xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 41af43092ccc8030bb49cea324d85eecd5ae68a8)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
30 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrAnalysis.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCObjectFileInfo.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/Object/Archive.h"
39 #include "llvm/Object/COFF.h"
40 #include "llvm/Object/COFFImportFile.h"
41 #include "llvm/Object/ELFObjectFile.h"
42 #include "llvm/Object/MachO.h"
43 #include "llvm/Object/ObjectFile.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/Errc.h"
48 #include "llvm/Support/FileSystem.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/Host.h"
52 #include "llvm/Support/ManagedStatic.h"
53 #include "llvm/Support/MemoryBuffer.h"
54 #include "llvm/Support/PrettyStackTrace.h"
55 #include "llvm/Support/Signals.h"
56 #include "llvm/Support/SourceMgr.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/TargetSelect.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cctype>
62 #include <cstring>
63 #include <system_error>
64 #include <utility>
65 #include <unordered_map>
66 
67 using namespace llvm;
68 using namespace object;
69 
70 static cl::list<std::string>
71 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
72 
73 cl::opt<bool>
74 llvm::Disassemble("disassemble",
75   cl::desc("Display assembler mnemonics for the machine instructions"));
76 static cl::alias
77 Disassembled("d", cl::desc("Alias for --disassemble"),
78              cl::aliasopt(Disassemble));
79 
80 cl::opt<bool>
81 llvm::DisassembleAll("disassemble-all",
82   cl::desc("Display assembler mnemonics for the machine instructions"));
83 static cl::alias
84 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
85              cl::aliasopt(DisassembleAll));
86 
87 cl::opt<bool>
88 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
89 
90 cl::opt<bool>
91 llvm::SectionContents("s", cl::desc("Display the content of each section"));
92 
93 cl::opt<bool>
94 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
95 
96 cl::opt<bool>
97 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
98 
99 cl::opt<bool>
100 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
101 
102 cl::opt<bool>
103 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
104 
105 cl::opt<bool>
106 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
107 
108 cl::opt<bool>
109 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
110 
111 cl::opt<bool>
112 llvm::RawClangAST("raw-clang-ast",
113     cl::desc("Dump the raw binary contents of the clang AST section"));
114 
115 static cl::opt<bool>
116 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
117 static cl::alias
118 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
119 
120 cl::opt<std::string>
121 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
122                                     "see -version for available targets"));
123 
124 cl::opt<std::string>
125 llvm::MCPU("mcpu",
126      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
127      cl::value_desc("cpu-name"),
128      cl::init(""));
129 
130 cl::opt<std::string>
131 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
132                                 "see -version for available targets"));
133 
134 cl::opt<bool>
135 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
136                                                  "headers for each section."));
137 static cl::alias
138 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
139                     cl::aliasopt(SectionHeaders));
140 static cl::alias
141 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
142                       cl::aliasopt(SectionHeaders));
143 
144 cl::list<std::string>
145 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
146                                          "With -macho dump segment,section"));
147 cl::alias
148 static FilterSectionsj("j", cl::desc("Alias for --section"),
149                  cl::aliasopt(llvm::FilterSections));
150 
151 cl::list<std::string>
152 llvm::MAttrs("mattr",
153   cl::CommaSeparated,
154   cl::desc("Target specific attributes"),
155   cl::value_desc("a1,+a2,-a3,..."));
156 
157 cl::opt<bool>
158 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
159                                                  "instructions, do not print "
160                                                  "the instruction bytes."));
161 
162 cl::opt<bool>
163 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
164 
165 static cl::alias
166 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
167                 cl::aliasopt(UnwindInfo));
168 
169 cl::opt<bool>
170 llvm::PrivateHeaders("private-headers",
171                      cl::desc("Display format specific file headers"));
172 
173 cl::opt<bool>
174 llvm::FirstPrivateHeader("private-header",
175                          cl::desc("Display only the first format specific file "
176                                   "header"));
177 
178 static cl::alias
179 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
180                     cl::aliasopt(PrivateHeaders));
181 
182 cl::opt<bool>
183     llvm::PrintImmHex("print-imm-hex",
184                       cl::desc("Use hex format for immediate values"));
185 
186 cl::opt<bool> PrintFaultMaps("fault-map-section",
187                              cl::desc("Display contents of faultmap section"));
188 
189 cl::opt<DIDumpType> llvm::DwarfDumpType(
190     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
191     cl::values(clEnumValN(DIDT_Frames, "frames", ".debug_frame")));
192 
193 cl::opt<bool> PrintSource(
194     "source",
195     cl::desc(
196         "Display source inlined with disassembly. Implies disassmble object"));
197 
198 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
199                            cl::aliasopt(PrintSource));
200 
201 cl::opt<bool> PrintLines("line-numbers",
202                          cl::desc("Display source line numbers with "
203                                   "disassembly. Implies disassemble object"));
204 
205 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
206                           cl::aliasopt(PrintLines));
207 
208 cl::opt<unsigned long long>
209     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
210                  cl::value_desc("address"), cl::init(0));
211 cl::opt<unsigned long long>
212     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
213                 cl::value_desc("address"), cl::init(UINT64_MAX));
214 static StringRef ToolName;
215 
216 namespace {
217 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
218 
219 class SectionFilterIterator {
220 public:
221   SectionFilterIterator(FilterPredicate P,
222                         llvm::object::section_iterator const &I,
223                         llvm::object::section_iterator const &E)
224       : Predicate(std::move(P)), Iterator(I), End(E) {
225     ScanPredicate();
226   }
227   const llvm::object::SectionRef &operator*() const { return *Iterator; }
228   SectionFilterIterator &operator++() {
229     ++Iterator;
230     ScanPredicate();
231     return *this;
232   }
233   bool operator!=(SectionFilterIterator const &Other) const {
234     return Iterator != Other.Iterator;
235   }
236 
237 private:
238   void ScanPredicate() {
239     while (Iterator != End && !Predicate(*Iterator)) {
240       ++Iterator;
241     }
242   }
243   FilterPredicate Predicate;
244   llvm::object::section_iterator Iterator;
245   llvm::object::section_iterator End;
246 };
247 
248 class SectionFilter {
249 public:
250   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
251       : Predicate(std::move(P)), Object(O) {}
252   SectionFilterIterator begin() {
253     return SectionFilterIterator(Predicate, Object.section_begin(),
254                                  Object.section_end());
255   }
256   SectionFilterIterator end() {
257     return SectionFilterIterator(Predicate, Object.section_end(),
258                                  Object.section_end());
259   }
260 
261 private:
262   FilterPredicate Predicate;
263   llvm::object::ObjectFile const &Object;
264 };
265 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
266   return SectionFilter(
267       [](llvm::object::SectionRef const &S) {
268         if (FilterSections.empty())
269           return true;
270         llvm::StringRef String;
271         std::error_code error = S.getName(String);
272         if (error)
273           return false;
274         return is_contained(FilterSections, String);
275       },
276       O);
277 }
278 }
279 
280 void llvm::error(std::error_code EC) {
281   if (!EC)
282     return;
283 
284   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
285   errs().flush();
286   exit(1);
287 }
288 
289 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
290   errs() << ToolName << ": " << Message << ".\n";
291   errs().flush();
292   exit(1);
293 }
294 
295 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
296                                                 std::error_code EC) {
297   assert(EC);
298   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
299   exit(1);
300 }
301 
302 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
303                                                 llvm::Error E) {
304   assert(E);
305   std::string Buf;
306   raw_string_ostream OS(Buf);
307   logAllUnhandledErrors(std::move(E), OS, "");
308   OS.flush();
309   errs() << ToolName << ": '" << File << "': " << Buf;
310   exit(1);
311 }
312 
313 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
314                                                 StringRef FileName,
315                                                 llvm::Error E,
316                                                 StringRef ArchitectureName) {
317   assert(E);
318   errs() << ToolName << ": ";
319   if (ArchiveName != "")
320     errs() << ArchiveName << "(" << FileName << ")";
321   else
322     errs() << "'" << FileName << "'";
323   if (!ArchitectureName.empty())
324     errs() << " (for architecture " << ArchitectureName << ")";
325   std::string Buf;
326   raw_string_ostream OS(Buf);
327   logAllUnhandledErrors(std::move(E), OS, "");
328   OS.flush();
329   errs() << ": " << Buf;
330   exit(1);
331 }
332 
333 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
334                                                 const object::Archive::Child &C,
335                                                 llvm::Error E,
336                                                 StringRef ArchitectureName) {
337   Expected<StringRef> NameOrErr = C.getName();
338   // TODO: if we have a error getting the name then it would be nice to print
339   // the index of which archive member this is and or its offset in the
340   // archive instead of "???" as the name.
