xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 4e958b4d7cd3629d7a21ceea0ea5c4aa1c19e4c0)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/Triple.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
37 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
38 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
39 #include "llvm/Debuginfod/BuildIDFetcher.h"
40 #include "llvm/Debuginfod/Debuginfod.h"
41 #include "llvm/Debuginfod/HTTPClient.h"
42 #include "llvm/Demangle/Demangle.h"
43 #include "llvm/MC/MCAsmInfo.h"
44 #include "llvm/MC/MCContext.h"
45 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
46 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
47 #include "llvm/MC/MCInst.h"
48 #include "llvm/MC/MCInstPrinter.h"
49 #include "llvm/MC/MCInstrAnalysis.h"
50 #include "llvm/MC/MCInstrInfo.h"
51 #include "llvm/MC/MCObjectFileInfo.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/MC/MCSubtargetInfo.h"
54 #include "llvm/MC/MCTargetOptions.h"
55 #include "llvm/MC/TargetRegistry.h"
56 #include "llvm/Object/Archive.h"
57 #include "llvm/Object/BuildID.h"
58 #include "llvm/Object/COFF.h"
59 #include "llvm/Object/COFFImportFile.h"
60 #include "llvm/Object/ELFObjectFile.h"
61 #include "llvm/Object/ELFTypes.h"
62 #include "llvm/Object/FaultMapParser.h"
63 #include "llvm/Object/MachO.h"
64 #include "llvm/Object/MachOUniversal.h"
65 #include "llvm/Object/ObjectFile.h"
66 #include "llvm/Object/OffloadBinary.h"
67 #include "llvm/Object/Wasm.h"
68 #include "llvm/Option/Arg.h"
69 #include "llvm/Option/ArgList.h"
70 #include "llvm/Option/Option.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/Errc.h"
74 #include "llvm/Support/FileSystem.h"
75 #include "llvm/Support/Format.h"
76 #include "llvm/Support/FormatVariadic.h"
77 #include "llvm/Support/GraphWriter.h"
78 #include "llvm/Support/Host.h"
79 #include "llvm/Support/InitLLVM.h"
80 #include "llvm/Support/MemoryBuffer.h"
81 #include "llvm/Support/SourceMgr.h"
82 #include "llvm/Support/StringSaver.h"
83 #include "llvm/Support/TargetSelect.h"
84 #include "llvm/Support/WithColor.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include <algorithm>
87 #include <cctype>
88 #include <cstring>
89 #include <optional>
90 #include <system_error>
91 #include <unordered_map>
92 #include <utility>
93 
94 using namespace llvm;
95 using namespace llvm::object;
96 using namespace llvm::objdump;
97 using namespace llvm::opt;
98 
99 namespace {
100 
101 class CommonOptTable : public opt::OptTable {
102 public:
103   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
104                  const char *Description)
105       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
106     setGroupedShortOptions(true);
107   }
108 
109   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
110     Argv0 = sys::path::filename(Argv0);
111     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
112                              ShowHidden, ShowHidden);
113     // TODO Replace this with OptTable API once it adds extrahelp support.
114     outs() << "\nPass @FILE as argument to read options from FILE.\n";
115   }
116 
117 private:
118   const char *Usage;
119   const char *Description;
120 };
121 
122 // ObjdumpOptID is in ObjdumpOptID.h
123 
124 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
125 #include "ObjdumpOpts.inc"
126 #undef PREFIX
127 
128 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
129 #define OBJDUMP_nullptr nullptr
130 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
131                HELPTEXT, METAVAR, VALUES)                                      \
132   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
133    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
134    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
135    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
136 #include "ObjdumpOpts.inc"
137 #undef OPTION
138 #undef OBJDUMP_nullptr
139 };
140 
141 class ObjdumpOptTable : public CommonOptTable {
142 public:
143   ObjdumpOptTable()
144       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
145                        "llvm object file dumper") {}
146 };
147 
148 enum OtoolOptID {
149   OTOOL_INVALID = 0, // This is not an option ID.
150 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
151                HELPTEXT, METAVAR, VALUES)                                      \
152   OTOOL_##ID,
153 #include "OtoolOpts.inc"
154 #undef OPTION
155 };
156 
157 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
158 #include "OtoolOpts.inc"
159 #undef PREFIX
160 
161 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
162 #define OTOOL_nullptr nullptr
163 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
164                HELPTEXT, METAVAR, VALUES)                                      \
165   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
166    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
167    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
168    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
169 #include "OtoolOpts.inc"
170 #undef OPTION
171 #undef OTOOL_nullptr
172 };
173 
174 class OtoolOptTable : public CommonOptTable {
175 public:
176   OtoolOptTable()
177       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
178                        "Mach-O object file displaying tool") {}
179 };
180 
181 } // namespace
182 
183 #define DEBUG_TYPE "objdump"
184 
185 static uint64_t AdjustVMA;
186 static bool AllHeaders;
187 static std::string ArchName;
188 bool objdump::ArchiveHeaders;
189 bool objdump::Demangle;
190 bool objdump::Disassemble;
191 bool objdump::DisassembleAll;
192 bool objdump::SymbolDescription;
193 static std::vector<std::string> DisassembleSymbols;
194 static bool DisassembleZeroes;
195 static std::vector<std::string> DisassemblerOptions;
196 DIDumpType objdump::DwarfDumpType;
197 static bool DynamicRelocations;
198 static bool FaultMapSection;
199 static bool FileHeaders;
200 bool objdump::SectionContents;
201 static std::vector<std::string> InputFilenames;
202 bool objdump::PrintLines;
203 static bool MachOOpt;
204 std::string objdump::MCPU;
205 std::vector<std::string> objdump::MAttrs;
206 bool objdump::ShowRawInsn;
207 bool objdump::LeadingAddr;
208 static bool Offloading;
209 static bool RawClangAST;
210 bool objdump::Relocations;
211 bool objdump::PrintImmHex;
212 bool objdump::PrivateHeaders;
213 std::vector<std::string> objdump::FilterSections;
214 bool objdump::SectionHeaders;
215 static bool ShowAllSymbols;
216 static bool ShowLMA;
217 bool objdump::PrintSource;
218 
219 static uint64_t StartAddress;
220 static bool HasStartAddressFlag;
221 static uint64_t StopAddress = UINT64_MAX;
222 static bool HasStopAddressFlag;
223 
224 bool objdump::SymbolTable;
225 static bool SymbolizeOperands;
226 static bool DynamicSymbolTable;
227 std::string objdump::TripleName;
228 bool objdump::UnwindInfo;
229 static bool Wide;
230 std::string objdump::Prefix;
231 uint32_t objdump::PrefixStrip;
232 
233 DebugVarsFormat objdump::DbgVariables = DVDisabled;
234 
235 int objdump::DbgIndent = 52;
236 
237 static StringSet<> DisasmSymbolSet;
238 StringSet<> objdump::FoundSectionSet;
239 static StringRef ToolName;
240 
241 std::unique_ptr<BuildIDFetcher> BIDFetcher;
242 ExitOnError ExitOnErr;
243 
244 namespace {
245 struct FilterResult {
246   // True if the section should not be skipped.
247   bool Keep;
248 
249   // True if the index counter should be incremented, even if the section should
250   // be skipped. For example, sections may be skipped if they are not included
251   // in the --section flag, but we still want those to count toward the section
252   // count.
253   bool IncrementIndex;
254 };
255 } // namespace
256 
257 static FilterResult checkSectionFilter(object::SectionRef S) {
258   if (FilterSections.empty())
259     return {/*Keep=*/true, /*IncrementIndex=*/true};
260 
261   Expected<StringRef> SecNameOrErr = S.getName();
262   if (!SecNameOrErr) {
263     consumeError(SecNameOrErr.takeError());
264     return {/*Keep=*/false, /*IncrementIndex=*/false};
265   }
266   StringRef SecName = *SecNameOrErr;
267 
268   // StringSet does not allow empty key so avoid adding sections with
269   // no name (such as the section with index 0) here.
270   if (!SecName.empty())
271     FoundSectionSet.insert(SecName);
272 
273   // Only show the section if it's in the FilterSections list, but always
274   // increment so the indexing is stable.
275   return {/*Keep=*/is_contained(FilterSections, SecName),
276           /*IncrementIndex=*/true};
277 }
278 
279 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
280                                          uint64_t *Idx) {
281   // Start at UINT64_MAX so that the first index returned after an increment is
282   // zero (after the unsigned wrap).
283   if (Idx)
284     *Idx = UINT64_MAX;
285   return SectionFilter(
286       [Idx](object::SectionRef S) {
287         FilterResult Result = checkSectionFilter(S);
288         if (Idx != nullptr && Result.IncrementIndex)
289           *Idx += 1;
290         return Result.Keep;
291       },
292       O);
293 }
294 
295 std::string objdump::getFileNameForError(const object::Archive::Child &C,
296                                          unsigned Index) {
297   Expected<StringRef> NameOrErr = C.getName();
298   if (NameOrErr)
299     return std::string(NameOrErr.get());
300   // If we have an error getting the name then we print the index of the archive
301   // member. Since we are already in an error state, we just ignore this error.
302   consumeError(NameOrErr.takeError());
303   return "<file index: " + std::to_string(Index) + ">";
304 }
305 
306 void objdump::reportWarning(const Twine &Message, StringRef File) {
307   // Output order between errs() and outs() matters especially for archive
308   // files where the output is per member object.
309   outs().flush();
310   WithColor::warning(errs(), ToolName)
311       << "'" << File << "': " << Message << "\n";
312 }
313 
314 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
315   outs().flush();
316   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
317   exit(1);
318 }
319 
320 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
321                                        StringRef ArchiveName,
322                                        StringRef ArchitectureName) {
323   assert(E);
324   outs().flush();
325   WithColor::error(errs(), ToolName);
326   if (ArchiveName != "")
327     errs() << ArchiveName << "(" << FileName << ")";
328   else
329     errs() << "'" << FileName << "'";
330   if (!ArchitectureName.empty())
331     errs() << " (for architecture " << ArchitectureName << ")";
332   errs() << ": ";
333   logAllUnhandledErrors(std::move(E), errs());
334   exit(1);
335 }
336 
337 static void reportCmdLineWarning(const Twine &Message) {
338   WithColor::warning(errs(), ToolName) << Message << "\n";
339 }
340 
341 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
342   WithColor::error(errs(), ToolName) << Message << "\n";
343   exit(1);
344 }
345 
346 static void warnOnNoMatchForSections() {
347   SetVector<StringRef> MissingSections;
348   for (StringRef S : FilterSections) {
349     if (FoundSectionSet.count(S))
350       return;
351     // User may specify a unnamed section. Don't warn for it.
352     if (!S.empty())
353       MissingSections.insert(S);
354   }
355 
356   // Warn only if no section in FilterSections is matched.
357   for (StringRef S : MissingSections)
358     reportCmdLineWarning("section '" + S +
359                          "' mentioned in a -j/--section option, but not "
360                          "found in any input file");
361 }
362 
363 static const Target *getTarget(const ObjectFile *Obj) {
364   // Figure out the target triple.
365   Triple TheTriple("unknown-unknown-unknown");
366   if (TripleName.empty()) {
367     TheTriple = Obj->makeTriple();
368   } else {
369     TheTriple.setTriple(Triple::normalize(TripleName));
370     auto Arch = Obj->getArch();
371     if (Arch == Triple::arm || Arch == Triple::armeb)
372       Obj->setARMSubArch(TheTriple);
373   }
374 
375   // Get the target specific parser.
376   std::string Error;
377   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
378                                                          Error);
379   if (!TheTarget)
380     reportError(Obj->getFileName(), "can't find target: " + Error);
381 
382   // Update the triple name and return the found target.
383   TripleName = TheTriple.getTriple();
384   return TheTarget;
385 }
386 
387 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
388   return A.getOffset() < B.getOffset();
389 }
390 
391 static Error getRelocationValueString(const RelocationRef &Rel,
392                                       SmallVectorImpl<char> &Result) {
393   const ObjectFile *Obj = Rel.getObject();
394   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
395     return getELFRelocationValueString(ELF, Rel, Result);
396   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
397     return getCOFFRelocationValueString(COFF, Rel, Result);
398   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
399     return getWasmRelocationValueString(Wasm, Rel, Result);
400   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
401     return getMachORelocationValueString(MachO, Rel, Result);
402   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
403     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
404   llvm_unreachable("unknown object file format");
405 }
406 
407 /// Indicates whether this relocation should hidden when listing
408 /// relocations, usually because it is the trailing part of a multipart
409 /// relocation that will be printed as part of the leading relocation.
410 static bool getHidden(RelocationRef RelRef) {
411   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
412   if (!MachO)
413     return false;
414 
415   unsigned Arch = MachO->getArch();
416   DataRefImpl Rel = RelRef.getRawDataRefImpl();
417   uint64_t Type = MachO->getRelocationType(Rel);
418 
419   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
420   // is always hidden.
