xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 4eb0810922a8d6ad9a32fbf09326166317dc5c08)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetOperations.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringSet.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/DebugInfo/BTF/BTFParser.h"
33 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
34 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
35 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
36 #include "llvm/Debuginfod/BuildIDFetcher.h"
37 #include "llvm/Debuginfod/Debuginfod.h"
38 #include "llvm/Debuginfod/HTTPClient.h"
39 #include "llvm/Demangle/Demangle.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
44 #include "llvm/MC/MCInst.h"
45 #include "llvm/MC/MCInstPrinter.h"
46 #include "llvm/MC/MCInstrAnalysis.h"
47 #include "llvm/MC/MCInstrInfo.h"
48 #include "llvm/MC/MCObjectFileInfo.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/MC/MCTargetOptions.h"
51 #include "llvm/MC/TargetRegistry.h"
52 #include "llvm/Object/Archive.h"
53 #include "llvm/Object/BuildID.h"
54 #include "llvm/Object/COFF.h"
55 #include "llvm/Object/COFFImportFile.h"
56 #include "llvm/Object/ELFObjectFile.h"
57 #include "llvm/Object/ELFTypes.h"
58 #include "llvm/Object/FaultMapParser.h"
59 #include "llvm/Object/MachO.h"
60 #include "llvm/Object/MachOUniversal.h"
61 #include "llvm/Object/ObjectFile.h"
62 #include "llvm/Object/OffloadBinary.h"
63 #include "llvm/Object/Wasm.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Errc.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Format.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/GraphWriter.h"
74 #include "llvm/Support/LLVMDriver.h"
75 #include "llvm/Support/MemoryBuffer.h"
76 #include "llvm/Support/SourceMgr.h"
77 #include "llvm/Support/StringSaver.h"
78 #include "llvm/Support/TargetSelect.h"
79 #include "llvm/Support/WithColor.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/TargetParser/Host.h"
82 #include "llvm/TargetParser/Triple.h"
83 #include <algorithm>
84 #include <cctype>
85 #include <cstring>
86 #include <optional>
87 #include <set>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(...)                                                            \
132   LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
133 #include "ObjdumpOpts.inc"
134 #undef OPTION
135 };
136 } // namespace objdump_opt
137 
138 class ObjdumpOptTable : public CommonOptTable {
139 public:
140   ObjdumpOptTable()
141       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
142                        " [options] <input object files>",
143                        "llvm object file dumper") {}
144 };
145 
146 enum OtoolOptID {
147   OTOOL_INVALID = 0, // This is not an option ID.
148 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
149 #include "OtoolOpts.inc"
150 #undef OPTION
151 };
152 
153 namespace otool {
154 #define PREFIX(NAME, VALUE)                                                    \
155   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
156   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
157                                                 std::size(NAME##_init) - 1);
158 #include "OtoolOpts.inc"
159 #undef PREFIX
160 
161 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
162 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
163 #include "OtoolOpts.inc"
164 #undef OPTION
165 };
166 } // namespace otool
167 
168 class OtoolOptTable : public CommonOptTable {
169 public:
170   OtoolOptTable()
171       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
172                        "Mach-O object file displaying tool") {}
173 };
174 
175 } // namespace
176 
177 #define DEBUG_TYPE "objdump"
178 
179 enum class ColorOutput {
180   Auto,
181   Enable,
182   Disable,
183   Invalid,
184 };
185 
186 static uint64_t AdjustVMA;
187 static bool AllHeaders;
188 static std::string ArchName;
189 bool objdump::ArchiveHeaders;
190 bool objdump::Demangle;
191 bool objdump::Disassemble;
192 bool objdump::DisassembleAll;
193 bool objdump::SymbolDescription;
194 bool objdump::TracebackTable;
195 static std::vector<std::string> DisassembleSymbols;
196 static bool DisassembleZeroes;
197 static std::vector<std::string> DisassemblerOptions;
198 static ColorOutput DisassemblyColor;
199 DIDumpType objdump::DwarfDumpType;
200 static bool DynamicRelocations;
201 static bool FaultMapSection;
202 static bool FileHeaders;
203 bool objdump::SectionContents;
204 static std::vector<std::string> InputFilenames;
205 bool objdump::PrintLines;
206 static bool MachOOpt;
207 std::string objdump::MCPU;
208 std::vector<std::string> objdump::MAttrs;
209 bool objdump::ShowRawInsn;
210 bool objdump::LeadingAddr;
211 static bool Offloading;
212 static bool RawClangAST;
213 bool objdump::Relocations;
214 bool objdump::PrintImmHex;
215 bool objdump::PrivateHeaders;
216 std::vector<std::string> objdump::FilterSections;
217 bool objdump::SectionHeaders;
218 static bool ShowAllSymbols;
219 static bool ShowLMA;
220 bool objdump::PrintSource;
221 
222 static uint64_t StartAddress;
223 static bool HasStartAddressFlag;
224 static uint64_t StopAddress = UINT64_MAX;
225 static bool HasStopAddressFlag;
226 
227 bool objdump::SymbolTable;
228 static bool SymbolizeOperands;
229 static bool DynamicSymbolTable;
230 std::string objdump::TripleName;
231 bool objdump::UnwindInfo;
232 static bool Wide;
233 std::string objdump::Prefix;
234 uint32_t objdump::PrefixStrip;
235 
236 DebugVarsFormat objdump::DbgVariables = DVDisabled;
237 
238 int objdump::DbgIndent = 52;
239 
240 static StringSet<> DisasmSymbolSet;
241 StringSet<> objdump::FoundSectionSet;
242 static StringRef ToolName;
243 
244 std::unique_ptr<BuildIDFetcher> BIDFetcher;
245 
246 Dumper::Dumper(const object::ObjectFile &O) : O(O) {
247   WarningHandler = [this](const Twine &Msg) {
248     if (Warnings.insert(Msg.str()).second)
249       reportWarning(Msg, this->O.getFileName());
250     return Error::success();
251   };
252 }
253 
254 void Dumper::reportUniqueWarning(Error Err) {
255   reportUniqueWarning(toString(std::move(Err)));
256 }
257 
258 void Dumper::reportUniqueWarning(const Twine &Msg) {
259   cantFail(WarningHandler(Msg));
260 }
261 
262 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) {
263   if (const auto *O = dyn_cast<COFFObjectFile>(&Obj))
264     return createCOFFDumper(*O);
265   if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj))
266     return createELFDumper(*O);
267   if (const auto *O = dyn_cast<MachOObjectFile>(&Obj))
268     return createMachODumper(*O);
269   if (const auto *O = dyn_cast<WasmObjectFile>(&Obj))
270     return createWasmDumper(*O);
271   if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj))
272     return createXCOFFDumper(*O);
273 
274   return createStringError(errc::invalid_argument,
275                            "unsupported object file format");
276 }
277 
278 namespace {
279 struct FilterResult {
280   // True if the section should not be skipped.
281   bool Keep;
282 
283   // True if the index counter should be incremented, even if the section should
284   // be skipped. For example, sections may be skipped if they are not included
285   // in the --section flag, but we still want those to count toward the section
286   // count.
287   bool IncrementIndex;
288 };
289 } // namespace
290 
291 static FilterResult checkSectionFilter(object::SectionRef S) {
292   if (FilterSections.empty())
293     return {/*Keep=*/true, /*IncrementIndex=*/true};
294 
295   Expected<StringRef> SecNameOrErr = S.getName();
296   if (!SecNameOrErr) {
297     consumeError(SecNameOrErr.takeError());
298     return {/*Keep=*/false, /*IncrementIndex=*/false};
299   }
300   StringRef SecName = *SecNameOrErr;
301 
302   // StringSet does not allow empty key so avoid adding sections with
303   // no name (such as the section with index 0) here.
304   if (!SecName.empty())
305     FoundSectionSet.insert(SecName);
306 
307   // Only show the section if it's in the FilterSections list, but always
308   // increment so the indexing is stable.
309   return {/*Keep=*/is_contained(FilterSections, SecName),
310           /*IncrementIndex=*/true};
311 }
312 
313 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
314                                          uint64_t *Idx) {
315   // Start at UINT64_MAX so that the first index returned after an increment is
316   // zero (after the unsigned wrap).
317   if (Idx)
318     *Idx = UINT64_MAX;
319   return SectionFilter(
320       [Idx](object::SectionRef S) {
321         FilterResult Result = checkSectionFilter(S);
322         if (Idx != nullptr && Result.IncrementIndex)
323           *Idx += 1;
324         return Result.Keep;
325       },
326       O);
327 }
328 
329 std::string objdump::getFileNameForError(const object::Archive::Child &C,
330                                          unsigned Index) {
331   Expected<StringRef> NameOrErr = C.getName();
332   if (NameOrErr)
333     return std::string(NameOrErr.get());
334   // If we have an error getting the name then we print the index of the archive
335   // member. Since we are already in an error state, we just ignore this error.
336   consumeError(NameOrErr.takeError());
337   return "<file index: " + std::to_string(Index) + ">";
338 }
339 
340 void objdump::reportWarning(const Twine &Message, StringRef File) {
341   // Output order between errs() and outs() matters especially for archive
342   // files where the output is per member object.
343   outs().flush();
344   WithColor::warning(errs(), ToolName)
345       << "'" << File << "': " << Message << "\n";
346 }
347 
348 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
349   outs().flush();
350   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
351   exit(1);
352 }
353 
354 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
355                                        StringRef ArchiveName,
356                                        StringRef ArchitectureName) {
357   assert(E);
358   outs().flush();
359   WithColor::error(errs(), ToolName);
360   if (ArchiveName != "")
361     errs() << ArchiveName << "(" << FileName << ")";
362   else
363     errs() << "'" << FileName << "'";
364   if (!ArchitectureName.empty())
365     errs() << " (for architecture " << ArchitectureName << ")";
366   errs() << ": ";
367   logAllUnhandledErrors(std::move(E), errs());
368   exit(1);
369 }
370 
371 static void reportCmdLineWarning(const Twine &Message) {
372   WithColor::warning(errs(), ToolName) << Message << "\n";
373 }
374 
375 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
376   WithColor::error(errs(), ToolName) << Message << "\n";
377   exit(1);
378 }
379 
380 static void warnOnNoMatchForSections() {
381   SetVector<StringRef> MissingSections;
382   for (StringRef S : FilterSections) {
383     if (FoundSectionSet.count(S))
384       return;
385     // User may specify a unnamed section. Don't warn for it.
386     if (!S.empty())
387       MissingSections.insert(S);
388   }
389 
390   // Warn only if no section in FilterSections is matched.
391   for (StringRef S : MissingSections)
392     reportCmdLineWarning("section '" + S +
393                          "' mentioned in a -j/--section option, but not "
394                          "found in any input file");
395 }
396 
397 static const Target *getTarget(const ObjectFile *Obj) {
398   // Figure out the target triple.
399   Triple TheTriple("unknown-unknown-unknown");
400   if (TripleName.empty()) {
401     TheTriple = Obj->makeTriple();
402   } else {
403     TheTriple.setTriple(Triple::normalize(TripleName));
404     auto Arch = Obj->getArch();
405     if (Arch == Triple::arm || Arch == Triple::armeb)
406       Obj->setARMSubArch(TheTriple);
407   }
408 
409   // Get the target specific parser.
410   std::string Error;
411   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
412                                                          Error);
413   if (!TheTarget)
414     reportError(Obj->getFileName(), "can't find target: " + Error);
415 
416   // Update the triple name and return the found target.
417   TripleName = TheTriple.getTriple();
418   return TheTarget;
419 }
420 
421 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
422   return A.getOffset() < B.getOffset();
423 }
424 
425 static Error getRelocationValueString(const RelocationRef &Rel,
426                                       bool SymbolDescription,
427                                       SmallVectorImpl<char> &Result) {
428   const ObjectFile *Obj = Rel.getObject();
429   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
430     return getELFRelocationValueString(ELF, Rel, Result);
431   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
432     return getCOFFRelocationValueString(COFF, Rel, Result);
433   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
434     return getWasmRelocationValueString(Wasm, Rel, Result);
435   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
436     return getMachORelocationValueString(MachO, Rel, Result);
437   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
438     return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription,
439                                          Result);
440   llvm_unreachable("unknown object file format");
441 }
442 
443 /// Indicates whether this relocation should hidden when listing
444 /// relocations, usually because it is the trailing part of a multipart
445 /// relocation that will be printed as part of the leading relocation.
446 static bool getHidden(RelocationRef RelRef) {
447   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
448   if (!MachO)
449     return false;
450 
451   unsigned Arch = MachO->getArch();
452   DataRefImpl Rel = RelRef.getRawDataRefImpl();
453   uint64_t Type = MachO->getRelocationType(Rel);
454 
455   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
456   // is always hidden.
457   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
458     return Type == MachO::GENERIC_RELOC_PAIR;
459 
460   if (Arch == Triple::x86_64) {
461     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
462     // an X86_64_RELOC_SUBTRACTOR.
463     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
464       DataRefImpl RelPrev = Rel;
465       RelPrev.d.a--;
466       uint64_t PrevType = MachO->getRelocationType(RelPrev);
467       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
468         return true;
469     }
470   }
471 
472   return false;
473 }
474 
475 /// Get the column at which we want to start printing the instruction
476 /// disassembly, taking into account anything which appears to the left of it.
477 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
478   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
479 }
480 
481 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
482                                    raw_ostream &OS) {
483   // The output of printInst starts with a tab. Print some spaces so that
484   // the tab has 1 column and advances to the target tab stop.
