1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/IndexedMap.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Debuginfod/BuildIDFetcher.h" 38 #include "llvm/Debuginfod/Debuginfod.h" 39 #include "llvm/Debuginfod/HTTPClient.h" 40 #include "llvm/Demangle/Demangle.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCContext.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 45 #include "llvm/MC/MCInst.h" 46 #include "llvm/MC/MCInstPrinter.h" 47 #include "llvm/MC/MCInstrAnalysis.h" 48 #include "llvm/MC/MCInstrInfo.h" 49 #include "llvm/MC/MCObjectFileInfo.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/MC/MCTargetOptions.h" 52 #include "llvm/MC/TargetRegistry.h" 53 #include "llvm/Object/Archive.h" 54 #include "llvm/Object/BuildID.h" 55 #include "llvm/Object/COFF.h" 56 #include "llvm/Object/COFFImportFile.h" 57 #include "llvm/Object/ELFObjectFile.h" 58 #include "llvm/Object/ELFTypes.h" 59 #include "llvm/Object/FaultMapParser.h" 60 #include "llvm/Object/MachO.h" 61 #include "llvm/Object/MachOUniversal.h" 62 #include "llvm/Object/ObjectFile.h" 63 #include "llvm/Object/OffloadBinary.h" 64 #include "llvm/Object/Wasm.h" 65 #include "llvm/Option/Arg.h" 66 #include "llvm/Option/ArgList.h" 67 #include "llvm/Option/Option.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Errc.h" 71 #include "llvm/Support/FileSystem.h" 72 #include "llvm/Support/Format.h" 73 #include "llvm/Support/FormatVariadic.h" 74 #include "llvm/Support/GraphWriter.h" 75 #include "llvm/Support/InitLLVM.h" 76 #include "llvm/Support/MemoryBuffer.h" 77 #include "llvm/Support/SourceMgr.h" 78 #include "llvm/Support/StringSaver.h" 79 #include "llvm/Support/TargetSelect.h" 80 #include "llvm/Support/WithColor.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/TargetParser/Host.h" 83 #include "llvm/TargetParser/Triple.h" 84 #include <algorithm> 85 #include <cctype> 86 #include <cstring> 87 #include <optional> 88 #include <system_error> 89 #include <unordered_map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace llvm::object; 94 using namespace llvm::objdump; 95 using namespace llvm::opt; 96 97 namespace { 98 99 class CommonOptTable : public opt::GenericOptTable { 100 public: 101 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 102 const char *Description) 103 : opt::GenericOptTable(OptionInfos), Usage(Usage), 104 Description(Description) { 105 setGroupedShortOptions(true); 106 } 107 108 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 109 Argv0 = sys::path::filename(Argv0); 110 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 111 Description, ShowHidden, ShowHidden); 112 // TODO Replace this with OptTable API once it adds extrahelp support. 113 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 114 } 115 116 private: 117 const char *Usage; 118 const char *Description; 119 }; 120 121 // ObjdumpOptID is in ObjdumpOptID.h 122 namespace objdump_opt { 123 #define PREFIX(NAME, VALUE) \ 124 static constexpr StringLiteral NAME##_init[] = VALUE; \ 125 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 126 std::size(NAME##_init) - 1); 127 #include "ObjdumpOpts.inc" 128 #undef PREFIX 129 130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 131 #define OPTION(...) \ 132 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), 133 #include "ObjdumpOpts.inc" 134 #undef OPTION 135 }; 136 } // namespace objdump_opt 137 138 class ObjdumpOptTable : public CommonOptTable { 139 public: 140 ObjdumpOptTable() 141 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 142 " [options] <input object files>", 143 "llvm object file dumper") {} 144 }; 145 146 enum OtoolOptID { 147 OTOOL_INVALID = 0, // This is not an option ID. 148 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 149 #include "OtoolOpts.inc" 150 #undef OPTION 151 }; 152 153 namespace otool { 154 #define PREFIX(NAME, VALUE) \ 155 static constexpr StringLiteral NAME##_init[] = VALUE; \ 156 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 157 std::size(NAME##_init) - 1); 158 #include "OtoolOpts.inc" 159 #undef PREFIX 160 161 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 162 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 163 #include "OtoolOpts.inc" 164 #undef OPTION 165 }; 166 } // namespace otool 167 168 class OtoolOptTable : public CommonOptTable { 169 public: 170 OtoolOptTable() 171 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 