818                          Obj.getFileName())
819         ->getType();
820   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
821     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
822                          Obj.getFileName())
823         ->getType();
824   llvm_unreachable("Unsupported binary format");
825 }
826 
827 template <class ELFT>
828 static void
829 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
830                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
831   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
832     uint8_t SymbolType = Symbol.getELFType();
833     if (SymbolType == ELF::STT_SECTION)
834       continue;
835 
836     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
837     // ELFSymbolRef::getAddress() returns size instead of value for common
838     // symbols which is not desirable for disassembly output. Overriding.
839     if (SymbolType == ELF::STT_COMMON)
840       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
841                               Obj.getFileName())
842                     ->st_value;
843 
844     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
845     if (Name.empty())
846       continue;
847 
848     section_iterator SecI =
849         unwrapOrError(Symbol.getSection(), Obj.getFileName());
850     if (SecI == Obj.section_end())
851       continue;
852 
853     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
854   }
855 }
856 
857 static void
858 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
859                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
860   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
861     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
862   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
863     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
864   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
865     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
866   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
867     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
868   else
869     llvm_unreachable("Unsupported binary format");
870 }
871 
872 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
873   for (auto SecI : Obj.sections()) {
874     const WasmSection &Section = Obj.getWasmSection(SecI);
875     if (Section.Type == wasm::WASM_SEC_CODE)
876       return SecI;
877   }
878   return std::nullopt;
879 }
880 
881 static void
882 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
883                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
884   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
885   if (!Section)
886     return;
887   SectionSymbolsTy &Symbols = AllSymbols[*Section];
888 
889   std::set<uint64_t> SymbolAddresses;
890   for (const auto &Sym : Symbols)
891     SymbolAddresses.insert(Sym.Addr);
892 
893   for (const wasm::WasmFunction &Function : Obj.functions()) {
894     uint64_t Address = Function.CodeSectionOffset;
895     // Only add fallback symbols for functions not already present in the symbol
896     // table.
897     if (SymbolAddresses.count(Address))
898       continue;
899     // This function has no symbol, so it should have no SymbolName.
900     assert(Function.SymbolName.empty());
901     // We use DebugName for the name, though it may be empty if there is no
902     // "name" custom section, or that section is missing a name for this
903     // function.
904     StringRef Name = Function.DebugName;
905     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
906   }
907 }
908 
909 static void addPltEntries(const ObjectFile &Obj,
910                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
911                           StringSaver &Saver) {
912   std::optional<SectionRef> Plt;
913   for (const SectionRef &Section : Obj.sections()) {
914     Expected<StringRef> SecNameOrErr = Section.getName();
915     if (!SecNameOrErr) {
916       consumeError(SecNameOrErr.takeError());
917       continue;
918     }
919     if (*SecNameOrErr == ".plt")
920       Plt = Section;
921   }
922   if (!Plt)
923     return;
924   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
925     for (auto PltEntry : ElfObj->getPltAddresses()) {
926       if (PltEntry.first) {
927         SymbolRef Symbol(*PltEntry.first, ElfObj);
928         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
929         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
930           if (!NameOrErr->empty())
931             AllSymbols[*Plt].emplace_back(
932                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
933                 SymbolType);
934           continue;
935         } else {
936           // The warning has been reported in disassembleObject().
937           consumeError(NameOrErr.takeError());
938         }
939       }
940       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
941                         " references an invalid symbol",
942                     Obj.getFileName());
943     }
944   }
945 }
946 
947 // Normally the disassembly output will skip blocks of zeroes. This function
948 // returns the number of zero bytes that can be skipped when dumping the
949 // disassembly of the instructions in Buf.
950 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
951   // Find the number of leading zeroes.
952   size_t N = 0;
953   while (N < Buf.size() && !Buf[N])
954     ++N;
955 
956   // We may want to skip blocks of zero bytes, but unless we see
957   // at least 8 of them in a row.
958   if (N < 8)
959     return 0;
960 
961   // We skip zeroes in multiples of 4 because do not want to truncate an
962   // instruction if it starts with a zero byte.
963   return N & ~0x3;
964 }
965 
966 // Returns a map from sections to their relocations.
967 static std::map<SectionRef, std::vector<RelocationRef>>
968 getRelocsMap(object::ObjectFile const &Obj) {
969   std::map<SectionRef, std::vector<RelocationRef>> Ret;
970   uint64_t I = (uint64_t)-1;
971   for (SectionRef Sec : Obj.sections()) {
972     ++I;
973     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
974     if (!RelocatedOrErr)
975       reportError(Obj.getFileName(),
976                   "section (" + Twine(I) +
977                       "): failed to get a relocated section: " +
978                       toString(RelocatedOrErr.takeError()));
979 
980     section_iterator Relocated = *RelocatedOrErr;
981     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
982       continue;
983     std::vector<RelocationRef> &V = Ret[*Relocated];
984     append_range(V, Sec.relocations());
985     // Sort relocations by address.
986     llvm::stable_sort(V, isRelocAddressLess);
987   }
988   return Ret;
989 }
990 
991 // Used for --adjust-vma to check if address should be adjusted by the
992 // specified value for a given section.
993 // For ELF we do not adjust non-allocatable sections like debug ones,
994 // because they are not loadable.
995 // TODO: implement for other file formats.
996 static bool shouldAdjustVA(const SectionRef &Section) {
997   const ObjectFile *Obj = Section.getObject();
998   if (Obj->isELF())
999     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1000   return false;
1001 }
1002 
1003 
1004 typedef std::pair<uint64_t, char> MappingSymbolPair;
1005 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1006                                  uint64_t Address) {
1007   auto It =
1008       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1009         return Val.first <= Address;
1010       });
1011   // Return zero for any address before the first mapping symbol; this means
1012   // we should use the default disassembly mode, depending on the target.
1013   if (It == MappingSymbols.begin())
1014     return '\x00';
1015   return (It - 1)->second;
1016 }
1017 
1018 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1019                                uint64_t End, const ObjectFile &Obj,
1020                                ArrayRef<uint8_t> Bytes,
1021                                ArrayRef<MappingSymbolPair> MappingSymbols,
1022                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1023   support::endianness Endian =
1024       Obj.isLittleEndian() ? support::little : support::big;
1025   size_t Start = OS.tell();
1026   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1027   if (Index + 4 <= End) {
1028     dumpBytes(Bytes.slice(Index, 4), OS);
1029     AlignToInstStartColumn(Start, STI, OS);
1030     OS << "\t.word\t"
1031            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1032                          10);
1033     return 4;
1034   }
1035   if (Index + 2 <= End) {
1036     dumpBytes(Bytes.slice(Index, 2), OS);
1037     AlignToInstStartColumn(Start, STI, OS);
1038     OS << "\t.short\t"
1039        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1040     return 2;
1041   }
1042   dumpBytes(Bytes.slice(Index, 1), OS);
1043   AlignToInstStartColumn(Start, STI, OS);
1044   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1045   return 1;
1046 }
1047 
1048 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1049                         ArrayRef<uint8_t> Bytes) {
1050   // print out data up to 8 bytes at a time in hex and ascii
1051   uint8_t AsciiData[9] = {'\0'};
1052   uint8_t Byte;
1053   int NumBytes = 0;
1054 
1055   for (; Index < End; ++Index) {
1056     if (NumBytes == 0)
1057       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1058     Byte = Bytes.slice(Index)[0];
1059     outs() << format(" %02x", Byte);
1060     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1061 
1062     uint8_t IndentOffset = 0;
1063     NumBytes++;
1064     if (Index == End - 1 || NumBytes > 8) {
1065       // Indent the space for less than 8 bytes data.
1066       // 2 spaces for byte and one for space between bytes
1067       IndentOffset = 3 * (8 - NumBytes);
1068       for (int Excess = NumBytes; Excess < 8; Excess++)
1069         AsciiData[Excess] = '\0';
1070       NumBytes = 8;
1071     }
1072     if (NumBytes == 8) {
1073       AsciiData[8] = '\0';
1074       outs() << std::string(IndentOffset, ' ') << "         ";
1075       outs() << reinterpret_cast<char *>(AsciiData);
1076       outs() << '\n';
1077       NumBytes = 0;
1078     }
1079   }
1080 }
1081 
1082 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1083                                        const SymbolRef &Symbol) {
1084   const StringRef FileName = Obj.getFileName();
1085   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1086   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1087 
1088   if (Obj.isXCOFF() && SymbolDescription) {
1089     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1090     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1091 
1092     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1093     std::optional<XCOFF::StorageMappingClass> Smc =
1094         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1095     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1096                         isLabel(XCOFFObj, Symbol));
1097   } else if (Obj.isXCOFF()) {
1098     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1099     return SymbolInfoTy(Addr, Name, SymType, true);
1100   } else
1101     return SymbolInfoTy(Addr, Name,
1102                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1103                                     : (uint8_t)ELF::STT_NOTYPE);
1104 }
1105 
1106 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1107                                           const uint64_t Addr, StringRef &Name,
1108                                           uint8_t Type) {
1109   if (Obj.isXCOFF() && SymbolDescription)
1110     return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
1111   else
1112     return SymbolInfoTy(Addr, Name, Type);
1113 }
1114 
1115 static void
1116 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1117                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1118                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1119   if (AddrToBBAddrMap.empty())
1120     return;
1121   Labels.clear();
1122   uint64_t StartAddress = SectionAddr + Start;
1123   uint64_t EndAddress = SectionAddr + End;
1124   auto Iter = AddrToBBAddrMap.find(StartAddress);
1125   if (Iter == AddrToBBAddrMap.end())
1126     return;
1127   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1128     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1129     if (BBAddress >= EndAddress)
1130       continue;
1131     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1132   }
1133 }
1134 
1135 static void collectLocalBranchTargets(
1136     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1137     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1138     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1139   // So far only supports PowerPC and X86.