341   if (!NameOrErr) {
342     consumeError(NameOrErr.takeError());
343     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
344   } else
345     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
346                        ArchitectureName);
347 }
348 
349 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
350   // Figure out the target triple.
351   llvm::Triple TheTriple("unknown-unknown-unknown");
352   if (TripleName.empty()) {
353     if (Obj) {
354       TheTriple.setArch(Triple::ArchType(Obj->getArch()));
355       // TheTriple defaults to ELF, and COFF doesn't have an environment:
356       // the best we can do here is indicate that it is mach-o.
357       if (Obj->isMachO())
358         TheTriple.setObjectFormat(Triple::MachO);
359 
360       if (Obj->isCOFF()) {
361         const auto COFFObj = dyn_cast<COFFObjectFile>(Obj);
362         if (COFFObj->getArch() == Triple::thumb)
363           TheTriple.setTriple("thumbv7-windows");
364       }
365     }
366   } else
367     TheTriple.setTriple(Triple::normalize(TripleName));
368 
369   // Get the target specific parser.
370   std::string Error;
371   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
372                                                          Error);
373   if (!TheTarget)
374     report_fatal_error("can't find target: " + Error);
375 
376   // Update the triple name and return the found target.
377   TripleName = TheTriple.getTriple();
378   return TheTarget;
379 }
380 
381 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
382   return a.getOffset() < b.getOffset();
383 }
384 
385 namespace {
386 class SourcePrinter {
387 protected:
388   DILineInfo OldLineInfo;
389   const ObjectFile *Obj;
390   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
391   // File name to file contents of source
392   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
393   // Mark the line endings of the cached source
394   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
395 
396 private:
397   bool cacheSource(std::string File);
398 
399 public:
400   virtual ~SourcePrinter() {}
401   SourcePrinter() : Obj(nullptr), Symbolizer(nullptr) {}
402   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
403     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
404         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
405         DefaultArch);
406     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
407   }
408   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
409                                StringRef Delimiter = "; ");
410 };
411 
412 bool SourcePrinter::cacheSource(std::string File) {
413   auto BufferOrError = MemoryBuffer::getFile(File);
414   if (!BufferOrError)
415     return false;
416   // Chomp the file to get lines
417   size_t BufferSize = (*BufferOrError)->getBufferSize();
418   const char *BufferStart = (*BufferOrError)->getBufferStart();
419   for (const char *Start = BufferStart, *End = BufferStart;
420        End < BufferStart + BufferSize; End++)
421     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
422         (*End == '\r' && *(End + 1) == '\n')) {
423       LineCache[File].push_back(StringRef(Start, End - Start));
424       if (*End == '\r')
425         End++;
426       Start = End + 1;
427     }
428   SourceCache[File] = std::move(*BufferOrError);
429   return true;
430 }
431 
432 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
433                                     StringRef Delimiter) {
434   if (!Symbolizer)
435     return;
436   DILineInfo LineInfo = DILineInfo();
437   auto ExpectecLineInfo =
438       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
439   if (!ExpectecLineInfo)
440     consumeError(ExpectecLineInfo.takeError());
441   else
442     LineInfo = *ExpectecLineInfo;
443 
444   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
445       LineInfo.Line == 0)
446     return;
447 
448   if (PrintLines)
449     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
450   if (PrintSource) {
451     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
452       if (!cacheSource(LineInfo.FileName))
453         return;
454     auto FileBuffer = SourceCache.find(LineInfo.FileName);
455     if (FileBuffer != SourceCache.end()) {
456       auto LineBuffer = LineCache.find(LineInfo.FileName);
457       if (LineBuffer != LineCache.end())
458         // Vector begins at 0, line numbers are non-zero
459         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
460            << "\n";
461     }
462   }
463   OldLineInfo = LineInfo;
464 }
465 
466 static bool isArmElf(const ObjectFile *Obj) {
467   return (Obj->isELF() &&
468           (Obj->getArch() == Triple::aarch64 ||
469            Obj->getArch() == Triple::aarch64_be ||
470            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
471            Obj->getArch() == Triple::thumb ||
472            Obj->getArch() == Triple::thumbeb));
473 }
474 
475 class PrettyPrinter {
476 public:
477   virtual ~PrettyPrinter(){}
478   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
479                          ArrayRef<uint8_t> Bytes, uint64_t Address,
480                          raw_ostream &OS, StringRef Annot,
481                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
482     if (SP && (PrintSource || PrintLines))
483       SP->printSourceLine(OS, Address);
484     OS << format("%8" PRIx64 ":", Address);
485     if (!NoShowRawInsn) {
486       OS << "\t";
487       dumpBytes(Bytes, OS);
488     }
489     if (MI)
490       IP.printInst(MI, OS, "", STI);
491     else
492       OS << " <unknown>";
493   }
494 };
495 PrettyPrinter PrettyPrinterInst;
496 class HexagonPrettyPrinter : public PrettyPrinter {
497 public:
498   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
499                  raw_ostream &OS) {
500     uint32_t opcode =
501       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
502     OS << format("%8" PRIx64 ":", Address);
503     if (!NoShowRawInsn) {
504       OS << "\t";
505       dumpBytes(Bytes.slice(0, 4), OS);
506       OS << format("%08" PRIx32, opcode);
507     }
508   }
509   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
510                  uint64_t Address, raw_ostream &OS, StringRef Annot,
511                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
512     if (SP && (PrintSource || PrintLines))
513       SP->printSourceLine(OS, Address, "");
514     if (!MI) {
515       printLead(Bytes, Address, OS);
516       OS << " <unknown>";
517       return;
518     }
519     std::string Buffer;
520     {
521       raw_string_ostream TempStream(Buffer);
522       IP.printInst(MI, TempStream, "", STI);
523     }
524     StringRef Contents(Buffer);
525     // Split off bundle attributes
526     auto PacketBundle = Contents.rsplit('\n');
527     // Split off first instruction from the rest
528     auto HeadTail = PacketBundle.first.split('\n');
529     auto Preamble = " { ";
530     auto Separator = "";
531     while(!HeadTail.first.empty()) {
532       OS << Separator;
533       Separator = "\n";
534       if (SP && (PrintSource || PrintLines))
535         SP->printSourceLine(OS, Address, "");
536       printLead(Bytes, Address, OS);
537       OS << Preamble;
538       Preamble = "   ";
539       StringRef Inst;
540       auto Duplex = HeadTail.first.split('\v');
541       if(!Duplex.second.empty()){
542         OS << Duplex.first;
543         OS << "; ";
544         Inst = Duplex.second;
545       }
546       else
547         Inst = HeadTail.first;
548       OS << Inst;
549       Bytes = Bytes.slice(4);
550       Address += 4;
551       HeadTail = HeadTail.second.split('\n');
552     }
553     OS << " } " << PacketBundle.second;
554   }
555 };
556 HexagonPrettyPrinter HexagonPrettyPrinterInst;
557 
558 class AMDGCNPrettyPrinter : public PrettyPrinter {
559 public:
560   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
561                  uint64_t Address, raw_ostream &OS, StringRef Annot,
562                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
563     if (!MI) {
564       OS << " <unknown>";
565       return;
566     }
567 
568     SmallString<40> InstStr;
569     raw_svector_ostream IS(InstStr);
570 
571     IP.printInst(MI, IS, "", STI);
572 
573     OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address);
574     typedef support::ulittle32_t U32;
575     for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
576                                Bytes.size() / sizeof(U32)))
577       // D should be explicitly casted to uint32_t here as it is passed
578       // by format to snprintf as vararg.