172 "Mach-O object file displaying tool") {} 173 }; 174 175 } // namespace 176 177 #define DEBUG_TYPE "objdump" 178 179 static uint64_t AdjustVMA; 180 static bool AllHeaders; 181 static std::string ArchName; 182 bool objdump::ArchiveHeaders; 183 bool objdump::Demangle; 184 bool objdump::Disassemble; 185 bool objdump::DisassembleAll; 186 bool objdump::SymbolDescription; 187 bool objdump::TracebackTable; 188 static std::vector<std::string> DisassembleSymbols; 189 static bool DisassembleZeroes; 190 static std::vector<std::string> DisassemblerOptions; 191 DIDumpType objdump::DwarfDumpType; 192 static bool DynamicRelocations; 193 static bool FaultMapSection; 194 static bool FileHeaders; 195 bool objdump::SectionContents; 196 static std::vector<std::string> InputFilenames; 197 bool objdump::PrintLines; 198 static bool MachOOpt; 199 std::string objdump::MCPU; 200 std::vector<std::string> objdump::MAttrs; 201 bool objdump::ShowRawInsn; 202 bool objdump::LeadingAddr; 203 static bool Offloading; 204 static bool RawClangAST; 205 bool objdump::Relocations; 206 bool objdump::PrintImmHex; 207 bool objdump::PrivateHeaders; 208 std::vector<std::string> objdump::FilterSections; 209 bool objdump::SectionHeaders; 210 static bool ShowAllSymbols; 211 static bool ShowLMA; 212 bool objdump::PrintSource; 213 214 static uint64_t StartAddress; 215 static bool HasStartAddressFlag; 216 static uint64_t StopAddress = UINT64_MAX; 217 static bool HasStopAddressFlag; 218 219 bool objdump::SymbolTable; 220 static bool SymbolizeOperands; 221 static bool DynamicSymbolTable; 222 std::string objdump::TripleName; 223 bool objdump::UnwindInfo; 224 static bool Wide; 225 std::string objdump::Prefix; 226 uint32_t objdump::PrefixStrip; 227 228 DebugVarsFormat objdump::DbgVariables = DVDisabled; 229 230 int objdump::DbgIndent = 52; 231 232 static StringSet<> DisasmSymbolSet; 233 StringSet<> objdump::FoundSectionSet; 234 static StringRef ToolName; 235 236 std::unique_ptr<BuildIDFetcher> BIDFetcher; 237 ExitOnError ExitOnErr; 238 239 void Dumper::reportUniqueWarning(Error Err) { 240 reportUniqueWarning(toString(std::move(Err))); 241 } 242 243 void Dumper::reportUniqueWarning(const Twine &Msg) { 244 if (Warnings.insert(StringRef(Msg.str())).second) 245 reportWarning(Msg, O.getFileName()); 246 } 247 248 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { 249 if (const auto *O = dyn_cast<COFFObjectFile>(&Obj)) 250 return createCOFFDumper(*O); 251 if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj)) 252 return createELFDumper(*O); 253 if (const auto *O = dyn_cast<MachOObjectFile>(&Obj)) 254 return createMachODumper(*O); 255 if (const auto *O = dyn_cast<WasmObjectFile>(&Obj)) 256 return createWasmDumper(*O); 257 if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj)) 258 return createXCOFFDumper(*O); 259 260 return createStringError(errc::invalid_argument, 261 "unsupported object file format"); 262 } 263 264 namespace { 265 struct FilterResult { 266 // True if the section should not be skipped. 267 bool Keep; 268 269 // True if the index counter should be incremented, even if the section should 270 // be skipped. For example, sections may be skipped if they are not included 271 // in the --section flag, but we still want those to count toward the section 272 // count. 273 bool IncrementIndex; 274 }; 275 } // namespace 276 277 static FilterResult checkSectionFilter(object::SectionRef S) { 278 if (FilterSections.empty()) 279 return {/*Keep=*/true, /*IncrementIndex=*/true}; 280 281 Expected<StringRef> SecNameOrErr = S.getName(); 282 if (!SecNameOrErr) { 283 consumeError(SecNameOrErr.takeError()); 284 return {/*Keep=*/false, /*IncrementIndex=*/false}; 285 } 286 StringRef SecName = *SecNameOrErr; 287 288 // StringSet does not allow empty key so avoid adding sections with 289 // no name (such as the section with index 0) here. 290 if (!SecName.empty()) 291 FoundSectionSet.insert(SecName); 292 293 // Only show the section if it's in the FilterSections list, but always 294 // increment so the indexing is stable. 295 return {/*Keep=*/is_contained(FilterSections, SecName), 296 /*IncrementIndex=*/true}; 297 } 298 299 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 300 uint64_t *Idx) { 301 // Start at UINT64_MAX so that the first index returned after an increment is 302 // zero (after the unsigned wrap). 