1140   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1141     return;
1142 
1143   Labels.clear();
1144   unsigned LabelCount = 0;
1145   Start += SectionAddr;
1146   End += SectionAddr;
1147   uint64_t Index = Start;
1148   while (Index < End) {
1149     // Disassemble a real instruction and record function-local branch labels.
1150     MCInst Inst;
1151     uint64_t Size;
1152     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1153     bool Disassembled =
1154         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1155     if (Size == 0)
1156       Size = std::min<uint64_t>(ThisBytes.size(),
1157                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1158 
1159     if (Disassembled && MIA) {
1160       uint64_t Target;
1161       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1162       // On PowerPC, if the address of a branch is the same as the target, it
1163       // means that it's a function call. Do not mark the label for this case.
1164       if (TargetKnown && (Target >= Start && Target < End) &&
1165           !Labels.count(Target) &&
1166           !(STI->getTargetTriple().isPPC() && Target == Index))
1167         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1168     }
1169     Index += Size;
1170   }
1171 }
1172 
1173 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1174 // This is currently only used on AMDGPU, and assumes the format of the
1175 // void * argument passed to AMDGPU's createMCSymbolizer.
1176 static void addSymbolizer(
1177     MCContext &Ctx, const Target *Target, StringRef TripleName,
1178     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1179     SectionSymbolsTy &Symbols,
1180     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1181 
1182   std::unique_ptr<MCRelocationInfo> RelInfo(
1183       Target->createMCRelocationInfo(TripleName, Ctx));
1184   if (!RelInfo)
1185     return;
1186   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1187       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1188   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1189   DisAsm->setSymbolizer(std::move(Symbolizer));
1190 
1191   if (!SymbolizeOperands)
1192     return;
1193 
1194   // Synthesize labels referenced by branch instructions by
1195   // disassembling, discarding the output, and collecting the referenced
1196   // addresses from the symbolizer.
1197   for (size_t Index = 0; Index != Bytes.size();) {
1198     MCInst Inst;
1199     uint64_t Size;
1200     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1201     const uint64_t ThisAddr = SectionAddr + Index;
1202     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1203     if (Size == 0)
1204       Size = std::min<uint64_t>(ThisBytes.size(),
1205                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1206     Index += Size;
1207   }
1208   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1209   // Copy and sort to remove duplicates.
1210   std::vector<uint64_t> LabelAddrs;
1211   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1212                     LabelAddrsRef.end());
1213   llvm::sort(LabelAddrs);
1214   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1215                     LabelAddrs.begin());
1216   // Add the labels.
1217   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1218     auto Name = std::make_unique<std::string>();
1219     *Name = (Twine("L") + Twine(LabelNum)).str();
1220     SynthesizedLabelNames.push_back(std::move(Name));
1221     Symbols.push_back(SymbolInfoTy(
1222         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1223   }
1224   llvm::stable_sort(Symbols);
1225   // Recreate the symbolizer with the new symbols list.
1226   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1227   Symbolizer.reset(Target->createMCSymbolizer(
1228       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1229   DisAsm->setSymbolizer(std::move(Symbolizer));
1230 }
1231 
1232 static StringRef getSegmentName(const MachOObjectFile *MachO,
1233                                 const SectionRef &Section) {
1234   if (MachO) {
1235     DataRefImpl DR = Section.getRawDataRefImpl();
1236     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1237     return SegmentName;
1238   }
1239   return "";
1240 }
1241 
1242 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1243                                     const MCAsmInfo &MAI,
1244                                     const MCSubtargetInfo &STI,
1245                                     StringRef Comments,
1246                                     LiveVariablePrinter &LVP) {
1247   do {
1248     if (!Comments.empty()) {
1249       // Emit a line of comments.
1250       StringRef Comment;
1251       std::tie(Comment, Comments) = Comments.split('\n');
1252       // MAI.getCommentColumn() assumes that instructions are printed at the
1253       // position of 8, while getInstStartColumn() returns the actual position.
1254       unsigned CommentColumn =
1255           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1256       FOS.PadToColumn(CommentColumn);
1257       FOS << MAI.getCommentString() << ' ' << Comment;
1258     }
1259     LVP.printAfterInst(FOS);
1260     FOS << '\n';
1261   } while (!Comments.empty());
1262   FOS.flush();
1263 }
1264 
1265 static void createFakeELFSections(ObjectFile &Obj) {
1266   assert(Obj.isELF());
1267   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1268     Elf32LEObj->createFakeSections();
1269   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1270     Elf64LEObj->createFakeSections();
1271   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1272     Elf32BEObj->createFakeSections();
1273   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1274     Elf64BEObj->createFakeSections();
1275   else
1276     llvm_unreachable("Unsupported binary format");
1277 }
1278 
1279 // Tries to fetch a more complete version of the given object file using its
1280 // Build ID. Returns std::nullopt if nothing was found.
1281 static std::optional<OwningBinary<Binary>>
1282 fetchBinaryByBuildID(const ObjectFile &Obj) {
1283   std::optional<object::BuildIDRef> BuildID = getBuildID(&Obj);
1284   if (!BuildID)
1285     return std::nullopt;
1286   std::optional<std::string> Path = BIDFetcher->fetch(*BuildID);
1287   if (!Path)
1288     return std::nullopt;
1289   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1290   if (!DebugBinary) {
1291     reportWarning(toString(DebugBinary.takeError()), *Path);
1292     return std::nullopt;
1293   }
1294   return std::move(*DebugBinary);
1295 }
1296 
1297 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1298                               const ObjectFile &DbgObj, MCContext &Ctx,
1299                               MCDisassembler *PrimaryDisAsm,
1300                               MCDisassembler *SecondaryDisAsm,
1301                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1302                               const MCSubtargetInfo *PrimarySTI,
1303                               const MCSubtargetInfo *SecondarySTI,
1304                               PrettyPrinter &PIP, SourcePrinter &SP,
1305                               bool InlineRelocs) {
1306   const MCSubtargetInfo *STI = PrimarySTI;
1307   MCDisassembler *DisAsm = PrimaryDisAsm;
1308   bool PrimaryIsThumb = false;
1309   if (isArmElf(Obj))
1310     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1311 
1312   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1313   if (InlineRelocs)
1314     RelocMap = getRelocsMap(Obj);
1315   bool Is64Bits = Obj.getBytesInAddress() > 4;
1316 
1317   // Create a mapping from virtual address to symbol name.  This is used to
1318   // pretty print the symbols while disassembling.
1319   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1320   SectionSymbolsTy AbsoluteSymbols;
1321   const StringRef FileName = Obj.getFileName();
1322   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1323   for (const SymbolRef &Symbol : Obj.symbols()) {
1324     Expected<StringRef> NameOrErr = Symbol.getName();
1325     if (!NameOrErr) {
1326       reportWarning(toString(NameOrErr.takeError()), FileName);
1327       continue;
1328     }
1329     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1330       continue;
1331 
1332     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1333       continue;
1334 
1335     if (MachO) {
1336       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1337       // symbols that support MachO header introspection. They do not bind to
1338       // code locations and are irrelevant for disassembly.
1339       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1340         continue;
1341       // Don't ask a Mach-O STAB symbol for its section unless you know that
1342       // STAB symbol's section field refers to a valid section index. Otherwise
1343       // the symbol may error trying to load a section that does not exist.
1344       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1345       uint8_t NType = (MachO->is64Bit() ?
1346                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1347                        MachO->getSymbolTableEntry(SymDRI).n_type);
1348       if (NType & MachO::N_STAB)
1349         continue;
1350     }
1351 
1352     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1353     if (SecI != Obj.section_end())
1354       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1355     else
1356       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1357   }
1358 
1359   if (AllSymbols.empty() && Obj.isELF())
1360     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1361 
1362   if (Obj.isWasm())
1363     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1364 
1365   if (Obj.isELF() && Obj.sections().empty())
1366     createFakeELFSections(Obj);
1367 
1368   BumpPtrAllocator A;
1369   StringSaver Saver(A);
1370   addPltEntries(Obj, AllSymbols, Saver);
1371 
1372   // Create a mapping from virtual address to section. An empty section can
1373   // cause more than one section at the same address. Sort such sections to be
1374   // before same-addressed non-empty sections so that symbol lookups prefer the
1375   // non-empty section.
1376   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1377   for (SectionRef Sec : Obj.sections())
1378     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1379   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1380     if (LHS.first != RHS.first)
1381       return LHS.first < RHS.first;
1382     return LHS.second.getSize() < RHS.second.getSize();
1383   });
1384 
1385   // Linked executables (.exe and .dll files) typically don't include a real
1386   // symbol table but they might contain an export table.
1387   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1388     for (const auto &ExportEntry : COFFObj->export_directories()) {
1389       StringRef Name;
1390       if (Error E = ExportEntry.getSymbolName(Name))
1391         reportError(std::move(E), Obj.getFileName());
1392       if (Name.empty())
1393         continue;
1394 
1395       uint32_t RVA;
1396       if (Error E = ExportEntry.getExportRVA(RVA))
1397         reportError(std::move(E), Obj.getFileName());
1398 
1399       uint64_t VA = COFFObj->getImageBase() + RVA;
1400       auto Sec = partition_point(
1401           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1402             return O.first <= VA;
1403           });
1404       if (Sec != SectionAddresses.begin()) {
1405         --Sec;
1406         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1407       } else
1408         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1409     }
1410   }
1411 
1412   // Sort all the symbols, this allows us to use a simple binary search to find
1413   // Multiple symbols can have the same address. Use a stable sort to stabilize
1414   // the output.