421   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
422     return Type == MachO::GENERIC_RELOC_PAIR;
423 
424   if (Arch == Triple::x86_64) {
425     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
426     // an X86_64_RELOC_SUBTRACTOR.
427     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
428       DataRefImpl RelPrev = Rel;
429       RelPrev.d.a--;
430       uint64_t PrevType = MachO->getRelocationType(RelPrev);
431       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
432         return true;
433     }
434   }
435 
436   return false;
437 }
438 
439 namespace {
440 
441 /// Get the column at which we want to start printing the instruction
442 /// disassembly, taking into account anything which appears to the left of it.
443 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
444   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
445 }
446 
447 static bool isAArch64Elf(const ObjectFile &Obj) {
448   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
449   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
450 }
451 
452 static bool isArmElf(const ObjectFile &Obj) {
453   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
454   return Elf && Elf->getEMachine() == ELF::EM_ARM;
455 }
456 
457 static bool isCSKYElf(const ObjectFile &Obj) {
458   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
459   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
460 }
461 
462 static bool hasMappingSymbols(const ObjectFile &Obj) {
463   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
464 }
465 
466 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
467   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
468          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
469 }
470 
471 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
472                             const RelocationRef &Rel, uint64_t Address,
473                             bool Is64Bits) {
474   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
475   SmallString<16> Name;
476   SmallString<32> Val;
477   Rel.getTypeName(Name);
478   if (Error E = getRelocationValueString(Rel, Val))
479     reportError(std::move(E), FileName);
480   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
481   if (LeadingAddr)
482     OS << format(Fmt.data(), Address);
483   OS << Name << "\t" << Val;
484 }
485 
486 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
487                                    raw_ostream &OS) {
488   // The output of printInst starts with a tab. Print some spaces so that
489   // the tab has 1 column and advances to the target tab stop.
490   unsigned TabStop = getInstStartColumn(STI);
491   unsigned Column = OS.tell() - Start;
492   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
493 }
494 
495 class PrettyPrinter {
496 public:
497   virtual ~PrettyPrinter() = default;
498   virtual void
499   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
500             object::SectionedAddress Address, formatted_raw_ostream &OS,
501             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
502             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
503             LiveVariablePrinter &LVP) {
504     if (SP && (PrintSource || PrintLines))
505       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
506     LVP.printBetweenInsts(OS, false);
507 
508     size_t Start = OS.tell();
509     if (LeadingAddr)
510       OS << format("%8" PRIx64 ":", Address.Address);
511     if (ShowRawInsn) {
512       OS << ' ';
513       dumpBytes(Bytes, OS);
514     }
515 
516     AlignToInstStartColumn(Start, STI, OS);
517 
518     if (MI) {
519       // See MCInstPrinter::printInst. On targets where a PC relative immediate
520       // is relative to the next instruction and the length of a MCInst is
521       // difficult to measure (x86), this is the address of the next
522       // instruction.
523       uint64_t Addr =
524           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
525       IP.printInst(MI, Addr, "", STI, OS);
526     } else
527       OS << "\t<unknown>";
528   }
529 };
530 PrettyPrinter PrettyPrinterInst;
531 
532 class HexagonPrettyPrinter : public PrettyPrinter {
533 public:
534   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
535                  formatted_raw_ostream &OS) {
536     uint32_t opcode =
537       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
538     if (LeadingAddr)
539       OS << format("%8" PRIx64 ":", Address);
540     if (ShowRawInsn) {
541       OS << "\t";
542       dumpBytes(Bytes.slice(0, 4), OS);
543       OS << format("\t%08" PRIx32, opcode);
544     }
545   }
546   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
547                  object::SectionedAddress Address, formatted_raw_ostream &OS,
548                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
549                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
550                  LiveVariablePrinter &LVP) override {
551     if (SP && (PrintSource || PrintLines))
552       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
553     if (!MI) {
554       printLead(Bytes, Address.Address, OS);
555       OS << " <unknown>";
556       return;
557     }
558     std::string Buffer;
559     {
560       raw_string_ostream TempStream(Buffer);
561       IP.printInst(MI, Address.Address, "", STI, TempStream);
562     }
563     StringRef Contents(Buffer);
564     // Split off bundle attributes
565     auto PacketBundle = Contents.rsplit('\n');
566     // Split off first instruction from the rest
567     auto HeadTail = PacketBundle.first.split('\n');
568     auto Preamble = " { ";
569     auto Separator = "";
570 
571     // Hexagon's packets require relocations to be inline rather than
572     // clustered at the end of the packet.
573     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
574     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
575     auto PrintReloc = [&]() -> void {
576       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
577         if (RelCur->getOffset() == Address.Address) {
578           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
579           return;
580         }
581         ++RelCur;
582       }
583     };
584 
585     while (!HeadTail.first.empty()) {
586       OS << Separator;
587       Separator = "\n";
588       if (SP && (PrintSource || PrintLines))
589         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
590       printLead(Bytes, Address.Address, OS);
591       OS << Preamble;
592       Preamble = "   ";
593       StringRef Inst;
594       auto Duplex = HeadTail.first.split('\v');
595       if (!Duplex.second.empty()) {
596         OS << Duplex.first;
597         OS << "; ";
598         Inst = Duplex.second;
599       }
600       else
601         Inst = HeadTail.first;
602       OS << Inst;
603       HeadTail = HeadTail.second.split('\n');
604       if (HeadTail.first.empty())
605         OS << " } " << PacketBundle.second;
606       PrintReloc();
607       Bytes = Bytes.slice(4);
608       Address.Address += 4;
609     }
610   }
611 };
612 HexagonPrettyPrinter HexagonPrettyPrinterInst;
613 
614 class AMDGCNPrettyPrinter : public PrettyPrinter {
615 public:
616   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
617                  object::SectionedAddress Address, formatted_raw_ostream &OS,
618                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
619                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
620                  LiveVariablePrinter &LVP) override {
621     if (SP && (PrintSource || PrintLines))
622       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
623 
624     if (MI) {
625       SmallString<40> InstStr;
626       raw_svector_ostream IS(InstStr);
627 
628       IP.printInst(MI, Address.Address, "", STI, IS);
629 
630       OS << left_justify(IS.str(), 60);
631     } else {
632       // an unrecognized encoding - this is probably data so represent it
633       // using the .long directive, or .byte directive if fewer than 4 bytes
634       // remaining
635       if (Bytes.size() >= 4) {
636         OS << format("\t.long 0x%08" PRIx32 " ",
637                      support::endian::read32<support::little>(Bytes.data()));
638         OS.indent(42);
639       } else {
640           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
641           for (unsigned int i = 1; i < Bytes.size(); i++)
642             OS << format(", 0x%02" PRIx8, Bytes[i]);
643           OS.indent(55 - (6 * Bytes.size()));
644       }
645     }
646 
647     OS << format("// %012" PRIX64 ":", Address.Address);
648     if (Bytes.size() >= 4) {
649       // D should be casted to uint32_t here as it is passed by format to
650       // snprintf as vararg.
651       for (uint32_t D : makeArrayRef(
652                reinterpret_cast<const support::little32_t *>(Bytes.data()),
653                Bytes.size() / 4))
654         OS << format(" %08" PRIX32, D);
655     } else {
656       for (unsigned char B : Bytes)
657         OS << format(" %02" PRIX8, B);
658     }
659 
660     if (!Annot.empty())
661       OS << " // " << Annot;
662   }
663 };
664 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
665 
666 class BPFPrettyPrinter : public PrettyPrinter {
667 public:
668   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
669                  object::SectionedAddress Address, formatted_raw_ostream &OS,
670                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
671                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
672                  LiveVariablePrinter &LVP) override {
673     if (SP && (PrintSource || PrintLines))
674       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
675     if (LeadingAddr)
676       OS << format("%8" PRId64 ":", Address.Address / 8);
677     if (ShowRawInsn) {
678       OS << "\t";
679       dumpBytes(Bytes, OS);
680     }
681     if (MI)
682       IP.printInst(MI, Address.Address, "", STI, OS);
683     else
684       OS << "\t<unknown>";
685   }
686 };
687 BPFPrettyPrinter BPFPrettyPrinterInst;
688 
689 class ARMPrettyPrinter : public PrettyPrinter {
690 public:
691   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
692                  object::SectionedAddress Address, formatted_raw_ostream &OS,
693                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
694                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
695                  LiveVariablePrinter &LVP) override {
696     if (SP && (PrintSource || PrintLines))
697       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
698     LVP.printBetweenInsts(OS, false);
699 
700     size_t Start = OS.tell();
701     if (LeadingAddr)
702       OS << format("%8" PRIx64 ":", Address.Address);
703     if (ShowRawInsn) {
704       size_t Pos = 0, End = Bytes.size();
705       if (STI.checkFeatures("+thumb-mode")) {
706         for (; Pos + 2 <= End; Pos += 2)
707           OS << ' '
708              << format_hex_no_prefix(
709                     llvm::support::endian::read<uint16_t>(
710                         Bytes.data() + Pos, InstructionEndianness),
711                     4);
712       } else {
713         for (; Pos + 4 <= End; Pos += 4)
714           OS << ' '
715              << format_hex_no_prefix(
716                     llvm::support::endian::read<uint32_t>(
717                         Bytes.data() + Pos, InstructionEndianness),
718                     8);
719       }
720       if (Pos < End) {
721         OS << ' ';
722         dumpBytes(Bytes.slice(Pos), OS);
723       }
724     }
725 
726     AlignToInstStartColumn(Start, STI, OS);
727 
728     if (MI) {
729       IP.printInst(MI, Address.Address, "", STI, OS);
730     } else
731       OS << "\t<unknown>";
732   }
733 
734   void setInstructionEndianness(llvm::support::endianness Endianness) {
735     InstructionEndianness = Endianness;
736   }
737 
738 private:
739   llvm::support::endianness InstructionEndianness = llvm::support::little;
740 };
741 ARMPrettyPrinter ARMPrettyPrinterInst;
742 
743 class AArch64PrettyPrinter : public PrettyPrinter {
744 public:
745   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
746                  object::SectionedAddress Address, formatted_raw_ostream &OS,
747                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
748                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
749                  LiveVariablePrinter &LVP) override {
750     if (SP && (PrintSource || PrintLines))
751       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
752     LVP.printBetweenInsts(OS, false);
753 
754     size_t Start = OS.tell();
755     if (LeadingAddr)
756       OS << format("%8" PRIx64 ":", Address.Address);
757     if (ShowRawInsn) {
758       size_t Pos = 0, End = Bytes.size();
759       for (; Pos + 4 <= End; Pos += 4)
760         OS << ' '
761            << format_hex_no_prefix(
762                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
763                                                         llvm::support::little),
764                   8);
765       if (Pos < End) {
766         OS << ' ';
767         dumpBytes(Bytes.slice(Pos), OS);
768       }
769     }
770 
771     AlignToInstStartColumn(Start, STI, OS);
772 
773     if (MI) {
774       IP.printInst(MI, Address.Address, "", STI, OS);
775     } else
776       OS << "\t<unknown>";
777   }
778 };
779 AArch64PrettyPrinter AArch64PrettyPrinterInst;
780 
781 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
782   switch(Triple.getArch()) {
783   default:
784     return PrettyPrinterInst;
785   case Triple::hexagon:
786     return HexagonPrettyPrinterInst;
787   case Triple::amdgcn:
788     return AMDGCNPrettyPrinterInst;
789   case Triple::bpfel:
790   case Triple::bpfeb:
791     return BPFPrettyPrinterInst;
792   case Triple::arm:
793   case Triple::armeb:
794   case Triple::thumb:
795   case Triple::thumbeb:
796     return ARMPrettyPrinterInst;
797   case Triple::aarch64:
798   case Triple::aarch64_be:
799   case Triple::aarch64_32:
800     return AArch64PrettyPrinterInst;
801   }
802 }
803 }
804 
805 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
806   assert(Obj.isELF());
807   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
808     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
809                          Obj.getFileName())
810         ->getType();
811   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
812     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
813                          Obj.getFileName())
814         ->getType();
815   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
816     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
817                          Obj.getFileName())
818         ->getType();
819   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
820     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
821                          Obj.getFileName())
822         ->getType();
823   llvm_unreachable("Unsupported binary format");
824 }
825 
826 template <class ELFT>
827 static void
828 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
829                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
830   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
831     uint8_t SymbolType = Symbol.getELFType();
832     if (SymbolType == ELF::STT_SECTION)
833       continue;
834 
835     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
836     // ELFSymbolRef::getAddress() returns size instead of value for common
837     // symbols which is not desirable for disassembly output. Overriding.