579       OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
580 
581     if (!Annot.empty())
582       OS << "// " << Annot;
583   }
584 };
585 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
586 
587 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
588   switch(Triple.getArch()) {
589   default:
590     return PrettyPrinterInst;
591   case Triple::hexagon:
592     return HexagonPrettyPrinterInst;
593   case Triple::amdgcn:
594     return AMDGCNPrettyPrinterInst;
595   }
596 }
597 }
598 
599 template <class ELFT>
600 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
601                                                 const RelocationRef &RelRef,
602                                                 SmallVectorImpl<char> &Result) {
603   DataRefImpl Rel = RelRef.getRawDataRefImpl();
604 
605   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
606   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
607   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
608 
609   const ELFFile<ELFT> &EF = *Obj->getELFFile();
610 
611   ErrorOr<const Elf_Shdr *> SecOrErr = EF.getSection(Rel.d.a);
612   if (std::error_code EC = SecOrErr.getError())
613     return EC;
614   const Elf_Shdr *Sec = *SecOrErr;
615   ErrorOr<const Elf_Shdr *> SymTabOrErr = EF.getSection(Sec->sh_link);
616   if (std::error_code EC = SymTabOrErr.getError())
617     return EC;
618   const Elf_Shdr *SymTab = *SymTabOrErr;
619   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
620          SymTab->sh_type == ELF::SHT_DYNSYM);
621   ErrorOr<const Elf_Shdr *> StrTabSec = EF.getSection(SymTab->sh_link);
622   if (std::error_code EC = StrTabSec.getError())
623     return EC;
624   ErrorOr<StringRef> StrTabOrErr = EF.getStringTable(*StrTabSec);
625   if (std::error_code EC = StrTabOrErr.getError())
626     return EC;
627   StringRef StrTab = *StrTabOrErr;
628   uint8_t type = RelRef.getType();
629   StringRef res;
630   int64_t addend = 0;
631   switch (Sec->sh_type) {
632   default:
633     return object_error::parse_failed;
634   case ELF::SHT_REL: {
635     // TODO: Read implicit addend from section data.
636     break;
637   }
638   case ELF::SHT_RELA: {
639     const Elf_Rela *ERela = Obj->getRela(Rel);
640     addend = ERela->r_addend;
641     break;
642   }
643   }
644   symbol_iterator SI = RelRef.getSymbol();
645   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
646   StringRef Target;
647   if (symb->getType() == ELF::STT_SECTION) {
648     Expected<section_iterator> SymSI = SI->getSection();
649     if (!SymSI)
650       return errorToErrorCode(SymSI.takeError());
651     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
652     ErrorOr<StringRef> SecName = EF.getSectionName(SymSec);
653     if (std::error_code EC = SecName.getError())
654       return EC;
655     Target = *SecName;
656   } else {
657     Expected<StringRef> SymName = symb->getName(StrTab);
658     if (!SymName)
659       return errorToErrorCode(SymName.takeError());
660     Target = *SymName;
661   }
662   switch (EF.getHeader()->e_machine) {
663   case ELF::EM_X86_64:
664     switch (type) {
665     case ELF::R_X86_64_PC8:
666     case ELF::R_X86_64_PC16:
667     case ELF::R_X86_64_PC32: {
668       std::string fmtbuf;
669       raw_string_ostream fmt(fmtbuf);
670       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
671       fmt.flush();
672       Result.append(fmtbuf.begin(), fmtbuf.end());
673     } break;
674     case ELF::R_X86_64_8:
675     case ELF::R_X86_64_16:
676     case ELF::R_X86_64_32:
677     case ELF::R_X86_64_32S:
678     case ELF::R_X86_64_64: {
679       std::string fmtbuf;
680       raw_string_ostream fmt(fmtbuf);
681       fmt << Target << (addend < 0 ? "" : "+") << addend;
682       fmt.flush();
683       Result.append(fmtbuf.begin(), fmtbuf.end());
684     } break;
685     default:
686       res = "Unknown";
687     }
688     break;
689   case ELF::EM_LANAI:
690   case ELF::EM_AVR:
691   case ELF::EM_AARCH64: {
692     std::string fmtbuf;
693     raw_string_ostream fmt(fmtbuf);
694     fmt << Target;
695     if (addend != 0)
696       fmt << (addend < 0 ? "" : "+") << addend;
697     fmt.flush();
698     Result.append(fmtbuf.begin(), fmtbuf.end());
699     break;
700   }
701   case ELF::EM_386:
702   case ELF::EM_IAMCU:
703   case ELF::EM_ARM:
704   case ELF::EM_HEXAGON:
705   case ELF::EM_MIPS:
706   case ELF::EM_BPF:
707   case ELF::EM_RISCV:
708     res = Target;
709     break;
710   case ELF::EM_WEBASSEMBLY:
711     switch (type) {
712     case ELF::R_WEBASSEMBLY_DATA: {
713       std::string fmtbuf;
714       raw_string_ostream fmt(fmtbuf);
715       fmt << Target << (addend < 0 ? "" : "+") << addend;
716       fmt.flush();
717       Result.append(fmtbuf.begin(), fmtbuf.end());
718       break;
719     }
720     case ELF::R_WEBASSEMBLY_FUNCTION:
721       res = Target;
722       break;
723     default:
724       res = "Unknown";
725     }
726     break;
727   default:
728     res = "Unknown";
729   }
730   if (Result.empty())
731     Result.append(res.begin(), res.end());
732   return std::error_code();
733 }
734 
735 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
736                                                 const RelocationRef &Rel,
737                                                 SmallVectorImpl<char> &Result) {
738   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
739     return getRelocationValueString(ELF32LE, Rel, Result);
740   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
741     return getRelocationValueString(ELF64LE, Rel, Result);
742   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
743     return getRelocationValueString(ELF32BE, Rel, Result);
744   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
745   return getRelocationValueString(ELF64BE, Rel, Result);
746 }
747 
748 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
749                                                 const RelocationRef &Rel,
750                                                 SmallVectorImpl<char> &Result) {
751   symbol_iterator SymI = Rel.getSymbol();
752   Expected<StringRef> SymNameOrErr = SymI->getName();
753   if (!SymNameOrErr)
754     return errorToErrorCode(SymNameOrErr.takeError());
755   StringRef SymName = *SymNameOrErr;
756   Result.append(SymName.begin(), SymName.end());
757   return std::error_code();
758 }
759 
760 static void printRelocationTargetName(const MachOObjectFile *O,
761                                       const MachO::any_relocation_info &RE,
762                                       raw_string_ostream &fmt) {
763   bool IsScattered = O->isRelocationScattered(RE);
764 
765   // Target of a scattered relocation is an address.  In the interest of
766   // generating pretty output, scan through the symbol table looking for a
767   // symbol that aligns with that address.  If we find one, print it.
768   // Otherwise, we just print the hex address of the target.
769   if (IsScattered) {
770     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
771 
772     for (const SymbolRef &Symbol : O->symbols()) {
773       std::error_code ec;
774       Expected<uint64_t> Addr = Symbol.getAddress();
775       if (!Addr) {
776         std::string Buf;
777         raw_string_ostream OS(Buf);
778         logAllUnhandledErrors(Addr.takeError(), OS, "");
779         OS.flush();
780         report_fatal_error(Buf);
781       }
782       if (*Addr != Val)
783         continue;
784       Expected<StringRef> Name = Symbol.getName();
785       if (!Name) {
786         std::string Buf;
787         raw_string_ostream OS(Buf);
788         logAllUnhandledErrors(Name.takeError(), OS, "");
789         OS.flush();
790         report_fatal_error(Buf);
791       }
792       fmt << *Name;
793       return;
794     }
795 
796     // If we couldn't find a symbol that this relocation refers to, try
797     // to find a section beginning instead.
798     for (const SectionRef &Section : ToolSectionFilter(*O)) {
799       std::error_code ec;
800 
801       StringRef Name;
802       uint64_t Addr = Section.getAddress();
803       if (Addr != Val)
804         continue;
805       if ((ec = Section.getName(Name)))
806         report_fatal_error(ec.message());
807       fmt << Name;
808       return;
809     }
810 
811     fmt << format("0x%x", Val);
812     return;
813   }
814 
815   StringRef S;
816   bool isExtern = O->getPlainRelocationExternal(RE);
817   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
818 
819   if (isExtern) {
820     symbol_iterator SI = O->symbol_begin();
821     advance(SI, Val);
822     Expected<StringRef> SOrErr = SI->getName();
823     error(errorToErrorCode(SOrErr.takeError()));
824     S = *SOrErr;
825   } else {
826     section_iterator SI = O->section_begin();
827     // Adjust for the fact that sections are 1-indexed.