1415   StringSet<> FoundDisasmSymbolSet;
1416   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1417     llvm::stable_sort(SecSyms.second);
1418   llvm::stable_sort(AbsoluteSymbols);
1419 
1420   std::unique_ptr<DWARFContext> DICtx;
1421   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1422 
1423   if (DbgVariables != DVDisabled) {
1424     DICtx = DWARFContext::create(DbgObj);
1425     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1426       LVP.addCompileUnit(CU->getUnitDIE(false));
1427   }
1428 
1429   LLVM_DEBUG(LVP.dump());
1430 
1431   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1432   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1433                                std::nullopt) {
1434     AddrToBBAddrMap.clear();
1435     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1436       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1437       if (!BBAddrMapsOrErr)
1438         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1439       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1440         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1441                                 std::move(FunctionBBAddrMap));
1442     }
1443   };
1444 
1445   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1446   // single mapping, since they don't have any conflicts.
1447   if (SymbolizeOperands && !Obj.isRelocatableObject())
1448     ReadBBAddrMap();
1449 
1450   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1451     if (FilterSections.empty() && !DisassembleAll &&
1452         (!Section.isText() || Section.isVirtual()))
1453       continue;
1454 
1455     uint64_t SectionAddr = Section.getAddress();
1456     uint64_t SectSize = Section.getSize();
1457     if (!SectSize)
1458       continue;
1459 
1460     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1461     // corresponding to this section, if present.
1462     if (SymbolizeOperands && Obj.isRelocatableObject())
1463       ReadBBAddrMap(Section.getIndex());
1464 
1465     // Get the list of all the symbols in this section.
1466     SectionSymbolsTy &Symbols = AllSymbols[Section];
1467     std::vector<MappingSymbolPair> MappingSymbols;
1468     if (hasMappingSymbols(Obj)) {
1469       for (const auto &Symb : Symbols) {
1470         uint64_t Address = Symb.Addr;
1471         StringRef Name = Symb.Name;
1472         if (Name.startswith("$d"))
1473           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1474         if (Name.startswith("$x"))
1475           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1476         if (Name.startswith("$a"))
1477           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1478         if (Name.startswith("$t"))
1479           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1480       }
1481     }
1482 
1483     llvm::sort(MappingSymbols);
1484 
1485     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1486         unwrapOrError(Section.getContents(), Obj.getFileName()));
1487 
1488     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1489     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1490       // AMDGPU disassembler uses symbolizer for printing labels
1491       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1492                     Symbols, SynthesizedLabelNames);
1493     }
1494 
1495     StringRef SegmentName = getSegmentName(MachO, Section);
1496     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1497     // If the section has no symbol at the start, just insert a dummy one.
1498     if (Symbols.empty() || Symbols[0].Addr != 0) {
1499       Symbols.insert(Symbols.begin(),
1500                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1501                                            Section.isText() ? ELF::STT_FUNC
1502                                                             : ELF::STT_OBJECT));
1503     }
1504 
1505     SmallString<40> Comments;
1506     raw_svector_ostream CommentStream(Comments);
1507 
1508     uint64_t VMAAdjustment = 0;
1509     if (shouldAdjustVA(Section))
1510       VMAAdjustment = AdjustVMA;
1511 
1512     // In executable and shared objects, r_offset holds a virtual address.
1513     // Subtract SectionAddr from the r_offset field of a relocation to get
1514     // the section offset.
1515     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1516     uint64_t Size;
1517     uint64_t Index;
1518     bool PrintedSection = false;
1519     std::vector<RelocationRef> Rels = RelocMap[Section];
1520     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1521     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1522 
1523     // Loop over each chunk of code between two points where at least
1524     // one symbol is defined.
1525     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1526       // Advance SI past all the symbols starting at the same address,
1527       // and make an ArrayRef of them.
1528       unsigned FirstSI = SI;
1529       uint64_t Start = Symbols[SI].Addr;
1530       ArrayRef<SymbolInfoTy> SymbolsHere;
1531       while (SI != SE && Symbols[SI].Addr == Start)
1532         ++SI;
1533       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1534 
1535       // Get the demangled names of all those symbols. We end up with a vector
1536       // of StringRef that holds the names we're going to use, and a vector of
1537       // std::string that stores the new strings returned by demangle(), if
1538       // any. If we don't call demangle() then that vector can stay empty.
1539       std::vector<StringRef> SymNamesHere;
1540       std::vector<std::string> DemangledSymNamesHere;
1541       if (Demangle) {
1542         // Fetch the demangled names and store them locally.
1543         for (const SymbolInfoTy &Symbol : SymbolsHere)
1544           DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
1545         // Now we've finished modifying that vector, it's safe to make
1546         // a vector of StringRefs pointing into it.
1547         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1548                             DemangledSymNamesHere.end());
1549       } else {
1550         for (const SymbolInfoTy &Symbol : SymbolsHere)
1551           SymNamesHere.push_back(Symbol.Name);
1552       }
1553 
1554       // Distinguish ELF data from code symbols, which will be used later on to
1555       // decide whether to 'disassemble' this chunk as a data declaration via
1556       // dumpELFData(), or whether to treat it as code.
1557       //
1558       // If data _and_ code symbols are defined at the same address, the code
1559       // takes priority, on the grounds that disassembling code is our main
1560       // purpose here, and it would be a worse failure to _not_ interpret
1561       // something that _was_ meaningful as code than vice versa.
1562       //
1563       // Any ELF symbol type that is not clearly data will be regarded as code.
1564       // In particular, one of the uses of STT_NOTYPE is for branch targets
1565       // inside functions, for which STT_FUNC would be inaccurate.
1566       //
1567       // So here, we spot whether there's any non-data symbol present at all,
1568       // and only set the DisassembleAsData flag if there isn't. Also, we use
1569       // this distinction to inform the decision of which symbol to print at
1570       // the head of the section, so that if we're printing code, we print a
1571       // code-related symbol name to go with it.
1572       bool DisassembleAsData = false;
1573       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1574       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1575         DisassembleAsData = true; // unless we find a code symbol below
1576 
1577         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1578           uint8_t SymTy = SymbolsHere[i].Type;
1579           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1580             DisassembleAsData = false;
1581             DisplaySymIndex = i;
1582           }
1583         }
1584       }
1585 
1586       // Decide which symbol(s) from this collection we're going to print.
1587       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1588       // If the user has given the --disassemble-symbols option, then we must
1589       // display every symbol in that set, and no others.
1590       if (!DisasmSymbolSet.empty()) {
1591         bool FoundAny = false;
1592         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1593           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1594             SymsToPrint[i] = true;
1595             FoundAny = true;
1596           }
1597         }
1598 
1599         // And if none of the symbols here is one that the user asked for, skip
1600         // disassembling this entire chunk of code.
1601         if (!FoundAny)
1602           continue;
1603       } else {
1604         // Otherwise, print whichever symbol at this location is last in the
1605         // Symbols array, because that array is pre-sorted in a way intended to
1606         // correlate with priority of which symbol to display.
1607         SymsToPrint[DisplaySymIndex] = true;
1608       }
1609 
1610       // Now that we know we're disassembling this section, override the choice
1611       // of which symbols to display by printing _all_ of them at this address
1612       // if the user asked for all symbols.
1613       //
1614       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1615       // only the chunk of code headed by 'foo', but also show any other
1616       // symbols defined at that address, such as aliases for 'foo', or the ARM
1617       // mapping symbol preceding its code.
1618       if (ShowAllSymbols) {
1619         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1620           SymsToPrint[i] = true;
1621       }
1622 
1623       if (Start < SectionAddr || StopAddress <= Start)
1624         continue;
1625 
1626       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1627         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1628 
1629       // The end is the section end, the beginning of the next symbol, or
1630       // --stop-address.
1631       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1632       if (SI < SE)
1633         End = std::min(End, Symbols[SI].Addr);
1634       if (Start >= End || End <= StartAddress)
1635         continue;
1636       Start -= SectionAddr;
1637       End -= SectionAddr;
1638 
1639       if (!PrintedSection) {
1640         PrintedSection = true;
1641         outs() << "\nDisassembly of section ";
1642         if (!SegmentName.empty())
1643           outs() << SegmentName << ",";
1644         outs() << SectionName << ":\n";
1645       }
1646 
1647       outs() << '\n';
1648 
1649       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1650         if (!SymsToPrint[i])
1651           continue;
1652 
1653         const SymbolInfoTy &Symbol = SymbolsHere[i];
1654         const StringRef SymbolName = SymNamesHere[i];
1655 
1656         if (LeadingAddr)
1657           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1658                            SectionAddr + Start + VMAAdjustment);
1659         if (Obj.isXCOFF() && SymbolDescription) {
1660           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1661         } else
1662           outs() << '<' << SymbolName << ">:\n";
1663       }
1664 
1665       // Don't print raw contents of a virtual section. A virtual section
1666       // doesn't have any contents in the file.
1667       if (Section.isVirtual()) {
1668         outs() << "...\n";
1669         continue;
1670       }
1671 
1672       // See if any of the symbols defined at this location triggers target-
1673       // specific disassembly behavior, e.g. of special descriptors or function
1674       // prelude information.
1675       //
1676       // We stop this loop at the first symbol that triggers some kind of
1677       // interesting behavior (if any), on the assumption that if two symbols
1678       // defined at the same address trigger two conflicting symbol handlers,
1679       // the object file is probably confused anyway, and it would make even
1680       // less sense to present the output of _both_ handlers, because that
1681       // would describe the same data twice.
1682       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1683         SymbolInfoTy Symbol = SymbolsHere[SHI];
1684 
1685         auto Status =
1686             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1687                                   SectionAddr + Start, CommentStream);
1688 
1689         if (!Status) {
1690           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1691           // any interesting handling for this symbol. Try the other symbols
1692           // defined at this address.
1693           continue;
1694         }
1695 
1696         if (*Status == MCDisassembler::Fail) {
1697           // If onSymbolStart returns Fail, that means it identified some kind
1698           // of special data at this address, but wasn't able to disassemble it
1699           // meaningfully. So we fall back to disassembling the failed region
1700           // as bytes, assuming that the target detected the failure before
1701           // printing anything.
1702           //
1703           // Return values Success or SoftFail (i.e no 'real' failure) are
1704           // expected to mean that the target has emitted its own output.