303 if (Idx) 304 *Idx = UINT64_MAX; 305 return SectionFilter( 306 [Idx](object::SectionRef S) { 307 FilterResult Result = checkSectionFilter(S); 308 if (Idx != nullptr && Result.IncrementIndex) 309 *Idx += 1; 310 return Result.Keep; 311 }, 312 O); 313 } 314 315 std::string objdump::getFileNameForError(const object::Archive::Child &C, 316 unsigned Index) { 317 Expected<StringRef> NameOrErr = C.getName(); 318 if (NameOrErr) 319 return std::string(NameOrErr.get()); 320 // If we have an error getting the name then we print the index of the archive 321 // member. Since we are already in an error state, we just ignore this error. 322 consumeError(NameOrErr.takeError()); 323 return "<file index: " + std::to_string(Index) + ">"; 324 } 325 326 void objdump::reportWarning(const Twine &Message, StringRef File) { 327 // Output order between errs() and outs() matters especially for archive 328 // files where the output is per member object. 329 outs().flush(); 330 WithColor::warning(errs(), ToolName) 331 << "'" << File << "': " << Message << "\n"; 332 } 333 334 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 335 outs().flush(); 336 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 337 exit(1); 338 } 339 340 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 341 StringRef ArchiveName, 342 StringRef ArchitectureName) { 343 assert(E); 344 outs().flush(); 345 WithColor::error(errs(), ToolName); 346 if (ArchiveName != "") 347 errs() << ArchiveName << "(" << FileName << ")"; 348 else 349 errs() << "'" << FileName << "'"; 350 if (!ArchitectureName.empty()) 351 errs() << " (for architecture " << ArchitectureName << ")"; 352 errs() << ": "; 353 logAllUnhandledErrors(std::move(E), errs()); 354 exit(1); 355 } 356 357 static void reportCmdLineWarning(const Twine &Message) { 358 WithColor::warning(errs(), ToolName) << Message << "\n"; 359 } 360 361 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 362 WithColor::error(errs(), ToolName) << Message << "\n"; 363 exit(1); 364 } 365 366 static void warnOnNoMatchForSections() { 367 SetVector<StringRef> MissingSections; 368 for (StringRef S : FilterSections) { 369 if (FoundSectionSet.count(S)) 370 return; 371 // User may specify a unnamed section. Don't warn for it. 372 if (!S.empty()) 373 MissingSections.insert(S); 374 } 375 376 // Warn only if no section in FilterSections is matched. 377 for (StringRef S : MissingSections) 378 reportCmdLineWarning("section '" + S + 379 "' mentioned in a -j/--section option, but not " 380 "found in any input file"); 381 } 382 383 static const Target *getTarget(const ObjectFile *Obj) { 384 // Figure out the target triple. 385 Triple TheTriple("unknown-unknown-unknown"); 386 if (TripleName.empty()) { 387 TheTriple = Obj->makeTriple(); 388 } else { 389 TheTriple.setTriple(Triple::normalize(TripleName)); 390 auto Arch = Obj->getArch(); 391 if (Arch == Triple::arm || Arch == Triple::armeb) 392 Obj->setARMSubArch(TheTriple); 393 } 394 395 // Get the target specific parser. 396 std::string Error; 397 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 398 Error); 399 if (!TheTarget) 400 reportError(Obj->getFileName(), "can't find target: " + Error); 401 402 // Update the triple name and return the found target. 403 TripleName = TheTriple.getTriple(); 404 return TheTarget; 405 } 406 407 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 408 return A.getOffset() < B.getOffset(); 409 } 410 411 static Error getRelocationValueString(const RelocationRef &Rel, 412 SmallVectorImpl<char> &Result) { 413 const ObjectFile *Obj = Rel.getObject(); 414 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 415 return getELFRelocationValueString(ELF, Rel, Result); 416 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 417 return getCOFFRelocationValueString(COFF, Rel, Result); 418 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 419 return getWasmRelocationValueString(Wasm, Rel, Result); 420 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 421 return getMachORelocationValueString(MachO, Rel, Result); 422 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 423 return getXCOFFRelocationValueString(*XCOFF, Rel, Result); 424 llvm_unreachable("unknown object file format"); 425 } 426 427 /// Indicates whether this relocation should hidden when listing 428 /// relocations, usually because it is the trailing part of a multipart 429 /// relocation that will be printed as part of the leading relocation. 