828     advance(SI, Val - 1);
829     SI->getName(S);
830   }
831 
832   fmt << S;
833 }
834 
835 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
836                                                 const RelocationRef &RelRef,
837                                                 SmallVectorImpl<char> &Result) {
838   DataRefImpl Rel = RelRef.getRawDataRefImpl();
839   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
840 
841   unsigned Arch = Obj->getArch();
842 
843   std::string fmtbuf;
844   raw_string_ostream fmt(fmtbuf);
845   unsigned Type = Obj->getAnyRelocationType(RE);
846   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
847 
848   // Determine any addends that should be displayed with the relocation.
849   // These require decoding the relocation type, which is triple-specific.
850 
851   // X86_64 has entirely custom relocation types.
852   if (Arch == Triple::x86_64) {
853     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
854 
855     switch (Type) {
856     case MachO::X86_64_RELOC_GOT_LOAD:
857     case MachO::X86_64_RELOC_GOT: {
858       printRelocationTargetName(Obj, RE, fmt);
859       fmt << "@GOT";
860       if (isPCRel)
861         fmt << "PCREL";
862       break;
863     }
864     case MachO::X86_64_RELOC_SUBTRACTOR: {
865       DataRefImpl RelNext = Rel;
866       Obj->moveRelocationNext(RelNext);
867       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
868 
869       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
870       // X86_64_RELOC_UNSIGNED.
871       // NOTE: Scattered relocations don't exist on x86_64.
872       unsigned RType = Obj->getAnyRelocationType(RENext);
873       if (RType != MachO::X86_64_RELOC_UNSIGNED)
874         report_fatal_error("Expected X86_64_RELOC_UNSIGNED after "
875                            "X86_64_RELOC_SUBTRACTOR.");
876 
877       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
878       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
879       printRelocationTargetName(Obj, RENext, fmt);
880       fmt << "-";
881       printRelocationTargetName(Obj, RE, fmt);
882       break;
883     }
884     case MachO::X86_64_RELOC_TLV:
885       printRelocationTargetName(Obj, RE, fmt);
886       fmt << "@TLV";
887       if (isPCRel)
888         fmt << "P";
889       break;
890     case MachO::X86_64_RELOC_SIGNED_1:
891       printRelocationTargetName(Obj, RE, fmt);
892       fmt << "-1";
893       break;
894     case MachO::X86_64_RELOC_SIGNED_2:
895       printRelocationTargetName(Obj, RE, fmt);
896       fmt << "-2";
897       break;
898     case MachO::X86_64_RELOC_SIGNED_4:
899       printRelocationTargetName(Obj, RE, fmt);
900       fmt << "-4";
901       break;
902     default:
903       printRelocationTargetName(Obj, RE, fmt);
904       break;
905     }
906     // X86 and ARM share some relocation types in common.
907   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
908              Arch == Triple::ppc) {
909     // Generic relocation types...
910     switch (Type) {
911     case MachO::GENERIC_RELOC_PAIR: // prints no info
912       return std::error_code();
913     case MachO::GENERIC_RELOC_SECTDIFF: {
914       DataRefImpl RelNext = Rel;
915       Obj->moveRelocationNext(RelNext);
916       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
917 
918       // X86 sect diff's must be followed by a relocation of type
919       // GENERIC_RELOC_PAIR.
920       unsigned RType = Obj->getAnyRelocationType(RENext);
921 
922       if (RType != MachO::GENERIC_RELOC_PAIR)
923         report_fatal_error("Expected GENERIC_RELOC_PAIR after "
924                            "GENERIC_RELOC_SECTDIFF.");
925 
926       printRelocationTargetName(Obj, RE, fmt);
927       fmt << "-";
928       printRelocationTargetName(Obj, RENext, fmt);
929       break;
930     }
931     }
932 
933     if (Arch == Triple::x86 || Arch == Triple::ppc) {
934       switch (Type) {
935       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
936         DataRefImpl RelNext = Rel;
937         Obj->moveRelocationNext(RelNext);
938         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
939 
940         // X86 sect diff's must be followed by a relocation of type
941         // GENERIC_RELOC_PAIR.
942         unsigned RType = Obj->getAnyRelocationType(RENext);
943         if (RType != MachO::GENERIC_RELOC_PAIR)
944           report_fatal_error("Expected GENERIC_RELOC_PAIR after "
945                              "GENERIC_RELOC_LOCAL_SECTDIFF.");
946 
947         printRelocationTargetName(Obj, RE, fmt);
948         fmt << "-";
949         printRelocationTargetName(Obj, RENext, fmt);
950         break;
951       }
952       case MachO::GENERIC_RELOC_TLV: {
953         printRelocationTargetName(Obj, RE, fmt);
954         fmt << "@TLV";
955         if (IsPCRel)
956           fmt << "P";
957         break;
958       }
959       default:
960         printRelocationTargetName(Obj, RE, fmt);
961       }
962     } else { // ARM-specific relocations
963       switch (Type) {
964       case MachO::ARM_RELOC_HALF:
965       case MachO::ARM_RELOC_HALF_SECTDIFF: {
966         // Half relocations steal a bit from the length field to encode
967         // whether this is an upper16 or a lower16 relocation.
968         bool isUpper = Obj->getAnyRelocationLength(RE) >> 1;
969 
970         if (isUpper)
971           fmt << ":upper16:(";
972         else
973           fmt << ":lower16:(";
974         printRelocationTargetName(Obj, RE, fmt);
975 
976         DataRefImpl RelNext = Rel;
977         Obj->moveRelocationNext(RelNext);
978         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
979 
980         // ARM half relocs must be followed by a relocation of type
981         // ARM_RELOC_PAIR.
982         unsigned RType = Obj->getAnyRelocationType(RENext);
983         if (RType != MachO::ARM_RELOC_PAIR)
984           report_fatal_error("Expected ARM_RELOC_PAIR after "
985                              "ARM_RELOC_HALF");
986 
987         // NOTE: The half of the target virtual address is stashed in the
988         // address field of the secondary relocation, but we can't reverse
989         // engineer the constant offset from it without decoding the movw/movt
990         // instruction to find the other half in its immediate field.
991 
992         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
993         // symbol/section pointer of the follow-on relocation.
994         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
995           fmt << "-";
996           printRelocationTargetName(Obj, RENext, fmt);
997         }
998 
999         fmt << ")";
1000         break;
1001       }
1002       default: { printRelocationTargetName(Obj, RE, fmt); }
1003       }
1004     }
1005   } else
1006     printRelocationTargetName(Obj, RE, fmt);
1007 
1008   fmt.flush();
1009   Result.append(fmtbuf.begin(), fmtbuf.end());
1010   return std::error_code();
1011 }
1012 
1013 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1014                                                 SmallVectorImpl<char> &Result) {
1015   const ObjectFile *Obj = Rel.getObject();
1016   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1017     return getRelocationValueString(ELF, Rel, Result);
1018   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1019     return getRelocationValueString(COFF, Rel, Result);
1020   auto *MachO = cast<MachOObjectFile>(Obj);
1021   return getRelocationValueString(MachO, Rel, Result);
1022 }
1023 
1024 /// @brief Indicates whether this relocation should hidden when listing
1025 /// relocations, usually because it is the trailing part of a multipart
1026 /// relocation that will be printed as part of the leading relocation.
1027 static bool getHidden(RelocationRef RelRef) {
1028   const ObjectFile *Obj = RelRef.getObject();
1029   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1030   if (!MachO)
1031     return false;
1032 
1033   unsigned Arch = MachO->getArch();
1034   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1035   uint64_t Type = MachO->getRelocationType(Rel);
1036 
1037   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1038   // is always hidden.
1039   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1040     if (Type == MachO::GENERIC_RELOC_PAIR)
1041       return true;
1042   } else if (Arch == Triple::x86_64) {
1043     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1044     // an X86_64_RELOC_SUBTRACTOR.
1045     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1046       DataRefImpl RelPrev = Rel;
1047       RelPrev.d.a--;
1048       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1049       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1050         return true;
1051     }
1052   }
1053 
1054   return false;
1055 }
1056 
1057 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1058   assert(Obj->isELF());
1059   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1060     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1061   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1062     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1063   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1064     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1065   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1066     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1067   llvm_unreachable("Unsupported binary format");
1068 }
1069 
1070 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1071   if (StartAddress > StopAddress)
1072     error("Start address should be less than stop address");
1073 
1074   const Target *TheTarget = getTarget(Obj);
1075 
1076   // Package up features to be passed to target/subtarget
1077   SubtargetFeatures Features = Obj->getFeatures();
1078   if (MAttrs.size()) {
1079     for (unsigned i = 0; i != MAttrs.size(); ++i)
1080       Features.AddFeature(MAttrs[i]);
1081   }
1082 
1083   std::unique_ptr<const MCRegisterInfo> MRI(
1084       TheTarget->createMCRegInfo(TripleName));
1085   if (!MRI)
1086     report_fatal_error("error: no register info for target " + TripleName);
1087 
1088   // Set up disassembler.