1705           //
1706           // Either way, 'Size' will have been set to the amount of data
1707           // covered by whatever prologue the target identified. So we advance
1708           // our own position to beyond that. Sometimes that will be the entire
1709           // distance to the next symbol, and sometimes it will be just a
1710           // prologue and we should start disassembling instructions from where
1711           // it left off.
1712           outs() << "// Error in decoding " << SymNamesHere[SHI]
1713                  << " : Decoding failed region as bytes.\n";
1714           for (uint64_t I = 0; I < Size; ++I) {
1715             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1716                    << "\n";
1717           }
1718         }
1719         Start += Size;
1720         break;
1721       }
1722 
1723       Index = Start;
1724       if (SectionAddr < StartAddress)
1725         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1726 
1727       if (DisassembleAsData) {
1728         dumpELFData(SectionAddr, Index, End, Bytes);
1729         Index = End;
1730         continue;
1731       }
1732 
1733       bool DumpARMELFData = false;
1734       formatted_raw_ostream FOS(outs());
1735 
1736       std::unordered_map<uint64_t, std::string> AllLabels;
1737       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1738       if (SymbolizeOperands) {
1739         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1740                                   SectionAddr, Index, End, AllLabels);
1741         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1742                                BBAddrMapLabels);
1743       }
1744 
1745       while (Index < End) {
1746         // ARM and AArch64 ELF binaries can interleave data and text in the
1747         // same section. We rely on the markers introduced to understand what
1748         // we need to dump. If the data marker is within a function, it is
1749         // denoted as a word/short etc.
1750         if (!MappingSymbols.empty()) {
1751           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1752           DumpARMELFData = Kind == 'd';
1753           if (SecondarySTI) {
1754             if (Kind == 'a') {
1755               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1756               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1757             } else if (Kind == 't') {
1758               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1759               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1760             }
1761           }
1762         }
1763 
1764         if (DumpARMELFData) {
1765           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1766                                 MappingSymbols, *STI, FOS);
1767         } else {
1768           // When -z or --disassemble-zeroes are given we always dissasemble
1769           // them. Otherwise we might want to skip zero bytes we see.
1770           if (!DisassembleZeroes) {
1771             uint64_t MaxOffset = End - Index;
1772             // For --reloc: print zero blocks patched by relocations, so that
1773             // relocations can be shown in the dump.
1774             if (RelCur != RelEnd)
1775               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1776                                    MaxOffset);
1777 
1778             if (size_t N =
1779                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1780               FOS << "\t\t..." << '\n';
1781               Index += N;
1782               continue;
1783             }
1784           }
1785 
1786           // Print local label if there's any.
1787           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1788           if (Iter1 != BBAddrMapLabels.end()) {
1789             for (StringRef Label : Iter1->second)
1790               FOS << "<" << Label << ">:\n";
1791           } else {
1792             auto Iter2 = AllLabels.find(SectionAddr + Index);
1793             if (Iter2 != AllLabels.end())
1794               FOS << "<" << Iter2->second << ">:\n";
1795           }
1796 
1797           // Disassemble a real instruction or a data when disassemble all is
1798           // provided
1799           MCInst Inst;
1800           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1801           uint64_t ThisAddr = SectionAddr + Index;
1802           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1803                                                      ThisAddr, CommentStream);
1804           if (Size == 0)
1805             Size = std::min<uint64_t>(
1806                 ThisBytes.size(),
1807                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1808 
1809           LVP.update({Index, Section.getIndex()},
1810                      {Index + Size, Section.getIndex()}, Index + Size != End);
1811 
1812           IP->setCommentStream(CommentStream);
1813 
1814           PIP.printInst(
1815               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1816               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1817               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1818 
1819           IP->setCommentStream(llvm::nulls());
1820 
1821           // If disassembly has failed, avoid analysing invalid/incomplete
1822           // instruction information. Otherwise, try to resolve the target
1823           // address (jump target or memory operand address) and print it on the
1824           // right of the instruction.
1825           if (Disassembled && MIA) {
1826             // Branch targets are printed just after the instructions.
1827             llvm::raw_ostream *TargetOS = &FOS;
1828             uint64_t Target;
1829             bool PrintTarget =
1830                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1831             if (!PrintTarget)
1832               if (std::optional<uint64_t> MaybeTarget =
1833                       MIA->evaluateMemoryOperandAddress(
1834                           Inst, STI, SectionAddr + Index, Size)) {
1835                 Target = *MaybeTarget;
1836                 PrintTarget = true;
1837                 // Do not print real address when symbolizing.
1838                 if (!SymbolizeOperands) {
1839                   // Memory operand addresses are printed as comments.
1840                   TargetOS = &CommentStream;
1841                   *TargetOS << "0x" << Twine::utohexstr(Target);
1842                 }
1843               }
1844             if (PrintTarget) {
1845               // In a relocatable object, the target's section must reside in
1846               // the same section as the call instruction or it is accessed
1847               // through a relocation.
1848               //
1849               // In a non-relocatable object, the target may be in any section.
1850               // In that case, locate the section(s) containing the target
1851               // address and find the symbol in one of those, if possible.
1852               //
1853               // N.B. We don't walk the relocations in the relocatable case yet.
1854               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1855               if (!Obj.isRelocatableObject()) {
1856                 auto It = llvm::partition_point(
1857                     SectionAddresses,
1858                     [=](const std::pair<uint64_t, SectionRef> &O) {
1859                       return O.first <= Target;
1860                     });
1861                 uint64_t TargetSecAddr = 0;
1862                 while (It != SectionAddresses.begin()) {
1863                   --It;
1864                   if (TargetSecAddr == 0)
1865                     TargetSecAddr = It->first;
1866                   if (It->first != TargetSecAddr)
1867                     break;
1868                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1869                 }
1870               } else {
1871                 TargetSectionSymbols.push_back(&Symbols);
1872               }
1873               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1874 
1875               // Find the last symbol in the first candidate section whose
1876               // offset is less than or equal to the target. If there are no
1877               // such symbols, try in the next section and so on, before finally
1878               // using the nearest preceding absolute symbol (if any), if there
1879               // are no other valid symbols.
1880               const SymbolInfoTy *TargetSym = nullptr;
1881               for (const SectionSymbolsTy *TargetSymbols :
1882                    TargetSectionSymbols) {
1883                 auto It = llvm::partition_point(
1884                     *TargetSymbols,
1885                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1886                 while (It != TargetSymbols->begin()) {
1887                   --It;
1888                   // Skip mapping symbols to avoid possible ambiguity as they
1889                   // do not allow uniquely identifying the target address.
1890                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
1891                     TargetSym = &*It;
1892                     break;
1893                   }
1894                 }
1895                 if (TargetSym)
1896                   break;
1897               }
1898 
1899               // Print the labels corresponding to the target if there's any.
1900               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1901               bool LabelAvailable = AllLabels.count(Target);
1902               if (TargetSym != nullptr) {
1903                 uint64_t TargetAddress = TargetSym->Addr;
1904                 uint64_t Disp = Target - TargetAddress;
1905                 std::string TargetName = TargetSym->Name.str();
1906                 if (Demangle)
1907                   TargetName = demangle(TargetName);
1908 
1909                 *TargetOS << " <";
1910                 if (!Disp) {
1911                   // Always Print the binary symbol precisely corresponding to
1912                   // the target address.
1913                   *TargetOS << TargetName;
1914                 } else if (BBAddrMapLabelAvailable) {
1915                   *TargetOS << BBAddrMapLabels[Target].front();
1916                 } else if (LabelAvailable) {
1917                   *TargetOS << AllLabels[Target];
1918                 } else {
1919                   // Always Print the binary symbol plus an offset if there's no
1920                   // local label corresponding to the target address.
1921                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1922                 }
1923                 *TargetOS << ">";
1924               } else if (BBAddrMapLabelAvailable) {
1925                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1926               } else if (LabelAvailable) {
1927                 *TargetOS << " <" << AllLabels[Target] << ">";
1928               }
1929               // By convention, each record in the comment stream should be
1930               // terminated.
1931               if (TargetOS == &CommentStream)
1932                 *TargetOS << "\n";
1933             }
1934           }
1935         }
1936 
1937         assert(Ctx.getAsmInfo());
1938         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1939                                 CommentStream.str(), LVP);
1940         Comments.clear();
1941 
1942         // Hexagon does this in pretty printer
1943         if (Obj.getArch() != Triple::hexagon) {
1944           // Print relocation for instruction and data.
1945           while (RelCur != RelEnd) {
1946             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1947             // If this relocation is hidden, skip it.
1948             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1949               ++RelCur;
1950               continue;
1951             }
1952 
1953             // Stop when RelCur's offset is past the disassembled
1954             // instruction/data. Note that it's possible the disassembled data
1955             // is not the complete data: we might see the relocation printed in
1956             // the middle of the data, but this matches the binutils objdump
1957             // output.
1958             if (Offset >= Index + Size)
1959               break;
1960 
1961             // When --adjust-vma is used, update the address printed.
1962             if (RelCur->getSymbol() != Obj.symbol_end()) {
1963               Expected<section_iterator> SymSI =
1964                   RelCur->getSymbol()->getSection();
1965               if (SymSI && *SymSI != Obj.section_end() &&
1966                   shouldAdjustVA(**SymSI))
1967                 Offset += AdjustVMA;
1968             }
1969 
1970             printRelocation(FOS, Obj.getFileName(), *RelCur,
1971                             SectionAddr + Offset, Is64Bits);
1972             LVP.printAfterOtherLine(FOS, true);
1973             ++RelCur;
1974           }
1975         }
1976 
1977         Index += Size;
1978       }
1979     }
1980   }
1981   StringSet<> MissingDisasmSymbolSet =
1982       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1983   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1984     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1985 }
1986 
1987 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1988   // If information useful for showing the disassembly is missing, try to find a
1989   // more complete binary and disassemble that instead.