838     if (SymbolType == ELF::STT_COMMON)
839       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
840                               Obj.getFileName())
841                     ->st_value;
842 
843     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
844     if (Name.empty())
845       continue;
846 
847     section_iterator SecI =
848         unwrapOrError(Symbol.getSection(), Obj.getFileName());
849     if (SecI == Obj.section_end())
850       continue;
851 
852     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
853   }
854 }
855 
856 static void
857 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
858                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
859   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
860     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
861   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
862     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
863   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
864     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
865   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
866     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
867   else
868     llvm_unreachable("Unsupported binary format");
869 }
870 
871 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
872   for (auto SecI : Obj.sections()) {
873     const WasmSection &Section = Obj.getWasmSection(SecI);
874     if (Section.Type == wasm::WASM_SEC_CODE)
875       return SecI;
876   }
877   return std::nullopt;
878 }
879 
880 static void
881 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
882                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
883   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
884   if (!Section)
885     return;
886   SectionSymbolsTy &Symbols = AllSymbols[*Section];
887 
888   std::set<uint64_t> SymbolAddresses;
889   for (const auto &Sym : Symbols)
890     SymbolAddresses.insert(Sym.Addr);
891 
892   for (const wasm::WasmFunction &Function : Obj.functions()) {
893     uint64_t Address = Function.CodeSectionOffset;
894     // Only add fallback symbols for functions not already present in the symbol
895     // table.
896     if (SymbolAddresses.count(Address))
897       continue;
898     // This function has no symbol, so it should have no SymbolName.
899     assert(Function.SymbolName.empty());
900     // We use DebugName for the name, though it may be empty if there is no
901     // "name" custom section, or that section is missing a name for this
902     // function.
903     StringRef Name = Function.DebugName;
904     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
905   }
906 }
907 
908 static void addPltEntries(const ObjectFile &Obj,
909                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
910                           StringSaver &Saver) {
911   std::optional<SectionRef> Plt;
912   for (const SectionRef &Section : Obj.sections()) {
913     Expected<StringRef> SecNameOrErr = Section.getName();
914     if (!SecNameOrErr) {
915       consumeError(SecNameOrErr.takeError());
916       continue;
917     }
918     if (*SecNameOrErr == ".plt")
919       Plt = Section;
920   }
921   if (!Plt)
922     return;
923   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
924     for (auto PltEntry : ElfObj->getPltAddresses()) {
925       if (PltEntry.first) {
926         SymbolRef Symbol(*PltEntry.first, ElfObj);
927         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
928         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
929           if (!NameOrErr->empty())
930             AllSymbols[*Plt].emplace_back(
931                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
932                 SymbolType);
933           continue;
934         } else {
935           // The warning has been reported in disassembleObject().
936           consumeError(NameOrErr.takeError());
937         }
938       }
939       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
940                         " references an invalid symbol",
941                     Obj.getFileName());
942     }
943   }
944 }
945 
946 // Normally the disassembly output will skip blocks of zeroes. This function
947 // returns the number of zero bytes that can be skipped when dumping the
948 // disassembly of the instructions in Buf.
949 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
950   // Find the number of leading zeroes.
951   size_t N = 0;
952   while (N < Buf.size() && !Buf[N])
953     ++N;
954 
955   // We may want to skip blocks of zero bytes, but unless we see
956   // at least 8 of them in a row.
957   if (N < 8)
958     return 0;
959 
960   // We skip zeroes in multiples of 4 because do not want to truncate an
961   // instruction if it starts with a zero byte.
962   return N & ~0x3;
963 }
964 
965 // Returns a map from sections to their relocations.
966 static std::map<SectionRef, std::vector<RelocationRef>>
967 getRelocsMap(object::ObjectFile const &Obj) {
968   std::map<SectionRef, std::vector<RelocationRef>> Ret;
969   uint64_t I = (uint64_t)-1;
970   for (SectionRef Sec : Obj.sections()) {
971     ++I;
972     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
973     if (!RelocatedOrErr)
974       reportError(Obj.getFileName(),
975                   "section (" + Twine(I) +
976                       "): failed to get a relocated section: " +
977                       toString(RelocatedOrErr.takeError()));
978 
979     section_iterator Relocated = *RelocatedOrErr;
980     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
981       continue;
982     std::vector<RelocationRef> &V = Ret[*Relocated];
983     append_range(V, Sec.relocations());
984     // Sort relocations by address.
985     llvm::stable_sort(V, isRelocAddressLess);
986   }
987   return Ret;
988 }
989 
990 // Used for --adjust-vma to check if address should be adjusted by the
991 // specified value for a given section.
992 // For ELF we do not adjust non-allocatable sections like debug ones,
993 // because they are not loadable.
994 // TODO: implement for other file formats.
995 static bool shouldAdjustVA(const SectionRef &Section) {
996   const ObjectFile *Obj = Section.getObject();
997   if (Obj->isELF())
998     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
999   return false;
1000 }
1001 
1002 
1003 typedef std::pair<uint64_t, char> MappingSymbolPair;
1004 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1005                                  uint64_t Address) {
1006   auto It =
1007       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1008         return Val.first <= Address;
1009       });
1010   // Return zero for any address before the first mapping symbol; this means
1011   // we should use the default disassembly mode, depending on the target.
1012   if (It == MappingSymbols.begin())
1013     return '\x00';
1014   return (It - 1)->second;
1015 }
1016 
1017 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1018                                uint64_t End, const ObjectFile &Obj,
1019                                ArrayRef<uint8_t> Bytes,
1020                                ArrayRef<MappingSymbolPair> MappingSymbols,
1021                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1022   support::endianness Endian =
1023       Obj.isLittleEndian() ? support::little : support::big;
1024   size_t Start = OS.tell();
1025   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1026   if (Index + 4 <= End) {
1027     dumpBytes(Bytes.slice(Index, 4), OS);
1028     AlignToInstStartColumn(Start, STI, OS);
1029     OS << "\t.word\t"
1030            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1031                          10);
1032     return 4;
1033   }
1034   if (Index + 2 <= End) {
1035     dumpBytes(Bytes.slice(Index, 2), OS);
1036     AlignToInstStartColumn(Start, STI, OS);
1037     OS << "\t.short\t"
1038        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1039     return 2;
1040   }
1041   dumpBytes(Bytes.slice(Index, 1), OS);
1042   AlignToInstStartColumn(Start, STI, OS);
1043   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1044   return 1;
1045 }
1046 
1047 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1048                         ArrayRef<uint8_t> Bytes) {
1049   // print out data up to 8 bytes at a time in hex and ascii
1050   uint8_t AsciiData[9] = {'\0'};
1051   uint8_t Byte;
1052   int NumBytes = 0;
1053 
1054   for (; Index < End; ++Index) {
1055     if (NumBytes == 0)
1056       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1057     Byte = Bytes.slice(Index)[0];
1058     outs() << format(" %02x", Byte);
1059     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1060 
1061     uint8_t IndentOffset = 0;
1062     NumBytes++;
1063     if (Index == End - 1 || NumBytes > 8) {
1064       // Indent the space for less than 8 bytes data.
1065       // 2 spaces for byte and one for space between bytes
1066       IndentOffset = 3 * (8 - NumBytes);
1067       for (int Excess = NumBytes; Excess < 8; Excess++)
1068         AsciiData[Excess] = '\0';
1069       NumBytes = 8;
1070     }
1071     if (NumBytes == 8) {
1072       AsciiData[8] = '\0';
1073       outs() << std::string(IndentOffset, ' ') << "         ";
1074       outs() << reinterpret_cast<char *>(AsciiData);
1075       outs() << '\n';
1076       NumBytes = 0;
1077     }
1078   }
1079 }
1080 
1081 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1082                                        const SymbolRef &Symbol) {
1083   const StringRef FileName = Obj.getFileName();
1084   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1085   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1086 
1087   if (Obj.isXCOFF() && SymbolDescription) {
1088     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1089     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1090 
1091     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1092     std::optional<XCOFF::StorageMappingClass> Smc =
1093         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1094     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1095                         isLabel(XCOFFObj, Symbol));
1096   } else if (Obj.isXCOFF()) {
1097     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1098     return SymbolInfoTy(Addr, Name, SymType, true);
1099   } else
1100     return SymbolInfoTy(Addr, Name,
1101                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1102                                     : (uint8_t)ELF::STT_NOTYPE);
1103 }
1104 
1105 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1106                                           const uint64_t Addr, StringRef &Name,
1107                                           uint8_t Type) {
1108   if (Obj.isXCOFF() && SymbolDescription)
1109     return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
1110   else
1111     return SymbolInfoTy(Addr, Name, Type);
1112 }
1113 
1114 static void
1115 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1116                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1117                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1118   if (AddrToBBAddrMap.empty())
1119     return;
1120   Labels.clear();
1121   uint64_t StartAddress = SectionAddr + Start;
1122   uint64_t EndAddress = SectionAddr + End;
1123   auto Iter = AddrToBBAddrMap.find(StartAddress);
1124   if (Iter == AddrToBBAddrMap.end())
1125     return;
1126   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1127     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1128     if (BBAddress >= EndAddress)
1129       continue;
1130     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1131   }
1132 }
1133 
1134 static void collectLocalBranchTargets(
1135     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1136     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1137     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1138   // So far only supports PowerPC and X86.
1139   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1140     return;
1141 
1142   Labels.clear();
1143   unsigned LabelCount = 0;
1144   Start += SectionAddr;
1145   End += SectionAddr;
1146   uint64_t Index = Start;
1147   while (Index < End) {
1148     // Disassemble a real instruction and record function-local branch labels.
1149     MCInst Inst;
1150     uint64_t Size;
1151     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1152     bool Disassembled =
1153         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1154     if (Size == 0)
1155       Size = std::min<uint64_t>(ThisBytes.size(),
1156                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1157 
1158     if (Disassembled && MIA) {
1159       uint64_t Target;
1160       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1161       // On PowerPC, if the address of a branch is the same as the target, it
1162       // means that it's a function call. Do not mark the label for this case.
1163       if (TargetKnown && (Target >= Start && Target < End) &&
1164           !Labels.count(Target) &&
1165           !(STI->getTargetTriple().isPPC() && Target == Index))
1166         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1167     }
1168     Index += Size;
1169   }
1170 }
1171 
1172 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1173 // This is currently only used on AMDGPU, and assumes the format of the
1174 // void * argument passed to AMDGPU's createMCSymbolizer.
1175 static void addSymbolizer(
1176     MCContext &Ctx, const Target *Target, StringRef TripleName,
1177     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1178     SectionSymbolsTy &Symbols,
1179     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1180 
1181   std::unique_ptr<MCRelocationInfo> RelInfo(
1182       Target->createMCRelocationInfo(TripleName, Ctx));
1183   if (!RelInfo)
1184     return;
1185   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1186       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1187   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1188   DisAsm->setSymbolizer(std::move(Symbolizer));
1189 
1190   if (!SymbolizeOperands)
1191     return;
1192 
1193   // Synthesize labels referenced by branch instructions by
1194   // disassembling, discarding the output, and collecting the referenced
1195   // addresses from the symbolizer.
1196   for (size_t Index = 0; Index != Bytes.size();) {
1197     MCInst Inst;
1198     uint64_t Size;
1199     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1200     const uint64_t ThisAddr = SectionAddr + Index;
1201     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1202     if (Size == 0)
1203       Size = std::min<uint64_t>(ThisBytes.size(),
1204                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1205     Index += Size;
1206   }
1207   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1208   // Copy and sort to remove duplicates.
1209   std::vector<uint64_t> LabelAddrs;
1210   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1211                     LabelAddrsRef.end());
1212   llvm::sort(LabelAddrs);
1213   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1214                     LabelAddrs.begin());
1215   // Add the labels.
1216   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1217     auto Name = std::make_unique<std::string>();
1218     *Name = (Twine("L") + Twine(LabelNum)).str();
1219     SynthesizedLabelNames.push_back(std::move(Name));
1220     Symbols.push_back(SymbolInfoTy(
1221         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1222   }
1223   llvm::stable_sort(Symbols);
1224   // Recreate the symbolizer with the new symbols list.
1225   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1226   Symbolizer.reset(Target->createMCSymbolizer(
1227       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1228   DisAsm->setSymbolizer(std::move(Symbolizer));
1229 }
1230 
1231 static StringRef getSegmentName(const MachOObjectFile *MachO,
1232                                 const SectionRef &Section) {
1233   if (MachO) {
1234     DataRefImpl DR = Section.getRawDataRefImpl();
1235     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1236     return SegmentName;
1237   }
1238   return "";
1239 }
1240 
1241 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1242                                     const MCAsmInfo &MAI,
1243                                     const MCSubtargetInfo &STI,
1244                                     StringRef Comments,
1245                                     LiveVariablePrinter &LVP) {
1246   do {
1247     if (!Comments.empty()) {
1248       // Emit a line of comments.
1249       StringRef Comment;
1250       std::tie(Comment, Comments) = Comments.split('\n');
1251       // MAI.getCommentColumn() assumes that instructions are printed at the
1252       // position of 8, while getInstStartColumn() returns the actual position.