485   unsigned TabStop = getInstStartColumn(STI);
486   unsigned Column = OS.tell() - Start;
487   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
488 }
489 
490 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
491                            formatted_raw_ostream &OS,
492                            MCSubtargetInfo const &STI) {
493   size_t Start = OS.tell();
494   if (LeadingAddr)
495     OS << format("%8" PRIx64 ":", Address);
496   if (ShowRawInsn) {
497     OS << ' ';
498     dumpBytes(Bytes, OS);
499   }
500   AlignToInstStartColumn(Start, STI, OS);
501 }
502 
503 namespace {
504 
505 static bool isAArch64Elf(const ObjectFile &Obj) {
506   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
507   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
508 }
509 
510 static bool isArmElf(const ObjectFile &Obj) {
511   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
512   return Elf && Elf->getEMachine() == ELF::EM_ARM;
513 }
514 
515 static bool isCSKYElf(const ObjectFile &Obj) {
516   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
517   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
518 }
519 
520 static bool hasMappingSymbols(const ObjectFile &Obj) {
521   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
522 }
523 
524 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
525                             const RelocationRef &Rel, uint64_t Address,
526                             bool Is64Bits) {
527   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
528   SmallString<16> Name;
529   SmallString<32> Val;
530   Rel.getTypeName(Name);
531   if (Error E = getRelocationValueString(Rel, SymbolDescription, Val))
532     reportError(std::move(E), FileName);
533   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
534   if (LeadingAddr)
535     OS << format(Fmt.data(), Address);
536   OS << Name << "\t" << Val;
537 }
538 
539 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF,
540                                object::SectionedAddress Address,
541                                LiveVariablePrinter &LVP) {
542   const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address);
543   if (!Reloc)
544     return;
545 
546   SmallString<64> Val;
547   BTF.symbolize(Reloc, Val);
548   FOS << "\t\t";
549   if (LeadingAddr)
550     FOS << format("%016" PRIx64 ":  ", Address.Address + AdjustVMA);
551   FOS << "CO-RE " << Val;
552   LVP.printAfterOtherLine(FOS, true);
553 }
554 
555 class PrettyPrinter {
556 public:
557   virtual ~PrettyPrinter() = default;
558   virtual void
559   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
560             object::SectionedAddress Address, formatted_raw_ostream &OS,
561             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
562             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
563             LiveVariablePrinter &LVP) {
564     if (SP && (PrintSource || PrintLines))
565       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
566     LVP.printBetweenInsts(OS, false);
567 
568     printRawData(Bytes, Address.Address, OS, STI);
569 
570     if (MI) {
571       // See MCInstPrinter::printInst. On targets where a PC relative immediate
572       // is relative to the next instruction and the length of a MCInst is
573       // difficult to measure (x86), this is the address of the next
574       // instruction.
575       uint64_t Addr =
576           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
577       IP.printInst(MI, Addr, "", STI, OS);
578     } else
579       OS << "\t<unknown>";
580   }
581 };
582 PrettyPrinter PrettyPrinterInst;
583 
584 class HexagonPrettyPrinter : public PrettyPrinter {
585 public:
586   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
587                  formatted_raw_ostream &OS) {
588     uint32_t opcode =
589       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
590     if (LeadingAddr)
591       OS << format("%8" PRIx64 ":", Address);
592     if (ShowRawInsn) {
593       OS << "\t";
594       dumpBytes(Bytes.slice(0, 4), OS);
595       OS << format("\t%08" PRIx32, opcode);
596     }
597   }
598   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
599                  object::SectionedAddress Address, formatted_raw_ostream &OS,
600                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
601                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
602                  LiveVariablePrinter &LVP) override {
603     if (SP && (PrintSource || PrintLines))
604       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
605     if (!MI) {
606       printLead(Bytes, Address.Address, OS);
607       OS << " <unknown>";
608       return;
609     }
610     std::string Buffer;
611     {
612       raw_string_ostream TempStream(Buffer);
613       IP.printInst(MI, Address.Address, "", STI, TempStream);
614     }
615     StringRef Contents(Buffer);
616     // Split off bundle attributes
617     auto PacketBundle = Contents.rsplit('\n');
618     // Split off first instruction from the rest
619     auto HeadTail = PacketBundle.first.split('\n');
620     auto Preamble = " { ";
621     auto Separator = "";
622 
623     // Hexagon's packets require relocations to be inline rather than
624     // clustered at the end of the packet.
625     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
626     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
627     auto PrintReloc = [&]() -> void {
628       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
629         if (RelCur->getOffset() == Address.Address) {
630           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
631           return;
632         }
633         ++RelCur;
634       }
635     };
636 
637     while (!HeadTail.first.empty()) {
638       OS << Separator;
639       Separator = "\n";
640       if (SP && (PrintSource || PrintLines))
641         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
642       printLead(Bytes, Address.Address, OS);
643       OS << Preamble;
644       Preamble = "   ";
645       StringRef Inst;
646       auto Duplex = HeadTail.first.split('\v');
647       if (!Duplex.second.empty()) {
648         OS << Duplex.first;
649         OS << "; ";
650         Inst = Duplex.second;
651       }
652       else
653         Inst = HeadTail.first;
654       OS << Inst;
655       HeadTail = HeadTail.second.split('\n');
656       if (HeadTail.first.empty())
657         OS << " } " << PacketBundle.second;
658       PrintReloc();
659       Bytes = Bytes.slice(4);
660       Address.Address += 4;
661     }
662   }
663 };
664 HexagonPrettyPrinter HexagonPrettyPrinterInst;
665 
666 class AMDGCNPrettyPrinter : public PrettyPrinter {
667 public:
668   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
669                  object::SectionedAddress Address, formatted_raw_ostream &OS,
670                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
671                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
672                  LiveVariablePrinter &LVP) override {
673     if (SP && (PrintSource || PrintLines))
674       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
675 
676     if (MI) {
677       SmallString<40> InstStr;
678       raw_svector_ostream IS(InstStr);
679 
680       IP.printInst(MI, Address.Address, "", STI, IS);
681 
682       OS << left_justify(IS.str(), 60);
683     } else {
684       // an unrecognized encoding - this is probably data so represent it
685       // using the .long directive, or .byte directive if fewer than 4 bytes
686       // remaining
687       if (Bytes.size() >= 4) {
688         OS << format(
689             "\t.long 0x%08" PRIx32 " ",
690             support::endian::read32<llvm::endianness::little>(Bytes.data()));
691         OS.indent(42);
692       } else {
693           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
694           for (unsigned int i = 1; i < Bytes.size(); i++)
695             OS << format(", 0x%02" PRIx8, Bytes[i]);
696           OS.indent(55 - (6 * Bytes.size()));
697       }
698     }
699 
700     OS << format("// %012" PRIX64 ":", Address.Address);
701     if (Bytes.size() >= 4) {
702       // D should be casted to uint32_t here as it is passed by format to
703       // snprintf as vararg.
704       for (uint32_t D :
705            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
706                     Bytes.size() / 4))
707           OS << format(" %08" PRIX32, D);
708     } else {
709       for (unsigned char B : Bytes)
710         OS << format(" %02" PRIX8, B);
711     }
712 
713     if (!Annot.empty())
714       OS << " // " << Annot;
715   }
716 };
717 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
718 
719 class BPFPrettyPrinter : public PrettyPrinter {
720 public:
721   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
722                  object::SectionedAddress Address, formatted_raw_ostream &OS,
723                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
724                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
725                  LiveVariablePrinter &LVP) override {
726     if (SP && (PrintSource || PrintLines))
727       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
728     if (LeadingAddr)
729       OS << format("%8" PRId64 ":", Address.Address / 8);
730     if (ShowRawInsn) {
731       OS << "\t";
732       dumpBytes(Bytes, OS);
733     }
734     if (MI)
735       IP.printInst(MI, Address.Address, "", STI, OS);
736     else
737       OS << "\t<unknown>";
738   }
739 };
740 BPFPrettyPrinter BPFPrettyPrinterInst;
741 
742 class ARMPrettyPrinter : public PrettyPrinter {
743 public:
744   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
745                  object::SectionedAddress Address, formatted_raw_ostream &OS,
746                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
747                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
748                  LiveVariablePrinter &LVP) override {
749     if (SP && (PrintSource || PrintLines))
750       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
751     LVP.printBetweenInsts(OS, false);
752 
753     size_t Start = OS.tell();
754     if (LeadingAddr)
755       OS << format("%8" PRIx64 ":", Address.Address);
756     if (ShowRawInsn) {
757       size_t Pos = 0, End = Bytes.size();
758       if (STI.checkFeatures("+thumb-mode")) {
759         for (; Pos + 2 <= End; Pos += 2)
760           OS << ' '
761              << format_hex_no_prefix(
762                     llvm::support::endian::read<uint16_t>(
763                         Bytes.data() + Pos, InstructionEndianness),
764                     4);
765       } else {
766         for (; Pos + 4 <= End; Pos += 4)
767           OS << ' '
768              << format_hex_no_prefix(
769                     llvm::support::endian::read<uint32_t>(
770                         Bytes.data() + Pos, InstructionEndianness),
771                     8);
772       }
773       if (Pos < End) {
774         OS << ' ';
775         dumpBytes(Bytes.slice(Pos), OS);
776       }
777     }
778 
779     AlignToInstStartColumn(Start, STI, OS);
780 
781     if (MI) {
782       IP.printInst(MI, Address.Address, "", STI, OS);
783     } else
784       OS << "\t<unknown>";
785   }
786 
787   void setInstructionEndianness(llvm::endianness Endianness) {
788     InstructionEndianness = Endianness;
789   }
790 
791 private:
792   llvm::endianness InstructionEndianness = llvm::endianness::little;
793 };
794 ARMPrettyPrinter ARMPrettyPrinterInst;
795 
796 class AArch64PrettyPrinter : public PrettyPrinter {
797 public:
798   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
799                  object::SectionedAddress Address, formatted_raw_ostream &OS,
800                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
801                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
802                  LiveVariablePrinter &LVP) override {
803     if (SP && (PrintSource || PrintLines))
804       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
805     LVP.printBetweenInsts(OS, false);
806 
807     size_t Start = OS.tell();
808     if (LeadingAddr)
809       OS << format("%8" PRIx64 ":", Address.Address);
810     if (ShowRawInsn) {
811       size_t Pos = 0, End = Bytes.size();
812       for (; Pos + 4 <= End; Pos += 4)
813         OS << ' '
814            << format_hex_no_prefix(
815                   llvm::support::endian::read<uint32_t>(
816                       Bytes.data() + Pos, llvm::endianness::little),
817                   8);
818       if (Pos < End) {
819         OS << ' ';
820         dumpBytes(Bytes.slice(Pos), OS);
821       }
822     }
823 
824     AlignToInstStartColumn(Start, STI, OS);
825 
826     if (MI) {
827       IP.printInst(MI, Address.Address, "", STI, OS);
828     } else
829       OS << "\t<unknown>";
830   }
831 };
832 AArch64PrettyPrinter AArch64PrettyPrinterInst;
833 
834 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
835   switch(Triple.getArch()) {
836   default:
837     return PrettyPrinterInst;
838   case Triple::hexagon:
839     return HexagonPrettyPrinterInst;
840   case Triple::amdgcn:
841     return AMDGCNPrettyPrinterInst;
842   case Triple::bpfel:
843   case Triple::bpfeb:
844     return BPFPrettyPrinterInst;
845   case Triple::arm:
846   case Triple::armeb:
847   case Triple::thumb:
848   case Triple::thumbeb:
849     return ARMPrettyPrinterInst;
850   case Triple::aarch64:
851   case Triple::aarch64_be:
852   case Triple::aarch64_32:
853     return AArch64PrettyPrinterInst;
854   }
855 }
856 
857 class DisassemblerTarget {
858 public:
859   const Target *TheTarget;
860   std::unique_ptr<const MCSubtargetInfo> SubtargetInfo;
861   std::shared_ptr<MCContext> Context;
862   std::unique_ptr<MCDisassembler> DisAsm;
863   std::shared_ptr<MCInstrAnalysis> InstrAnalysis;
864   std::shared_ptr<MCInstPrinter> InstPrinter;
865   PrettyPrinter *Printer;
866 
867   DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
868                      StringRef TripleName, StringRef MCPU,
869                      SubtargetFeatures &Features);
870   DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features);
871 
872 private:
873   MCTargetOptions Options;
874   std::shared_ptr<const MCRegisterInfo> RegisterInfo;
875   std::shared_ptr<const MCAsmInfo> AsmInfo;
876   std::shared_ptr<const MCInstrInfo> InstrInfo;
877   std::shared_ptr<MCObjectFileInfo> ObjectFileInfo;
878 };
879 
880 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj,
881                                        StringRef TripleName, StringRef MCPU,
882                                        SubtargetFeatures &Features)
883     : TheTarget(TheTarget),
884       Printer(&selectPrettyPrinter(Triple(TripleName))),
885       RegisterInfo(TheTarget->createMCRegInfo(TripleName)) {
886   if (!RegisterInfo)
887     reportError(Obj.getFileName(), "no register info for target " + TripleName);
888 
889   // Set up disassembler.
890   AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options));
891   if (!AsmInfo)
892     reportError(Obj.getFileName(), "no assembly info for target " + TripleName);
893 
894   SubtargetInfo.reset(
895       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
896   if (!SubtargetInfo)
897     reportError(Obj.getFileName(),
898                 "no subtarget info for target " + TripleName);
899   InstrInfo.reset(TheTarget->createMCInstrInfo());
900   if (!InstrInfo)
901     reportError(Obj.getFileName(),
902                 "no instruction info for target " + TripleName);
903   Context =
904       std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(),
905                                   RegisterInfo.get(), SubtargetInfo.get());
906 
907   // FIXME: for now initialize MCObjectFileInfo with default values
908   ObjectFileInfo.reset(
909       TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false));
910   Context->setObjectFileInfo(ObjectFileInfo.get());
911 
912   DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context));
913   if (!DisAsm)
914     reportError(Obj.getFileName(), "no disassembler for target " + TripleName);
915 
916   if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(&Obj))
917     DisAsm->setABIVersion(ELFObj->getEIdentABIVersion());
918 
919   InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
920 
921   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
922   InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName),
923                                                    AsmPrinterVariant, *AsmInfo,
924                                                    *InstrInfo, *RegisterInfo));
925   if (!InstPrinter)
926     reportError(Obj.getFileName(),
927                 "no instruction printer for target " + TripleName);
928   InstPrinter->setPrintImmHex(PrintImmHex);
929   InstPrinter->setPrintBranchImmAsAddress(true);
930   InstPrinter->setSymbolizeOperands(SymbolizeOperands);
931   InstPrinter->setMCInstrAnalysis(InstrAnalysis.get());
932 
933   switch (DisassemblyColor) {
934   case ColorOutput::Enable:
935     InstPrinter->setUseColor(true);
936     break;
937   case ColorOutput::Auto:
938     InstPrinter->setUseColor(outs().has_colors());
939     break;
940   case ColorOutput::Disable:
941   case ColorOutput::Invalid:
942     InstPrinter->setUseColor(false);
943     break;
944   };
945 }
946 
947 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other,
948                                        SubtargetFeatures &Features)
949     : TheTarget(Other.TheTarget),
950       SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
951                                                      Features.getString())),
952       Context(Other.Context),
953       DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)),
954       InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter),
955       Printer(Other.Printer), RegisterInfo(Other.RegisterInfo),
956       AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo),
957       ObjectFileInfo(Other.ObjectFileInfo) {}
958 } // namespace
959 
960 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
961   assert(Obj.isELF());
962   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
963     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
964                          Obj.getFileName())
965         ->getType();
966   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
967     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
968                          Obj.getFileName())
969         ->getType();
970   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
971     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
972                          Obj.getFileName())
973         ->getType();
974   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
975     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
976                          Obj.getFileName())
977         ->getType();
978   llvm_unreachable("Unsupported binary format");
979 }
980 
981 template <class ELFT>
982 static void
983 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
984                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
985   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
986     uint8_t SymbolType = Symbol.getELFType();
987     if (SymbolType == ELF::STT_SECTION)
988       continue;
989 
990     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
991     // ELFSymbolRef::getAddress() returns size instead of value for common
992     // symbols which is not desirable for disassembly output. Overriding.