1990   OwningBinary<Binary> FetchedBinary;
1991   if (Obj->symbols().empty()) {
1992     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
1993             fetchBinaryByBuildID(*Obj)) {
1994       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
1995         if (!O->symbols().empty() ||
1996             (!O->sections().empty() && Obj->sections().empty())) {
1997           FetchedBinary = std::move(*FetchedBinaryOpt);
1998           Obj = O;
1999         }
2000       }
2001     }
2002   }
2003 
2004   const Target *TheTarget = getTarget(Obj);
2005 
2006   // Package up features to be passed to target/subtarget
2007   SubtargetFeatures Features = Obj->getFeatures();
2008   if (!MAttrs.empty()) {
2009     for (unsigned I = 0; I != MAttrs.size(); ++I)
2010       Features.AddFeature(MAttrs[I]);
2011   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2012     Features.AddFeature("+all");
2013   }
2014 
2015   std::unique_ptr<const MCRegisterInfo> MRI(
2016       TheTarget->createMCRegInfo(TripleName));
2017   if (!MRI)
2018     reportError(Obj->getFileName(),
2019                 "no register info for target " + TripleName);
2020 
2021   // Set up disassembler.
2022   MCTargetOptions MCOptions;
2023   std::unique_ptr<const MCAsmInfo> AsmInfo(
2024       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2025   if (!AsmInfo)
2026     reportError(Obj->getFileName(),
2027                 "no assembly info for target " + TripleName);
2028 
2029   if (MCPU.empty())
2030     MCPU = Obj->tryGetCPUName().value_or("").str();
2031 
2032   if (isArmElf(*Obj)) {
2033     // When disassembling big-endian Arm ELF, the instruction endianness is
2034     // determined in a complex way. In relocatable objects, AAELF32 mandates
2035     // that instruction endianness matches the ELF file endianness; in
2036     // executable images, that's true unless the file header has the EF_ARM_BE8
2037     // flag, in which case instructions are little-endian regardless of data
2038     // endianness.
2039     //
2040     // We must set the big-endian-instructions SubtargetFeature to make the
2041     // disassembler read the instructions the right way round, and also tell
2042     // our own prettyprinter to retrieve the encodings the same way to print in
2043     // hex.
2044     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2045 
2046     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2047                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2048       Features.AddFeature("+big-endian-instructions");
2049       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2050     } else {
2051       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2052     }
2053   }
2054 
2055   std::unique_ptr<const MCSubtargetInfo> STI(
2056       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2057   if (!STI)
2058     reportError(Obj->getFileName(),
2059                 "no subtarget info for target " + TripleName);
2060   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2061   if (!MII)
2062     reportError(Obj->getFileName(),
2063                 "no instruction info for target " + TripleName);
2064   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2065   // FIXME: for now initialize MCObjectFileInfo with default values
2066   std::unique_ptr<MCObjectFileInfo> MOFI(
2067       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2068   Ctx.setObjectFileInfo(MOFI.get());
2069 
2070   std::unique_ptr<MCDisassembler> DisAsm(
2071       TheTarget->createMCDisassembler(*STI, Ctx));
2072   if (!DisAsm)
2073     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2074 
2075   // If we have an ARM object file, we need a second disassembler, because
2076   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2077   // We use mapping symbols to switch between the two assemblers, where
2078   // appropriate.
2079   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2080   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2081   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2082     if (STI->checkFeatures("+thumb-mode"))
2083       Features.AddFeature("-thumb-mode");
2084     else
2085       Features.AddFeature("+thumb-mode");
2086     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2087                                                         Features.getString()));
2088     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2089   }
2090 
2091   std::unique_ptr<const MCInstrAnalysis> MIA(
2092       TheTarget->createMCInstrAnalysis(MII.get()));
2093 
2094   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2095   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2096       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2097   if (!IP)
2098     reportError(Obj->getFileName(),
2099                 "no instruction printer for target " + TripleName);
2100   IP->setPrintImmHex(PrintImmHex);
2101   IP->setPrintBranchImmAsAddress(true);
2102   IP->setSymbolizeOperands(SymbolizeOperands);
2103   IP->setMCInstrAnalysis(MIA.get());
2104 
2105   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2106 
2107   const ObjectFile *DbgObj = Obj;
2108   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2109     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2110             fetchBinaryByBuildID(*Obj)) {
2111       if (auto *FetchedObj =
2112               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2113         if (FetchedObj->hasDebugInfo()) {
2114           FetchedBinary = std::move(*DebugBinaryOpt);
2115           DbgObj = FetchedObj;
2116         }
2117       }
2118     }
2119   }
2120 
2121   std::unique_ptr<object::Binary> DSYMBinary;
2122   std::unique_ptr<MemoryBuffer> DSYMBuf;
2123   if (!DbgObj->hasDebugInfo()) {
2124     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2125       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2126                                            DSYMBinary, DSYMBuf);
2127       if (!DbgObj)
2128         return;
2129     }
2130   }
2131 
2132   SourcePrinter SP(DbgObj, TheTarget->getName());
2133 
2134   for (StringRef Opt : DisassemblerOptions)
2135     if (!IP->applyTargetSpecificCLOption(Opt))
2136       reportError(Obj->getFileName(),
2137                   "Unrecognized disassembler option: " + Opt);
2138 
2139   disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
2140                     SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
2141                     SecondarySTI.get(), PIP, SP, InlineRelocs);
2142 }
2143 
2144 void objdump::printRelocations(const ObjectFile *Obj) {
2145   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2146                                                  "%08" PRIx64;
2147 
2148   // Build a mapping from relocation target to a vector of relocation
2149   // sections. Usually, there is an only one relocation section for
2150   // each relocated section.
2151   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2152   uint64_t Ndx;
2153   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2154     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2155       continue;
2156     if (Section.relocation_begin() == Section.relocation_end())
2157       continue;
2158     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2159     if (!SecOrErr)
2160       reportError(Obj->getFileName(),
2161                   "section (" + Twine(Ndx) +
2162                       "): unable to get a relocation target: " +
2163                       toString(SecOrErr.takeError()));
2164     SecToRelSec[**SecOrErr].push_back(Section);
2165   }
2166 
2167   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2168     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2169     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2170     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2171     uint32_t TypePadding = 24;
2172     outs() << left_justify("OFFSET", OffsetPadding) << " "
2173            << left_justify("TYPE", TypePadding) << " "
2174            << "VALUE\n";
2175 
2176     for (SectionRef Section : P.second) {
2177       for (const RelocationRef &Reloc : Section.relocations()) {
2178         uint64_t Address = Reloc.getOffset();
2179         SmallString<32> RelocName;
2180         SmallString<32> ValueStr;
2181         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2182           continue;
2183         Reloc.getTypeName(RelocName);
2184         if (Error E = getRelocationValueString(Reloc, ValueStr))
2185           reportError(std::move(E), Obj->getFileName());
2186 
2187         outs() << format(Fmt.data(), Address) << " "
2188                << left_justify(RelocName, TypePadding) << " " << ValueStr
2189                << "\n";
2190       }
2191     }
2192   }
2193 }
2194 
2195 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2196   // For the moment, this option is for ELF only
2197   if (!Obj->isELF())
2198     return;
2199 
2200   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2201   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2202         return Sec.getType() == ELF::SHT_DYNAMIC;
2203       })) {
2204     reportError(Obj->getFileName(), "not a dynamic object");
2205     return;
2206   }
2207 
2208   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2209   if (DynRelSec.empty())
2210     return;
2211 
2212   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2213   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2214   const uint32_t TypePadding = 24;
2215   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2216          << left_justify("TYPE", TypePadding) << " VALUE\n";
2217 
2218   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2219   for (const SectionRef &Section : DynRelSec)
2220     for (const RelocationRef &Reloc : Section.relocations()) {
2221       uint64_t Address = Reloc.getOffset();
2222       SmallString<32> RelocName;
2223       SmallString<32> ValueStr;
2224       Reloc.getTypeName(RelocName);
2225       if (Error E = getRelocationValueString(Reloc, ValueStr))
2226         reportError(std::move(E), Obj->getFileName());
2227       outs() << format(Fmt.data(), Address) << ' '
2228              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2229     }
2230 }
2231 
2232 // Returns true if we need to show LMA column when dumping section headers. We
2233 // show it only when the platform is ELF and either we have at least one section
2234 // whose VMA and LMA are different and/or when --show-lma flag is used.
2235 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2236   if (!Obj.isELF())
2237     return false;
2238   for (const SectionRef &S : ToolSectionFilter(Obj))
2239     if (S.getAddress() != getELFSectionLMA(S))
2240       return true;
2241   return ShowLMA;
2242 }
2243 
2244 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2245   // Default column width for names is 13 even if no names are that long.