1253       unsigned CommentColumn =
1254           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1255       FOS.PadToColumn(CommentColumn);
1256       FOS << MAI.getCommentString() << ' ' << Comment;
1257     }
1258     LVP.printAfterInst(FOS);
1259     FOS << '\n';
1260   } while (!Comments.empty());
1261   FOS.flush();
1262 }
1263 
1264 static void createFakeELFSections(ObjectFile &Obj) {
1265   assert(Obj.isELF());
1266   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1267     Elf32LEObj->createFakeSections();
1268   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1269     Elf64LEObj->createFakeSections();
1270   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1271     Elf32BEObj->createFakeSections();
1272   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1273     Elf64BEObj->createFakeSections();
1274   else
1275     llvm_unreachable("Unsupported binary format");
1276 }
1277 
1278 // Tries to fetch a more complete version of the given object file using its
1279 // Build ID. Returns std::nullopt if nothing was found.
1280 static std::optional<OwningBinary<Binary>>
1281 fetchBinaryByBuildID(const ObjectFile &Obj) {
1282   std::optional<object::BuildIDRef> BuildID = getBuildID(&Obj);
1283   if (!BuildID)
1284     return std::nullopt;
1285   std::optional<std::string> Path = BIDFetcher->fetch(*BuildID);
1286   if (!Path)
1287     return std::nullopt;
1288   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1289   if (!DebugBinary) {
1290     reportWarning(toString(DebugBinary.takeError()), *Path);
1291     return std::nullopt;
1292   }
1293   return std::move(*DebugBinary);
1294 }
1295 
1296 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1297                               const ObjectFile &DbgObj, MCContext &Ctx,
1298                               MCDisassembler *PrimaryDisAsm,
1299                               MCDisassembler *SecondaryDisAsm,
1300                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1301                               const MCSubtargetInfo *PrimarySTI,
1302                               const MCSubtargetInfo *SecondarySTI,
1303                               PrettyPrinter &PIP, SourcePrinter &SP,
1304                               bool InlineRelocs) {
1305   const MCSubtargetInfo *STI = PrimarySTI;
1306   MCDisassembler *DisAsm = PrimaryDisAsm;
1307   bool PrimaryIsThumb = false;
1308   if (isArmElf(Obj))
1309     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1310 
1311   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1312   if (InlineRelocs)
1313     RelocMap = getRelocsMap(Obj);
1314   bool Is64Bits = Obj.getBytesInAddress() > 4;
1315 
1316   // Create a mapping from virtual address to symbol name.  This is used to
1317   // pretty print the symbols while disassembling.
1318   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1319   SectionSymbolsTy AbsoluteSymbols;
1320   const StringRef FileName = Obj.getFileName();
1321   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1322   for (const SymbolRef &Symbol : Obj.symbols()) {
1323     Expected<StringRef> NameOrErr = Symbol.getName();
1324     if (!NameOrErr) {
1325       reportWarning(toString(NameOrErr.takeError()), FileName);
1326       continue;
1327     }
1328     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1329       continue;
1330 
1331     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1332       continue;
1333 
1334     if (MachO) {
1335       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1336       // symbols that support MachO header introspection. They do not bind to
1337       // code locations and are irrelevant for disassembly.
1338       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1339         continue;
1340       // Don't ask a Mach-O STAB symbol for its section unless you know that
1341       // STAB symbol's section field refers to a valid section index. Otherwise
1342       // the symbol may error trying to load a section that does not exist.
1343       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1344       uint8_t NType = (MachO->is64Bit() ?
1345                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1346                        MachO->getSymbolTableEntry(SymDRI).n_type);
1347       if (NType & MachO::N_STAB)
1348         continue;
1349     }
1350 
1351     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1352     if (SecI != Obj.section_end())
1353       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1354     else
1355       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1356   }
1357 
1358   if (AllSymbols.empty() && Obj.isELF())
1359     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1360 
1361   if (Obj.isWasm())
1362     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1363 
1364   if (Obj.isELF() && Obj.sections().empty())
1365     createFakeELFSections(Obj);
1366 
1367   BumpPtrAllocator A;
1368   StringSaver Saver(A);
1369   addPltEntries(Obj, AllSymbols, Saver);
1370 
1371   // Create a mapping from virtual address to section. An empty section can
1372   // cause more than one section at the same address. Sort such sections to be
1373   // before same-addressed non-empty sections so that symbol lookups prefer the
1374   // non-empty section.
1375   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1376   for (SectionRef Sec : Obj.sections())
1377     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1378   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1379     if (LHS.first != RHS.first)
1380       return LHS.first < RHS.first;
1381     return LHS.second.getSize() < RHS.second.getSize();
1382   });
1383 
1384   // Linked executables (.exe and .dll files) typically don't include a real
1385   // symbol table but they might contain an export table.
1386   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1387     for (const auto &ExportEntry : COFFObj->export_directories()) {
1388       StringRef Name;
1389       if (Error E = ExportEntry.getSymbolName(Name))
1390         reportError(std::move(E), Obj.getFileName());
1391       if (Name.empty())
1392         continue;
1393 
1394       uint32_t RVA;
1395       if (Error E = ExportEntry.getExportRVA(RVA))
1396         reportError(std::move(E), Obj.getFileName());
1397 
1398       uint64_t VA = COFFObj->getImageBase() + RVA;
1399       auto Sec = partition_point(
1400           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1401             return O.first <= VA;
1402           });
1403       if (Sec != SectionAddresses.begin()) {
1404         --Sec;
1405         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1406       } else
1407         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1408     }
1409   }
1410 
1411   // Sort all the symbols, this allows us to use a simple binary search to find
1412   // Multiple symbols can have the same address. Use a stable sort to stabilize
1413   // the output.
1414   StringSet<> FoundDisasmSymbolSet;
1415   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1416     llvm::stable_sort(SecSyms.second);
1417   llvm::stable_sort(AbsoluteSymbols);
1418 
1419   std::unique_ptr<DWARFContext> DICtx;
1420   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1421 
1422   if (DbgVariables != DVDisabled) {
1423     DICtx = DWARFContext::create(DbgObj);
1424     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1425       LVP.addCompileUnit(CU->getUnitDIE(false));
1426   }
1427 
1428   LLVM_DEBUG(LVP.dump());
1429 
1430   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1431   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1432                                std::nullopt) {
1433     AddrToBBAddrMap.clear();
1434     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1435       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1436       if (!BBAddrMapsOrErr)
1437         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1438       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1439         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1440                                 std::move(FunctionBBAddrMap));
1441     }
1442   };
1443 
1444   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1445   // single mapping, since they don't have any conflicts.
1446   if (SymbolizeOperands && !Obj.isRelocatableObject())
1447     ReadBBAddrMap();
1448 
1449   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1450     if (FilterSections.empty() && !DisassembleAll &&
1451         (!Section.isText() || Section.isVirtual()))
1452       continue;
1453 
1454     uint64_t SectionAddr = Section.getAddress();
1455     uint64_t SectSize = Section.getSize();
1456     if (!SectSize)
1457       continue;
1458 
1459     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1460     // corresponding to this section, if present.
1461     if (SymbolizeOperands && Obj.isRelocatableObject())
1462       ReadBBAddrMap(Section.getIndex());
1463 
1464     // Get the list of all the symbols in this section.
1465     SectionSymbolsTy &Symbols = AllSymbols[Section];
1466     std::vector<MappingSymbolPair> MappingSymbols;
1467     if (hasMappingSymbols(Obj)) {
1468       for (const auto &Symb : Symbols) {
1469         uint64_t Address = Symb.Addr;
1470         StringRef Name = Symb.Name;
1471         if (Name.startswith("$d"))
1472           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1473         if (Name.startswith("$x"))
1474           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1475         if (Name.startswith("$a"))
1476           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1477         if (Name.startswith("$t"))
1478           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1479       }
1480     }
1481 
1482     llvm::sort(MappingSymbols);
1483 
1484     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1485         unwrapOrError(Section.getContents(), Obj.getFileName()));
1486 
1487     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1488     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1489       // AMDGPU disassembler uses symbolizer for printing labels
1490       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1491                     Symbols, SynthesizedLabelNames);
1492     }
1493 
1494     StringRef SegmentName = getSegmentName(MachO, Section);
1495     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1496     // If the section has no symbol at the start, just insert a dummy one.
1497     if (Symbols.empty() || Symbols[0].Addr != 0) {
1498       Symbols.insert(Symbols.begin(),
1499                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1500                                            Section.isText() ? ELF::STT_FUNC
1501                                                             : ELF::STT_OBJECT));
1502     }
1503 
1504     SmallString<40> Comments;
1505     raw_svector_ostream CommentStream(Comments);
1506 
1507     uint64_t VMAAdjustment = 0;
1508     if (shouldAdjustVA(Section))
1509       VMAAdjustment = AdjustVMA;
1510 
1511     // In executable and shared objects, r_offset holds a virtual address.
1512     // Subtract SectionAddr from the r_offset field of a relocation to get
1513     // the section offset.
1514     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1515     uint64_t Size;
1516     uint64_t Index;
1517     bool PrintedSection = false;
1518     std::vector<RelocationRef> Rels = RelocMap[Section];
1519     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1520     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1521 
1522     // Loop over each chunk of code between two points where at least
1523     // one symbol is defined.
1524     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1525       // Advance SI past all the symbols starting at the same address,
1526       // and make an ArrayRef of them.
1527       unsigned FirstSI = SI;
1528       uint64_t Start = Symbols[SI].Addr;
1529       ArrayRef<SymbolInfoTy> SymbolsHere;
1530       while (SI != SE && Symbols[SI].Addr == Start)
1531         ++SI;
1532       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1533 
1534       // Get the demangled names of all those symbols. We end up with a vector
1535       // of StringRef that holds the names we're going to use, and a vector of
1536       // std::string that stores the new strings returned by demangle(), if
1537       // any. If we don't call demangle() then that vector can stay empty.
1538       std::vector<StringRef> SymNamesHere;
1539       std::vector<std::string> DemangledSymNamesHere;
1540       if (Demangle) {
1541         // Fetch the demangled names and store them locally.
1542         for (const SymbolInfoTy &Symbol : SymbolsHere)
1543           DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
1544         // Now we've finished modifying that vector, it's safe to make
1545         // a vector of StringRefs pointing into it.
1546         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1547                             DemangledSymNamesHere.end());
1548       } else {
1549         for (const SymbolInfoTy &Symbol : SymbolsHere)
1550           SymNamesHere.push_back(Symbol.Name);
1551       }
1552 
1553       // Distinguish ELF data from code symbols, which will be used later on to
1554       // decide whether to 'disassemble' this chunk as a data declaration via
1555       // dumpELFData(), or whether to treat it as code.
1556       //
1557       // If data _and_ code symbols are defined at the same address, the code
1558       // takes priority, on the grounds that disassembling code is our main
1559       // purpose here, and it would be a worse failure to _not_ interpret
1560       // something that _was_ meaningful as code than vice versa.
1561       //
1562       // Any ELF symbol type that is not clearly data will be regarded as code.
1563       // In particular, one of the uses of STT_NOTYPE is for branch targets
1564       // inside functions, for which STT_FUNC would be inaccurate.
1565       //
1566       // So here, we spot whether there's any non-data symbol present at all,
1567       // and only set the DisassembleAsData flag if there isn't. Also, we use
1568       // this distinction to inform the decision of which symbol to print at
1569       // the head of the section, so that if we're printing code, we print a
1570       // code-related symbol name to go with it.
1571       bool DisassembleAsData = false;
1572       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1573       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1574         DisassembleAsData = true; // unless we find a code symbol below
1575 
1576         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1577           uint8_t SymTy = SymbolsHere[i].Type;
1578           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1579             DisassembleAsData = false;
1580             DisplaySymIndex = i;
1581           }
1582         }
1583       }
1584 
1585       // Decide which symbol(s) from this collection we're going to print.
1586       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1587       // If the user has given the --disassemble-symbols option, then we must
1588       // display every symbol in that set, and no others.
1589       if (!DisasmSymbolSet.empty()) {
1590         bool FoundAny = false;
1591         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1592           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1593             SymsToPrint[i] = true;
1594             FoundAny = true;
1595           }
1596         }
1597 
1598         // And if none of the symbols here is one that the user asked for, skip
1599         // disassembling this entire chunk of code.
1600         if (!FoundAny)
1601           continue;
1602       } else {
1603         // Otherwise, print whichever symbol at this location is last in the
1604         // Symbols array, because that array is pre-sorted in a way intended to
1605         // correlate with priority of which symbol to display.
1606         SymsToPrint[DisplaySymIndex] = true;
1607       }
1608 
1609       // Now that we know we're disassembling this section, override the choice
1610       // of which symbols to display by printing _all_ of them at this address
1611       // if the user asked for all symbols.
1612       //
1613       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1614       // only the chunk of code headed by 'foo', but also show any other
1615       // symbols defined at that address, such as aliases for 'foo', or the ARM
1616       // mapping symbol preceding its code.
1617       if (ShowAllSymbols) {
1618         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1619           SymsToPrint[i] = true;
1620       }
1621 
1622       if (Start < SectionAddr || StopAddress <= Start)
1623         continue;
1624 
1625       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1626         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1627 
1628       // The end is the section end, the beginning of the next symbol, or
1629       // --stop-address.