430 static bool getHidden(RelocationRef RelRef) { 431 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 432 if (!MachO) 433 return false; 434 435 unsigned Arch = MachO->getArch(); 436 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 437 uint64_t Type = MachO->getRelocationType(Rel); 438 439 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 440 // is always hidden. 441 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 442 return Type == MachO::GENERIC_RELOC_PAIR; 443 444 if (Arch == Triple::x86_64) { 445 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 446 // an X86_64_RELOC_SUBTRACTOR. 447 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 448 DataRefImpl RelPrev = Rel; 449 RelPrev.d.a--; 450 uint64_t PrevType = MachO->getRelocationType(RelPrev); 451 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 452 return true; 453 } 454 } 455 456 return false; 457 } 458 459 /// Get the column at which we want to start printing the instruction 460 /// disassembly, taking into account anything which appears to the left of it. 461 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { 462 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 463 } 464 465 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 466 raw_ostream &OS) { 467 // The output of printInst starts with a tab. Print some spaces so that 468 // the tab has 1 column and advances to the target tab stop. 469 unsigned TabStop = getInstStartColumn(STI); 470 unsigned Column = OS.tell() - Start; 471 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 472 } 473 474 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, 475 formatted_raw_ostream &OS, 476 MCSubtargetInfo const &STI) { 477 size_t Start = OS.tell(); 478 if (LeadingAddr) 479 OS << format("%8" PRIx64 ":", Address); 480 if (ShowRawInsn) { 481 OS << ' '; 482 dumpBytes(Bytes, OS); 483 } 484 AlignToInstStartColumn(Start, STI, OS); 485 } 486 487 namespace { 488 489 static bool isAArch64Elf(const ObjectFile &Obj) { 490 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 491 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 492 } 493 494 static bool isArmElf(const ObjectFile &Obj) { 495 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 496 return Elf && Elf->getEMachine() == ELF::EM_ARM; 497 } 498 499 static bool isCSKYElf(const ObjectFile &Obj) { 500 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 501 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 502 } 503 504 static bool hasMappingSymbols(const ObjectFile &Obj) { 505 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 506 } 507 508 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 509 const RelocationRef &Rel, uint64_t Address, 510 bool Is64Bits) { 511 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 512 SmallString<16> Name; 513 SmallString<32> Val; 514 Rel.getTypeName(Name); 515 if (Error E = getRelocationValueString(Rel, Val)) 516 reportError(std::move(E), FileName); 517 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 518 if (LeadingAddr) 519 OS << format(Fmt.data(), Address); 520 OS << Name << "\t" << Val; 521 } 522 523 class PrettyPrinter { 524 public: 525 virtual ~PrettyPrinter() = default; 526 virtual void 527 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 528 object::SectionedAddress Address, formatted_raw_ostream &OS, 529 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 530 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 531 LiveVariablePrinter &LVP) { 532 if (SP && (PrintSource || PrintLines)) 533 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 534 LVP.printBetweenInsts(OS, false); 535 536 printRawData(Bytes, Address.Address, OS, STI); 537 538 if (MI) { 539 // See MCInstPrinter::printInst. On targets where a PC relative immediate 540 // is relative to the next instruction and the length of a MCInst is 541 // difficult to measure (x86), this is the address of the next 542 // instruction. 