1089   std::unique_ptr<const MCAsmInfo> AsmInfo(
1090       TheTarget->createMCAsmInfo(*MRI, TripleName));
1091   if (!AsmInfo)
1092     report_fatal_error("error: no assembly info for target " + TripleName);
1093   std::unique_ptr<const MCSubtargetInfo> STI(
1094       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1095   if (!STI)
1096     report_fatal_error("error: no subtarget info for target " + TripleName);
1097   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1098   if (!MII)
1099     report_fatal_error("error: no instruction info for target " + TripleName);
1100   MCObjectFileInfo MOFI;
1101   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1102   // FIXME: for now initialize MCObjectFileInfo with default values
1103   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, CodeModel::Default, Ctx);
1104 
1105   std::unique_ptr<MCDisassembler> DisAsm(
1106     TheTarget->createMCDisassembler(*STI, Ctx));
1107   if (!DisAsm)
1108     report_fatal_error("error: no disassembler for target " + TripleName);
1109 
1110   std::unique_ptr<const MCInstrAnalysis> MIA(
1111       TheTarget->createMCInstrAnalysis(MII.get()));
1112 
1113   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1114   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1115       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1116   if (!IP)
1117     report_fatal_error("error: no instruction printer for target " +
1118                        TripleName);
1119   IP->setPrintImmHex(PrintImmHex);
1120   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1121 
1122   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1123                                                  "\t\t\t%08" PRIx64 ":  ";
1124 
1125   SourcePrinter SP(Obj, TheTarget->getName());
1126 
1127   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1128   // in RelocSecs contain the relocations for section S.
1129   std::error_code EC;
1130   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1131   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1132     section_iterator Sec2 = Section.getRelocatedSection();
1133     if (Sec2 != Obj->section_end())
1134       SectionRelocMap[*Sec2].push_back(Section);
1135   }
1136 
1137   // Create a mapping from virtual address to symbol name.  This is used to
1138   // pretty print the symbols while disassembling.
1139   typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
1140   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1141   for (const SymbolRef &Symbol : Obj->symbols()) {
1142     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1143     error(errorToErrorCode(AddressOrErr.takeError()));
1144     uint64_t Address = *AddressOrErr;
1145 
1146     Expected<StringRef> Name = Symbol.getName();
1147     error(errorToErrorCode(Name.takeError()));
1148     if (Name->empty())
1149       continue;
1150 
1151     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1152     error(errorToErrorCode(SectionOrErr.takeError()));
1153     section_iterator SecI = *SectionOrErr;
1154     if (SecI == Obj->section_end())
1155       continue;
1156 
1157     uint8_t SymbolType = ELF::STT_NOTYPE;
1158     if (Obj->isELF())
1159       SymbolType = getElfSymbolType(Obj, Symbol);
1160 
1161     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1162 
1163   }
1164 
1165   // Create a mapping from virtual address to section.
1166   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1167   for (SectionRef Sec : Obj->sections())
1168     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1169   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1170 
1171   // Linked executables (.exe and .dll files) typically don't include a real
1172   // symbol table but they might contain an export table.
1173   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1174     for (const auto &ExportEntry : COFFObj->export_directories()) {
1175       StringRef Name;
1176       error(ExportEntry.getSymbolName(Name));
1177       if (Name.empty())
1178         continue;
1179       uint32_t RVA;
1180       error(ExportEntry.getExportRVA(RVA));
1181 
1182       uint64_t VA = COFFObj->getImageBase() + RVA;
1183       auto Sec = std::upper_bound(
1184           SectionAddresses.begin(), SectionAddresses.end(), VA,
1185           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1186             return LHS < RHS.first;
1187           });
1188       if (Sec != SectionAddresses.begin())
1189         --Sec;
1190       else
1191         Sec = SectionAddresses.end();
1192 
1193       if (Sec != SectionAddresses.end())
1194         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1195     }
1196   }
1197 
1198   // Sort all the symbols, this allows us to use a simple binary search to find
1199   // a symbol near an address.
1200   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1201     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1202 
1203   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1204     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1205       continue;
1206 
1207     uint64_t SectionAddr = Section.getAddress();
1208     uint64_t SectSize = Section.getSize();
1209     if (!SectSize)
1210       continue;
1211 
1212     // Get the list of all the symbols in this section.
1213     SectionSymbolsTy &Symbols = AllSymbols[Section];
1214     std::vector<uint64_t> DataMappingSymsAddr;
1215     std::vector<uint64_t> TextMappingSymsAddr;
1216     if (isArmElf(Obj)) {
1217       for (const auto &Symb : Symbols) {
1218         uint64_t Address = std::get<0>(Symb);
1219         StringRef Name = std::get<1>(Symb);
1220         if (Name.startswith("$d"))
1221           DataMappingSymsAddr.push_back(Address - SectionAddr);
1222         if (Name.startswith("$x"))
1223           TextMappingSymsAddr.push_back(Address - SectionAddr);
1224         if (Name.startswith("$a"))
1225           TextMappingSymsAddr.push_back(Address - SectionAddr);
1226         if (Name.startswith("$t"))
1227           TextMappingSymsAddr.push_back(Address - SectionAddr);
1228       }
1229     }
1230 
1231     std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1232     std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1233 
1234     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1235       // AMDGPU disassembler uses symbolizer for printing labels
1236       std::unique_ptr<MCRelocationInfo> RelInfo(
1237         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1238       if (RelInfo) {
1239         std::unique_ptr<MCSymbolizer> Symbolizer(
1240           TheTarget->createMCSymbolizer(
1241             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1242         DisAsm->setSymbolizer(std::move(Symbolizer));
1243       }
1244     }
1245 
1246     // Make a list of all the relocations for this section.
1247     std::vector<RelocationRef> Rels;
1248     if (InlineRelocs) {
1249       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1250         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1251           Rels.push_back(Reloc);
1252         }
1253       }
1254     }
1255 
1256     // Sort relocations by address.
1257     std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1258 
1259     StringRef SegmentName = "";
1260     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1261       DataRefImpl DR = Section.getRawDataRefImpl();
1262       SegmentName = MachO->getSectionFinalSegmentName(DR);
1263     }
1264     StringRef name;
1265     error(Section.getName(name));
1266 
1267     if ((SectionAddr <= StopAddress) &&
1268         (SectionAddr + SectSize) >= StartAddress) {
1269     outs() << "Disassembly of section ";
1270     if (!SegmentName.empty())
1271       outs() << SegmentName << ",";
1272     outs() << name << ':';
1273     }
1274 
1275     // If the section has no symbol at the start, just insert a dummy one.
1276     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1277       Symbols.insert(Symbols.begin(),
1278                      std::make_tuple(SectionAddr, name, Section.isText()
1279                                                             ? ELF::STT_FUNC
1280                                                             : ELF::STT_OBJECT));
1281     }
1282 
1283     SmallString<40> Comments;
1284     raw_svector_ostream CommentStream(Comments);
1285 
1286     StringRef BytesStr;
1287     error(Section.getContents(BytesStr));
1288     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1289                             BytesStr.size());
1290 
1291     uint64_t Size;
1292     uint64_t Index;
1293 
1294     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1295     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1296     // Disassemble symbol by symbol.
1297     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1298       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1299       // The end is either the section end or the beginning of the next
1300       // symbol.
1301       uint64_t End =
1302           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1303       // Don't try to disassemble beyond the end of section contents.
1304       if (End > SectSize)
1305         End = SectSize;
1306       // If this symbol has the same address as the next symbol, then skip it.