1630       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1631       if (SI < SE)
1632         End = std::min(End, Symbols[SI].Addr);
1633       if (Start >= End || End <= StartAddress)
1634         continue;
1635       Start -= SectionAddr;
1636       End -= SectionAddr;
1637 
1638       if (!PrintedSection) {
1639         PrintedSection = true;
1640         outs() << "\nDisassembly of section ";
1641         if (!SegmentName.empty())
1642           outs() << SegmentName << ",";
1643         outs() << SectionName << ":\n";
1644       }
1645 
1646       outs() << '\n';
1647 
1648       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1649         if (!SymsToPrint[i])
1650           continue;
1651 
1652         const SymbolInfoTy &Symbol = SymbolsHere[i];
1653         const StringRef SymbolName = SymNamesHere[i];
1654 
1655         if (LeadingAddr)
1656           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1657                            SectionAddr + Start + VMAAdjustment);
1658         if (Obj.isXCOFF() && SymbolDescription) {
1659           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1660         } else
1661           outs() << '<' << SymbolName << ">:\n";
1662       }
1663 
1664       // Don't print raw contents of a virtual section. A virtual section
1665       // doesn't have any contents in the file.
1666       if (Section.isVirtual()) {
1667         outs() << "...\n";
1668         continue;
1669       }
1670 
1671       // See if any of the symbols defined at this location triggers target-
1672       // specific disassembly behavior, e.g. of special descriptors or function
1673       // prelude information.
1674       //
1675       // We stop this loop at the first symbol that triggers some kind of
1676       // interesting behavior (if any), on the assumption that if two symbols
1677       // defined at the same address trigger two conflicting symbol handlers,
1678       // the object file is probably confused anyway, and it would make even
1679       // less sense to present the output of _both_ handlers, because that
1680       // would describe the same data twice.
1681       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1682         SymbolInfoTy Symbol = SymbolsHere[SHI];
1683 
1684         auto Status =
1685             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1686                                   SectionAddr + Start, CommentStream);
1687 
1688         if (!Status) {
1689           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1690           // any interesting handling for this symbol. Try the other symbols
1691           // defined at this address.
1692           continue;
1693         }
1694 
1695         if (Status.value() == MCDisassembler::Fail) {
1696           // If onSymbolStart returns Fail, that means it identified some kind
1697           // of special data at this address, but wasn't able to disassemble it
1698           // meaningfully. So we fall back to disassembling the failed region
1699           // as bytes, assuming that the target detected the failure before
1700           // printing anything.
1701           //
1702           // Return values Success or SoftFail (i.e no 'real' failure) are
1703           // expected to mean that the target has emitted its own output.
1704           //
1705           // Either way, 'Size' will have been set to the amount of data
1706           // covered by whatever prologue the target identified. So we advance
1707           // our own position to beyond that. Sometimes that will be the entire
1708           // distance to the next symbol, and sometimes it will be just a
1709           // prologue and we should start disassembling instructions from where
1710           // it left off.
1711           outs() << "// Error in decoding " << SymNamesHere[SHI]
1712                  << " : Decoding failed region as bytes.\n";
1713           for (uint64_t I = 0; I < Size; ++I) {
1714             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1715                    << "\n";
1716           }
1717         }
1718         Start += Size;
1719         break;
1720       }
1721 
1722       Index = Start;
1723       if (SectionAddr < StartAddress)
1724         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1725 
1726       if (DisassembleAsData) {
1727         dumpELFData(SectionAddr, Index, End, Bytes);
1728         Index = End;
1729         continue;
1730       }
1731 
1732       bool DumpARMELFData = false;
1733       formatted_raw_ostream FOS(outs());
1734 
1735       std::unordered_map<uint64_t, std::string> AllLabels;
1736       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1737       if (SymbolizeOperands) {
1738         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1739                                   SectionAddr, Index, End, AllLabels);
1740         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1741                                BBAddrMapLabels);
1742       }
1743 
1744       while (Index < End) {
1745         // ARM and AArch64 ELF binaries can interleave data and text in the
1746         // same section. We rely on the markers introduced to understand what
1747         // we need to dump. If the data marker is within a function, it is
1748         // denoted as a word/short etc.
1749         if (!MappingSymbols.empty()) {
1750           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1751           DumpARMELFData = Kind == 'd';
1752           if (SecondarySTI) {
1753             if (Kind == 'a') {
1754               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1755               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1756             } else if (Kind == 't') {
1757               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1758               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1759             }
1760           }
1761         }
1762 
1763         if (DumpARMELFData) {
1764           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1765                                 MappingSymbols, *STI, FOS);
1766         } else {
1767           // When -z or --disassemble-zeroes are given we always dissasemble
1768           // them. Otherwise we might want to skip zero bytes we see.
1769           if (!DisassembleZeroes) {
1770             uint64_t MaxOffset = End - Index;
1771             // For --reloc: print zero blocks patched by relocations, so that
1772             // relocations can be shown in the dump.
1773             if (RelCur != RelEnd)
1774               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1775                                    MaxOffset);
1776 
1777             if (size_t N =
1778                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1779               FOS << "\t\t..." << '\n';
1780               Index += N;
1781               continue;
1782             }
1783           }
1784 
1785           // Print local label if there's any.
1786           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1787           if (Iter1 != BBAddrMapLabels.end()) {
1788             for (StringRef Label : Iter1->second)
1789               FOS << "<" << Label << ">:\n";
1790           } else {
1791             auto Iter2 = AllLabels.find(SectionAddr + Index);
1792             if (Iter2 != AllLabels.end())
1793               FOS << "<" << Iter2->second << ">:\n";
1794           }
1795 
1796           // Disassemble a real instruction or a data when disassemble all is
1797           // provided
1798           MCInst Inst;
1799           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1800           uint64_t ThisAddr = SectionAddr + Index;
1801           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1802                                                      ThisAddr, CommentStream);
1803           if (Size == 0)
1804             Size = std::min<uint64_t>(
1805                 ThisBytes.size(),
1806                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1807 
1808           LVP.update({Index, Section.getIndex()},
1809                      {Index + Size, Section.getIndex()}, Index + Size != End);
1810 
1811           IP->setCommentStream(CommentStream);
1812 
1813           PIP.printInst(
1814               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1815               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1816               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1817 
1818           IP->setCommentStream(llvm::nulls());
1819 
1820           // If disassembly has failed, avoid analysing invalid/incomplete
1821           // instruction information. Otherwise, try to resolve the target
1822           // address (jump target or memory operand address) and print it on the
1823           // right of the instruction.
1824           if (Disassembled && MIA) {
1825             // Branch targets are printed just after the instructions.
1826             llvm::raw_ostream *TargetOS = &FOS;
1827             uint64_t Target;
1828             bool PrintTarget =
1829                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1830             if (!PrintTarget)
1831               if (std::optional<uint64_t> MaybeTarget =
1832                       MIA->evaluateMemoryOperandAddress(
1833                           Inst, STI, SectionAddr + Index, Size)) {
1834                 Target = *MaybeTarget;
1835                 PrintTarget = true;
1836                 // Do not print real address when symbolizing.
1837                 if (!SymbolizeOperands) {
1838                   // Memory operand addresses are printed as comments.
1839                   TargetOS = &CommentStream;
1840                   *TargetOS << "0x" << Twine::utohexstr(Target);
1841                 }
1842               }
1843             if (PrintTarget) {
1844               // In a relocatable object, the target's section must reside in
1845               // the same section as the call instruction or it is accessed
1846               // through a relocation.
1847               //
1848               // In a non-relocatable object, the target may be in any section.
1849               // In that case, locate the section(s) containing the target
1850               // address and find the symbol in one of those, if possible.
1851               //
1852               // N.B. We don't walk the relocations in the relocatable case yet.
1853               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1854               if (!Obj.isRelocatableObject()) {
1855                 auto It = llvm::partition_point(
1856                     SectionAddresses,
1857                     [=](const std::pair<uint64_t, SectionRef> &O) {
1858                       return O.first <= Target;
1859                     });
1860                 uint64_t TargetSecAddr = 0;
1861                 while (It != SectionAddresses.begin()) {
1862                   --It;
1863                   if (TargetSecAddr == 0)
1864                     TargetSecAddr = It->first;
1865                   if (It->first != TargetSecAddr)
1866                     break;
1867                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1868                 }
1869               } else {
1870                 TargetSectionSymbols.push_back(&Symbols);
1871               }
1872               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1873 
1874               // Find the last symbol in the first candidate section whose
1875               // offset is less than or equal to the target. If there are no
1876               // such symbols, try in the next section and so on, before finally
1877               // using the nearest preceding absolute symbol (if any), if there
1878               // are no other valid symbols.
1879               const SymbolInfoTy *TargetSym = nullptr;
1880               for (const SectionSymbolsTy *TargetSymbols :
1881                    TargetSectionSymbols) {
1882                 auto It = llvm::partition_point(
1883                     *TargetSymbols,
1884                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1885                 while (It != TargetSymbols->begin()) {
1886                   --It;
1887                   // Skip mapping symbols to avoid possible ambiguity as they
1888                   // do not allow uniquely identifying the target address.
1889                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
1890                     TargetSym = &*It;
1891                     break;
1892                   }
1893                 }
1894                 if (TargetSym)
1895                   break;
1896               }
1897 
1898               // Print the labels corresponding to the target if there's any.
1899               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1900               bool LabelAvailable = AllLabels.count(Target);
1901               if (TargetSym != nullptr) {
1902                 uint64_t TargetAddress = TargetSym->Addr;
1903                 uint64_t Disp = Target - TargetAddress;
1904                 std::string TargetName = TargetSym->Name.str();
1905                 if (Demangle)
1906                   TargetName = demangle(TargetName);
1907 
1908                 *TargetOS << " <";
1909                 if (!Disp) {
1910                   // Always Print the binary symbol precisely corresponding to
1911                   // the target address.
1912                   *TargetOS << TargetName;
1913                 } else if (BBAddrMapLabelAvailable) {
1914                   *TargetOS << BBAddrMapLabels[Target].front();
1915                 } else if (LabelAvailable) {
1916                   *TargetOS << AllLabels[Target];
1917                 } else {
1918                   // Always Print the binary symbol plus an offset if there's no
1919                   // local label corresponding to the target address.
1920                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1921                 }
1922                 *TargetOS << ">";
1923               } else if (BBAddrMapLabelAvailable) {
1924                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1925               } else if (LabelAvailable) {
1926                 *TargetOS << " <" << AllLabels[Target] << ">";
1927               }
1928               // By convention, each record in the comment stream should be
1929               // terminated.
1930               if (TargetOS == &CommentStream)
1931                 *TargetOS << "\n";
1932             }
1933           }
1934         }
1935 
1936         assert(Ctx.getAsmInfo());
1937         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1938                                 CommentStream.str(), LVP);
1939         Comments.clear();
1940 
1941         // Hexagon does this in pretty printer
1942         if (Obj.getArch() != Triple::hexagon) {
1943           // Print relocation for instruction and data.
1944           while (RelCur != RelEnd) {
1945             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1946             // If this relocation is hidden, skip it.
1947             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1948               ++RelCur;
1949               continue;
1950             }
1951 
1952             // Stop when RelCur's offset is past the disassembled
1953             // instruction/data. Note that it's possible the disassembled data
1954             // is not the complete data: we might see the relocation printed in
1955             // the middle of the data, but this matches the binutils objdump
1956             // output.
1957             if (Offset >= Index + Size)
1958               break;
1959 
1960             // When --adjust-vma is used, update the address printed.
1961             if (RelCur->getSymbol() != Obj.symbol_end()) {
1962               Expected<section_iterator> SymSI =
1963                   RelCur->getSymbol()->getSection();
1964               if (SymSI && *SymSI != Obj.section_end() &&
1965                   shouldAdjustVA(**SymSI))
1966                 Offset += AdjustVMA;
1967             }
1968 
1969             printRelocation(FOS, Obj.getFileName(), *RelCur,
1970                             SectionAddr + Offset, Is64Bits);
1971             LVP.printAfterOtherLine(FOS, true);
1972             ++RelCur;
1973           }
1974         }
1975 
1976         Index += Size;
1977       }
1978     }
1979   }
1980   StringSet<> MissingDisasmSymbolSet =
1981       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1982   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1983     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1984 }
1985 
1986 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1987   // If information useful for showing the disassembly is missing, try to find a
1988   // more complete binary and disassemble that instead.
1989   OwningBinary<Binary> FetchedBinary;
1990   if (Obj->symbols().empty()) {
1991     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
1992             fetchBinaryByBuildID(*Obj)) {
1993       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
1994         if (!O->symbols().empty() ||
1995             (!O->sections().empty() && Obj->sections().empty())) {
1996           FetchedBinary = std::move(*FetchedBinaryOpt);
1997           Obj = O;
1998         }
1999       }
2000     }
2001   }
2002 
2003   const Target *TheTarget = getTarget(Obj);
2004 
2005   // Package up features to be passed to target/subtarget
2006   SubtargetFeatures Features = Obj->getFeatures();
2007   if (!MAttrs.empty()) {
2008     for (unsigned I = 0; I != MAttrs.size(); ++I)
2009       Features.AddFeature(MAttrs[I]);
2010   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2011     Features.AddFeature("+all");
2012   }
2013 
2014   std::unique_ptr<const MCRegisterInfo> MRI(
2015       TheTarget->createMCRegInfo(TripleName));
2016   if (!MRI)
2017     reportError(Obj->getFileName(),
2018                 "no register info for target " + TripleName);
2019 
2020   // Set up disassembler.