543 uint64_t Addr = 544 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 545 IP.printInst(MI, Addr, "", STI, OS); 546 } else 547 OS << "\t<unknown>"; 548 } 549 }; 550 PrettyPrinter PrettyPrinterInst; 551 552 class HexagonPrettyPrinter : public PrettyPrinter { 553 public: 554 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 555 formatted_raw_ostream &OS) { 556 uint32_t opcode = 557 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 558 if (LeadingAddr) 559 OS << format("%8" PRIx64 ":", Address); 560 if (ShowRawInsn) { 561 OS << "\t"; 562 dumpBytes(Bytes.slice(0, 4), OS); 563 OS << format("\t%08" PRIx32, opcode); 564 } 565 } 566 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 567 object::SectionedAddress Address, formatted_raw_ostream &OS, 568 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 569 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 570 LiveVariablePrinter &LVP) override { 571 if (SP && (PrintSource || PrintLines)) 572 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 573 if (!MI) { 574 printLead(Bytes, Address.Address, OS); 575 OS << " <unknown>"; 576 return; 577 } 578 std::string Buffer; 579 { 580 raw_string_ostream TempStream(Buffer); 581 IP.printInst(MI, Address.Address, "", STI, TempStream); 582 } 583 StringRef Contents(Buffer); 584 // Split off bundle attributes 585 auto PacketBundle = Contents.rsplit('\n'); 586 // Split off first instruction from the rest 587 auto HeadTail = PacketBundle.first.split('\n'); 588 auto Preamble = " { "; 589 auto Separator = ""; 590 591 // Hexagon's packets require relocations to be inline rather than 592 // clustered at the end of the packet. 593 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 594 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 595 auto PrintReloc = [&]() -> void { 596 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 597 if (RelCur->getOffset() == Address.Address) { 598 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 599 return; 600 } 601 ++RelCur; 602 } 603 }; 604 605 while (!HeadTail.first.empty()) { 606 OS << Separator; 607 Separator = "\n"; 608 if (SP && (PrintSource || PrintLines)) 609 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 610 printLead(Bytes, Address.Address, OS); 611 OS << Preamble; 612 Preamble = " "; 613 StringRef Inst; 614 auto Duplex = HeadTail.first.split('\v'); 615 if (!Duplex.second.empty()) { 616 OS << Duplex.first; 617 OS << "; "; 618 Inst = Duplex.second; 619 } 620 else 621 Inst = HeadTail.first; 622 OS << Inst; 623 HeadTail = HeadTail.second.split('\n'); 624 if (HeadTail.first.empty()) 625 OS << " } " << PacketBundle.second; 626 PrintReloc(); 627 Bytes = Bytes.slice(4); 628 Address.Address += 4; 629 } 630 } 631 }; 632 HexagonPrettyPrinter HexagonPrettyPrinterInst; 633 634 class AMDGCNPrettyPrinter : public PrettyPrinter { 635 public: 636 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 637 object::SectionedAddress Address, formatted_raw_ostream &OS, 638 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 639 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 640 LiveVariablePrinter &LVP) override { 641 if (SP && (PrintSource || PrintLines)) 642 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 643 644 if (MI) { 645 SmallString<40> InstStr; 646 raw_svector_ostream IS(InstStr); 647 648 IP.printInst(MI, Address.Address, "", STI, IS); 649 650 OS << left_justify(IS.str(), 60); 651 } else { 652 // an unrecognized encoding - this is probably data so represent it 653 // using the .long directive, or .byte directive if fewer than 4 bytes 654 // remaining 655 if (Bytes.size() >= 4) { 656 OS << format("\t.long 0x%08" PRIx32 " ", 657 support::endian::read32<support::little>(Bytes.data())); 658 OS.indent(42); 659 } else { 660 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 661 for (unsigned int i = 1; i < Bytes.size(); i++) 662 OS << format(", 0x%02" PRIx8, Bytes[i]); 663 OS.indent(55 - (6 * Bytes.size())); 664 } 665 } 666 667 OS << format("// %012" PRIX64 ":", Address.Address); 668 if (Bytes.size() >= 4) { 669 // D should be casted to uint32_t here as it is passed by format to 670 // snprintf as vararg. 671 for (uint32_t D : 672 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 673 Bytes.size() / 4)) 674 OS << format(" %08" PRIX32, D); 675 } else { 676 for (unsigned char B : Bytes) 677 OS << format(" %02" PRIX8, B); 678 } 679 680 if (!Annot.empty()) 681 OS << " // " << Annot; 682 } 683 }; 684 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 685 686 class BPFPrettyPrinter : public PrettyPrinter { 687 public: 688 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 689 object::SectionedAddress Address, formatted_raw_ostream &OS, 690 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 691 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 692 