1307       if (Start >= End)
1308         continue;
1309 
1310       // Check if we need to skip symbol
1311       // Skip if the symbol's data is not between StartAddress and StopAddress
1312       if (End + SectionAddr < StartAddress ||
1313           Start + SectionAddr > StopAddress) {
1314         continue;
1315       }
1316 
1317       // Stop disassembly at the stop address specified
1318       if (End + SectionAddr > StopAddress)
1319         End = StopAddress - SectionAddr;
1320 
1321       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1322         // make size 4 bytes folded
1323         End = Start + ((End - Start) & ~0x3ull);
1324         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1325           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1326           Start += 256;
1327         }
1328         if (si == se - 1 ||
1329             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1330           // cut trailing zeroes at the end of kernel
1331           // cut up to 256 bytes
1332           const uint64_t EndAlign = 256;
1333           const auto Limit = End - (std::min)(EndAlign, End - Start);
1334           while (End > Limit &&
1335             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1336             End -= 4;
1337         }
1338       }
1339 
1340       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1341 
1342 #ifndef NDEBUG
1343       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1344 #else
1345       raw_ostream &DebugOut = nulls();
1346 #endif
1347 
1348       for (Index = Start; Index < End; Index += Size) {
1349         MCInst Inst;
1350 
1351         if (Index + SectionAddr < StartAddress ||
1352             Index + SectionAddr > StopAddress) {
1353           // skip byte by byte till StartAddress is reached
1354           Size = 1;
1355           continue;
1356         }
1357         // AArch64 ELF binaries can interleave data and text in the
1358         // same section. We rely on the markers introduced to
1359         // understand what we need to dump. If the data marker is within a
1360         // function, it is denoted as a word/short etc
1361         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1362             !DisassembleAll) {
1363           uint64_t Stride = 0;
1364 
1365           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1366                                       DataMappingSymsAddr.end(), Index);
1367           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1368             // Switch to data.
1369             while (Index < End) {
1370               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1371               outs() << "\t";
1372               if (Index + 4 <= End) {
1373                 Stride = 4;
1374                 dumpBytes(Bytes.slice(Index, 4), outs());
1375                 outs() << "\t.word\t";
1376                 uint32_t Data = 0;
1377                 if (Obj->isLittleEndian()) {
1378                   const auto Word =
1379                       reinterpret_cast<const support::ulittle32_t *>(
1380                           Bytes.data() + Index);
1381                   Data = *Word;
1382                 } else {
1383                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1384                       Bytes.data() + Index);
1385                   Data = *Word;
1386                 }
1387                 outs() << "0x" << format("%08" PRIx32, Data);
1388               } else if (Index + 2 <= End) {
1389                 Stride = 2;
1390                 dumpBytes(Bytes.slice(Index, 2), outs());
1391                 outs() << "\t\t.short\t";
1392                 uint16_t Data = 0;
1393                 if (Obj->isLittleEndian()) {
1394                   const auto Short =
1395                       reinterpret_cast<const support::ulittle16_t *>(
1396                           Bytes.data() + Index);
1397                   Data = *Short;
1398                 } else {
1399                   const auto Short =
1400                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1401                                                                   Index);
1402                   Data = *Short;
1403                 }
1404                 outs() << "0x" << format("%04" PRIx16, Data);
1405               } else {
1406                 Stride = 1;
1407                 dumpBytes(Bytes.slice(Index, 1), outs());
1408                 outs() << "\t\t.byte\t";
1409                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1410               }
1411               Index += Stride;
1412               outs() << "\n";
1413               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1414                                           TextMappingSymsAddr.end(), Index);
1415               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1416                 break;
1417             }
1418           }
1419         }
1420 
1421         // If there is a data symbol inside an ELF text section and we are only
1422         // disassembling text (applicable all architectures),
1423         // we are in a situation where we must print the data and not
1424         // disassemble it.
1425         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1426             !DisassembleAll && Section.isText()) {
1427           // print out data up to 8 bytes at a time in hex and ascii
1428           uint8_t AsciiData[9] = {'\0'};
1429           uint8_t Byte;
1430           int NumBytes = 0;
1431 
1432           for (Index = Start; Index < End; Index += 1) {
1433             if (((SectionAddr + Index) < StartAddress) ||
1434                 ((SectionAddr + Index) > StopAddress))
1435               continue;
1436             if (NumBytes == 0) {
1437               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1438               outs() << "\t";
1439             }
1440             Byte = Bytes.slice(Index)[0];
1441             outs() << format(" %02x", Byte);
1442             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1443 
1444             uint8_t IndentOffset = 0;
1445             NumBytes++;
1446             if (Index == End - 1 || NumBytes > 8) {
1447               // Indent the space for less than 8 bytes data.
1448               // 2 spaces for byte and one for space between bytes
1449               IndentOffset = 3 * (8 - NumBytes);
1450               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1451                 AsciiData[Excess] = '\0';
1452               NumBytes = 8;
1453             }
1454             if (NumBytes == 8) {
1455               AsciiData[8] = '\0';
1456               outs() << std::string(IndentOffset, ' ') << "         ";
1457               outs() << reinterpret_cast<char *>(AsciiData);
1458               outs() << '\n';
1459               NumBytes = 0;
1460             }
1461           }
1462         }
1463         if (Index >= End)
1464           break;
1465 
1466         // Disassemble a real instruction or a data when disassemble all is
1467         // provided
1468         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1469                                                    SectionAddr + Index, DebugOut,
1470                                                    CommentStream);
1471         if (Size == 0)
1472           Size = 1;
1473 
1474         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1475                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1476                       *STI, &SP);
1477         outs() << CommentStream.str();
1478         Comments.clear();
1479 
1480         // Try to resolve the target of a call, tail call, etc. to a specific
1481         // symbol.
1482         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1483                     MIA->isConditionalBranch(Inst))) {
1484           uint64_t Target;
1485           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1486             // In a relocatable object, the target's section must reside in
1487             // the same section as the call instruction or it is accessed
1488             // through a relocation.
1489             //
1490             // In a non-relocatable object, the target may be in any section.
1491             //
1492             // N.B. We don't walk the relocations in the relocatable case yet.
1493             auto *TargetSectionSymbols = &Symbols;
1494             if (!Obj->isRelocatableObject()) {
1495               auto SectionAddress = std::upper_bound(
1496                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1497                   [](uint64_t LHS,
1498                       const std::pair<uint64_t, SectionRef> &RHS) {
1499                     return LHS < RHS.first;
1500                   });
1501               if (SectionAddress != SectionAddresses.begin()) {
1502                 --SectionAddress;
1503                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1504               } else {
1505                 TargetSectionSymbols = nullptr;
1506               }
1507             }
1508 
1509             // Find the first symbol in the section whose offset is less than
1510             // or equal to the target.
1511             if (TargetSectionSymbols) {
1512               auto TargetSym = std::upper_bound(
1513                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1514                   Target, [](uint64_t LHS,
1515                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1516                     return LHS < std::get<0>(RHS);
1517                   });
1518               if (TargetSym != TargetSectionSymbols->begin()) {
1519                 --TargetSym;
1520                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1521                 StringRef TargetName = std::get<1>(*TargetSym);
1522                 outs() << " <" << TargetName;
1523                 uint64_t Disp = Target - TargetAddress;
1524                 if (Disp)
1525                   outs() << "+0x" << utohexstr(Disp);
1526                 outs() << '>';
1527               }
1528             }
1529           }
1530         }
1531         outs() << "\n";
1532 
1533         // Print relocation for instruction.
1534         while (rel_cur != rel_end) {
1535           bool hidden = getHidden(*rel_cur);
1536           uint64_t addr = rel_cur->getOffset();
1537           SmallString<16> name;
1538           SmallString<32> val;
1539 
1540           // If this relocation is hidden, skip it.
1541           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1542             ++rel_cur;
1543             continue;
1544           }
1545 
1546           // Stop when rel_cur's address is past the current instruction.
1547           if (addr >= Index + Size) break;
1548           rel_cur->getTypeName(name);
1549           error(getRelocationValueString(*rel_cur, val));
1550           outs() << format(Fmt.data(), SectionAddr + addr) << name
1551                  << "\t" << val << "\n";
1552           ++rel_cur;
1553         }
1554       }
1555     }
1556   }
1557 }
1558 
1559 void llvm::PrintRelocations(const ObjectFile *Obj) {
1560   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1561                                                  "%08" PRIx64;
1562   // Regular objdump doesn't print relocations in non-relocatable object
1563   // files.