993     if (SymbolType == ELF::STT_COMMON)
994       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
995                               Obj.getFileName())
996                     ->st_value;
997 
998     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
999     if (Name.empty())
1000       continue;
1001 
1002     section_iterator SecI =
1003         unwrapOrError(Symbol.getSection(), Obj.getFileName());
1004     if (SecI == Obj.section_end())
1005       continue;
1006 
1007     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1008   }
1009 }
1010 
1011 static void
1012 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
1013                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1014   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1015     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
1016   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1017     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
1018   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1019     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
1020   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1021     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
1022   else
1023     llvm_unreachable("Unsupported binary format");
1024 }
1025 
1026 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
1027   for (auto SecI : Obj.sections()) {
1028     const WasmSection &Section = Obj.getWasmSection(SecI);
1029     if (Section.Type == wasm::WASM_SEC_CODE)
1030       return SecI;
1031   }
1032   return std::nullopt;
1033 }
1034 
1035 static void
1036 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
1037                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1038   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
1039   if (!Section)
1040     return;
1041   SectionSymbolsTy &Symbols = AllSymbols[*Section];
1042 
1043   std::set<uint64_t> SymbolAddresses;
1044   for (const auto &Sym : Symbols)
1045     SymbolAddresses.insert(Sym.Addr);
1046 
1047   for (const wasm::WasmFunction &Function : Obj.functions()) {
1048     uint64_t Address = Function.CodeSectionOffset;
1049     // Only add fallback symbols for functions not already present in the symbol
1050     // table.
1051     if (SymbolAddresses.count(Address))
1052       continue;
1053     // This function has no symbol, so it should have no SymbolName.
1054     assert(Function.SymbolName.empty());
1055     // We use DebugName for the name, though it may be empty if there is no
1056     // "name" custom section, or that section is missing a name for this
1057     // function.
1058     StringRef Name = Function.DebugName;
1059     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
1060   }
1061 }
1062 
1063 static void addPltEntries(const ObjectFile &Obj,
1064                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1065                           StringSaver &Saver) {
1066   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
1067   if (!ElfObj)
1068     return;
1069   DenseMap<StringRef, SectionRef> Sections;
1070   for (SectionRef Section : Obj.sections()) {
1071     Expected<StringRef> SecNameOrErr = Section.getName();
1072     if (!SecNameOrErr) {
1073       consumeError(SecNameOrErr.takeError());
1074       continue;
1075     }
1076     Sections[*SecNameOrErr] = Section;
1077   }
1078   for (auto Plt : ElfObj->getPltEntries()) {
1079     if (Plt.Symbol) {
1080       SymbolRef Symbol(*Plt.Symbol, ElfObj);
1081       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1082       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
1083         if (!NameOrErr->empty())
1084           AllSymbols[Sections[Plt.Section]].emplace_back(
1085               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
1086         continue;
1087       } else {
1088         // The warning has been reported in disassembleObject().
1089         consumeError(NameOrErr.takeError());
1090       }
1091     }
1092     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
1093                       " references an invalid symbol",
1094                   Obj.getFileName());
1095   }
1096 }
1097 
1098 // Normally the disassembly output will skip blocks of zeroes. This function
1099 // returns the number of zero bytes that can be skipped when dumping the
1100 // disassembly of the instructions in Buf.
1101 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
1102   // Find the number of leading zeroes.
1103   size_t N = 0;
1104   while (N < Buf.size() && !Buf[N])
1105     ++N;
1106 
1107   // We may want to skip blocks of zero bytes, but unless we see
1108   // at least 8 of them in a row.
1109   if (N < 8)
1110     return 0;
1111 
1112   // We skip zeroes in multiples of 4 because do not want to truncate an
1113   // instruction if it starts with a zero byte.
1114   return N & ~0x3;
1115 }
1116 
1117 // Returns a map from sections to their relocations.
1118 static std::map<SectionRef, std::vector<RelocationRef>>
1119 getRelocsMap(object::ObjectFile const &Obj) {
1120   std::map<SectionRef, std::vector<RelocationRef>> Ret;
1121   uint64_t I = (uint64_t)-1;
1122   for (SectionRef Sec : Obj.sections()) {
1123     ++I;
1124     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
1125     if (!RelocatedOrErr)
1126       reportError(Obj.getFileName(),
1127                   "section (" + Twine(I) +
1128                       "): failed to get a relocated section: " +
1129                       toString(RelocatedOrErr.takeError()));
1130 
1131     section_iterator Relocated = *RelocatedOrErr;
1132     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
1133       continue;
1134     std::vector<RelocationRef> &V = Ret[*Relocated];
1135     append_range(V, Sec.relocations());
1136     // Sort relocations by address.
1137     llvm::stable_sort(V, isRelocAddressLess);
1138   }
1139   return Ret;
1140 }
1141 
1142 // Used for --adjust-vma to check if address should be adjusted by the
1143 // specified value for a given section.
1144 // For ELF we do not adjust non-allocatable sections like debug ones,
1145 // because they are not loadable.
1146 // TODO: implement for other file formats.
1147 static bool shouldAdjustVA(const SectionRef &Section) {
1148   const ObjectFile *Obj = Section.getObject();
1149   if (Obj->isELF())
1150     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1151   return false;
1152 }
1153 
1154 
1155 typedef std::pair<uint64_t, char> MappingSymbolPair;
1156 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1157                                  uint64_t Address) {
1158   auto It =
1159       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1160         return Val.first <= Address;
1161       });
1162   // Return zero for any address before the first mapping symbol; this means
1163   // we should use the default disassembly mode, depending on the target.
1164   if (It == MappingSymbols.begin())
1165     return '\x00';
1166   return (It - 1)->second;
1167 }
1168 
1169 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1170                                uint64_t End, const ObjectFile &Obj,
1171                                ArrayRef<uint8_t> Bytes,
1172                                ArrayRef<MappingSymbolPair> MappingSymbols,
1173                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1174   llvm::endianness Endian =
1175       Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big;
1176   size_t Start = OS.tell();
1177   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1178   if (Index + 4 <= End) {
1179     dumpBytes(Bytes.slice(Index, 4), OS);
1180     AlignToInstStartColumn(Start, STI, OS);
1181     OS << "\t.word\t"
1182            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1183                          10);
1184     return 4;
1185   }
1186   if (Index + 2 <= End) {
1187     dumpBytes(Bytes.slice(Index, 2), OS);
1188     AlignToInstStartColumn(Start, STI, OS);
1189     OS << "\t.short\t"
1190        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1191     return 2;
1192   }
1193   dumpBytes(Bytes.slice(Index, 1), OS);
1194   AlignToInstStartColumn(Start, STI, OS);
1195   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1196   return 1;
1197 }
1198 
1199 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1200                         ArrayRef<uint8_t> Bytes) {
1201   // print out data up to 8 bytes at a time in hex and ascii
1202   uint8_t AsciiData[9] = {'\0'};
1203   uint8_t Byte;
1204   int NumBytes = 0;
1205 
1206   for (; Index < End; ++Index) {
1207     if (NumBytes == 0)
1208       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1209     Byte = Bytes.slice(Index)[0];
1210     outs() << format(" %02x", Byte);
1211     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1212 
1213     uint8_t IndentOffset = 0;
1214     NumBytes++;
1215     if (Index == End - 1 || NumBytes > 8) {
1216       // Indent the space for less than 8 bytes data.
1217       // 2 spaces for byte and one for space between bytes
1218       IndentOffset = 3 * (8 - NumBytes);
1219       for (int Excess = NumBytes; Excess < 8; Excess++)
1220         AsciiData[Excess] = '\0';
1221       NumBytes = 8;
1222     }
1223     if (NumBytes == 8) {
1224       AsciiData[8] = '\0';
1225       outs() << std::string(IndentOffset, ' ') << "         ";
1226       outs() << reinterpret_cast<char *>(AsciiData);
1227       outs() << '\n';
1228       NumBytes = 0;
1229     }
1230   }
1231 }
1232 
1233 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1234                                        const SymbolRef &Symbol,
1235                                        bool IsMappingSymbol) {
1236   const StringRef FileName = Obj.getFileName();
1237   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1238   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1239 
1240   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1241     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1242     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1243 
1244     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1245     std::optional<XCOFF::StorageMappingClass> Smc =
1246         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1247     return SymbolInfoTy(Smc, Addr, Name, SymbolIndex,
1248                         isLabel(XCOFFObj, Symbol));
1249   } else if (Obj.isXCOFF()) {
1250     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1251     return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false,
1252                         /*IsXCOFF=*/true);
1253   } else {
1254     uint8_t Type =
1255         Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE;
1256     return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol);
1257   }
1258 }
1259 
1260 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1261                                           const uint64_t Addr, StringRef &Name,
1262                                           uint8_t Type) {
1263   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1264     return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false);
1265   else
1266     return SymbolInfoTy(Addr, Name, Type);
1267 }
1268 
1269 struct BBAddrMapLabel {
1270   std::string BlockLabel;
1271   std::string PGOAnalysis;
1272 };
1273 
1274 static std::string constructPGOLabelString(const PGOAnalysisMap &PGOMap,
1275                                            size_t BBEntryIndex) {
1276   std::string PGOString;
1277   raw_string_ostream PGOSS(PGOString);
1278 
1279   PGOSS << " (";
1280   if (PGOMap.FeatEnable.FuncEntryCount && BBEntryIndex == 0) {
1281     PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount);
1282     if (PGOMap.FeatEnable.BBFreq || PGOMap.FeatEnable.BrProb) {
1283       PGOSS << ", ";
1284     }
1285   }
1286 
1287   if (PGOMap.FeatEnable.BBFreq || PGOMap.FeatEnable.BrProb) {
1288     assert(BBEntryIndex < PGOMap.BBEntries.size() &&
1289            "Expected PGOAnalysisMap and BBAddrMap to have the same entires");
1290     const PGOAnalysisMap::PGOBBEntry &PGOBBEntry =
1291         PGOMap.BBEntries[BBEntryIndex];
1292 
1293     if (PGOMap.FeatEnable.BBFreq) {
1294       PGOSS << "Frequency: " << Twine(PGOBBEntry.BlockFreq.getFrequency());
1295       if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
1296         PGOSS << ", ";
1297       }
1298     }
1299     if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) {
1300       PGOSS << "Successors: ";
1301       interleaveComma(
1302           PGOBBEntry.Successors, PGOSS,
1303           [&PGOSS](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) {
1304             PGOSS << "BB" << SE.ID << ":";
1305             PGOSS.write_hex(SE.Prob.getNumerator());
1306           });
1307     }
1308   }
1309   PGOSS << ")";
1310 
1311   return PGOString;
1312 }
1313 
1314 static void collectBBAddrMapLabels(
1315     const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1316     const std::unordered_map<uint64_t, PGOAnalysisMap> &AddrToPGOAnalysisMap,
1317     uint64_t SectionAddr, uint64_t Start, uint64_t End,
1318     std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels,
1319     const StringRef FileName) {
1320   if (AddrToBBAddrMap.empty())
1321     return;
1322   Labels.clear();
1323   uint64_t StartAddress = SectionAddr + Start;
1324   uint64_t EndAddress = SectionAddr + End;
1325   auto Iter = AddrToBBAddrMap.find(StartAddress);
1326   if (Iter == AddrToBBAddrMap.end())
1327     return;
1328   auto PGOIter = AddrToPGOAnalysisMap.find(StartAddress);
1329 
1330   for (size_t I = 0; I < Iter->second.getBBEntries().size(); ++I) {
1331     const BBAddrMap::BBEntry &BBEntry = Iter->second.getBBEntries()[I];
1332     uint64_t BBAddress = BBEntry.Offset + Iter->second.getFunctionAddress();
1333     if (BBAddress >= EndAddress)
1334       continue;
1335 
1336     std::string LabelString = ("BB" + Twine(BBEntry.ID)).str();
1337     std::string PGOString;
1338 
1339     if (PGOIter != AddrToPGOAnalysisMap.end())
1340       PGOString = constructPGOLabelString(PGOIter->second, I);
1341 
1342     Labels[BBAddress].push_back({LabelString, PGOString});
1343   }
1344 }
1345 
1346 static void
1347 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA,
1348                           MCDisassembler *DisAsm, MCInstPrinter *IP,
1349                           const MCSubtargetInfo *STI, uint64_t SectionAddr,
1350                           uint64_t Start, uint64_t End,
1351                           std::unordered_map<uint64_t, std::string> &Labels) {
1352   // So far only supports PowerPC and X86.
1353   const bool isPPC = STI->getTargetTriple().isPPC();
1354   if (!isPPC && !STI->getTargetTriple().isX86())
1355     return;
1356 
1357   if (MIA)
1358     MIA->resetState();
1359 
1360   Labels.clear();
1361   unsigned LabelCount = 0;
1362   Start += SectionAddr;
1363   End += SectionAddr;
1364   const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF();
1365   for (uint64_t Index = Start; Index < End;) {
1366     // Disassemble a real instruction and record function-local branch labels.
1367     MCInst Inst;
1368     uint64_t Size;
1369     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1370     bool Disassembled =
1371         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1372     if (Size == 0)
1373       Size = std::min<uint64_t>(ThisBytes.size(),
1374                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1375 
1376     if (MIA) {
1377       if (Disassembled) {
1378         uint64_t Target;
1379         bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1380         if (TargetKnown && (Target >= Start && Target < End) &&
1381             !Labels.count(Target)) {
1382           // On PowerPC and AIX, a function call is encoded as a branch to 0.
1383           // On other PowerPC platforms (ELF), a function call is encoded as
1384           // a branch to self. Do not add a label for these cases.
1385           if (!(isPPC &&
1386                 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF))))
1387             Labels[Target] = ("L" + Twine(LabelCount++)).str();
1388         }
1389         MIA->updateState(Inst, Index);
1390       } else
1391         MIA->resetState();
1392     }
1393     Index += Size;
1394   }
1395 }
1396 
1397 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1398 // This is currently only used on AMDGPU, and assumes the format of the
1399 // void * argument passed to AMDGPU's createMCSymbolizer.
1400 static void addSymbolizer(
1401     MCContext &Ctx, const Target *Target, StringRef TripleName,
1402     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1403     SectionSymbolsTy &Symbols,
1404     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1405 
1406   std::unique_ptr<MCRelocationInfo> RelInfo(
1407       Target->createMCRelocationInfo(TripleName, Ctx));
1408   if (!RelInfo)
1409     return;
1410   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1411       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1412   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1413   DisAsm->setSymbolizer(std::move(Symbolizer));
1414 
1415   if (!SymbolizeOperands)
1416     return;
1417 
1418   // Synthesize labels referenced by branch instructions by
1419   // disassembling, discarding the output, and collecting the referenced
1420   // addresses from the symbolizer.