LiveVariablePrinter &LVP) override { 693 if (SP && (PrintSource || PrintLines)) 694 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 695 if (LeadingAddr) 696 OS << format("%8" PRId64 ":", Address.Address / 8); 697 if (ShowRawInsn) { 698 OS << "\t"; 699 dumpBytes(Bytes, OS); 700 } 701 if (MI) 702 IP.printInst(MI, Address.Address, "", STI, OS); 703 else 704 OS << "\t<unknown>"; 705 } 706 }; 707 BPFPrettyPrinter BPFPrettyPrinterInst; 708 709 class ARMPrettyPrinter : public PrettyPrinter { 710 public: 711 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 712 object::SectionedAddress Address, formatted_raw_ostream &OS, 713 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 714 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 715 LiveVariablePrinter &LVP) override { 716 if (SP && (PrintSource || PrintLines)) 717 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 718 LVP.printBetweenInsts(OS, false); 719 720 size_t Start = OS.tell(); 721 if (LeadingAddr) 722 OS << format("%8" PRIx64 ":", Address.Address); 723 if (ShowRawInsn) { 724 size_t Pos = 0, End = Bytes.size(); 725 if (STI.checkFeatures("+thumb-mode")) { 726 for (; Pos + 2 <= End; Pos += 2) 727 OS << ' ' 728 << format_hex_no_prefix( 729 llvm::support::endian::read<uint16_t>( 730 Bytes.data() + Pos, InstructionEndianness), 731 4); 732 } else { 733 for (; Pos + 4 <= End; Pos += 4) 734 OS << ' ' 735 << format_hex_no_prefix( 736 llvm::support::endian::read<uint32_t>( 737 Bytes.data() + Pos, InstructionEndianness), 738 8); 739 } 740 if (Pos < End) { 741 OS << ' '; 742 dumpBytes(Bytes.slice(Pos), OS); 743 } 744 } 745 746 AlignToInstStartColumn(Start, STI, OS); 747 748 if (MI) { 749 IP.printInst(MI, Address.Address, "", STI, OS); 750 } else 751 OS << "\t<unknown>"; 752 } 753 754 void setInstructionEndianness(llvm::support::endianness Endianness) { 755 InstructionEndianness = Endianness; 756 } 757 758 private: 759 llvm::support::endianness InstructionEndianness = llvm::support::little; 760 }; 761 ARMPrettyPrinter ARMPrettyPrinterInst; 762 763 class AArch64PrettyPrinter : public PrettyPrinter { 764 public: 765 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 766 object::SectionedAddress Address, formatted_raw_ostream &OS, 767 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 768 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 769 LiveVariablePrinter &LVP) override { 770 if (SP && (PrintSource || PrintLines)) 771 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 772 LVP.printBetweenInsts(OS, false); 773 774 size_t Start = OS.tell(); 775 if (LeadingAddr) 776 OS << format("%8" PRIx64 ":", Address.Address); 777 if (ShowRawInsn) { 778 size_t Pos = 0, End = Bytes.size(); 779 for (; Pos + 4 <= End; Pos += 4) 780 OS << ' ' 781 << format_hex_no_prefix( 782 llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, 783 llvm::support::little), 784 8); 785 if (Pos < End) { 786 OS << ' '; 787 dumpBytes(Bytes.slice(Pos), OS); 788 } 789 } 790 791 AlignToInstStartColumn(Start, STI, OS); 792 793 if (MI) { 794 IP.printInst(MI, Address.Address, "", STI, OS); 795 } else 796 OS << "\t<unknown>"; 797 } 798 }; 799 AArch64PrettyPrinter AArch64PrettyPrinterInst; 800 801 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 802 switch(Triple.getArch()) { 803 default: 804 return PrettyPrinterInst; 805 case Triple::hexagon: 806 return HexagonPrettyPrinterInst; 807 case Triple::amdgcn: 808 return AMDGCNPrettyPrinterInst; 809 case Triple::bpfel: 810 case Triple::bpfeb: 811 return BPFPrettyPrinterInst; 812 case Triple::arm: 813 case Triple::armeb: 814 case Triple::thumb: 815 case Triple::thumbeb: 816 return ARMPrettyPrinterInst; 817 case Triple::aarch64: 818 case Triple::aarch64_be: 819 case Triple::aarch64_32: 820 return AArch64PrettyPrinterInst; 821 } 822 } 823 824 class DisassemblerTarget { 825 public: 826 const Target *TheTarget; 827 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; 828 std::shared_ptr<MCContext> Context; 829 std::unique_ptr<MCDisassembler> DisAsm; 830 std::shared_ptr<const MCInstrAnalysis> InstrAnalysis; 831 std::shared_ptr<MCInstPrinter> InstPrinter; 832 PrettyPrinter *Printer; 833 834 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 835 StringRef TripleName, StringRef MCPU, 836 SubtargetFeatures &Features); 837 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); 838 839 private: 840 MCTargetOptions Options; 841 std::shared_ptr<const MCRegisterInfo> RegisterInfo; 842 std::shared_ptr<const MCAsmInfo> AsmInfo; 843 std::shared_ptr<const MCInstrInfo> InstrInfo; 844 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; 845 }; 846 847 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 848 StringRef TripleName, StringRef MCPU, 849 SubtargetFeatures &Features) 850 : TheTarget(TheTarget), 851 Printer(&selectPrettyPrinter(Triple(TripleName))), 852 RegisterInfo(TheTarget->createMCRegInfo(TripleName)) { 853 if (!RegisterInfo) 854 reportError(Obj.getFileName(), "no register info for target " + TripleName); 855 856 // Set up disassembler. 