1564   if (!Obj->isRelocatableObject())
1565     return;
1566 
1567   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1568     if (Section.relocation_begin() == Section.relocation_end())
1569       continue;
1570     StringRef secname;
1571     error(Section.getName(secname));
1572     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1573     for (const RelocationRef &Reloc : Section.relocations()) {
1574       bool hidden = getHidden(Reloc);
1575       uint64_t address = Reloc.getOffset();
1576       SmallString<32> relocname;
1577       SmallString<32> valuestr;
1578       if (address < StartAddress || address > StopAddress || hidden)
1579         continue;
1580       Reloc.getTypeName(relocname);
1581       error(getRelocationValueString(Reloc, valuestr));
1582       outs() << format(Fmt.data(), address) << " " << relocname << " "
1583              << valuestr << "\n";
1584     }
1585     outs() << "\n";
1586   }
1587 }
1588 
1589 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1590   outs() << "Sections:\n"
1591             "Idx Name          Size      Address          Type\n";
1592   unsigned i = 0;
1593   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1594     StringRef Name;
1595     error(Section.getName(Name));
1596     uint64_t Address = Section.getAddress();
1597     uint64_t Size = Section.getSize();
1598     bool Text = Section.isText();
1599     bool Data = Section.isData();
1600     bool BSS = Section.isBSS();
1601     std::string Type = (std::string(Text ? "TEXT " : "") +
1602                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1603     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1604                      Name.str().c_str(), Size, Address, Type.c_str());
1605     ++i;
1606   }
1607 }
1608 
1609 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1610   std::error_code EC;
1611   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1612     StringRef Name;
1613     StringRef Contents;
1614     error(Section.getName(Name));
1615     uint64_t BaseAddr = Section.getAddress();
1616     uint64_t Size = Section.getSize();
1617     if (!Size)
1618       continue;
1619 
1620     outs() << "Contents of section " << Name << ":\n";
1621     if (Section.isBSS()) {
1622       outs() << format("<skipping contents of bss section at [%04" PRIx64
1623                        ", %04" PRIx64 ")>\n",
1624                        BaseAddr, BaseAddr + Size);
1625       continue;
1626     }
1627 
1628     error(Section.getContents(Contents));
1629 
1630     // Dump out the content as hex and printable ascii characters.
1631     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1632       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1633       // Dump line of hex.
1634       for (std::size_t i = 0; i < 16; ++i) {
1635         if (i != 0 && i % 4 == 0)
1636           outs() << ' ';
1637         if (addr + i < end)
1638           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1639                  << hexdigit(Contents[addr + i] & 0xF, true);
1640         else
1641           outs() << "  ";
1642       }
1643       // Print ascii.
1644       outs() << "  ";
1645       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1646         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1647           outs() << Contents[addr + i];
1648         else
1649           outs() << ".";
1650       }
1651       outs() << "\n";
1652     }
1653   }
1654 }
1655 
1656 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1657                             StringRef ArchitectureName) {
1658   outs() << "SYMBOL TABLE:\n";
1659 
1660   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1661     printCOFFSymbolTable(coff);
1662     return;
1663   }
1664   for (const SymbolRef &Symbol : o->symbols()) {
1665     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1666     if (!AddressOrError)
1667       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError());
1668     uint64_t Address = *AddressOrError;
1669     if ((Address < StartAddress) || (Address > StopAddress))
1670       continue;
1671     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1672     if (!TypeOrError)
1673       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError());
1674     SymbolRef::Type Type = *TypeOrError;
1675     uint32_t Flags = Symbol.getFlags();
1676     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1677     error(errorToErrorCode(SectionOrErr.takeError()));
1678     section_iterator Section = *SectionOrErr;
1679     StringRef Name;
1680     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1681       Section->getName(Name);
1682     } else {
1683       Expected<StringRef> NameOrErr = Symbol.getName();
1684       if (!NameOrErr)
1685         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1686                      ArchitectureName);
1687       Name = *NameOrErr;
1688     }
1689 
1690     bool Global = Flags & SymbolRef::SF_Global;
1691     bool Weak = Flags & SymbolRef::SF_Weak;
1692     bool Absolute = Flags & SymbolRef::SF_Absolute;
1693     bool Common = Flags & SymbolRef::SF_Common;
1694     bool Hidden = Flags & SymbolRef::SF_Hidden;
1695 
1696     char GlobLoc = ' ';
1697     if (Type != SymbolRef::ST_Unknown)
1698       GlobLoc = Global ? 'g' : 'l';
1699     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1700                  ? 'd' : ' ';
1701     char FileFunc = ' ';
1702     if (Type == SymbolRef::ST_File)
1703       FileFunc = 'f';
1704     else if (Type == SymbolRef::ST_Function)
1705       FileFunc = 'F';
1706 
1707     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1708                                                    "%08" PRIx64;
1709 
1710     outs() << format(Fmt, Address) << " "
1711            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1712            << (Weak ? 'w' : ' ') // Weak?
1713            << ' ' // Constructor. Not supported yet.
1714            << ' ' // Warning. Not supported yet.
1715            << ' ' // Indirect reference to another symbol.
1716            << Debug // Debugging (d) or dynamic (D) symbol.
1717            << FileFunc // Name of function (F), file (f) or object (O).
1718            << ' ';
1719     if (Absolute) {
1720       outs() << "*ABS*";
1721     } else if (Common) {
1722       outs() << "*COM*";
1723     } else if (Section == o->section_end()) {
1724       outs() << "*UND*";
1725     } else {
1726       if (const MachOObjectFile *MachO =
1727           dyn_cast<const MachOObjectFile>(o)) {
1728         DataRefImpl DR = Section->getRawDataRefImpl();
1729         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1730         outs() << SegmentName << ",";
1731       }
1732       StringRef SectionName;
1733       error(Section->getName(SectionName));
1734       outs() << SectionName;
1735     }
1736 
1737     outs() << '\t';
1738     if (Common || isa<ELFObjectFileBase>(o)) {
1739       uint64_t Val =
1740           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1741       outs() << format("\t %08" PRIx64 " ", Val);
1742     }
1743 
1744     if (Hidden) {
1745       outs() << ".hidden ";
1746     }
1747     outs() << Name
1748            << '\n';
1749   }
1750 }
1751 
1752 static void PrintUnwindInfo(const ObjectFile *o) {
1753   outs() << "Unwind info:\n\n";
1754 
1755   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1756     printCOFFUnwindInfo(coff);
1757   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1758     printMachOUnwindInfo(MachO);
1759   else {
1760     // TODO: Extract DWARF dump tool to objdump.
1761     errs() << "This operation is only currently supported "
1762               "for COFF and MachO object files.\n";
1763     return;
1764   }
1765 }
1766 
1767 void llvm::printExportsTrie(const ObjectFile *o) {
1768   outs() << "Exports trie:\n";
1769   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1770     printMachOExportsTrie(MachO);
1771   else {
1772     errs() << "This operation is only currently supported "
1773               "for Mach-O executable files.\n";
1774     return;
1775   }
1776 }
1777 
1778 void llvm::printRebaseTable(const ObjectFile *o) {
1779   outs() << "Rebase table:\n";
1780   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1781     printMachORebaseTable(MachO);
1782   else {
1783     errs() << "This operation is only currently supported "
1784               "for Mach-O executable files.\n";
1785     return;
1786   }
1787 }
1788 
1789 void llvm::printBindTable(const ObjectFile *o) {
1790   outs() << "Bind table:\n";
1791   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1792     printMachOBindTable(MachO);
1793   else {
1794     errs() << "This operation is only currently supported "
1795               "for Mach-O executable files.\n";
1796     return;
1797   }
1798 }
1799 
1800 void llvm::printLazyBindTable(const ObjectFile *o) {
1801   outs() << "Lazy bind table:\n";
1802   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1803     printMachOLazyBindTable(MachO);
1804   else {
1805     errs() << "This operation is only currently supported "
1806               "for Mach-O executable files.\n";
1807     return;
1808   }
1809 }
1810 
1811 void llvm::printWeakBindTable(const ObjectFile *o) {
1812   outs() << "Weak bind table:\n";
1813   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1814     printMachOWeakBindTable(MachO);
1815   else {
1816     errs() << "This operation is only currently supported "
1817               "for Mach-O executable files.\n";
1818     return;
1819   }
1820 }
1821 
1822 /// Dump the raw contents of the __clangast section so the output can be piped
1823 /// into llvm-bcanalyzer.