1421   for (size_t Index = 0; Index != Bytes.size();) {
1422     MCInst Inst;
1423     uint64_t Size;
1424     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1425     const uint64_t ThisAddr = SectionAddr + Index;
1426     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1427     if (Size == 0)
1428       Size = std::min<uint64_t>(ThisBytes.size(),
1429                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1430     Index += Size;
1431   }
1432   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1433   // Copy and sort to remove duplicates.
1434   std::vector<uint64_t> LabelAddrs;
1435   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1436                     LabelAddrsRef.end());
1437   llvm::sort(LabelAddrs);
1438   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1439                     LabelAddrs.begin());
1440   // Add the labels.
1441   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1442     auto Name = std::make_unique<std::string>();
1443     *Name = (Twine("L") + Twine(LabelNum)).str();
1444     SynthesizedLabelNames.push_back(std::move(Name));
1445     Symbols.push_back(SymbolInfoTy(
1446         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1447   }
1448   llvm::stable_sort(Symbols);
1449   // Recreate the symbolizer with the new symbols list.
1450   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1451   Symbolizer.reset(Target->createMCSymbolizer(
1452       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1453   DisAsm->setSymbolizer(std::move(Symbolizer));
1454 }
1455 
1456 static StringRef getSegmentName(const MachOObjectFile *MachO,
1457                                 const SectionRef &Section) {
1458   if (MachO) {
1459     DataRefImpl DR = Section.getRawDataRefImpl();
1460     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1461     return SegmentName;
1462   }
1463   return "";
1464 }
1465 
1466 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1467                                     const MCAsmInfo &MAI,
1468                                     const MCSubtargetInfo &STI,
1469                                     StringRef Comments,
1470                                     LiveVariablePrinter &LVP) {
1471   do {
1472     if (!Comments.empty()) {
1473       // Emit a line of comments.
1474       StringRef Comment;
1475       std::tie(Comment, Comments) = Comments.split('\n');
1476       // MAI.getCommentColumn() assumes that instructions are printed at the
1477       // position of 8, while getInstStartColumn() returns the actual position.
1478       unsigned CommentColumn =
1479           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1480       FOS.PadToColumn(CommentColumn);
1481       FOS << MAI.getCommentString() << ' ' << Comment;
1482     }
1483     LVP.printAfterInst(FOS);
1484     FOS << '\n';
1485   } while (!Comments.empty());
1486   FOS.flush();
1487 }
1488 
1489 static void createFakeELFSections(ObjectFile &Obj) {
1490   assert(Obj.isELF());
1491   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1492     Elf32LEObj->createFakeSections();
1493   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1494     Elf64LEObj->createFakeSections();
1495   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1496     Elf32BEObj->createFakeSections();
1497   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1498     Elf64BEObj->createFakeSections();
1499   else
1500     llvm_unreachable("Unsupported binary format");
1501 }
1502 
1503 // Tries to fetch a more complete version of the given object file using its
1504 // Build ID. Returns std::nullopt if nothing was found.
1505 static std::optional<OwningBinary<Binary>>
1506 fetchBinaryByBuildID(const ObjectFile &Obj) {
1507   object::BuildIDRef BuildID = getBuildID(&Obj);
1508   if (BuildID.empty())
1509     return std::nullopt;
1510   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1511   if (!Path)
1512     return std::nullopt;
1513   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1514   if (!DebugBinary) {
1515     reportWarning(toString(DebugBinary.takeError()), *Path);
1516     return std::nullopt;
1517   }
1518   return std::move(*DebugBinary);
1519 }
1520 
1521 static void
1522 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj,
1523                   DisassemblerTarget &PrimaryTarget,
1524                   std::optional<DisassemblerTarget> &SecondaryTarget,
1525                   SourcePrinter &SP, bool InlineRelocs) {
1526   DisassemblerTarget *DT = &PrimaryTarget;
1527   bool PrimaryIsThumb = false;
1528   SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap;
1529 
1530   if (SecondaryTarget) {
1531     if (isArmElf(Obj)) {
1532       PrimaryIsThumb =
1533           PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode");
1534     } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1535       const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
1536       if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
1537         uintptr_t CodeMapInt;
1538         cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt));
1539         auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt);
1540 
1541         for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) {
1542           if (CodeMap[i].getType() == chpe_range_type::Amd64 &&
1543               CodeMap[i].Length) {
1544             // Store x86_64 CHPE code ranges.
1545             uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase();
1546             CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length);
1547           }
1548         }
1549         llvm::sort(CHPECodeMap);
1550       }
1551     }
1552   }
1553 
1554   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1555   if (InlineRelocs || Obj.isXCOFF())
1556     RelocMap = getRelocsMap(Obj);
1557   bool Is64Bits = Obj.getBytesInAddress() > 4;
1558 
1559   // Create a mapping from virtual address to symbol name.  This is used to
1560   // pretty print the symbols while disassembling.
1561   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1562   std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols;
1563   SectionSymbolsTy AbsoluteSymbols;
1564   const StringRef FileName = Obj.getFileName();
1565   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1566   for (const SymbolRef &Symbol : Obj.symbols()) {
1567     Expected<StringRef> NameOrErr = Symbol.getName();
1568     if (!NameOrErr) {
1569       reportWarning(toString(NameOrErr.takeError()), FileName);
1570       continue;
1571     }
1572     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1573       continue;
1574 
1575     if (Obj.isELF() &&
1576         (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) {
1577       // Symbol is intended not to be displayed by default (STT_FILE,
1578       // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1579       // synthesize a section symbol if no symbol is defined at offset 0.
1580       //
1581       // For a mapping symbol, store it within both AllSymbols and
1582       // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1583       // not be printed in disassembly listing.
1584       if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION &&
1585           hasMappingSymbols(Obj)) {
1586         section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1587         if (SecI != Obj.section_end()) {
1588           uint64_t SectionAddr = SecI->getAddress();
1589           uint64_t Address = cantFail(Symbol.getAddress());
1590           StringRef Name = *NameOrErr;
1591           if (Name.consume_front("$") && Name.size() &&
1592               strchr("adtx", Name[0])) {
1593             AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr,
1594                                                   Name[0]);
1595             AllSymbols[*SecI].push_back(
1596                 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true));
1597           }
1598         }
1599       }
1600       continue;
1601     }
1602 
1603     if (MachO) {
1604       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1605       // symbols that support MachO header introspection. They do not bind to
1606       // code locations and are irrelevant for disassembly.
1607       if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header"))
1608         continue;
1609       // Don't ask a Mach-O STAB symbol for its section unless you know that
1610       // STAB symbol's section field refers to a valid section index. Otherwise
1611       // the symbol may error trying to load a section that does not exist.
1612       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1613       uint8_t NType = (MachO->is64Bit() ?
1614                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1615                        MachO->getSymbolTableEntry(SymDRI).n_type);
1616       if (NType & MachO::N_STAB)
1617         continue;
1618     }
1619 
1620     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1621     if (SecI != Obj.section_end())
1622       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1623     else
1624       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1625   }
1626 
1627   if (AllSymbols.empty() && Obj.isELF())
1628     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1629 
1630   if (Obj.isWasm())
1631     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1632 
1633   if (Obj.isELF() && Obj.sections().empty())
1634     createFakeELFSections(Obj);
1635 
1636   BumpPtrAllocator A;
1637   StringSaver Saver(A);
1638   addPltEntries(Obj, AllSymbols, Saver);
1639 
1640   // Create a mapping from virtual address to section. An empty section can
1641   // cause more than one section at the same address. Sort such sections to be
1642   // before same-addressed non-empty sections so that symbol lookups prefer the
1643   // non-empty section.
1644   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1645   for (SectionRef Sec : Obj.sections())
1646     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1647   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1648     if (LHS.first != RHS.first)
1649       return LHS.first < RHS.first;
1650     return LHS.second.getSize() < RHS.second.getSize();
1651   });
1652 
1653   // Linked executables (.exe and .dll files) typically don't include a real
1654   // symbol table but they might contain an export table.
1655   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1656     for (const auto &ExportEntry : COFFObj->export_directories()) {
1657       StringRef Name;
1658       if (Error E = ExportEntry.getSymbolName(Name))
1659         reportError(std::move(E), Obj.getFileName());
1660       if (Name.empty())
1661         continue;
1662 
1663       uint32_t RVA;
1664       if (Error E = ExportEntry.getExportRVA(RVA))
1665         reportError(std::move(E), Obj.getFileName());
1666 
1667       uint64_t VA = COFFObj->getImageBase() + RVA;
1668       auto Sec = partition_point(
1669           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1670             return O.first <= VA;
1671           });
1672       if (Sec != SectionAddresses.begin()) {
1673         --Sec;
1674         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1675       } else
1676         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1677     }
1678   }
1679 
1680   // Sort all the symbols, this allows us to use a simple binary search to find
1681   // Multiple symbols can have the same address. Use a stable sort to stabilize
1682   // the output.
1683   StringSet<> FoundDisasmSymbolSet;
1684   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1685     llvm::stable_sort(SecSyms.second);
1686   llvm::stable_sort(AbsoluteSymbols);
1687 
1688   std::unique_ptr<DWARFContext> DICtx;
1689   LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo);
1690 
1691   if (DbgVariables != DVDisabled) {
1692     DICtx = DWARFContext::create(DbgObj);
1693     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1694       LVP.addCompileUnit(CU->getUnitDIE(false));
1695   }
1696 
1697   LLVM_DEBUG(LVP.dump());
1698 
1699   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1700   std::unordered_map<uint64_t, PGOAnalysisMap> AddrToPGOAnalysisMap;
1701   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1702                                std::nullopt) {
1703     AddrToBBAddrMap.clear();
1704     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1705       std::vector<PGOAnalysisMap> PGOAnalyses;
1706       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses);
1707       if (!BBAddrMapsOrErr) {
1708         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1709         return;
1710       }
1711       for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] :
1712            zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) {
1713         uint64_t Addr = FunctionBBAddrMap.Addr;
1714         AddrToBBAddrMap.emplace(Addr, std::move(FunctionBBAddrMap));
1715         if (FunctionPGOAnalysis.FeatEnable.anyEnabled())
1716           AddrToPGOAnalysisMap.emplace(Addr, std::move(FunctionPGOAnalysis));
1717       }
1718     }
1719   };
1720 
1721   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1722   // single mapping, since they don't have any conflicts.
1723   if (SymbolizeOperands && !Obj.isRelocatableObject())
1724     ReadBBAddrMap();
1725 
1726   std::optional<llvm::BTFParser> BTF;
1727   if (InlineRelocs && BTFParser::hasBTFSections(Obj)) {
1728     BTF.emplace();
1729     BTFParser::ParseOptions Opts = {};
1730     Opts.LoadTypes = true;
1731     Opts.LoadRelocs = true;
1732     if (Error E = BTF->parse(Obj, Opts))
1733       WithColor::defaultErrorHandler(std::move(E));
1734   }
1735 
1736   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1737     if (FilterSections.empty() && !DisassembleAll &&
1738         (!Section.isText() || Section.isVirtual()))
1739       continue;
1740 
1741     uint64_t SectionAddr = Section.getAddress();
1742     uint64_t SectSize = Section.getSize();
1743     if (!SectSize)
1744       continue;
1745 
1746     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1747     // corresponding to this section, if present.
1748     if (SymbolizeOperands && Obj.isRelocatableObject())
1749       ReadBBAddrMap(Section.getIndex());
1750 
1751     // Get the list of all the symbols in this section.
1752     SectionSymbolsTy &Symbols = AllSymbols[Section];
1753     auto &MappingSymbols = AllMappingSymbols[Section];
1754     llvm::sort(MappingSymbols);
1755 
1756     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1757         unwrapOrError(Section.getContents(), Obj.getFileName()));
1758 
1759     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1760     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1761       // AMDGPU disassembler uses symbolizer for printing labels
1762       addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(),
1763                     SectionAddr, Bytes, Symbols, SynthesizedLabelNames);
1764     }
1765 
1766     StringRef SegmentName = getSegmentName(MachO, Section);
1767     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1768     // If the section has no symbol at the start, just insert a dummy one.
1769     // Without --show-all-symbols, also insert one if all symbols at the start
1770     // are mapping symbols.
1771     bool CreateDummy = Symbols.empty();
1772     if (!CreateDummy) {
1773       CreateDummy = true;
1774       for (auto &Sym : Symbols) {
1775         if (Sym.Addr != SectionAddr)
1776           break;
1777         if (!Sym.IsMappingSymbol || ShowAllSymbols)
1778           CreateDummy = false;
1779       }
1780     }
1781     if (CreateDummy) {
1782       SymbolInfoTy Sym = createDummySymbolInfo(
1783           Obj, SectionAddr, SectionName,
1784           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT);
1785       if (Obj.isXCOFF())
1786         Symbols.insert(Symbols.begin(), Sym);
1787       else
1788         Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym);
1789     }
1790 
1791     SmallString<40> Comments;
1792     raw_svector_ostream CommentStream(Comments);
1793 
1794     uint64_t VMAAdjustment = 0;
1795     if (shouldAdjustVA(Section))
1796       VMAAdjustment = AdjustVMA;
1797 
1798     // In executable and shared objects, r_offset holds a virtual address.
1799     // Subtract SectionAddr from the r_offset field of a relocation to get
1800     // the section offset.
1801     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1802     uint64_t Size;
1803     uint64_t Index;
1804     bool PrintedSection = false;
1805     std::vector<RelocationRef> Rels = RelocMap[Section];
1806     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1807     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1808 
1809     // Loop over each chunk of code between two points where at least
1810     // one symbol is defined.
1811     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1812       // Advance SI past all the symbols starting at the same address,
1813       // and make an ArrayRef of them.
1814       unsigned FirstSI = SI;
1815       uint64_t Start = Symbols[SI].Addr;
1816       ArrayRef<SymbolInfoTy> SymbolsHere;
1817       while (SI != SE && Symbols[SI].Addr == Start)
1818         ++SI;
1819       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1820 
1821       // Get the demangled names of all those symbols. We end up with a vector
1822       // of StringRef that holds the names we're going to use, and a vector of
1823       // std::string that stores the new strings returned by demangle(), if
1824       // any. If we don't call demangle() then that vector can stay empty.
1825       std::vector<StringRef> SymNamesHere;
1826       std::vector<std::string> DemangledSymNamesHere;
1827       if (Demangle) {
1828         // Fetch the demangled names and store them locally.
1829         for (const SymbolInfoTy &Symbol : SymbolsHere)
1830           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1831         // Now we've finished modifying that vector, it's safe to make
1832         // a vector of StringRefs pointing into it.