2021   MCTargetOptions MCOptions;
2022   std::unique_ptr<const MCAsmInfo> AsmInfo(
2023       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2024   if (!AsmInfo)
2025     reportError(Obj->getFileName(),
2026                 "no assembly info for target " + TripleName);
2027 
2028   if (MCPU.empty())
2029     MCPU = Obj->tryGetCPUName().value_or("").str();
2030 
2031   if (isArmElf(*Obj)) {
2032     // When disassembling big-endian Arm ELF, the instruction endianness is
2033     // determined in a complex way. In relocatable objects, AAELF32 mandates
2034     // that instruction endianness matches the ELF file endianness; in
2035     // executable images, that's true unless the file header has the EF_ARM_BE8
2036     // flag, in which case instructions are little-endian regardless of data
2037     // endianness.
2038     //
2039     // We must set the big-endian-instructions SubtargetFeature to make the
2040     // disassembler read the instructions the right way round, and also tell
2041     // our own prettyprinter to retrieve the encodings the same way to print in
2042     // hex.
2043     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2044 
2045     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2046                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2047       Features.AddFeature("+big-endian-instructions");
2048       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2049     } else {
2050       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2051     }
2052   }
2053 
2054   std::unique_ptr<const MCSubtargetInfo> STI(
2055       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2056   if (!STI)
2057     reportError(Obj->getFileName(),
2058                 "no subtarget info for target " + TripleName);
2059   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2060   if (!MII)
2061     reportError(Obj->getFileName(),
2062                 "no instruction info for target " + TripleName);
2063   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2064   // FIXME: for now initialize MCObjectFileInfo with default values
2065   std::unique_ptr<MCObjectFileInfo> MOFI(
2066       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2067   Ctx.setObjectFileInfo(MOFI.get());
2068 
2069   std::unique_ptr<MCDisassembler> DisAsm(
2070       TheTarget->createMCDisassembler(*STI, Ctx));
2071   if (!DisAsm)
2072     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2073 
2074   // If we have an ARM object file, we need a second disassembler, because
2075   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2076   // We use mapping symbols to switch between the two assemblers, where
2077   // appropriate.
2078   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2079   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2080   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2081     if (STI->checkFeatures("+thumb-mode"))
2082       Features.AddFeature("-thumb-mode");
2083     else
2084       Features.AddFeature("+thumb-mode");
2085     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2086                                                         Features.getString()));
2087     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2088   }
2089 
2090   std::unique_ptr<const MCInstrAnalysis> MIA(
2091       TheTarget->createMCInstrAnalysis(MII.get()));
2092 
2093   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2094   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2095       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2096   if (!IP)
2097     reportError(Obj->getFileName(),
2098                 "no instruction printer for target " + TripleName);
2099   IP->setPrintImmHex(PrintImmHex);
2100   IP->setPrintBranchImmAsAddress(true);
2101   IP->setSymbolizeOperands(SymbolizeOperands);
2102   IP->setMCInstrAnalysis(MIA.get());
2103 
2104   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2105 
2106   const ObjectFile *DbgObj = Obj;
2107   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2108     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2109             fetchBinaryByBuildID(*Obj)) {
2110       if (auto *FetchedObj =
2111               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2112         if (FetchedObj->hasDebugInfo()) {
2113           FetchedBinary = std::move(*DebugBinaryOpt);
2114           DbgObj = FetchedObj;
2115         }
2116       }
2117     }
2118   }
2119 
2120   std::unique_ptr<object::Binary> DSYMBinary;
2121   std::unique_ptr<MemoryBuffer> DSYMBuf;
2122   if (!DbgObj->hasDebugInfo()) {
2123     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2124       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2125                                            DSYMBinary, DSYMBuf);
2126       if (!DbgObj)
2127         return;
2128     }
2129   }
2130 
2131   SourcePrinter SP(DbgObj, TheTarget->getName());
2132 
2133   for (StringRef Opt : DisassemblerOptions)
2134     if (!IP->applyTargetSpecificCLOption(Opt))
2135       reportError(Obj->getFileName(),
2136                   "Unrecognized disassembler option: " + Opt);
2137 
2138   disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
2139                     SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
2140                     SecondarySTI.get(), PIP, SP, InlineRelocs);
2141 }
2142 
2143 void objdump::printRelocations(const ObjectFile *Obj) {
2144   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2145                                                  "%08" PRIx64;
2146 
2147   // Build a mapping from relocation target to a vector of relocation
2148   // sections. Usually, there is an only one relocation section for
2149   // each relocated section.
2150   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2151   uint64_t Ndx;
2152   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2153     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2154       continue;
2155     if (Section.relocation_begin() == Section.relocation_end())
2156       continue;
2157     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2158     if (!SecOrErr)
2159       reportError(Obj->getFileName(),
2160                   "section (" + Twine(Ndx) +
2161                       "): unable to get a relocation target: " +
2162                       toString(SecOrErr.takeError()));
2163     SecToRelSec[**SecOrErr].push_back(Section);
2164   }
2165 
2166   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2167     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2168     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2169     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2170     uint32_t TypePadding = 24;
2171     outs() << left_justify("OFFSET", OffsetPadding) << " "
2172            << left_justify("TYPE", TypePadding) << " "
2173            << "VALUE\n";
2174 
2175     for (SectionRef Section : P.second) {
2176       for (const RelocationRef &Reloc : Section.relocations()) {
2177         uint64_t Address = Reloc.getOffset();
2178         SmallString<32> RelocName;
2179         SmallString<32> ValueStr;
2180         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2181           continue;
2182         Reloc.getTypeName(RelocName);
2183         if (Error E = getRelocationValueString(Reloc, ValueStr))
2184           reportError(std::move(E), Obj->getFileName());
2185 
2186         outs() << format(Fmt.data(), Address) << " "
2187                << left_justify(RelocName, TypePadding) << " " << ValueStr
2188                << "\n";
2189       }
2190     }
2191   }
2192 }
2193 
2194 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2195   // For the moment, this option is for ELF only
2196   if (!Obj->isELF())
2197     return;
2198 
2199   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2200   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2201         return Sec.getType() == ELF::SHT_DYNAMIC;
2202       })) {
2203     reportError(Obj->getFileName(), "not a dynamic object");
2204     return;
2205   }
2206 
2207   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2208   if (DynRelSec.empty())
2209     return;
2210 
2211   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2212   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2213   const uint32_t TypePadding = 24;
2214   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2215          << left_justify("TYPE", TypePadding) << " VALUE\n";
2216 
2217   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2218   for (const SectionRef &Section : DynRelSec)
2219     for (const RelocationRef &Reloc : Section.relocations()) {
2220       uint64_t Address = Reloc.getOffset();
2221       SmallString<32> RelocName;
2222       SmallString<32> ValueStr;
2223       Reloc.getTypeName(RelocName);
2224       if (Error E = getRelocationValueString(Reloc, ValueStr))
2225         reportError(std::move(E), Obj->getFileName());
2226       outs() << format(Fmt.data(), Address) << ' '
2227              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2228     }
2229 }
2230 
2231 // Returns true if we need to show LMA column when dumping section headers. We
2232 // show it only when the platform is ELF and either we have at least one section
2233 // whose VMA and LMA are different and/or when --show-lma flag is used.
2234 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2235   if (!Obj.isELF())
2236     return false;
2237   for (const SectionRef &S : ToolSectionFilter(Obj))
2238     if (S.getAddress() != getELFSectionLMA(S))
2239       return true;
2240   return ShowLMA;
2241 }
2242 
2243 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2244   // Default column width for names is 13 even if no names are that long.
2245   size_t MaxWidth = 13;
2246   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2247     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2248     MaxWidth = std::max(MaxWidth, Name.size());
2249   }
2250   return MaxWidth;
2251 }
2252 
2253 void objdump::printSectionHeaders(ObjectFile &Obj) {
2254   if (Obj.isELF() && Obj.sections().empty())
2255     createFakeELFSections(Obj);
2256 
2257   size_t NameWidth = getMaxSectionNameWidth(Obj);
2258   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2259   bool HasLMAColumn = shouldDisplayLMA(Obj);
2260   outs() << "\nSections:\n";
2261   if (HasLMAColumn)
2262     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2263            << left_justify("VMA", AddressWidth) << " "
2264            << left_justify("LMA", AddressWidth) << " Type\n";
2265   else
2266     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2267            << left_justify("VMA", AddressWidth) << " Type\n";
2268 
2269   uint64_t Idx;
2270   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2271     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2272     uint64_t VMA = Section.getAddress();
2273     if (shouldAdjustVA(Section))
2274       VMA += AdjustVMA;
2275 
2276     uint64_t Size = Section.getSize();
2277 
2278     std::string Type = Section.isText() ? "TEXT" : "";
2279     if (Section.isData())
2280       Type += Type.empty() ? "DATA" : ", DATA";
2281     if (Section.isBSS())
2282       Type += Type.empty() ? "BSS" : ", BSS";
2283     if (Section.isDebugSection())
2284       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2285 
2286     if (HasLMAColumn)
2287       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2288                        Name.str().c_str(), Size)
2289              << format_hex_no_prefix(VMA, AddressWidth) << " "
2290              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2291              << " " << Type << "\n";
2292     else
2293       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2294                        Name.str().c_str(), Size)
2295              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2296   }
2297 }
2298 
2299 void objdump::printSectionContents(const ObjectFile *Obj) {
2300   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2301 
2302   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2303     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2304     uint64_t BaseAddr = Section.getAddress();
2305     uint64_t Size = Section.getSize();
2306     if (!Size)
2307       continue;
2308 
2309     outs() << "Contents of section ";
2310     StringRef SegmentName = getSegmentName(MachO, Section);
2311     if (!SegmentName.empty())
2312       outs() << SegmentName << ",";
2313     outs() << Name << ":\n";
2314     if (Section.isBSS()) {
2315       outs() << format("<skipping contents of bss section at [%04" PRIx64
2316                        ", %04" PRIx64 ")>\n",
2317                        BaseAddr, BaseAddr + Size);
2318       continue;
2319     }
2320 
2321     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2322 
2323     // Dump out the content as hex and printable ascii characters.
2324     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2325       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2326       // Dump line of hex.
2327       for (std::size_t I = 0; I < 16; ++I) {
2328         if (I != 0 && I % 4 == 0)
2329           outs() << ' ';
2330         if (Addr + I < End)
2331           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2332                  << hexdigit(Contents[Addr + I] & 0xF, true);
2333         else
2334           outs() << "  ";
2335       }
2336       // Print ascii.
2337       outs() << "  ";
2338       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2339         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2340           outs() << Contents[Addr + I];
2341         else
2342           outs() << ".";
2343       }
2344       outs() << "\n";
2345     }
2346   }
2347 }
2348 
2349 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2350                                StringRef ArchitectureName, bool DumpDynamic) {
2351   if (O.isCOFF() && !DumpDynamic) {
2352     outs() << "\nSYMBOL TABLE:\n";
2353     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2354     return;
2355   }
2356 
2357   const StringRef FileName = O.getFileName();
2358 
2359   if (!DumpDynamic) {
2360     outs() << "\nSYMBOL TABLE:\n";
2361     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2362       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2363                   DumpDynamic);
2364     return;
2365   }
2366 
2367   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2368   if (!O.isELF()) {
2369     reportWarning(
2370         "this operation is not currently supported for this file format",
2371         FileName);
2372     return;
2373   }
2374 
2375   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2376   auto Symbols = ELF->getDynamicSymbolIterators();
2377   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2378       ELF->readDynsymVersions();
2379   if (!SymbolVersionsOrErr) {
2380     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2381     SymbolVersionsOrErr = std::vector<VersionEntry>();
2382     (void)!SymbolVersionsOrErr;
2383   }
2384   for (auto &Sym : Symbols)
2385     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2386                 ArchitectureName, DumpDynamic);
2387 }
2388 
2389 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2390                           ArrayRef<VersionEntry> SymbolVersions,
2391                           StringRef FileName, StringRef ArchiveName,
2392                           StringRef ArchitectureName, bool DumpDynamic) {
2393   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2394   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2395                                    ArchitectureName);
2396   if ((Address < StartAddress) || (Address > StopAddress))
2397     return;
2398   SymbolRef::Type Type =
2399       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2400   uint32_t Flags =
2401       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2402 
2403   // Don't ask a Mach-O STAB symbol for its section unless you know that
2404   // STAB symbol's section field refers to a valid section index. Otherwise
2405   // the symbol may error trying to load a section that does not exist.