2246   size_t MaxWidth = 13;
2247   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2248     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2249     MaxWidth = std::max(MaxWidth, Name.size());
2250   }
2251   return MaxWidth;
2252 }
2253 
2254 void objdump::printSectionHeaders(ObjectFile &Obj) {
2255   if (Obj.isELF() && Obj.sections().empty())
2256     createFakeELFSections(Obj);
2257 
2258   size_t NameWidth = getMaxSectionNameWidth(Obj);
2259   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2260   bool HasLMAColumn = shouldDisplayLMA(Obj);
2261   outs() << "\nSections:\n";
2262   if (HasLMAColumn)
2263     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2264            << left_justify("VMA", AddressWidth) << " "
2265            << left_justify("LMA", AddressWidth) << " Type\n";
2266   else
2267     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2268            << left_justify("VMA", AddressWidth) << " Type\n";
2269 
2270   uint64_t Idx;
2271   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2272     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2273     uint64_t VMA = Section.getAddress();
2274     if (shouldAdjustVA(Section))
2275       VMA += AdjustVMA;
2276 
2277     uint64_t Size = Section.getSize();
2278 
2279     std::string Type = Section.isText() ? "TEXT" : "";
2280     if (Section.isData())
2281       Type += Type.empty() ? "DATA" : ", DATA";
2282     if (Section.isBSS())
2283       Type += Type.empty() ? "BSS" : ", BSS";
2284     if (Section.isDebugSection())
2285       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2286 
2287     if (HasLMAColumn)
2288       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2289                        Name.str().c_str(), Size)
2290              << format_hex_no_prefix(VMA, AddressWidth) << " "
2291              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2292              << " " << Type << "\n";
2293     else
2294       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2295                        Name.str().c_str(), Size)
2296              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2297   }
2298 }
2299 
2300 void objdump::printSectionContents(const ObjectFile *Obj) {
2301   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2302 
2303   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2304     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2305     uint64_t BaseAddr = Section.getAddress();
2306     uint64_t Size = Section.getSize();
2307     if (!Size)
2308       continue;
2309 
2310     outs() << "Contents of section ";
2311     StringRef SegmentName = getSegmentName(MachO, Section);
2312     if (!SegmentName.empty())
2313       outs() << SegmentName << ",";
2314     outs() << Name << ":\n";
2315     if (Section.isBSS()) {
2316       outs() << format("<skipping contents of bss section at [%04" PRIx64
2317                        ", %04" PRIx64 ")>\n",
2318                        BaseAddr, BaseAddr + Size);
2319       continue;
2320     }
2321 
2322     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2323 
2324     // Dump out the content as hex and printable ascii characters.
2325     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2326       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2327       // Dump line of hex.
2328       for (std::size_t I = 0; I < 16; ++I) {
2329         if (I != 0 && I % 4 == 0)
2330           outs() << ' ';
2331         if (Addr + I < End)
2332           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2333                  << hexdigit(Contents[Addr + I] & 0xF, true);
2334         else
2335           outs() << "  ";
2336       }
2337       // Print ascii.
2338       outs() << "  ";
2339       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2340         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2341           outs() << Contents[Addr + I];
2342         else
2343           outs() << ".";
2344       }
2345       outs() << "\n";
2346     }
2347   }
2348 }
2349 
2350 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2351                                StringRef ArchitectureName, bool DumpDynamic) {
2352   if (O.isCOFF() && !DumpDynamic) {
2353     outs() << "\nSYMBOL TABLE:\n";
2354     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2355     return;
2356   }
2357 
2358   const StringRef FileName = O.getFileName();
2359 
2360   if (!DumpDynamic) {
2361     outs() << "\nSYMBOL TABLE:\n";
2362     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2363       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2364                   DumpDynamic);
2365     return;
2366   }
2367 
2368   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2369   if (!O.isELF()) {
2370     reportWarning(
2371         "this operation is not currently supported for this file format",
2372         FileName);
2373     return;
2374   }
2375 
2376   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2377   auto Symbols = ELF->getDynamicSymbolIterators();
2378   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2379       ELF->readDynsymVersions();
2380   if (!SymbolVersionsOrErr) {
2381     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2382     SymbolVersionsOrErr = std::vector<VersionEntry>();
2383     (void)!SymbolVersionsOrErr;
2384   }
2385   for (auto &Sym : Symbols)
2386     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2387                 ArchitectureName, DumpDynamic);
2388 }
2389 
2390 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2391                           ArrayRef<VersionEntry> SymbolVersions,
2392                           StringRef FileName, StringRef ArchiveName,
2393                           StringRef ArchitectureName, bool DumpDynamic) {
2394   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2395   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2396                                    ArchitectureName);
2397   if ((Address < StartAddress) || (Address > StopAddress))
2398     return;
2399   SymbolRef::Type Type =
2400       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2401   uint32_t Flags =
2402       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2403 
2404   // Don't ask a Mach-O STAB symbol for its section unless you know that
2405   // STAB symbol's section field refers to a valid section index. Otherwise
2406   // the symbol may error trying to load a section that does not exist.
2407   bool IsSTAB = false;
2408   if (MachO) {
2409     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2410     uint8_t NType =
2411         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2412                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2413     if (NType & MachO::N_STAB)
2414       IsSTAB = true;
2415   }
2416   section_iterator Section = IsSTAB
2417                                  ? O.section_end()
2418                                  : unwrapOrError(Symbol.getSection(), FileName,
2419                                                  ArchiveName, ArchitectureName);
2420 
2421   StringRef Name;
2422   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2423     if (Expected<StringRef> NameOrErr = Section->getName())
2424       Name = *NameOrErr;
2425     else
2426       consumeError(NameOrErr.takeError());
2427 
2428   } else {
2429     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2430                          ArchitectureName);
2431   }
2432 
2433   bool Global = Flags & SymbolRef::SF_Global;
2434   bool Weak = Flags & SymbolRef::SF_Weak;
2435   bool Absolute = Flags & SymbolRef::SF_Absolute;
2436   bool Common = Flags & SymbolRef::SF_Common;
2437   bool Hidden = Flags & SymbolRef::SF_Hidden;
2438 
2439   char GlobLoc = ' ';
2440   if ((Section != O.section_end() || Absolute) && !Weak)
2441     GlobLoc = Global ? 'g' : 'l';
2442   char IFunc = ' ';
2443   if (O.isELF()) {
2444     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2445       IFunc = 'i';
2446     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2447       GlobLoc = 'u';
2448   }
2449 
2450   char Debug = ' ';
2451   if (DumpDynamic)
2452     Debug = 'D';
2453   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2454     Debug = 'd';
2455 
2456   char FileFunc = ' ';
2457   if (Type == SymbolRef::ST_File)
2458     FileFunc = 'f';
2459   else if (Type == SymbolRef::ST_Function)
2460     FileFunc = 'F';
2461   else if (Type == SymbolRef::ST_Data)
2462     FileFunc = 'O';
2463 
2464   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2465 
2466   outs() << format(Fmt, Address) << " "
2467          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2468          << (Weak ? 'w' : ' ') // Weak?
2469          << ' '                // Constructor. Not supported yet.
2470          << ' '                // Warning. Not supported yet.
2471          << IFunc              // Indirect reference to another symbol.
2472          << Debug              // Debugging (d) or dynamic (D) symbol.
2473          << FileFunc           // Name of function (F), file (f) or object (O).
2474          << ' ';
2475   if (Absolute) {
2476     outs() << "*ABS*";
2477   } else if (Common) {
2478     outs() << "*COM*";
2479   } else if (Section == O.section_end()) {
2480     if (O.isXCOFF()) {
2481       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2482           Symbol.getRawDataRefImpl());
2483       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2484         outs() << "*DEBUG*";
2485       else
2486         outs() << "*UND*";
2487     } else
2488       outs() << "*UND*";
2489   } else {
2490     StringRef SegmentName = getSegmentName(MachO, *Section);
2491     if (!SegmentName.empty())
2492       outs() << SegmentName << ",";
2493     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2494     outs() << SectionName;
2495     if (O.isXCOFF()) {
2496       std::optional<SymbolRef> SymRef =
2497           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2498       if (SymRef) {
2499 
2500         Expected<StringRef> NameOrErr = SymRef->getName();
2501 
2502         if (NameOrErr) {
2503           outs() << " (csect:";
2504           std::string SymName(NameOrErr.get());
2505 
2506           if (Demangle)
2507             SymName = demangle(SymName);
2508 
2509           if (SymbolDescription)
2510             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2511                                                 SymName);
2512 
2513           outs() << ' ' << SymName;
2514           outs() << ") ";
2515         } else
2516           reportWarning(toString(NameOrErr.takeError()), FileName);
2517       }
2518     }
2519   }
2520 
2521   if (Common)
2522     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2523   else if (O.isXCOFF())
2524     outs() << '\t'
2525            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2526                               Symbol.getRawDataRefImpl()));
2527   else if (O.isELF())
2528     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2529 
2530   if (O.isELF()) {
2531     if (!SymbolVersions.empty()) {
2532       const VersionEntry &Ver =
2533           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2534       std::string Str;
2535       if (!Ver.Name.empty())
2536         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2537       outs() << ' ' << left_justify(Str, 12);
2538     }
2539 
2540     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2541     switch (Other) {
2542     case ELF::STV_DEFAULT:
2543       break;
2544     case ELF::STV_INTERNAL:
2545       outs() << " .internal";
2546       break;
2547     case ELF::STV_HIDDEN:
2548       outs() << " .hidden";
2549       break;
2550     case ELF::STV_PROTECTED:
2551       outs() << " .protected";
2552       break;
2553     default:
2554       outs() << format(" 0x%02x", Other);
2555       break;
2556     }
2557   } else if (Hidden) {
2558     outs() << " .hidden";
2559   }
2560 
2561   std::string SymName(Name);
2562   if (Demangle)
2563     SymName = demangle(SymName);
2564 
2565   if (O.isXCOFF() && SymbolDescription)
2566     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2567 
2568   outs() << ' ' << SymName << '\n';
2569 }
2570 
2571 static void printUnwindInfo(const ObjectFile *O) {
2572   outs() << "Unwind info:\n\n";
2573 
2574   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2575     printCOFFUnwindInfo(Coff);
2576   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2577     printMachOUnwindInfo(MachO);
2578   else
2579     // TODO: Extract DWARF dump tool to objdump.
2580     WithColor::error(errs(), ToolName)
2581         << "This operation is only currently supported "
2582            "for COFF and MachO object files.\n";
2583 }
2584 
2585 /// Dump the raw contents of the __clangast section so the output can be piped
2586 /// into llvm-bcanalyzer.