1833         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1834                             DemangledSymNamesHere.end());
1835       } else {
1836         for (const SymbolInfoTy &Symbol : SymbolsHere)
1837           SymNamesHere.push_back(Symbol.Name);
1838       }
1839 
1840       // Distinguish ELF data from code symbols, which will be used later on to
1841       // decide whether to 'disassemble' this chunk as a data declaration via
1842       // dumpELFData(), or whether to treat it as code.
1843       //
1844       // If data _and_ code symbols are defined at the same address, the code
1845       // takes priority, on the grounds that disassembling code is our main
1846       // purpose here, and it would be a worse failure to _not_ interpret
1847       // something that _was_ meaningful as code than vice versa.
1848       //
1849       // Any ELF symbol type that is not clearly data will be regarded as code.
1850       // In particular, one of the uses of STT_NOTYPE is for branch targets
1851       // inside functions, for which STT_FUNC would be inaccurate.
1852       //
1853       // So here, we spot whether there's any non-data symbol present at all,
1854       // and only set the DisassembleAsELFData flag if there isn't. Also, we use
1855       // this distinction to inform the decision of which symbol to print at
1856       // the head of the section, so that if we're printing code, we print a
1857       // code-related symbol name to go with it.
1858       bool DisassembleAsELFData = false;
1859       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1860       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1861         DisassembleAsELFData = true; // unless we find a code symbol below
1862 
1863         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1864           uint8_t SymTy = SymbolsHere[i].Type;
1865           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1866             DisassembleAsELFData = false;
1867             DisplaySymIndex = i;
1868           }
1869         }
1870       }
1871 
1872       // Decide which symbol(s) from this collection we're going to print.
1873       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1874       // If the user has given the --disassemble-symbols option, then we must
1875       // display every symbol in that set, and no others.
1876       if (!DisasmSymbolSet.empty()) {
1877         bool FoundAny = false;
1878         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1879           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1880             SymsToPrint[i] = true;
1881             FoundAny = true;
1882           }
1883         }
1884 
1885         // And if none of the symbols here is one that the user asked for, skip
1886         // disassembling this entire chunk of code.
1887         if (!FoundAny)
1888           continue;
1889       } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) {
1890         // Otherwise, print whichever symbol at this location is last in the
1891         // Symbols array, because that array is pre-sorted in a way intended to
1892         // correlate with priority of which symbol to display.
1893         SymsToPrint[DisplaySymIndex] = true;
1894       }
1895 
1896       // Now that we know we're disassembling this section, override the choice
1897       // of which symbols to display by printing _all_ of them at this address
1898       // if the user asked for all symbols.
1899       //
1900       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1901       // only the chunk of code headed by 'foo', but also show any other
1902       // symbols defined at that address, such as aliases for 'foo', or the ARM
1903       // mapping symbol preceding its code.
1904       if (ShowAllSymbols) {
1905         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1906           SymsToPrint[i] = true;
1907       }
1908 
1909       if (Start < SectionAddr || StopAddress <= Start)
1910         continue;
1911 
1912       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1913         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1914 
1915       // The end is the section end, the beginning of the next symbol, or
1916       // --stop-address.
1917       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1918       if (SI < SE)
1919         End = std::min(End, Symbols[SI].Addr);
1920       if (Start >= End || End <= StartAddress)
1921         continue;
1922       Start -= SectionAddr;
1923       End -= SectionAddr;
1924 
1925       if (!PrintedSection) {
1926         PrintedSection = true;
1927         outs() << "\nDisassembly of section ";
1928         if (!SegmentName.empty())
1929           outs() << SegmentName << ",";
1930         outs() << SectionName << ":\n";
1931       }
1932 
1933       bool PrintedLabel = false;
1934       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1935         if (!SymsToPrint[i])
1936           continue;
1937 
1938         const SymbolInfoTy &Symbol = SymbolsHere[i];
1939         const StringRef SymbolName = SymNamesHere[i];
1940 
1941         if (!PrintedLabel) {
1942           outs() << '\n';
1943           PrintedLabel = true;
1944         }
1945         if (LeadingAddr)
1946           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1947                            SectionAddr + Start + VMAAdjustment);
1948         if (Obj.isXCOFF() && SymbolDescription) {
1949           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1950         } else
1951           outs() << '<' << SymbolName << ">:\n";
1952       }
1953 
1954       // Don't print raw contents of a virtual section. A virtual section
1955       // doesn't have any contents in the file.
1956       if (Section.isVirtual()) {
1957         outs() << "...\n";
1958         continue;
1959       }
1960 
1961       // See if any of the symbols defined at this location triggers target-
1962       // specific disassembly behavior, e.g. of special descriptors or function
1963       // prelude information.
1964       //
1965       // We stop this loop at the first symbol that triggers some kind of
1966       // interesting behavior (if any), on the assumption that if two symbols
1967       // defined at the same address trigger two conflicting symbol handlers,
1968       // the object file is probably confused anyway, and it would make even
1969       // less sense to present the output of _both_ handlers, because that
1970       // would describe the same data twice.
1971       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1972         SymbolInfoTy Symbol = SymbolsHere[SHI];
1973 
1974         auto Status = DT->DisAsm->onSymbolStart(
1975             Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start,
1976             CommentStream);
1977 
1978         if (!Status) {
1979           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1980           // any interesting handling for this symbol. Try the other symbols
1981           // defined at this address.
1982           continue;
1983         }
1984 
1985         if (*Status == MCDisassembler::Fail) {
1986           // If onSymbolStart returns Fail, that means it identified some kind
1987           // of special data at this address, but wasn't able to disassemble it
1988           // meaningfully. So we fall back to disassembling the failed region
1989           // as bytes, assuming that the target detected the failure before
1990           // printing anything.
1991           //
1992           // Return values Success or SoftFail (i.e no 'real' failure) are
1993           // expected to mean that the target has emitted its own output.
1994           //
1995           // Either way, 'Size' will have been set to the amount of data
1996           // covered by whatever prologue the target identified. So we advance
1997           // our own position to beyond that. Sometimes that will be the entire
1998           // distance to the next symbol, and sometimes it will be just a
1999           // prologue and we should start disassembling instructions from where
2000           // it left off.
2001           outs() << DT->Context->getAsmInfo()->getCommentString()
2002                  << " error in decoding " << SymNamesHere[SHI]
2003                  << " : decoding failed region as bytes.\n";
2004           for (uint64_t I = 0; I < Size; ++I) {
2005             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
2006                    << "\n";
2007           }
2008         }
2009         Start += Size;
2010         break;
2011       }
2012 
2013       Index = Start;
2014       if (SectionAddr < StartAddress)
2015         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
2016 
2017       if (DisassembleAsELFData) {
2018         dumpELFData(SectionAddr, Index, End, Bytes);
2019         Index = End;
2020         continue;
2021       }
2022 
2023       // Skip relocations from symbols that are not dumped.
2024       for (; RelCur != RelEnd; ++RelCur) {
2025         uint64_t Offset = RelCur->getOffset() - RelAdjustment;
2026         if (Index <= Offset)
2027           break;
2028       }
2029 
2030       bool DumpARMELFData = false;
2031       bool DumpTracebackTableForXCOFFFunction =
2032           Obj.isXCOFF() && Section.isText() && TracebackTable &&
2033           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
2034           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
2035 
2036       formatted_raw_ostream FOS(outs());
2037 
2038       // FIXME: Workaround for bug in formatted_raw_ostream. Color escape codes
2039       // are (incorrectly) written directly to the unbuffered raw_ostream
2040       // wrapped by the formatted_raw_ostream.
2041       if (DisassemblyColor == ColorOutput::Enable ||
2042           DisassemblyColor == ColorOutput::Auto)
2043         FOS.SetUnbuffered();
2044 
2045       std::unordered_map<uint64_t, std::string> AllLabels;
2046       std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels;
2047       if (SymbolizeOperands) {
2048         collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(),
2049                                   DT->DisAsm.get(), DT->InstPrinter.get(),
2050                                   PrimaryTarget.SubtargetInfo.get(),
2051                                   SectionAddr, Index, End, AllLabels);
2052         collectBBAddrMapLabels(AddrToBBAddrMap, AddrToPGOAnalysisMap,
2053                                SectionAddr, Index, End, BBAddrMapLabels,
2054                                FileName);
2055       }
2056 
2057       if (DT->InstrAnalysis)
2058         DT->InstrAnalysis->resetState();
2059 
2060       while (Index < End) {
2061         uint64_t RelOffset;
2062 
2063         // ARM and AArch64 ELF binaries can interleave data and text in the
2064         // same section. We rely on the markers introduced to understand what
2065         // we need to dump. If the data marker is within a function, it is
2066         // denoted as a word/short etc.
2067         if (!MappingSymbols.empty()) {
2068           char Kind = getMappingSymbolKind(MappingSymbols, Index);
2069           DumpARMELFData = Kind == 'd';
2070           if (SecondaryTarget) {
2071             if (Kind == 'a') {
2072               DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget;
2073             } else if (Kind == 't') {
2074               DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget;
2075             }
2076           }
2077         } else if (!CHPECodeMap.empty()) {
2078           uint64_t Address = SectionAddr + Index;
2079           auto It = partition_point(
2080               CHPECodeMap,
2081               [Address](const std::pair<uint64_t, uint64_t> &Entry) {
2082                 return Entry.first <= Address;
2083               });
2084           if (It != CHPECodeMap.begin() && Address < (It - 1)->second) {
2085             DT = &*SecondaryTarget;
2086           } else {
2087             DT = &PrimaryTarget;
2088             // X64 disassembler range may have left Index unaligned, so
2089             // make sure that it's aligned when we switch back to ARM64
2090             // code.
2091             Index = llvm::alignTo(Index, 4);
2092             if (Index >= End)
2093               break;
2094           }
2095         }
2096 
2097         auto findRel = [&]() {
2098           while (RelCur != RelEnd) {
2099             RelOffset = RelCur->getOffset() - RelAdjustment;
2100             // If this relocation is hidden, skip it.
2101             if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) {
2102               ++RelCur;
2103               continue;
2104             }
2105 
2106             // Stop when RelCur's offset is past the disassembled
2107             // instruction/data.
2108             if (RelOffset >= Index + Size)
2109               return false;
2110             if (RelOffset >= Index)
2111               return true;
2112             ++RelCur;
2113           }
2114           return false;
2115         };
2116 
2117         if (DumpARMELFData) {
2118           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
2119                                 MappingSymbols, *DT->SubtargetInfo, FOS);
2120         } else {
2121           // When -z or --disassemble-zeroes are given we always dissasemble
2122           // them. Otherwise we might want to skip zero bytes we see.
2123           if (!DisassembleZeroes) {
2124             uint64_t MaxOffset = End - Index;
2125             // For --reloc: print zero blocks patched by relocations, so that
2126             // relocations can be shown in the dump.
2127             if (InlineRelocs && RelCur != RelEnd)
2128               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
2129                                    MaxOffset);
2130 
2131             if (size_t N =
2132                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
2133               FOS << "\t\t..." << '\n';
2134               Index += N;
2135               continue;
2136             }
2137           }
2138 
2139           if (DumpTracebackTableForXCOFFFunction &&
2140               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
2141             dumpTracebackTable(Bytes.slice(Index),
2142                                SectionAddr + Index + VMAAdjustment, FOS,
2143                                SectionAddr + End + VMAAdjustment,
2144                                *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj));
2145             Index = End;
2146             continue;
2147           }
2148 
2149           // Print local label if there's any.
2150           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
2151           if (Iter1 != BBAddrMapLabels.end()) {
2152             for (const auto &BBLabel : Iter1->second)
2153               FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis
2154                   << ":\n";
2155           } else {
2156             auto Iter2 = AllLabels.find(SectionAddr + Index);
2157             if (Iter2 != AllLabels.end())
2158               FOS << "<" << Iter2->second << ">:\n";
2159           }
2160 
2161           // Disassemble a real instruction or a data when disassemble all is
2162           // provided
2163           MCInst Inst;
2164           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
2165           uint64_t ThisAddr = SectionAddr + Index;
2166           bool Disassembled = DT->DisAsm->getInstruction(
2167               Inst, Size, ThisBytes, ThisAddr, CommentStream);
2168           if (Size == 0)
2169             Size = std::min<uint64_t>(
2170                 ThisBytes.size(),
2171                 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
2172 
2173           LVP.update({Index, Section.getIndex()},
2174                      {Index + Size, Section.getIndex()}, Index + Size != End);
2175 
2176           DT->InstPrinter->setCommentStream(CommentStream);
2177 
2178           DT->Printer->printInst(
2179               *DT->InstPrinter, Disassembled ? &Inst : nullptr,
2180               Bytes.slice(Index, Size),
2181               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
2182               "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP);
2183 
2184           DT->InstPrinter->setCommentStream(llvm::nulls());
2185 
2186           // If disassembly succeeds, we try to resolve the target address
2187           // (jump target or memory operand address) and print it to the
2188           // right of the instruction.
2189           //
2190           // Otherwise, we don't print anything else so that we avoid
2191           // analyzing invalid or incomplete instruction information.
2192           if (Disassembled && DT->InstrAnalysis) {
2193             llvm::raw_ostream *TargetOS = &FOS;
2194             uint64_t Target;
2195             bool PrintTarget = DT->InstrAnalysis->evaluateBranch(
2196                 Inst, SectionAddr + Index, Size, Target);
2197 
2198             if (!PrintTarget) {
2199               if (std::optional<uint64_t> MaybeTarget =
2200                       DT->InstrAnalysis->evaluateMemoryOperandAddress(
2201                           Inst, DT->SubtargetInfo.get(), SectionAddr + Index,
2202                           Size)) {
2203                 Target = *MaybeTarget;
2204                 PrintTarget = true;
2205                 // Do not print real address when symbolizing.
2206                 if (!SymbolizeOperands) {
2207                   // Memory operand addresses are printed as comments.
2208                   TargetOS = &CommentStream;
2209                   *TargetOS << "0x" << Twine::utohexstr(Target);
2210                 }
2211               }
2212             }
2213 
2214             if (PrintTarget) {
2215               // In a relocatable object, the target's section must reside in
2216               // the same section as the call instruction or it is accessed
2217               // through a relocation.
2218               //
2219               // In a non-relocatable object, the target may be in any section.
2220               // In that case, locate the section(s) containing the target
2221               // address and find the symbol in one of those, if possible.
2222               //
2223               // N.B. Except for XCOFF, we don't walk the relocations in the
2224               // relocatable case yet.