2406   bool IsSTAB = false;
2407   if (MachO) {
2408     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2409     uint8_t NType =
2410         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2411                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2412     if (NType & MachO::N_STAB)
2413       IsSTAB = true;
2414   }
2415   section_iterator Section = IsSTAB
2416                                  ? O.section_end()
2417                                  : unwrapOrError(Symbol.getSection(), FileName,
2418                                                  ArchiveName, ArchitectureName);
2419 
2420   StringRef Name;
2421   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2422     if (Expected<StringRef> NameOrErr = Section->getName())
2423       Name = *NameOrErr;
2424     else
2425       consumeError(NameOrErr.takeError());
2426 
2427   } else {
2428     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2429                          ArchitectureName);
2430   }
2431 
2432   bool Global = Flags & SymbolRef::SF_Global;
2433   bool Weak = Flags & SymbolRef::SF_Weak;
2434   bool Absolute = Flags & SymbolRef::SF_Absolute;
2435   bool Common = Flags & SymbolRef::SF_Common;
2436   bool Hidden = Flags & SymbolRef::SF_Hidden;
2437 
2438   char GlobLoc = ' ';
2439   if ((Section != O.section_end() || Absolute) && !Weak)
2440     GlobLoc = Global ? 'g' : 'l';
2441   char IFunc = ' ';
2442   if (O.isELF()) {
2443     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2444       IFunc = 'i';
2445     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2446       GlobLoc = 'u';
2447   }
2448 
2449   char Debug = ' ';
2450   if (DumpDynamic)
2451     Debug = 'D';
2452   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2453     Debug = 'd';
2454 
2455   char FileFunc = ' ';
2456   if (Type == SymbolRef::ST_File)
2457     FileFunc = 'f';
2458   else if (Type == SymbolRef::ST_Function)
2459     FileFunc = 'F';
2460   else if (Type == SymbolRef::ST_Data)
2461     FileFunc = 'O';
2462 
2463   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2464 
2465   outs() << format(Fmt, Address) << " "
2466          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2467          << (Weak ? 'w' : ' ') // Weak?
2468          << ' '                // Constructor. Not supported yet.
2469          << ' '                // Warning. Not supported yet.
2470          << IFunc              // Indirect reference to another symbol.
2471          << Debug              // Debugging (d) or dynamic (D) symbol.
2472          << FileFunc           // Name of function (F), file (f) or object (O).
2473          << ' ';
2474   if (Absolute) {
2475     outs() << "*ABS*";
2476   } else if (Common) {
2477     outs() << "*COM*";
2478   } else if (Section == O.section_end()) {
2479     if (O.isXCOFF()) {
2480       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2481           Symbol.getRawDataRefImpl());
2482       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2483         outs() << "*DEBUG*";
2484       else
2485         outs() << "*UND*";
2486     } else
2487       outs() << "*UND*";
2488   } else {
2489     StringRef SegmentName = getSegmentName(MachO, *Section);
2490     if (!SegmentName.empty())
2491       outs() << SegmentName << ",";
2492     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2493     outs() << SectionName;
2494     if (O.isXCOFF()) {
2495       std::optional<SymbolRef> SymRef =
2496           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2497       if (SymRef) {
2498 
2499         Expected<StringRef> NameOrErr = SymRef->getName();
2500 
2501         if (NameOrErr) {
2502           outs() << " (csect:";
2503           std::string SymName(NameOrErr.get());
2504 
2505           if (Demangle)
2506             SymName = demangle(SymName);
2507 
2508           if (SymbolDescription)
2509             SymName = getXCOFFSymbolDescription(
2510                 createSymbolInfo(O, SymRef.value()), SymName);
2511 
2512           outs() << ' ' << SymName;
2513           outs() << ") ";
2514         } else
2515           reportWarning(toString(NameOrErr.takeError()), FileName);
2516       }
2517     }
2518   }
2519 
2520   if (Common)
2521     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2522   else if (O.isXCOFF())
2523     outs() << '\t'
2524            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2525                               Symbol.getRawDataRefImpl()));
2526   else if (O.isELF())
2527     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2528 
2529   if (O.isELF()) {
2530     if (!SymbolVersions.empty()) {
2531       const VersionEntry &Ver =
2532           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2533       std::string Str;
2534       if (!Ver.Name.empty())
2535         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2536       outs() << ' ' << left_justify(Str, 12);
2537     }
2538 
2539     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2540     switch (Other) {
2541     case ELF::STV_DEFAULT:
2542       break;
2543     case ELF::STV_INTERNAL:
2544       outs() << " .internal";
2545       break;
2546     case ELF::STV_HIDDEN:
2547       outs() << " .hidden";
2548       break;
2549     case ELF::STV_PROTECTED:
2550       outs() << " .protected";
2551       break;
2552     default:
2553       outs() << format(" 0x%02x", Other);
2554       break;
2555     }
2556   } else if (Hidden) {
2557     outs() << " .hidden";
2558   }
2559 
2560   std::string SymName(Name);
2561   if (Demangle)
2562     SymName = demangle(SymName);
2563 
2564   if (O.isXCOFF() && SymbolDescription)
2565     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2566 
2567   outs() << ' ' << SymName << '\n';
2568 }
2569 
2570 static void printUnwindInfo(const ObjectFile *O) {
2571   outs() << "Unwind info:\n\n";
2572 
2573   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2574     printCOFFUnwindInfo(Coff);
2575   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2576     printMachOUnwindInfo(MachO);
2577   else
2578     // TODO: Extract DWARF dump tool to objdump.
2579     WithColor::error(errs(), ToolName)
2580         << "This operation is only currently supported "
2581            "for COFF and MachO object files.\n";
2582 }
2583 
2584 /// Dump the raw contents of the __clangast section so the output can be piped
2585 /// into llvm-bcanalyzer.
2586 static void printRawClangAST(const ObjectFile *Obj) {
2587   if (outs().is_displayed()) {
2588     WithColor::error(errs(), ToolName)
2589         << "The -raw-clang-ast option will dump the raw binary contents of "
2590            "the clang ast section.\n"
2591            "Please redirect the output to a file or another program such as "
2592            "llvm-bcanalyzer.\n";
2593     return;
2594   }
2595 
2596   StringRef ClangASTSectionName("__clangast");
2597   if (Obj->isCOFF()) {
2598     ClangASTSectionName = "clangast";
2599   }
2600 
2601   std::optional<object::SectionRef> ClangASTSection;
2602   for (auto Sec : ToolSectionFilter(*Obj)) {
2603     StringRef Name;
2604     if (Expected<StringRef> NameOrErr = Sec.getName())
2605       Name = *NameOrErr;
2606     else
2607       consumeError(NameOrErr.takeError());
2608 
2609     if (Name == ClangASTSectionName) {
2610       ClangASTSection = Sec;
2611       break;
2612     }
2613   }
2614   if (!ClangASTSection)
2615     return;
2616 
2617   StringRef ClangASTContents =
2618       unwrapOrError(ClangASTSection.value().getContents(), Obj->getFileName());
2619   outs().write(ClangASTContents.data(), ClangASTContents.size());
2620 }
2621 
2622 static void printFaultMaps(const ObjectFile *Obj) {
2623   StringRef FaultMapSectionName;
2624 
2625   if (Obj->isELF()) {
2626     FaultMapSectionName = ".llvm_faultmaps";
2627   } else if (Obj->isMachO()) {
2628     FaultMapSectionName = "__llvm_faultmaps";
2629   } else {
2630     WithColor::error(errs(), ToolName)
2631         << "This operation is only currently supported "
2632            "for ELF and Mach-O executable files.\n";
2633     return;
2634   }
2635 
2636   std::optional<object::SectionRef> FaultMapSection;
2637 
2638   for (auto Sec : ToolSectionFilter(*Obj)) {
2639     StringRef Name;
2640     if (Expected<StringRef> NameOrErr = Sec.getName())
2641       Name = *NameOrErr;
2642     else
2643       consumeError(NameOrErr.takeError());
2644 
2645     if (Name == FaultMapSectionName) {
2646       FaultMapSection = Sec;
2647       break;
2648     }
2649   }
2650 
2651   outs() << "FaultMap table:\n";
2652 
2653   if (!FaultMapSection) {
2654     outs() << "<not found>\n";
2655     return;
2656   }
2657 
2658   StringRef FaultMapContents =
2659       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2660   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2661                      FaultMapContents.bytes_end());
2662 
2663   outs() << FMP;
2664 }
2665 
2666 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2667   if (O->isELF()) {
2668     printELFFileHeader(O);
2669     printELFDynamicSection(O);
2670     printELFSymbolVersionInfo(O);
2671     return;
2672   }
2673   if (O->isCOFF())
2674     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2675   if (O->isWasm())
2676     return printWasmFileHeader(O);
2677   if (O->isMachO()) {
2678     printMachOFileHeader(O);
2679     if (!OnlyFirst)
2680       printMachOLoadCommands(O);
2681     return;
2682   }
2683   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2684 }
2685 
2686 static void printFileHeaders(const ObjectFile *O) {
2687   if (!O->isELF() && !O->isCOFF())
2688     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2689 
2690   Triple::ArchType AT = O->getArch();
2691   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2692   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2693 
2694   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2695   outs() << "start address: "
2696          << "0x" << format(Fmt.data(), Address) << "\n";
2697 }
2698 
2699 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2700   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2701   if (!ModeOrErr) {
2702     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2703     consumeError(ModeOrErr.takeError());
2704     return;
2705   }
2706   sys::fs::perms Mode = ModeOrErr.get();
2707   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2708   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2709   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2710   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2711   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2712   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2713   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2714   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2715   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2716 
2717   outs() << " ";
2718 
2719   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2720                    unwrapOrError(C.getGID(), Filename),
2721                    unwrapOrError(C.getRawSize(), Filename));
2722 
2723   StringRef RawLastModified = C.getRawLastModified();
2724   unsigned Seconds;
2725   if (RawLastModified.getAsInteger(10, Seconds))
2726     outs() << "(date: \"" << RawLastModified
2727            << "\" contains non-decimal chars) ";
2728   else {
2729     // Since ctime(3) returns a 26 character string of the form:
2730     // "Sun Sep 16 01:03:52 1973\n\0"
2731     // just print 24 characters.
2732     time_t t = Seconds;
2733     outs() << format("%.24s ", ctime(&t));
2734   }
2735 
2736   StringRef Name = "";
2737   Expected<StringRef> NameOrErr = C.getName();
2738   if (!NameOrErr) {
2739     consumeError(NameOrErr.takeError());
2740     Name = unwrapOrError(C.getRawName(), Filename);
2741   } else {
2742     Name = NameOrErr.get();
2743   }
2744   outs() << Name << "\n";
2745 }
2746 
2747 // For ELF only now.
2748 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2749   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2750     if (Elf->getEType() != ELF::ET_REL)
2751       return true;
2752   }
2753   return false;
2754 }
2755 
2756 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2757                                             uint64_t Start, uint64_t Stop) {
2758   if (!shouldWarnForInvalidStartStopAddress(Obj))
2759     return;
2760 
2761   for (const SectionRef &Section : Obj->sections())
2762     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2763       uint64_t BaseAddr = Section.getAddress();
2764       uint64_t Size = Section.getSize();
2765       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2766         return;
2767     }
2768 
2769   if (!HasStartAddressFlag)
2770     reportWarning("no section has address less than 0x" +
2771                       Twine::utohexstr(Stop) + " specified by --stop-address",
2772                   Obj->getFileName());
2773   else if (!HasStopAddressFlag)
2774     reportWarning("no section has address greater than or equal to 0x" +
2775                       Twine::utohexstr(Start) + " specified by --start-address",
2776                   Obj->getFileName());
2777   else
2778     reportWarning("no section overlaps the range [0x" +
2779                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2780                       ") specified by --start-address/--stop-address",
2781                   Obj->getFileName());
2782 }
2783 
2784 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2785                        const Archive::Child *C = nullptr) {
2786   // Avoid other output when using a raw option.
2787   if (!RawClangAST) {
2788     outs() << '\n';
2789     if (A)
2790       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2791     else
2792       outs() << O->getFileName();
2793     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2794   }
2795 
2796   if (HasStartAddressFlag || HasStopAddressFlag)
2797     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2798 
2799   // Note: the order here matches GNU objdump for compatability.
2800   StringRef ArchiveName = A ? A->getFileName() : "";
2801   if (ArchiveHeaders && !MachOOpt && C)
2802     printArchiveChild(ArchiveName, *C);
2803   if (FileHeaders)
2804     printFileHeaders(O);
2805   if (PrivateHeaders || FirstPrivateHeader)
2806     printPrivateFileHeaders(O, FirstPrivateHeader);
2807   if (SectionHeaders)
2808     printSectionHeaders(*O);
2809   if (SymbolTable)
2810     printSymbolTable(*O, ArchiveName);
2811   if (DynamicSymbolTable)
2812     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2813                      /*DumpDynamic=*/true);
2814   if (DwarfDumpType != DIDT_Null) {
2815     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2816     // Dump the complete DWARF structure.