2587 static void printRawClangAST(const ObjectFile *Obj) {
2588   if (outs().is_displayed()) {
2589     WithColor::error(errs(), ToolName)
2590         << "The -raw-clang-ast option will dump the raw binary contents of "
2591            "the clang ast section.\n"
2592            "Please redirect the output to a file or another program such as "
2593            "llvm-bcanalyzer.\n";
2594     return;
2595   }
2596 
2597   StringRef ClangASTSectionName("__clangast");
2598   if (Obj->isCOFF()) {
2599     ClangASTSectionName = "clangast";
2600   }
2601 
2602   std::optional<object::SectionRef> ClangASTSection;
2603   for (auto Sec : ToolSectionFilter(*Obj)) {
2604     StringRef Name;
2605     if (Expected<StringRef> NameOrErr = Sec.getName())
2606       Name = *NameOrErr;
2607     else
2608       consumeError(NameOrErr.takeError());
2609 
2610     if (Name == ClangASTSectionName) {
2611       ClangASTSection = Sec;
2612       break;
2613     }
2614   }
2615   if (!ClangASTSection)
2616     return;
2617 
2618   StringRef ClangASTContents =
2619       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2620   outs().write(ClangASTContents.data(), ClangASTContents.size());
2621 }
2622 
2623 static void printFaultMaps(const ObjectFile *Obj) {
2624   StringRef FaultMapSectionName;
2625 
2626   if (Obj->isELF()) {
2627     FaultMapSectionName = ".llvm_faultmaps";
2628   } else if (Obj->isMachO()) {
2629     FaultMapSectionName = "__llvm_faultmaps";
2630   } else {
2631     WithColor::error(errs(), ToolName)
2632         << "This operation is only currently supported "
2633            "for ELF and Mach-O executable files.\n";
2634     return;
2635   }
2636 
2637   std::optional<object::SectionRef> FaultMapSection;
2638 
2639   for (auto Sec : ToolSectionFilter(*Obj)) {
2640     StringRef Name;
2641     if (Expected<StringRef> NameOrErr = Sec.getName())
2642       Name = *NameOrErr;
2643     else
2644       consumeError(NameOrErr.takeError());
2645 
2646     if (Name == FaultMapSectionName) {
2647       FaultMapSection = Sec;
2648       break;
2649     }
2650   }
2651 
2652   outs() << "FaultMap table:\n";
2653 
2654   if (!FaultMapSection) {
2655     outs() << "<not found>\n";
2656     return;
2657   }
2658 
2659   StringRef FaultMapContents =
2660       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2661   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2662                      FaultMapContents.bytes_end());
2663 
2664   outs() << FMP;
2665 }
2666 
2667 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2668   if (O->isELF()) {
2669     printELFFileHeader(O);
2670     printELFDynamicSection(O);
2671     printELFSymbolVersionInfo(O);
2672     return;
2673   }
2674   if (O->isCOFF())
2675     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2676   if (O->isWasm())
2677     return printWasmFileHeader(O);
2678   if (O->isMachO()) {
2679     printMachOFileHeader(O);
2680     if (!OnlyFirst)
2681       printMachOLoadCommands(O);
2682     return;
2683   }
2684   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2685 }
2686 
2687 static void printFileHeaders(const ObjectFile *O) {
2688   if (!O->isELF() && !O->isCOFF())
2689     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2690 
2691   Triple::ArchType AT = O->getArch();
2692   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2693   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2694 
2695   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2696   outs() << "start address: "
2697          << "0x" << format(Fmt.data(), Address) << "\n";
2698 }
2699 
2700 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2701   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2702   if (!ModeOrErr) {
2703     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2704     consumeError(ModeOrErr.takeError());
2705     return;
2706   }
2707   sys::fs::perms Mode = ModeOrErr.get();
2708   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2709   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2710   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2711   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2712   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2713   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2714   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2715   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2716   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2717 
2718   outs() << " ";
2719 
2720   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2721                    unwrapOrError(C.getGID(), Filename),
2722                    unwrapOrError(C.getRawSize(), Filename));
2723 
2724   StringRef RawLastModified = C.getRawLastModified();
2725   unsigned Seconds;
2726   if (RawLastModified.getAsInteger(10, Seconds))
2727     outs() << "(date: \"" << RawLastModified
2728            << "\" contains non-decimal chars) ";
2729   else {
2730     // Since ctime(3) returns a 26 character string of the form:
2731     // "Sun Sep 16 01:03:52 1973\n\0"
2732     // just print 24 characters.
2733     time_t t = Seconds;
2734     outs() << format("%.24s ", ctime(&t));
2735   }
2736 
2737   StringRef Name = "";
2738   Expected<StringRef> NameOrErr = C.getName();
2739   if (!NameOrErr) {
2740     consumeError(NameOrErr.takeError());
2741     Name = unwrapOrError(C.getRawName(), Filename);
2742   } else {
2743     Name = NameOrErr.get();
2744   }
2745   outs() << Name << "\n";
2746 }
2747 
2748 // For ELF only now.
2749 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2750   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2751     if (Elf->getEType() != ELF::ET_REL)
2752       return true;
2753   }
2754   return false;
2755 }
2756 
2757 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2758                                             uint64_t Start, uint64_t Stop) {
2759   if (!shouldWarnForInvalidStartStopAddress(Obj))
2760     return;
2761 
2762   for (const SectionRef &Section : Obj->sections())
2763     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2764       uint64_t BaseAddr = Section.getAddress();
2765       uint64_t Size = Section.getSize();
2766       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2767         return;
2768     }
2769 
2770   if (!HasStartAddressFlag)
2771     reportWarning("no section has address less than 0x" +
2772                       Twine::utohexstr(Stop) + " specified by --stop-address",
2773                   Obj->getFileName());
2774   else if (!HasStopAddressFlag)
2775     reportWarning("no section has address greater than or equal to 0x" +
2776                       Twine::utohexstr(Start) + " specified by --start-address",
2777                   Obj->getFileName());
2778   else
2779     reportWarning("no section overlaps the range [0x" +
2780                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2781                       ") specified by --start-address/--stop-address",
2782                   Obj->getFileName());
2783 }
2784 
2785 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2786                        const Archive::Child *C = nullptr) {
2787   // Avoid other output when using a raw option.
2788   if (!RawClangAST) {
2789     outs() << '\n';
2790     if (A)
2791       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2792     else
2793       outs() << O->getFileName();
2794     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2795   }
2796 
2797   if (HasStartAddressFlag || HasStopAddressFlag)
2798     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2799 
2800   // Note: the order here matches GNU objdump for compatability.
2801   StringRef ArchiveName = A ? A->getFileName() : "";
2802   if (ArchiveHeaders && !MachOOpt && C)
2803     printArchiveChild(ArchiveName, *C);
2804   if (FileHeaders)
2805     printFileHeaders(O);
2806   if (PrivateHeaders || FirstPrivateHeader)
2807     printPrivateFileHeaders(O, FirstPrivateHeader);
2808   if (SectionHeaders)
2809     printSectionHeaders(*O);
2810   if (SymbolTable)
2811     printSymbolTable(*O, ArchiveName);
2812   if (DynamicSymbolTable)
2813     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2814                      /*DumpDynamic=*/true);
2815   if (DwarfDumpType != DIDT_Null) {
2816     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2817     // Dump the complete DWARF structure.
2818     DIDumpOptions DumpOpts;
2819     DumpOpts.DumpType = DwarfDumpType;
2820     DICtx->dump(outs(), DumpOpts);
2821   }
2822   if (Relocations && !Disassemble)
2823     printRelocations(O);
2824   if (DynamicRelocations)
2825     printDynamicRelocations(O);
2826   if (SectionContents)
2827     printSectionContents(O);
2828   if (Disassemble)
2829     disassembleObject(O, Relocations);
2830   if (UnwindInfo)
2831     printUnwindInfo(O);
2832 
2833   // Mach-O specific options:
2834   if (ExportsTrie)
2835     printExportsTrie(O);
2836   if (Rebase)
2837     printRebaseTable(O);
2838   if (Bind)
2839     printBindTable(O);
2840   if (LazyBind)
2841     printLazyBindTable(O);
2842   if (WeakBind)
2843     printWeakBindTable(O);
2844 
2845   // Other special sections:
2846   if (RawClangAST)
2847     printRawClangAST(O);
2848   if (FaultMapSection)
2849     printFaultMaps(O);
2850   if (Offloading)
2851     dumpOffloadBinary(*O);
2852 }
2853 
2854 static void dumpObject(const COFFImportFile *I, const Archive *A,
2855                        const Archive::Child *C = nullptr) {
2856   StringRef ArchiveName = A ? A->getFileName() : "";
2857 
2858   // Avoid other output when using a raw option.
2859   if (!RawClangAST)
2860     outs() << '\n'
2861            << ArchiveName << "(" << I->getFileName() << ")"
2862            << ":\tfile format COFF-import-file"
2863            << "\n\n";
2864 
2865   if (ArchiveHeaders && !MachOOpt && C)
2866     printArchiveChild(ArchiveName, *C);
2867   if (SymbolTable)
2868     printCOFFSymbolTable(*I);
2869 }
2870 
2871 /// Dump each object file in \a a;
2872 static void dumpArchive(const Archive *A) {
2873   Error Err = Error::success();
2874   unsigned I = -1;
2875   for (auto &C : A->children(Err)) {
2876     ++I;
2877     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2878     if (!ChildOrErr) {
2879       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2880         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2881       continue;
2882     }
2883     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2884       dumpObject(O, A, &C);
2885     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2886       dumpObject(I, A, &C);
2887     else
2888       reportError(errorCodeToError(object_error::invalid_file_type),
2889                   A->getFileName());
2890   }
2891   if (Err)
2892     reportError(std::move(Err), A->getFileName());
2893 }
2894 
2895 /// Open file and figure out how to dump it.
2896 static void dumpInput(StringRef file) {
2897   // If we are using the Mach-O specific object file parser, then let it parse
2898   // the file and process the command line options.  So the -arch flags can
2899   // be used to select specific slices, etc.
2900   if (MachOOpt) {
2901     parseInputMachO(file);
2902     return;
2903   }
2904 
2905   // Attempt to open the binary.