2225               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
2226               if (!Obj.isRelocatableObject()) {
2227                 auto It = llvm::partition_point(
2228                     SectionAddresses,
2229                     [=](const std::pair<uint64_t, SectionRef> &O) {
2230                       return O.first <= Target;
2231                     });
2232                 uint64_t TargetSecAddr = 0;
2233                 while (It != SectionAddresses.begin()) {
2234                   --It;
2235                   if (TargetSecAddr == 0)
2236                     TargetSecAddr = It->first;
2237                   if (It->first != TargetSecAddr)
2238                     break;
2239                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
2240                 }
2241               } else {
2242                 TargetSectionSymbols.push_back(&Symbols);
2243               }
2244               TargetSectionSymbols.push_back(&AbsoluteSymbols);
2245 
2246               // Find the last symbol in the first candidate section whose
2247               // offset is less than or equal to the target. If there are no
2248               // such symbols, try in the next section and so on, before finally
2249               // using the nearest preceding absolute symbol (if any), if there
2250               // are no other valid symbols.
2251               const SymbolInfoTy *TargetSym = nullptr;
2252               for (const SectionSymbolsTy *TargetSymbols :
2253                    TargetSectionSymbols) {
2254                 auto It = llvm::partition_point(
2255                     *TargetSymbols,
2256                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
2257                 while (It != TargetSymbols->begin()) {
2258                   --It;
2259                   // Skip mapping symbols to avoid possible ambiguity as they
2260                   // do not allow uniquely identifying the target address.
2261                   if (!It->IsMappingSymbol) {
2262                     TargetSym = &*It;
2263                     break;
2264                   }
2265                 }
2266                 if (TargetSym)
2267                   break;
2268               }
2269 
2270               // Branch targets are printed just after the instructions.
2271               // Print the labels corresponding to the target if there's any.
2272               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
2273               bool LabelAvailable = AllLabels.count(Target);
2274 
2275               if (TargetSym != nullptr) {
2276                 uint64_t TargetAddress = TargetSym->Addr;
2277                 uint64_t Disp = Target - TargetAddress;
2278                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
2279                                                   : TargetSym->Name.str();
2280                 bool RelFixedUp = false;
2281                 SmallString<32> Val;
2282 
2283                 *TargetOS << " <";
2284                 // On XCOFF, we use relocations, even without -r, so we
2285                 // can print the correct name for an extern function call.
2286                 if (Obj.isXCOFF() && findRel()) {
2287                   // Check for possible branch relocations and
2288                   // branches to fixup code.
2289                   bool BranchRelocationType = true;
2290                   XCOFF::RelocationType RelocType;
2291                   if (Obj.is64Bit()) {
2292                     const XCOFFRelocation64 *Reloc =
2293                         reinterpret_cast<XCOFFRelocation64 *>(
2294                             RelCur->getRawDataRefImpl().p);
2295                     RelFixedUp = Reloc->isFixupIndicated();
2296                     RelocType = Reloc->Type;
2297                   } else {
2298                     const XCOFFRelocation32 *Reloc =
2299                         reinterpret_cast<XCOFFRelocation32 *>(
2300                             RelCur->getRawDataRefImpl().p);
2301                     RelFixedUp = Reloc->isFixupIndicated();
2302                     RelocType = Reloc->Type;
2303                   }
2304                   BranchRelocationType =
2305                       RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR ||
2306                       RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR;
2307 
2308                   // If we have a valid relocation, try to print its
2309                   // corresponding symbol name. Multiple relocations on the
2310                   // same instruction are not handled.
2311                   // Branches to fixup code will have the RelFixedUp flag set in
2312                   // the RLD. For these instructions, we print the correct
2313                   // branch target, but print the referenced symbol as a
2314                   // comment.
2315                   if (Error E = getRelocationValueString(*RelCur, false, Val)) {
2316                     // If -r was used, this error will be printed later.
2317                     // Otherwise, we ignore the error and print what
2318                     // would have been printed without using relocations.
2319                     consumeError(std::move(E));
2320                     *TargetOS << TargetName;
2321                     RelFixedUp = false; // Suppress comment for RLD sym name
2322                   } else if (BranchRelocationType && !RelFixedUp)
2323                     *TargetOS << Val;
2324                   else
2325                     *TargetOS << TargetName;
2326                   if (Disp)
2327                     *TargetOS << "+0x" << Twine::utohexstr(Disp);
2328                 } else if (!Disp) {
2329                   *TargetOS << TargetName;
2330                 } else if (BBAddrMapLabelAvailable) {
2331                   *TargetOS << BBAddrMapLabels[Target].front().BlockLabel;
2332                 } else if (LabelAvailable) {
2333                   *TargetOS << AllLabels[Target];
2334                 } else {
2335                   // Always Print the binary symbol plus an offset if there's no
2336                   // local label corresponding to the target address.
2337                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
2338                 }
2339                 *TargetOS << ">";
2340                 if (RelFixedUp && !InlineRelocs) {
2341                   // We have fixup code for a relocation. We print the
2342                   // referenced symbol as a comment.
2343                   *TargetOS << "\t# " << Val;
2344                 }
2345 
2346               } else if (BBAddrMapLabelAvailable) {
2347                 *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel
2348                           << ">";
2349               } else if (LabelAvailable) {
2350                 *TargetOS << " <" << AllLabels[Target] << ">";
2351               }
2352               // By convention, each record in the comment stream should be
2353               // terminated.
2354               if (TargetOS == &CommentStream)
2355                 *TargetOS << "\n";
2356             }
2357 
2358             DT->InstrAnalysis->updateState(Inst, SectionAddr + Index);
2359           } else if (!Disassembled && DT->InstrAnalysis) {
2360             DT->InstrAnalysis->resetState();
2361           }
2362         }
2363 
2364         assert(DT->Context->getAsmInfo());
2365         emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(),
2366                                 *DT->SubtargetInfo, CommentStream.str(), LVP);
2367         Comments.clear();
2368 
2369         if (BTF)
2370           printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP);
2371 
2372         // Hexagon handles relocs in pretty printer
2373         if (InlineRelocs && Obj.getArch() != Triple::hexagon) {
2374           while (findRel()) {
2375             // When --adjust-vma is used, update the address printed.
2376             if (RelCur->getSymbol() != Obj.symbol_end()) {
2377               Expected<section_iterator> SymSI =
2378                   RelCur->getSymbol()->getSection();
2379               if (SymSI && *SymSI != Obj.section_end() &&
2380                   shouldAdjustVA(**SymSI))
2381                 RelOffset += AdjustVMA;
2382             }
2383 
2384             printRelocation(FOS, Obj.getFileName(), *RelCur,
2385                             SectionAddr + RelOffset, Is64Bits);
2386             LVP.printAfterOtherLine(FOS, true);
2387             ++RelCur;
2388           }
2389         }
2390 
2391         Index += Size;
2392       }
2393     }
2394   }
2395   StringSet<> MissingDisasmSymbolSet =
2396       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2397   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2398     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2399 }
2400 
2401 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2402   // If information useful for showing the disassembly is missing, try to find a
2403   // more complete binary and disassemble that instead.
2404   OwningBinary<Binary> FetchedBinary;
2405   if (Obj->symbols().empty()) {
2406     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2407             fetchBinaryByBuildID(*Obj)) {
2408       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2409         if (!O->symbols().empty() ||
2410             (!O->sections().empty() && Obj->sections().empty())) {
2411           FetchedBinary = std::move(*FetchedBinaryOpt);
2412           Obj = O;
2413         }
2414       }
2415     }
2416   }
2417 
2418   const Target *TheTarget = getTarget(Obj);
2419 
2420   // Package up features to be passed to target/subtarget
2421   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2422   if (!FeaturesValue)
2423     reportError(FeaturesValue.takeError(), Obj->getFileName());
2424   SubtargetFeatures Features = *FeaturesValue;
2425   if (!MAttrs.empty()) {
2426     for (unsigned I = 0; I != MAttrs.size(); ++I)
2427       Features.AddFeature(MAttrs[I]);
2428   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2429     Features.AddFeature("+all");
2430   }
2431 
2432   if (MCPU.empty())
2433     MCPU = Obj->tryGetCPUName().value_or("").str();
2434 
2435   if (isArmElf(*Obj)) {
2436     // When disassembling big-endian Arm ELF, the instruction endianness is
2437     // determined in a complex way. In relocatable objects, AAELF32 mandates
2438     // that instruction endianness matches the ELF file endianness; in
2439     // executable images, that's true unless the file header has the EF_ARM_BE8
2440     // flag, in which case instructions are little-endian regardless of data
2441     // endianness.
2442     //
2443     // We must set the big-endian-instructions SubtargetFeature to make the
2444     // disassembler read the instructions the right way round, and also tell
2445     // our own prettyprinter to retrieve the encodings the same way to print in
2446     // hex.
2447     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2448 
2449     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2450                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2451       Features.AddFeature("+big-endian-instructions");
2452       ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big);
2453     } else {
2454       ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little);
2455     }
2456   }
2457 
2458   DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features);
2459 
2460   // If we have an ARM object file, we need a second disassembler, because
2461   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2462   // We use mapping symbols to switch between the two assemblers, where
2463   // appropriate.
2464   std::optional<DisassemblerTarget> SecondaryTarget;
2465 
2466   if (isArmElf(*Obj)) {
2467     if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) {
2468       if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"))
2469         Features.AddFeature("-thumb-mode");
2470       else
2471         Features.AddFeature("+thumb-mode");
2472       SecondaryTarget.emplace(PrimaryTarget, Features);
2473     }
2474   } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
2475     const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata();
2476     if (CHPEMetadata && CHPEMetadata->CodeMapCount) {
2477       // Set up x86_64 disassembler for ARM64EC binaries.
2478       Triple X64Triple(TripleName);
2479       X64Triple.setArch(Triple::ArchType::x86_64);
2480 
2481       std::string Error;
2482       const Target *X64Target =
2483           TargetRegistry::lookupTarget("", X64Triple, Error);
2484       if (X64Target) {
2485         SubtargetFeatures X64Features;
2486         SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "",
2487                                 X64Features);
2488       } else {
2489         reportWarning(Error, Obj->getFileName());
2490       }
2491     }
2492   }
2493 
2494   const ObjectFile *DbgObj = Obj;
2495   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2496     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2497             fetchBinaryByBuildID(*Obj)) {
2498       if (auto *FetchedObj =
2499               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2500         if (FetchedObj->hasDebugInfo()) {
2501           FetchedBinary = std::move(*DebugBinaryOpt);
2502           DbgObj = FetchedObj;
2503         }
2504       }
2505     }
2506   }
2507 
2508   std::unique_ptr<object::Binary> DSYMBinary;
2509   std::unique_ptr<MemoryBuffer> DSYMBuf;
2510   if (!DbgObj->hasDebugInfo()) {
2511     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2512       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2513                                            DSYMBinary, DSYMBuf);
2514       if (!DbgObj)
2515         return;
2516     }
2517   }
2518 
2519   SourcePrinter SP(DbgObj, TheTarget->getName());
2520 
2521   for (StringRef Opt : DisassemblerOptions)
2522     if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt))
2523       reportError(Obj->getFileName(),
2524                   "Unrecognized disassembler option: " + Opt);
2525 
2526   disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP,
2527                     InlineRelocs);
2528 }
2529 
2530 void Dumper::printRelocations() {
2531   StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2532 
2533   // Build a mapping from relocation target to a vector of relocation
2534   // sections. Usually, there is an only one relocation section for
2535   // each relocated section.
2536   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2537   uint64_t Ndx;
2538   for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2539     if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2540       continue;
2541     if (Section.relocation_begin() == Section.relocation_end())
2542       continue;
2543     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2544     if (!SecOrErr)
2545       reportError(O.getFileName(),
2546                   "section (" + Twine(Ndx) +
2547                       "): unable to get a relocation target: " +
2548                       toString(SecOrErr.takeError()));
2549     SecToRelSec[**SecOrErr].push_back(Section);
2550   }
2551 
2552   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2553     StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2554     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2555     uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2556     uint32_t TypePadding = 24;
2557     outs() << left_justify("OFFSET", OffsetPadding) << " "
2558            << left_justify("TYPE", TypePadding) << " "
2559            << "VALUE\n";
2560 
2561     for (SectionRef Section : P.second) {
2562       for (const RelocationRef &Reloc : Section.relocations()) {
2563         uint64_t Address = Reloc.getOffset();
2564         SmallString<32> RelocName;
2565         SmallString<32> ValueStr;
2566         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2567           continue;
2568         Reloc.getTypeName(RelocName);
2569         if (Error E =
2570                 getRelocationValueString(Reloc, SymbolDescription, ValueStr))
2571           reportUniqueWarning(std::move(E));
2572 
2573         outs() << format(Fmt.data(), Address) << " "
2574                << left_justify(RelocName, TypePadding) << " " << ValueStr
2575                << "\n";
2576       }
2577     }
2578   }
2579 }
2580 
2581 // Returns true if we need to show LMA column when dumping section headers. We
2582 // show it only when the platform is ELF and either we have at least one section
2583 // whose VMA and LMA are different and/or when --show-lma flag is used.
2584 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2585   if (!Obj.isELF())
2586     return false;
2587   for (const SectionRef &S : ToolSectionFilter(Obj))
2588     if (S.getAddress() != getELFSectionLMA(S))
2589       return true;
2590   return ShowLMA;
2591 }
2592 
2593 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2594   // Default column width for names is 13 even if no names are that long.
2595   size_t MaxWidth = 13;
2596   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2597     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2598     MaxWidth = std::max(MaxWidth, Name.size());
2599   }
2600   return MaxWidth;
2601 }
2602 
2603 void objdump::printSectionHeaders(ObjectFile &Obj) {
2604   if (Obj.isELF() && Obj.sections().empty())
2605     createFakeELFSections(Obj);
2606 
2607   size_t NameWidth = getMaxSectionNameWidth(Obj);
2608   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2609   bool HasLMAColumn = shouldDisplayLMA(Obj);
2610   outs() << "\nSections:\n";
2611   if (HasLMAColumn)
2612     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2613            << left_justify("VMA", AddressWidth) << " "
2614            << left_justify("LMA", AddressWidth) << " Type\n";
2615   else
2616     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2617            << left_justify("VMA", AddressWidth) << " Type\n";
2618 
2619   uint64_t Idx;
2620   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2621     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2622     uint64_t VMA = Section.getAddress();
2623     if (shouldAdjustVA(Section))
2624       VMA += AdjustVMA;
2625 
2626     uint64_t Size = Section.getSize();
2627 
2628     std::string Type = Section.isText() ? "TEXT" : "";
2629     if (Section.isData())
2630       Type += Type.empty() ? "DATA" : ", DATA";
2631     if (Section.isBSS())
2632       Type += Type.empty() ? "BSS" : ", BSS";
2633     if (Section.isDebugSection())
2634       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2635 
2636     if (HasLMAColumn)
2637       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2638                        Name.str().c_str(), Size)
2639              << format_hex_no_prefix(VMA, AddressWidth) << " "
2640              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2641              << " " << Type << "\n";
2642     else
2643       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2644                        Name.str().c_str(), Size)
2645              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2646   }
2647 }
2648 
2649 void objdump::printSectionContents(const ObjectFile *Obj) {
2650   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2651 
2652   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2653     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2654     uint64_t BaseAddr = Section.getAddress();
2655     uint64_t Size = Section.getSize();
2656     if (!Size)
2657       continue;
2658 
2659     outs() << "Contents of section ";
2660     StringRef SegmentName = getSegmentName(MachO, Section);
2661     if (!SegmentName.empty())
2662       outs() << SegmentName << ",";
2663     outs() << Name << ":\n";
2664     if (Section.isBSS()) {
2665       outs() << format("<skipping contents of bss section at [%04" PRIx64
2666                        ", %04" PRIx64 ")>\n",
2667                        BaseAddr, BaseAddr + Size);
2668       continue;
2669     }
2670 
2671     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2672 
2673     // Dump out the content as hex and printable ascii characters.