2817     DIDumpOptions DumpOpts;
2818     DumpOpts.DumpType = DwarfDumpType;
2819     DICtx->dump(outs(), DumpOpts);
2820   }
2821   if (Relocations && !Disassemble)
2822     printRelocations(O);
2823   if (DynamicRelocations)
2824     printDynamicRelocations(O);
2825   if (SectionContents)
2826     printSectionContents(O);
2827   if (Disassemble)
2828     disassembleObject(O, Relocations);
2829   if (UnwindInfo)
2830     printUnwindInfo(O);
2831 
2832   // Mach-O specific options:
2833   if (ExportsTrie)
2834     printExportsTrie(O);
2835   if (Rebase)
2836     printRebaseTable(O);
2837   if (Bind)
2838     printBindTable(O);
2839   if (LazyBind)
2840     printLazyBindTable(O);
2841   if (WeakBind)
2842     printWeakBindTable(O);
2843 
2844   // Other special sections:
2845   if (RawClangAST)
2846     printRawClangAST(O);
2847   if (FaultMapSection)
2848     printFaultMaps(O);
2849   if (Offloading)
2850     dumpOffloadBinary(*O);
2851 }
2852 
2853 static void dumpObject(const COFFImportFile *I, const Archive *A,
2854                        const Archive::Child *C = nullptr) {
2855   StringRef ArchiveName = A ? A->getFileName() : "";
2856 
2857   // Avoid other output when using a raw option.
2858   if (!RawClangAST)
2859     outs() << '\n'
2860            << ArchiveName << "(" << I->getFileName() << ")"
2861            << ":\tfile format COFF-import-file"
2862            << "\n\n";
2863 
2864   if (ArchiveHeaders && !MachOOpt && C)
2865     printArchiveChild(ArchiveName, *C);
2866   if (SymbolTable)
2867     printCOFFSymbolTable(*I);
2868 }
2869 
2870 /// Dump each object file in \a a;
2871 static void dumpArchive(const Archive *A) {
2872   Error Err = Error::success();
2873   unsigned I = -1;
2874   for (auto &C : A->children(Err)) {
2875     ++I;
2876     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2877     if (!ChildOrErr) {
2878       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2879         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2880       continue;
2881     }
2882     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2883       dumpObject(O, A, &C);
2884     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2885       dumpObject(I, A, &C);
2886     else
2887       reportError(errorCodeToError(object_error::invalid_file_type),
2888                   A->getFileName());
2889   }
2890   if (Err)
2891     reportError(std::move(Err), A->getFileName());
2892 }
2893 
2894 /// Open file and figure out how to dump it.
2895 static void dumpInput(StringRef file) {
2896   // If we are using the Mach-O specific object file parser, then let it parse
2897   // the file and process the command line options.  So the -arch flags can
2898   // be used to select specific slices, etc.
2899   if (MachOOpt) {
2900     parseInputMachO(file);
2901     return;
2902   }
2903 
2904   // Attempt to open the binary.
2905   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2906   Binary &Binary = *OBinary.getBinary();
2907 
2908   if (Archive *A = dyn_cast<Archive>(&Binary))
2909     dumpArchive(A);
2910   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2911     dumpObject(O);
2912   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2913     parseInputMachO(UB);
2914   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2915     dumpOffloadSections(*OB);
2916   else
2917     reportError(errorCodeToError(object_error::invalid_file_type), file);
2918 }
2919 
2920 template <typename T>
2921 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2922                         T &Value) {
2923   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2924     StringRef V(A->getValue());
2925     if (!llvm::to_integer(V, Value, 0)) {
2926       reportCmdLineError(A->getSpelling() +
2927                          ": expected a non-negative integer, but got '" + V +
2928                          "'");
2929     }
2930   }
2931 }
2932 
2933 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2934   StringRef V(A->getValue());
2935   std::string Bytes;
2936   if (!tryGetFromHex(V, Bytes))
2937     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2938                        V + "'");
2939   ArrayRef<uint8_t> BuildID(reinterpret_cast<const uint8_t *>(Bytes.data()),
2940                             Bytes.size());
2941   return object::BuildID(BuildID.begin(), BuildID.end());
2942 }
2943 
2944 void objdump::invalidArgValue(const opt::Arg *A) {
2945   reportCmdLineError("'" + StringRef(A->getValue()) +
2946                      "' is not a valid value for '" + A->getSpelling() + "'");
2947 }
2948 
2949 static std::vector<std::string>
2950 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2951   std::vector<std::string> Values;
2952   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2953     llvm::SmallVector<StringRef, 2> SplitValues;
2954     llvm::SplitString(Value, SplitValues, ",");
2955     for (StringRef SplitValue : SplitValues)
2956       Values.push_back(SplitValue.str());
2957   }
2958   return Values;
2959 }
2960 
2961 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2962   MachOOpt = true;
2963   FullLeadingAddr = true;
2964   PrintImmHex = true;
2965 
2966   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2967   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2968   if (InputArgs.hasArg(OTOOL_d))
2969     FilterSections.push_back("__DATA,__data");
2970   DylibId = InputArgs.hasArg(OTOOL_D);
2971   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2972   DataInCode = InputArgs.hasArg(OTOOL_G);
2973   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2974   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2975   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2976   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2977   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2978   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2979   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2980   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2981   InfoPlist = InputArgs.hasArg(OTOOL_P);
2982   Relocations = InputArgs.hasArg(OTOOL_r);
2983   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2984     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2985     FilterSections.push_back(Filter);
2986   }
2987   if (InputArgs.hasArg(OTOOL_t))
2988     FilterSections.push_back("__TEXT,__text");
2989   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2990             InputArgs.hasArg(OTOOL_o);
2991   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2992   if (InputArgs.hasArg(OTOOL_x))
2993     FilterSections.push_back(",__text");
2994   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2995 
2996   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
2997   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
2998 
2999   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3000   if (InputFilenames.empty())
3001     reportCmdLineError("no input file");
3002 
3003   for (const Arg *A : InputArgs) {
3004     const Option &O = A->getOption();
3005     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3006       reportCmdLineWarning(O.getPrefixedName() +
3007                            " is obsolete and not implemented");
3008     }
3009   }
3010 }
3011 
3012 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3013   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3014   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3015   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3016   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3017   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3018   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3019   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3020   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3021   DisassembleSymbols =
3022       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3023   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3024   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3025     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3026                         .Case("frames", DIDT_DebugFrame)
3027                         .Default(DIDT_Null);
3028     if (DwarfDumpType == DIDT_Null)
3029       invalidArgValue(A);
3030   }
3031   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3032   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3033   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3034   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3035   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3036   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3037   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3038   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3039   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3040   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3041   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3042   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3043   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3044   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3045   PrintImmHex =
3046       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3047   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3048   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3049   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3050   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3051   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3052   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3053   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3054   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3055   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3056   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3057   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3058   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3059   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3060   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3061   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3062   Wide = InputArgs.hasArg(OBJDUMP_wide);
3063   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3064   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3065   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3066     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3067                        .Case("ascii", DVASCII)
3068                        .Case("unicode", DVUnicode)
3069                        .Default(DVInvalid);
3070     if (DbgVariables == DVInvalid)
3071       invalidArgValue(A);
3072   }
3073   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3074 
3075   parseMachOOptions(InputArgs);
3076 
3077   // Parse -M (--disassembler-options) and deprecated
3078   // --x86-asm-syntax={att,intel}.
3079   //
3080   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3081   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3082   // called too late. For now we have to use the internal cl::opt option.
3083   const char *AsmSyntax = nullptr;
3084   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3085                                           OBJDUMP_x86_asm_syntax_att,
3086                                           OBJDUMP_x86_asm_syntax_intel)) {
3087     switch (A->getOption().getID()) {
3088     case OBJDUMP_x86_asm_syntax_att:
3089       AsmSyntax = "--x86-asm-syntax=att";
3090       continue;
3091     case OBJDUMP_x86_asm_syntax_intel:
3092       AsmSyntax = "--x86-asm-syntax=intel";
3093       continue;
3094     }
3095 
3096     SmallVector<StringRef, 2> Values;
3097     llvm::SplitString(A->getValue(), Values, ",");
3098     for (StringRef V : Values) {
3099       if (V == "att")
3100         AsmSyntax = "--x86-asm-syntax=att";
3101       else if (V == "intel")
3102         AsmSyntax = "--x86-asm-syntax=intel";
3103       else
3104         DisassemblerOptions.push_back(V.str());
3105     }
3106   }
3107   if (AsmSyntax) {
3108     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3109     llvm::cl::ParseCommandLineOptions(2, Argv);
3110   }
3111 
3112   // Look up any provided build IDs, then append them to the input filenames.
3113   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3114     object::BuildID BuildID = parseBuildIDArg(A);
3115     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3116     if (!Path) {
3117       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3118                          A->getValue() + "'");
3119     }
3120     InputFilenames.push_back(std::move(*Path));
3121   }
3122 
3123   // objdump defaults to a.out if no filenames specified.
3124   if (InputFilenames.empty())
3125     InputFilenames.push_back("a.out");
3126 }
3127 
3128 int main(int argc, char **argv) {
3129   using namespace llvm;
3130   InitLLVM X(argc, argv);
3131 
3132   ToolName = argv[0];
3133   std::unique_ptr<CommonOptTable> T;
3134   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3135 
3136   StringRef Stem = sys::path::stem(ToolName);
3137   auto Is = [=](StringRef Tool) {
3138     // We need to recognize the following filenames:
3139     //
3140     // llvm-objdump -> objdump
3141     // llvm-otool-10.exe -> otool
3142     // powerpc64-unknown-freebsd13-objdump -> objdump
3143     auto I = Stem.rfind_insensitive(Tool);
3144     return I != StringRef::npos &&
3145            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3146   };
3147   if (Is("otool")) {
3148     T = std::make_unique<OtoolOptTable>();
3149     Unknown = OTOOL_UNKNOWN;
3150     HelpFlag = OTOOL_help;
3151     HelpHiddenFlag = OTOOL_help_hidden;
3152     VersionFlag = OTOOL_version;
3153   } else {
3154     T = std::make_unique<ObjdumpOptTable>();
3155     Unknown = OBJDUMP_UNKNOWN;
3156     HelpFlag = OBJDUMP_help;
3157     HelpHiddenFlag = OBJDUMP_help_hidden;
3158     VersionFlag = OBJDUMP_version;
3159   }
3160 
3161   BumpPtrAllocator A;
3162   StringSaver Saver(A);
3163   opt::InputArgList InputArgs =
3164       T->parseArgs(argc, argv, Unknown, Saver,
3165                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3166 
3167   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3168     T->printHelp(ToolName);
3169     return 0;
3170   }
3171   if (InputArgs.hasArg(HelpHiddenFlag)) {
3172     T->printHelp(ToolName, /*ShowHidden=*/true);
3173     return 0;
3174   }
3175 
3176   // Initialize targets and assembly printers/parsers.
3177   InitializeAllTargetInfos();
3178   InitializeAllTargetMCs();
3179   InitializeAllDisassemblers();
3180 
3181   if (InputArgs.hasArg(VersionFlag)) {
3182     cl::PrintVersionMessage();
3183     if (!Is("otool")) {
3184       outs() << '\n';
3185       TargetRegistry::printRegisteredTargetsForVersion(outs());
3186     }
3187     return 0;
3188   }
3189 
3190   // Initialize debuginfod.
3191   const bool ShouldUseDebuginfodByDefault =
3192       InputArgs.hasArg(OBJDUMP_build_id) ||
3193       (HTTPClient::isAvailable() &&
3194        !ExitOnErr(getDefaultDebuginfodUrls()).empty());
3195   std::vector<std::string> DebugFileDirectories =
3196       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3197   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3198                         ShouldUseDebuginfodByDefault)) {
3199     HTTPClient::initialize();
3200     BIDFetcher =
3201         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3202   } else {
3203     BIDFetcher =
3204         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3205   }
3206 
3207   if (Is("otool"))
3208     parseOtoolOptions(InputArgs);
3209   else
3210     parseObjdumpOptions(InputArgs);
3211 
3212   if (StartAddress >= StopAddress)
3213     reportCmdLineError("start address should be less than stop address");
3214 
3215   // Removes trailing separators from prefix.
3216   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3217     Prefix.pop_back();
3218 
3219   if (AllHeaders)
3220     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3221         SectionHeaders = SymbolTable = true;
3222 
3223   if (DisassembleAll || PrintSource || PrintLines ||
3224       !DisassembleSymbols.empty())
3225     Disassemble = true;
3226 
3227   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3228       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3229       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3230       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3231       !(MachOOpt &&
3232         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3233          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3234          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3235          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3236          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3237     T->printHelp(ToolName);
3238     return 2;
3239   }
3240 
3241   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3242 
3243   llvm::for_each(InputFilenames, dumpInput);
3244 
3245   warnOnNoMatchForSections();
3246 
3247   return EXIT_SUCCESS;
3248 }
3249