2906   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2907   Binary &Binary = *OBinary.getBinary();
2908 
2909   if (Archive *A = dyn_cast<Archive>(&Binary))
2910     dumpArchive(A);
2911   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2912     dumpObject(O);
2913   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2914     parseInputMachO(UB);
2915   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2916     dumpOffloadSections(*OB);
2917   else
2918     reportError(errorCodeToError(object_error::invalid_file_type), file);
2919 }
2920 
2921 template <typename T>
2922 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2923                         T &Value) {
2924   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2925     StringRef V(A->getValue());
2926     if (!llvm::to_integer(V, Value, 0)) {
2927       reportCmdLineError(A->getSpelling() +
2928                          ": expected a non-negative integer, but got '" + V +
2929                          "'");
2930     }
2931   }
2932 }
2933 
2934 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2935   StringRef V(A->getValue());
2936   std::string Bytes;
2937   if (!tryGetFromHex(V, Bytes))
2938     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2939                        V + "'");
2940   ArrayRef<uint8_t> BuildID(reinterpret_cast<const uint8_t *>(Bytes.data()),
2941                             Bytes.size());
2942   return object::BuildID(BuildID.begin(), BuildID.end());
2943 }
2944 
2945 void objdump::invalidArgValue(const opt::Arg *A) {
2946   reportCmdLineError("'" + StringRef(A->getValue()) +
2947                      "' is not a valid value for '" + A->getSpelling() + "'");
2948 }
2949 
2950 static std::vector<std::string>
2951 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2952   std::vector<std::string> Values;
2953   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2954     llvm::SmallVector<StringRef, 2> SplitValues;
2955     llvm::SplitString(Value, SplitValues, ",");
2956     for (StringRef SplitValue : SplitValues)
2957       Values.push_back(SplitValue.str());
2958   }
2959   return Values;
2960 }
2961 
2962 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2963   MachOOpt = true;
2964   FullLeadingAddr = true;
2965   PrintImmHex = true;
2966 
2967   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2968   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2969   if (InputArgs.hasArg(OTOOL_d))
2970     FilterSections.push_back("__DATA,__data");
2971   DylibId = InputArgs.hasArg(OTOOL_D);
2972   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2973   DataInCode = InputArgs.hasArg(OTOOL_G);
2974   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2975   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2976   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2977   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2978   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2979   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2980   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2981   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2982   InfoPlist = InputArgs.hasArg(OTOOL_P);
2983   Relocations = InputArgs.hasArg(OTOOL_r);
2984   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2985     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2986     FilterSections.push_back(Filter);
2987   }
2988   if (InputArgs.hasArg(OTOOL_t))
2989     FilterSections.push_back("__TEXT,__text");
2990   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2991             InputArgs.hasArg(OTOOL_o);
2992   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2993   if (InputArgs.hasArg(OTOOL_x))
2994     FilterSections.push_back(",__text");
2995   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2996 
2997   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
2998   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
2999 
3000   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3001   if (InputFilenames.empty())
3002     reportCmdLineError("no input file");
3003 
3004   for (const Arg *A : InputArgs) {
3005     const Option &O = A->getOption();
3006     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3007       reportCmdLineWarning(O.getPrefixedName() +
3008                            " is obsolete and not implemented");
3009     }
3010   }
3011 }
3012 
3013 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3014   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3015   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3016   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3017   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3018   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3019   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3020   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3021   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3022   DisassembleSymbols =
3023       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3024   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3025   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3026     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3027                         .Case("frames", DIDT_DebugFrame)
3028                         .Default(DIDT_Null);
3029     if (DwarfDumpType == DIDT_Null)
3030       invalidArgValue(A);
3031   }
3032   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3033   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3034   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3035   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3036   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3037   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3038   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3039   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3040   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3041   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3042   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3043   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3044   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3045   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3046   PrintImmHex =
3047       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3048   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3049   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3050   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3051   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3052   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3053   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3054   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3055   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3056   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3057   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3058   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3059   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3060   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3061   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3062   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3063   Wide = InputArgs.hasArg(OBJDUMP_wide);
3064   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3065   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3066   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3067     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3068                        .Case("ascii", DVASCII)
3069                        .Case("unicode", DVUnicode)
3070                        .Default(DVInvalid);
3071     if (DbgVariables == DVInvalid)
3072       invalidArgValue(A);
3073   }
3074   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3075 
3076   parseMachOOptions(InputArgs);
3077 
3078   // Parse -M (--disassembler-options) and deprecated
3079   // --x86-asm-syntax={att,intel}.
3080   //
3081   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3082   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3083   // called too late. For now we have to use the internal cl::opt option.
3084   const char *AsmSyntax = nullptr;
3085   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3086                                           OBJDUMP_x86_asm_syntax_att,
3087                                           OBJDUMP_x86_asm_syntax_intel)) {
3088     switch (A->getOption().getID()) {
3089     case OBJDUMP_x86_asm_syntax_att:
3090       AsmSyntax = "--x86-asm-syntax=att";
3091       continue;
3092     case OBJDUMP_x86_asm_syntax_intel:
3093       AsmSyntax = "--x86-asm-syntax=intel";
3094       continue;
3095     }
3096 
3097     SmallVector<StringRef, 2> Values;
3098     llvm::SplitString(A->getValue(), Values, ",");
3099     for (StringRef V : Values) {
3100       if (V == "att")
3101         AsmSyntax = "--x86-asm-syntax=att";
3102       else if (V == "intel")
3103         AsmSyntax = "--x86-asm-syntax=intel";
3104       else
3105         DisassemblerOptions.push_back(V.str());
3106     }
3107   }
3108   if (AsmSyntax) {
3109     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3110     llvm::cl::ParseCommandLineOptions(2, Argv);
3111   }
3112 
3113   // Look up any provided build IDs, then append them to the input filenames.
3114   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3115     object::BuildID BuildID = parseBuildIDArg(A);
3116     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3117     if (!Path) {
3118       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3119                          A->getValue() + "'");
3120     }
3121     InputFilenames.push_back(std::move(*Path));
3122   }
3123 
3124   // objdump defaults to a.out if no filenames specified.
3125   if (InputFilenames.empty())
3126     InputFilenames.push_back("a.out");
3127 }
3128 
3129 int main(int argc, char **argv) {
3130   using namespace llvm;
3131   InitLLVM X(argc, argv);
3132 
3133   ToolName = argv[0];
3134   std::unique_ptr<CommonOptTable> T;
3135   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3136 
3137   StringRef Stem = sys::path::stem(ToolName);
3138   auto Is = [=](StringRef Tool) {
3139     // We need to recognize the following filenames:
3140     //
3141     // llvm-objdump -> objdump
3142     // llvm-otool-10.exe -> otool
3143     // powerpc64-unknown-freebsd13-objdump -> objdump
3144     auto I = Stem.rfind_insensitive(Tool);
3145     return I != StringRef::npos &&
3146            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3147   };
3148   if (Is("otool")) {
3149     T = std::make_unique<OtoolOptTable>();
3150     Unknown = OTOOL_UNKNOWN;
3151     HelpFlag = OTOOL_help;
3152     HelpHiddenFlag = OTOOL_help_hidden;
3153     VersionFlag = OTOOL_version;
3154   } else {
3155     T = std::make_unique<ObjdumpOptTable>();
3156     Unknown = OBJDUMP_UNKNOWN;
3157     HelpFlag = OBJDUMP_help;
3158     HelpHiddenFlag = OBJDUMP_help_hidden;
3159     VersionFlag = OBJDUMP_version;
3160   }
3161 
3162   BumpPtrAllocator A;
3163   StringSaver Saver(A);
3164   opt::InputArgList InputArgs =
3165       T->parseArgs(argc, argv, Unknown, Saver,
3166                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3167 
3168   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3169     T->printHelp(ToolName);
3170     return 0;
3171   }
3172   if (InputArgs.hasArg(HelpHiddenFlag)) {
3173     T->printHelp(ToolName, /*ShowHidden=*/true);
3174     return 0;
3175   }
3176 
3177   // Initialize targets and assembly printers/parsers.
3178   InitializeAllTargetInfos();
3179   InitializeAllTargetMCs();
3180   InitializeAllDisassemblers();
3181 
3182   if (InputArgs.hasArg(VersionFlag)) {
3183     cl::PrintVersionMessage();
3184     if (!Is("otool")) {
3185       outs() << '\n';
3186       TargetRegistry::printRegisteredTargetsForVersion(outs());
3187     }
3188     return 0;
3189   }
3190 
3191   // Initialize debuginfod.
3192   const bool ShouldUseDebuginfodByDefault =
3193       InputArgs.hasArg(OBJDUMP_build_id) ||
3194       (HTTPClient::isAvailable() &&
3195        !ExitOnErr(getDefaultDebuginfodUrls()).empty());
3196   std::vector<std::string> DebugFileDirectories =
3197       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3198   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3199                         ShouldUseDebuginfodByDefault)) {
3200     HTTPClient::initialize();
3201     BIDFetcher =
3202         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3203   } else {
3204     BIDFetcher =
3205         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3206   }
3207 
3208   if (Is("otool"))
3209     parseOtoolOptions(InputArgs);
3210   else
3211     parseObjdumpOptions(InputArgs);
3212 
3213   if (StartAddress >= StopAddress)
3214     reportCmdLineError("start address should be less than stop address");
3215 
3216   // Removes trailing separators from prefix.
3217   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3218     Prefix.pop_back();
3219 
3220   if (AllHeaders)
3221     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3222         SectionHeaders = SymbolTable = true;
3223 
3224   if (DisassembleAll || PrintSource || PrintLines ||
3225       !DisassembleSymbols.empty())
3226     Disassemble = true;
3227 
3228   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3229       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3230       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3231       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3232       !(MachOOpt &&
3233         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3234          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3235          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3236          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3237          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3238     T->printHelp(ToolName);
3239     return 2;
3240   }
3241 
3242   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3243 
3244   llvm::for_each(InputFilenames, dumpInput);
3245 
3246   warnOnNoMatchForSections();
3247 
3248   return EXIT_SUCCESS;
3249 }
3250