2674     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2675       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2676       // Dump line of hex.
2677       for (std::size_t I = 0; I < 16; ++I) {
2678         if (I != 0 && I % 4 == 0)
2679           outs() << ' ';
2680         if (Addr + I < End)
2681           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2682                  << hexdigit(Contents[Addr + I] & 0xF, true);
2683         else
2684           outs() << "  ";
2685       }
2686       // Print ascii.
2687       outs() << "  ";
2688       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2689         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2690           outs() << Contents[Addr + I];
2691         else
2692           outs() << ".";
2693       }
2694       outs() << "\n";
2695     }
2696   }
2697 }
2698 
2699 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2700                               bool DumpDynamic) {
2701   if (O.isCOFF() && !DumpDynamic) {
2702     outs() << "\nSYMBOL TABLE:\n";
2703     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2704     return;
2705   }
2706 
2707   const StringRef FileName = O.getFileName();
2708 
2709   if (!DumpDynamic) {
2710     outs() << "\nSYMBOL TABLE:\n";
2711     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2712       printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2713     return;
2714   }
2715 
2716   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2717   if (!O.isELF()) {
2718     reportWarning(
2719         "this operation is not currently supported for this file format",
2720         FileName);
2721     return;
2722   }
2723 
2724   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2725   auto Symbols = ELF->getDynamicSymbolIterators();
2726   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2727       ELF->readDynsymVersions();
2728   if (!SymbolVersionsOrErr) {
2729     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2730     SymbolVersionsOrErr = std::vector<VersionEntry>();
2731     (void)!SymbolVersionsOrErr;
2732   }
2733   for (auto &Sym : Symbols)
2734     printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2735                 ArchitectureName, DumpDynamic);
2736 }
2737 
2738 void Dumper::printSymbol(const SymbolRef &Symbol,
2739                          ArrayRef<VersionEntry> SymbolVersions,
2740                          StringRef FileName, StringRef ArchiveName,
2741                          StringRef ArchitectureName, bool DumpDynamic) {
2742   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2743   Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2744   if (!AddrOrErr) {
2745     reportUniqueWarning(AddrOrErr.takeError());
2746     return;
2747   }
2748   uint64_t Address = *AddrOrErr;
2749   section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
2750   if (SecI != O.section_end() && shouldAdjustVA(*SecI))
2751     Address += AdjustVMA;
2752   if ((Address < StartAddress) || (Address > StopAddress))
2753     return;
2754   SymbolRef::Type Type =
2755       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2756   uint32_t Flags =
2757       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2758 
2759   // Don't ask a Mach-O STAB symbol for its section unless you know that
2760   // STAB symbol's section field refers to a valid section index. Otherwise
2761   // the symbol may error trying to load a section that does not exist.
2762   bool IsSTAB = false;
2763   if (MachO) {
2764     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2765     uint8_t NType =
2766         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2767                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2768     if (NType & MachO::N_STAB)
2769       IsSTAB = true;
2770   }
2771   section_iterator Section = IsSTAB
2772                                  ? O.section_end()
2773                                  : unwrapOrError(Symbol.getSection(), FileName,
2774                                                  ArchiveName, ArchitectureName);
2775 
2776   StringRef Name;
2777   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2778     if (Expected<StringRef> NameOrErr = Section->getName())
2779       Name = *NameOrErr;
2780     else
2781       consumeError(NameOrErr.takeError());
2782 
2783   } else {
2784     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2785                          ArchitectureName);
2786   }
2787 
2788   bool Global = Flags & SymbolRef::SF_Global;
2789   bool Weak = Flags & SymbolRef::SF_Weak;
2790   bool Absolute = Flags & SymbolRef::SF_Absolute;
2791   bool Common = Flags & SymbolRef::SF_Common;
2792   bool Hidden = Flags & SymbolRef::SF_Hidden;
2793 
2794   char GlobLoc = ' ';
2795   if ((Section != O.section_end() || Absolute) && !Weak)
2796     GlobLoc = Global ? 'g' : 'l';
2797   char IFunc = ' ';
2798   if (O.isELF()) {
2799     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2800       IFunc = 'i';
2801     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2802       GlobLoc = 'u';
2803   }
2804 
2805   char Debug = ' ';
2806   if (DumpDynamic)
2807     Debug = 'D';
2808   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2809     Debug = 'd';
2810 
2811   char FileFunc = ' ';
2812   if (Type == SymbolRef::ST_File)
2813     FileFunc = 'f';
2814   else if (Type == SymbolRef::ST_Function)
2815     FileFunc = 'F';
2816   else if (Type == SymbolRef::ST_Data)
2817     FileFunc = 'O';
2818 
2819   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2820 
2821   outs() << format(Fmt, Address) << " "
2822          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2823          << (Weak ? 'w' : ' ') // Weak?
2824          << ' '                // Constructor. Not supported yet.
2825          << ' '                // Warning. Not supported yet.
2826          << IFunc              // Indirect reference to another symbol.
2827          << Debug              // Debugging (d) or dynamic (D) symbol.
2828          << FileFunc           // Name of function (F), file (f) or object (O).
2829          << ' ';
2830   if (Absolute) {
2831     outs() << "*ABS*";
2832   } else if (Common) {
2833     outs() << "*COM*";
2834   } else if (Section == O.section_end()) {
2835     if (O.isXCOFF()) {
2836       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2837           Symbol.getRawDataRefImpl());
2838       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2839         outs() << "*DEBUG*";
2840       else
2841         outs() << "*UND*";
2842     } else
2843       outs() << "*UND*";
2844   } else {
2845     StringRef SegmentName = getSegmentName(MachO, *Section);
2846     if (!SegmentName.empty())
2847       outs() << SegmentName << ",";
2848     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2849     outs() << SectionName;
2850     if (O.isXCOFF()) {
2851       std::optional<SymbolRef> SymRef =
2852           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2853       if (SymRef) {
2854 
2855         Expected<StringRef> NameOrErr = SymRef->getName();
2856 
2857         if (NameOrErr) {
2858           outs() << " (csect:";
2859           std::string SymName =
2860               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2861 
2862           if (SymbolDescription)
2863             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2864                                                 SymName);
2865 
2866           outs() << ' ' << SymName;
2867           outs() << ") ";
2868         } else
2869           reportWarning(toString(NameOrErr.takeError()), FileName);
2870       }
2871     }
2872   }
2873 
2874   if (Common)
2875     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2876   else if (O.isXCOFF())
2877     outs() << '\t'
2878            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2879                               Symbol.getRawDataRefImpl()));
2880   else if (O.isELF())
2881     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2882 
2883   if (O.isELF()) {
2884     if (!SymbolVersions.empty()) {
2885       const VersionEntry &Ver =
2886           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2887       std::string Str;
2888       if (!Ver.Name.empty())
2889         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2890       outs() << ' ' << left_justify(Str, 12);
2891     }
2892 
2893     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2894     switch (Other) {
2895     case ELF::STV_DEFAULT:
2896       break;
2897     case ELF::STV_INTERNAL:
2898       outs() << " .internal";
2899       break;
2900     case ELF::STV_HIDDEN:
2901       outs() << " .hidden";
2902       break;
2903     case ELF::STV_PROTECTED:
2904       outs() << " .protected";
2905       break;
2906     default:
2907       outs() << format(" 0x%02x", Other);
2908       break;
2909     }
2910   } else if (Hidden) {
2911     outs() << " .hidden";
2912   }
2913 
2914   std::string SymName = Demangle ? demangle(Name) : Name.str();
2915   if (O.isXCOFF() && SymbolDescription)
2916     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2917 
2918   outs() << ' ' << SymName << '\n';
2919 }
2920 
2921 static void printUnwindInfo(const ObjectFile *O) {
2922   outs() << "Unwind info:\n\n";
2923 
2924   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2925     printCOFFUnwindInfo(Coff);
2926   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2927     printMachOUnwindInfo(MachO);
2928   else
2929     // TODO: Extract DWARF dump tool to objdump.
2930     WithColor::error(errs(), ToolName)
2931         << "This operation is only currently supported "
2932            "for COFF and MachO object files.\n";
2933 }
2934 
2935 /// Dump the raw contents of the __clangast section so the output can be piped
2936 /// into llvm-bcanalyzer.
2937 static void printRawClangAST(const ObjectFile *Obj) {
2938   if (outs().is_displayed()) {
2939     WithColor::error(errs(), ToolName)
2940         << "The -raw-clang-ast option will dump the raw binary contents of "
2941            "the clang ast section.\n"
2942            "Please redirect the output to a file or another program such as "
2943            "llvm-bcanalyzer.\n";
2944     return;
2945   }
2946 
2947   StringRef ClangASTSectionName("__clangast");
2948   if (Obj->isCOFF()) {
2949     ClangASTSectionName = "clangast";
2950   }
2951 
2952   std::optional<object::SectionRef> ClangASTSection;
2953   for (auto Sec : ToolSectionFilter(*Obj)) {
2954     StringRef Name;
2955     if (Expected<StringRef> NameOrErr = Sec.getName())
2956       Name = *NameOrErr;
2957     else
2958       consumeError(NameOrErr.takeError());
2959 
2960     if (Name == ClangASTSectionName) {
2961       ClangASTSection = Sec;
2962       break;
2963     }
2964   }
2965   if (!ClangASTSection)
2966     return;
2967 
2968   StringRef ClangASTContents =
2969       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2970   outs().write(ClangASTContents.data(), ClangASTContents.size());
2971 }
2972 
2973 static void printFaultMaps(const ObjectFile *Obj) {
2974   StringRef FaultMapSectionName;
2975 
2976   if (Obj->isELF()) {
2977     FaultMapSectionName = ".llvm_faultmaps";
2978   } else if (Obj->isMachO()) {
2979     FaultMapSectionName = "__llvm_faultmaps";
2980   } else {
2981     WithColor::error(errs(), ToolName)
2982         << "This operation is only currently supported "
2983            "for ELF and Mach-O executable files.\n";
2984     return;
2985   }
2986 
2987   std::optional<object::SectionRef> FaultMapSection;
2988 
2989   for (auto Sec : ToolSectionFilter(*Obj)) {
2990     StringRef Name;
2991     if (Expected<StringRef> NameOrErr = Sec.getName())
2992       Name = *NameOrErr;
2993     else
2994       consumeError(NameOrErr.takeError());
2995 
2996     if (Name == FaultMapSectionName) {
2997       FaultMapSection = Sec;
2998       break;
2999     }
3000   }
3001 
3002   outs() << "FaultMap table:\n";
3003 
3004   if (!FaultMapSection) {
3005     outs() << "<not found>\n";
3006     return;
3007   }
3008 
3009   StringRef FaultMapContents =
3010       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
3011   FaultMapParser FMP(FaultMapContents.bytes_begin(),
3012                      FaultMapContents.bytes_end());
3013 
3014   outs() << FMP;
3015 }
3016 
3017 void Dumper::printPrivateHeaders() {
3018   reportError(O.getFileName(), "Invalid/Unsupported object file format");
3019 }
3020 
3021 static void printFileHeaders(const ObjectFile *O) {
3022   if (!O->isELF() && !O->isCOFF())
3023     reportError(O->getFileName(), "Invalid/Unsupported object file format");
3024 
3025   Triple::ArchType AT = O->getArch();
3026   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
3027   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
3028 
3029   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
3030   outs() << "start address: "
3031          << "0x" << format(Fmt.data(), Address) << "\n";
3032 }
3033 
3034 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
3035   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
3036   if (!ModeOrErr) {
3037     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
3038     consumeError(ModeOrErr.takeError());
3039     return;
3040   }
3041   sys::fs::perms Mode = ModeOrErr.get();
3042   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
3043   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
3044   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
3045   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
3046   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
3047   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
3048   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
3049   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
3050   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
3051 
3052   outs() << " ";
3053 
3054   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
3055                    unwrapOrError(C.getGID(), Filename),
3056                    unwrapOrError(C.getRawSize(), Filename));
3057 
3058   StringRef RawLastModified = C.getRawLastModified();
3059   unsigned Seconds;
3060   if (RawLastModified.getAsInteger(10, Seconds))
3061     outs() << "(date: \"" << RawLastModified
3062            << "\" contains non-decimal chars) ";
3063   else {
3064     // Since ctime(3) returns a 26 character string of the form:
3065     // "Sun Sep 16 01:03:52 1973\n\0"
3066     // just print 24 characters.
3067     time_t t = Seconds;
3068     outs() << format("%.24s ", ctime(&t));
3069   }
3070 
3071   StringRef Name = "";
3072   Expected<StringRef> NameOrErr = C.getName();
3073   if (!NameOrErr) {
3074     consumeError(NameOrErr.takeError());
3075     Name = unwrapOrError(C.getRawName(), Filename);
3076   } else {
3077     Name = NameOrErr.get();
3078   }
3079   outs() << Name << "\n";
3080 }
3081 
3082 // For ELF only now.
3083 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
3084   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
3085     if (Elf->getEType() != ELF::ET_REL)
3086       return true;
3087   }
3088   return false;
3089 }
3090 
3091 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
3092                                             uint64_t Start, uint64_t Stop) {
3093   if (!shouldWarnForInvalidStartStopAddress(Obj))
3094     return;
3095 
3096   for (const SectionRef &Section : Obj->sections())
3097     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
3098       uint64_t BaseAddr = Section.getAddress();
3099       uint64_t Size = Section.getSize();
3100       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
3101         return;
3102     }
3103 
3104   if (!HasStartAddressFlag)
3105     reportWarning("no section has address less than 0x" +
3106                       Twine::utohexstr(Stop) + " specified by --stop-address",
3107                   Obj->getFileName());
3108   else if (!HasStopAddressFlag)
3109     reportWarning("no section has address greater than or equal to 0x" +
3110                       Twine::utohexstr(Start) + " specified by --start-address",
3111                   Obj->getFileName());
3112   else
3113     reportWarning("no section overlaps the range [0x" +
3114                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
3115                       ") specified by --start-address/--stop-address",
3116                   Obj->getFileName());
3117 }
3118 
3119 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
3120                        const Archive::Child *C = nullptr) {
3121   Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O);
3122   if (!DumperOrErr) {
3123     reportError(DumperOrErr.takeError(), O->getFileName(),
3124                 A ? A->getFileName() : "");
3125     return;
3126   }
3127   Dumper &D = **DumperOrErr;
3128 
3129   // Avoid other output when using a raw option.