1824 void llvm::printRawClangAST(const ObjectFile *Obj) {
1825   if (outs().is_displayed()) {
1826     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1827               "the clang ast section.\n"
1828               "Please redirect the output to a file or another program such as "
1829               "llvm-bcanalyzer.\n";
1830     return;
1831   }
1832 
1833   StringRef ClangASTSectionName("__clangast");
1834   if (isa<COFFObjectFile>(Obj)) {
1835     ClangASTSectionName = "clangast";
1836   }
1837 
1838   Optional<object::SectionRef> ClangASTSection;
1839   for (auto Sec : ToolSectionFilter(*Obj)) {
1840     StringRef Name;
1841     Sec.getName(Name);
1842     if (Name == ClangASTSectionName) {
1843       ClangASTSection = Sec;
1844       break;
1845     }
1846   }
1847   if (!ClangASTSection)
1848     return;
1849 
1850   StringRef ClangASTContents;
1851   error(ClangASTSection.getValue().getContents(ClangASTContents));
1852   outs().write(ClangASTContents.data(), ClangASTContents.size());
1853 }
1854 
1855 static void printFaultMaps(const ObjectFile *Obj) {
1856   const char *FaultMapSectionName = nullptr;
1857 
1858   if (isa<ELFObjectFileBase>(Obj)) {
1859     FaultMapSectionName = ".llvm_faultmaps";
1860   } else if (isa<MachOObjectFile>(Obj)) {
1861     FaultMapSectionName = "__llvm_faultmaps";
1862   } else {
1863     errs() << "This operation is only currently supported "
1864               "for ELF and Mach-O executable files.\n";
1865     return;
1866   }
1867 
1868   Optional<object::SectionRef> FaultMapSection;
1869 
1870   for (auto Sec : ToolSectionFilter(*Obj)) {
1871     StringRef Name;
1872     Sec.getName(Name);
1873     if (Name == FaultMapSectionName) {
1874       FaultMapSection = Sec;
1875       break;
1876     }
1877   }
1878 
1879   outs() << "FaultMap table:\n";
1880 
1881   if (!FaultMapSection.hasValue()) {
1882     outs() << "<not found>\n";
1883     return;
1884   }
1885 
1886   StringRef FaultMapContents;
1887   error(FaultMapSection.getValue().getContents(FaultMapContents));
1888 
1889   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1890                      FaultMapContents.bytes_end());
1891 
1892   outs() << FMP;
1893 }
1894 
1895 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
1896   if (o->isELF())
1897     return printELFFileHeader(o);
1898   if (o->isCOFF())
1899     return printCOFFFileHeader(o);
1900   if (o->isMachO()) {
1901     printMachOFileHeader(o);
1902     if (!onlyFirst)
1903       printMachOLoadCommands(o);
1904     return;
1905   }
1906   report_fatal_error("Invalid/Unsupported object file format");
1907 }
1908 
1909 static void DumpObject(const ObjectFile *o, const Archive *a = nullptr) {
1910   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
1911   // Avoid other output when using a raw option.
1912   if (!RawClangAST) {
1913     outs() << '\n';
1914     if (a)
1915       outs() << a->getFileName() << "(" << o->getFileName() << ")";
1916     else
1917       outs() << o->getFileName();
1918     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
1919   }
1920 
1921   if (Disassemble)
1922     DisassembleObject(o, Relocations);
1923   if (Relocations && !Disassemble)
1924     PrintRelocations(o);
1925   if (SectionHeaders)
1926     PrintSectionHeaders(o);
1927   if (SectionContents)
1928     PrintSectionContents(o);
1929   if (SymbolTable)
1930     PrintSymbolTable(o, ArchiveName);
1931   if (UnwindInfo)
1932     PrintUnwindInfo(o);
1933   if (PrivateHeaders || FirstPrivateHeader)
1934     printPrivateFileHeaders(o, FirstPrivateHeader);
1935   if (ExportsTrie)
1936     printExportsTrie(o);
1937   if (Rebase)
1938     printRebaseTable(o);
1939   if (Bind)
1940     printBindTable(o);
1941   if (LazyBind)
1942     printLazyBindTable(o);
1943   if (WeakBind)
1944     printWeakBindTable(o);
1945   if (RawClangAST)
1946     printRawClangAST(o);
1947   if (PrintFaultMaps)
1948     printFaultMaps(o);
1949   if (DwarfDumpType != DIDT_Null) {
1950     std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*o));
1951     // Dump the complete DWARF structure.
1952     DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */);
1953   }
1954 }
1955 
1956 static void DumpObject(const COFFImportFile *I, const Archive *A) {
1957   StringRef ArchiveName = A ? A->getFileName() : "";
1958 
1959   // Avoid other output when using a raw option.
1960   if (!RawClangAST)
1961     outs() << '\n'
1962            << ArchiveName << "(" << I->getFileName() << ")"
1963            << ":\tfile format COFF-import-file"
1964            << "\n\n";
1965 
1966   if (SymbolTable)
1967     printCOFFSymbolTable(I);
1968 }
1969 
1970 /// @brief Dump each object file in \a a;
1971 static void DumpArchive(const Archive *a) {
1972   Error Err = Error::success();
1973   for (auto &C : a->children(Err)) {
1974     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1975     if (!ChildOrErr) {
1976       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1977         report_error(a->getFileName(), C, std::move(E));
1978       continue;
1979     }
1980     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1981       DumpObject(o, a);
1982     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1983       DumpObject(I, a);
1984     else
1985       report_error(a->getFileName(), object_error::invalid_file_type);
1986   }
1987   if (Err)
1988     report_error(a->getFileName(), std::move(Err));
1989 }
1990 
1991 /// @brief Open file and figure out how to dump it.
1992 static void DumpInput(StringRef file) {
1993 
1994   // If we are using the Mach-O specific object file parser, then let it parse
1995   // the file and process the command line options.  So the -arch flags can
1996   // be used to select specific slices, etc.
1997   if (MachOOpt) {
1998     ParseInputMachO(file);
1999     return;
2000   }
2001 
2002   // Attempt to open the binary.
2003   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2004   if (!BinaryOrErr)
2005     report_error(file, BinaryOrErr.takeError());
2006   Binary &Binary = *BinaryOrErr.get().getBinary();
2007 
2008   if (Archive *a = dyn_cast<Archive>(&Binary))
2009     DumpArchive(a);
2010   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2011     DumpObject(o);
2012   else
2013     report_error(file, object_error::invalid_file_type);
2014 }
2015 
2016 int main(int argc, char **argv) {
2017   // Print a stack trace if we signal out.
2018   sys::PrintStackTraceOnErrorSignal(argv[0]);
2019   PrettyStackTraceProgram X(argc, argv);
2020   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
2021 
2022   // Initialize targets and assembly printers/parsers.
2023   llvm::InitializeAllTargetInfos();
2024   llvm::InitializeAllTargetMCs();
2025   llvm::InitializeAllDisassemblers();
2026 
2027   // Register the target printer for --version.
2028   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2029 
2030   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2031   TripleName = Triple::normalize(TripleName);
2032 
2033   ToolName = argv[0];
2034 
2035   // Defaults to a.out if no filenames specified.
2036   if (InputFilenames.size() == 0)
2037     InputFilenames.push_back("a.out");
2038 
2039   if (DisassembleAll || PrintSource || PrintLines)
2040     Disassemble = true;
2041   if (!Disassemble
2042       && !Relocations
2043       && !SectionHeaders
2044       && !SectionContents
2045       && !SymbolTable
2046       && !UnwindInfo
2047       && !PrivateHeaders
2048       && !FirstPrivateHeader
2049       && !ExportsTrie
2050       && !Rebase
2051       && !Bind
2052       && !LazyBind
2053       && !WeakBind
2054       && !RawClangAST
2055       && !(UniversalHeaders && MachOOpt)
2056       && !(ArchiveHeaders && MachOOpt)
2057       && !(IndirectSymbols && MachOOpt)
2058       && !(DataInCode && MachOOpt)
2059       && !(LinkOptHints && MachOOpt)
2060       && !(InfoPlist && MachOOpt)
2061       && !(DylibsUsed && MachOOpt)
2062       && !(DylibId && MachOOpt)
2063       && !(ObjcMetaData && MachOOpt)
2064       && !(FilterSections.size() != 0 && MachOOpt)
2065       && !PrintFaultMaps
2066       && DwarfDumpType == DIDT_Null) {
2067     cl::PrintHelpMessage();
2068     return 2;
2069   }
2070 
2071   std::for_each(InputFilenames.begin(), InputFilenames.end(),
2072                 DumpInput);
2073 
2074   return EXIT_SUCCESS;
2075 }
2076