3130   if (!RawClangAST) {
3131     outs() << '\n';
3132     if (A)
3133       outs() << A->getFileName() << "(" << O->getFileName() << ")";
3134     else
3135       outs() << O->getFileName();
3136     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
3137   }
3138 
3139   if (HasStartAddressFlag || HasStopAddressFlag)
3140     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
3141 
3142   // TODO: Change print* free functions to Dumper member functions to utilitize
3143   // stateful functions like reportUniqueWarning.
3144 
3145   // Note: the order here matches GNU objdump for compatability.
3146   StringRef ArchiveName = A ? A->getFileName() : "";
3147   if (ArchiveHeaders && !MachOOpt && C)
3148     printArchiveChild(ArchiveName, *C);
3149   if (FileHeaders)
3150     printFileHeaders(O);
3151   if (PrivateHeaders || FirstPrivateHeader)
3152     D.printPrivateHeaders();
3153   if (SectionHeaders)
3154     printSectionHeaders(*O);
3155   if (SymbolTable)
3156     D.printSymbolTable(ArchiveName);
3157   if (DynamicSymbolTable)
3158     D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
3159                        /*DumpDynamic=*/true);
3160   if (DwarfDumpType != DIDT_Null) {
3161     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
3162     // Dump the complete DWARF structure.
3163     DIDumpOptions DumpOpts;
3164     DumpOpts.DumpType = DwarfDumpType;
3165     DICtx->dump(outs(), DumpOpts);
3166   }
3167   if (Relocations && !Disassemble)
3168     D.printRelocations();
3169   if (DynamicRelocations)
3170     D.printDynamicRelocations();
3171   if (SectionContents)
3172     printSectionContents(O);
3173   if (Disassemble)
3174     disassembleObject(O, Relocations);
3175   if (UnwindInfo)
3176     printUnwindInfo(O);
3177 
3178   // Mach-O specific options:
3179   if (ExportsTrie)
3180     printExportsTrie(O);
3181   if (Rebase)
3182     printRebaseTable(O);
3183   if (Bind)
3184     printBindTable(O);
3185   if (LazyBind)
3186     printLazyBindTable(O);
3187   if (WeakBind)
3188     printWeakBindTable(O);
3189 
3190   // Other special sections:
3191   if (RawClangAST)
3192     printRawClangAST(O);
3193   if (FaultMapSection)
3194     printFaultMaps(O);
3195   if (Offloading)
3196     dumpOffloadBinary(*O);
3197 }
3198 
3199 static void dumpObject(const COFFImportFile *I, const Archive *A,
3200                        const Archive::Child *C = nullptr) {
3201   StringRef ArchiveName = A ? A->getFileName() : "";
3202 
3203   // Avoid other output when using a raw option.
3204   if (!RawClangAST)
3205     outs() << '\n'
3206            << ArchiveName << "(" << I->getFileName() << ")"
3207            << ":\tfile format COFF-import-file"
3208            << "\n\n";
3209 
3210   if (ArchiveHeaders && !MachOOpt && C)
3211     printArchiveChild(ArchiveName, *C);
3212   if (SymbolTable)
3213     printCOFFSymbolTable(*I);
3214 }
3215 
3216 /// Dump each object file in \a a;
3217 static void dumpArchive(const Archive *A) {
3218   Error Err = Error::success();
3219   unsigned I = -1;
3220   for (auto &C : A->children(Err)) {
3221     ++I;
3222     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
3223     if (!ChildOrErr) {
3224       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
3225         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
3226       continue;
3227     }
3228     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
3229       dumpObject(O, A, &C);
3230     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
3231       dumpObject(I, A, &C);
3232     else
3233       reportError(errorCodeToError(object_error::invalid_file_type),
3234                   A->getFileName());
3235   }
3236   if (Err)
3237     reportError(std::move(Err), A->getFileName());
3238 }
3239 
3240 /// Open file and figure out how to dump it.
3241 static void dumpInput(StringRef file) {
3242   // If we are using the Mach-O specific object file parser, then let it parse
3243   // the file and process the command line options.  So the -arch flags can
3244   // be used to select specific slices, etc.
3245   if (MachOOpt) {
3246     parseInputMachO(file);
3247     return;
3248   }
3249 
3250   // Attempt to open the binary.
3251   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
3252   Binary &Binary = *OBinary.getBinary();
3253 
3254   if (Archive *A = dyn_cast<Archive>(&Binary))
3255     dumpArchive(A);
3256   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
3257     dumpObject(O);
3258   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
3259     parseInputMachO(UB);
3260   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
3261     dumpOffloadSections(*OB);
3262   else
3263     reportError(errorCodeToError(object_error::invalid_file_type), file);
3264 }
3265 
3266 template <typename T>
3267 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
3268                         T &Value) {
3269   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
3270     StringRef V(A->getValue());
3271     if (!llvm::to_integer(V, Value, 0)) {
3272       reportCmdLineError(A->getSpelling() +
3273                          ": expected a non-negative integer, but got '" + V +
3274                          "'");
3275     }
3276   }
3277 }
3278 
3279 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
3280   StringRef V(A->getValue());
3281   object::BuildID BID = parseBuildID(V);
3282   if (BID.empty())
3283     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
3284                        V + "'");
3285   return BID;
3286 }
3287 
3288 void objdump::invalidArgValue(const opt::Arg *A) {
3289   reportCmdLineError("'" + StringRef(A->getValue()) +
3290                      "' is not a valid value for '" + A->getSpelling() + "'");
3291 }
3292 
3293 static std::vector<std::string>
3294 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
3295   std::vector<std::string> Values;
3296   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
3297     llvm::SmallVector<StringRef, 2> SplitValues;
3298     llvm::SplitString(Value, SplitValues, ",");
3299     for (StringRef SplitValue : SplitValues)
3300       Values.push_back(SplitValue.str());
3301   }
3302   return Values;
3303 }
3304 
3305 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
3306   MachOOpt = true;
3307   FullLeadingAddr = true;
3308   PrintImmHex = true;
3309 
3310   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3311   LinkOptHints = InputArgs.hasArg(OTOOL_C);
3312   if (InputArgs.hasArg(OTOOL_d))
3313     FilterSections.push_back("__DATA,__data");
3314   DylibId = InputArgs.hasArg(OTOOL_D);
3315   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3316   DataInCode = InputArgs.hasArg(OTOOL_G);
3317   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3318   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3319   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3320   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3321   DylibsUsed = InputArgs.hasArg(OTOOL_L);
3322   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3323   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3324   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3325   InfoPlist = InputArgs.hasArg(OTOOL_P);
3326   Relocations = InputArgs.hasArg(OTOOL_r);
3327   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3328     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3329     FilterSections.push_back(Filter);
3330   }
3331   if (InputArgs.hasArg(OTOOL_t))
3332     FilterSections.push_back("__TEXT,__text");
3333   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3334             InputArgs.hasArg(OTOOL_o);
3335   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3336   if (InputArgs.hasArg(OTOOL_x))
3337     FilterSections.push_back(",__text");
3338   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3339 
3340   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3341   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3342 
3343   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3344   if (InputFilenames.empty())
3345     reportCmdLineError("no input file");
3346 
3347   for (const Arg *A : InputArgs) {
3348     const Option &O = A->getOption();
3349     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3350       reportCmdLineWarning(O.getPrefixedName() +
3351                            " is obsolete and not implemented");
3352     }
3353   }
3354 }
3355 
3356 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3357   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3358   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3359   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3360   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3361   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3362   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3363   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3364   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3365   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3366   DisassembleSymbols =
3367       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3368   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3369   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3370     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3371                         .Case("frames", DIDT_DebugFrame)
3372                         .Default(DIDT_Null);
3373     if (DwarfDumpType == DIDT_Null)
3374       invalidArgValue(A);
3375   }
3376   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3377   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3378   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3379   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3380   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3381   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3382   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3383   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3384   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3385   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3386   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3387   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3388   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3389   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3390   PrintImmHex =
3391       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3392   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3393   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3394   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3395   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3396   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3397   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3398   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3399   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3400   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3401   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3402   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3403   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3404   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3405   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3406   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3407   Wide = InputArgs.hasArg(OBJDUMP_wide);
3408   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3409   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3410   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3411     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3412                        .Case("ascii", DVASCII)
3413                        .Case("unicode", DVUnicode)
3414                        .Default(DVInvalid);
3415     if (DbgVariables == DVInvalid)
3416       invalidArgValue(A);
3417   }
3418   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) {
3419     DisassemblyColor = StringSwitch<ColorOutput>(A->getValue())
3420                            .Case("on", ColorOutput::Enable)
3421                            .Case("off", ColorOutput::Disable)
3422                            .Case("terminal", ColorOutput::Auto)
3423                            .Default(ColorOutput::Invalid);
3424     if (DisassemblyColor == ColorOutput::Invalid)
3425       invalidArgValue(A);
3426   }
3427 
3428   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3429 
3430   parseMachOOptions(InputArgs);
3431 
3432   // Parse -M (--disassembler-options) and deprecated
3433   // --x86-asm-syntax={att,intel}.
3434   //
3435   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3436   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3437   // called too late. For now we have to use the internal cl::opt option.
3438   const char *AsmSyntax = nullptr;
3439   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3440                                           OBJDUMP_x86_asm_syntax_att,
3441                                           OBJDUMP_x86_asm_syntax_intel)) {
3442     switch (A->getOption().getID()) {
3443     case OBJDUMP_x86_asm_syntax_att:
3444       AsmSyntax = "--x86-asm-syntax=att";
3445       continue;
3446     case OBJDUMP_x86_asm_syntax_intel:
3447       AsmSyntax = "--x86-asm-syntax=intel";
3448       continue;
3449     }
3450 
3451     SmallVector<StringRef, 2> Values;
3452     llvm::SplitString(A->getValue(), Values, ",");
3453     for (StringRef V : Values) {
3454       if (V == "att")
3455         AsmSyntax = "--x86-asm-syntax=att";
3456       else if (V == "intel")
3457         AsmSyntax = "--x86-asm-syntax=intel";
3458       else
3459         DisassemblerOptions.push_back(V.str());
3460     }
3461   }
3462   SmallVector<const char *> Args = {"llvm-objdump"};
3463   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm))
3464     Args.push_back(A->getValue());
3465   if (AsmSyntax)
3466     Args.push_back(AsmSyntax);
3467   if (Args.size() > 1)
3468     llvm::cl::ParseCommandLineOptions(Args.size(), Args.data());
3469 
3470   // Look up any provided build IDs, then append them to the input filenames.
3471   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3472     object::BuildID BuildID = parseBuildIDArg(A);
3473     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3474     if (!Path) {
3475       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3476                          A->getValue() + "'");
3477     }
3478     InputFilenames.push_back(std::move(*Path));
3479   }
3480 
3481   // objdump defaults to a.out if no filenames specified.
3482   if (InputFilenames.empty())
3483     InputFilenames.push_back("a.out");
3484 }
3485 
3486 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) {
3487   using namespace llvm;
3488 
3489   ToolName = argv[0];
3490   std::unique_ptr<CommonOptTable> T;
3491   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3492 
3493   StringRef Stem = sys::path::stem(ToolName);
3494   auto Is = [=](StringRef Tool) {
3495     // We need to recognize the following filenames:
3496     //
3497     // llvm-objdump -> objdump
3498     // llvm-otool-10.exe -> otool
3499     // powerpc64-unknown-freebsd13-objdump -> objdump
3500     auto I = Stem.rfind_insensitive(Tool);
3501     return I != StringRef::npos &&
3502            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3503   };
3504   if (Is("otool")) {
3505     T = std::make_unique<OtoolOptTable>();
3506     Unknown = OTOOL_UNKNOWN;
3507     HelpFlag = OTOOL_help;
3508     HelpHiddenFlag = OTOOL_help_hidden;
3509     VersionFlag = OTOOL_version;
3510   } else {
3511     T = std::make_unique<ObjdumpOptTable>();
3512     Unknown = OBJDUMP_UNKNOWN;
3513     HelpFlag = OBJDUMP_help;
3514     HelpHiddenFlag = OBJDUMP_help_hidden;
3515     VersionFlag = OBJDUMP_version;
3516   }
3517 
3518   BumpPtrAllocator A;
3519   StringSaver Saver(A);
3520   opt::InputArgList InputArgs =
3521       T->parseArgs(argc, argv, Unknown, Saver,
3522                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3523 
3524   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3525     T->printHelp(ToolName);
3526     return 0;
3527   }
3528   if (InputArgs.hasArg(HelpHiddenFlag)) {
3529     T->printHelp(ToolName, /*ShowHidden=*/true);
3530     return 0;
3531   }
3532 
3533   // Initialize targets and assembly printers/parsers.
3534   InitializeAllTargetInfos();
3535   InitializeAllTargetMCs();
3536   InitializeAllDisassemblers();
3537 
3538   if (InputArgs.hasArg(VersionFlag)) {
3539     cl::PrintVersionMessage();
3540     if (!Is("otool")) {
3541       outs() << '\n';
3542       TargetRegistry::printRegisteredTargetsForVersion(outs());
3543     }
3544     return 0;
3545   }
3546 
3547   // Initialize debuginfod.
3548   const bool ShouldUseDebuginfodByDefault =
3549       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3550   std::vector<std::string> DebugFileDirectories =
3551       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3552   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3553                         ShouldUseDebuginfodByDefault)) {
3554     HTTPClient::initialize();
3555     BIDFetcher =
3556         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3557   } else {
3558     BIDFetcher =
3559         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3560   }
3561 
3562   if (Is("otool"))
3563     parseOtoolOptions(InputArgs);
3564   else
3565     parseObjdumpOptions(InputArgs);
3566 
3567   if (StartAddress >= StopAddress)
3568     reportCmdLineError("start address should be less than stop address");
3569 
3570   // Removes trailing separators from prefix.
3571   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3572     Prefix.pop_back();
3573 
3574   if (AllHeaders)
3575     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3576         SectionHeaders = SymbolTable = true;
3577 
3578   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3579       !DisassembleSymbols.empty())
3580     Disassemble = true;
3581 
3582   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3583       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3584       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3585       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3586       !(MachOOpt &&
3587         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3588          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3589          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3590          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3591          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3592     T->printHelp(ToolName);
3593     return 2;
3594   }
3595 
3596   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3597 
3598   llvm::for_each(InputFilenames, dumpInput);
3599 
3600   warnOnNoMatchForSections();
3601 
3602   return EXIT_SUCCESS;
3603 }
3604