857 AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options)); 858 if (!AsmInfo) 859 reportError(Obj.getFileName(), "no assembly info for target " + TripleName); 860 861 SubtargetInfo.reset( 862 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 863 if (!SubtargetInfo) 864 reportError(Obj.getFileName(), 865 "no subtarget info for target " + TripleName); 866 InstrInfo.reset(TheTarget->createMCInstrInfo()); 867 if (!InstrInfo) 868 reportError(Obj.getFileName(), 869 "no instruction info for target " + TripleName); 870 Context = 871 std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(), 872 RegisterInfo.get(), SubtargetInfo.get()); 873 874 // FIXME: for now initialize MCObjectFileInfo with default values 875 ObjectFileInfo.reset( 876 TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false)); 877 Context->setObjectFileInfo(ObjectFileInfo.get()); 878 879 DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)); 880 if (!DisAsm) 881 reportError(Obj.getFileName(), "no disassembler for target " + TripleName); 882 883 InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get())); 884 885 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 886 InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName), 887 AsmPrinterVariant, *AsmInfo, 888 *InstrInfo, *RegisterInfo)); 889 if (!InstPrinter) 890 reportError(Obj.getFileName(), 891 "no instruction printer for target " + TripleName); 892 InstPrinter->setPrintImmHex(PrintImmHex); 893 InstPrinter->setPrintBranchImmAsAddress(true); 894 InstPrinter->setSymbolizeOperands(SymbolizeOperands); 895 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); 896 } 897 898 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, 899 SubtargetFeatures &Features) 900 : TheTarget(Other.TheTarget), 901 SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 902 Features.getString())), 903 Context(Other.Context), 904 DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)), 905 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), 906 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), 907 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), 908 ObjectFileInfo(Other.ObjectFileInfo) {} 909 } // namespace 910 911 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 912 assert(Obj.isELF()); 913 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 914 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 915 Obj.getFileName()) 916 ->getType(); 917 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 918 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 919 Obj.getFileName()) 920 ->getType(); 921 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 922 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 923 Obj.getFileName()) 924 ->getType(); 925 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 926 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 927 Obj.getFileName()) 928 ->getType(); 929 llvm_unreachable("Unsupported binary format"); 930 } 931 932 template <class ELFT> 933 static void 934 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 935 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 936 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 937 uint8_t SymbolType = Symbol.getELFType(); 938 if (SymbolType == ELF::STT_SECTION) 939 continue; 940 941 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 942 // ELFSymbolRef::getAddress() returns size instead of value for common 943 // symbols which is not desirable for disassembly output. Overriding. 944 if (SymbolType == ELF::STT_COMMON) 945 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 946 Obj.getFileName()) 947 ->st_value; 948 949 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 950 if (Name.empty()) 951 continue; 952 953 section_iterator SecI = 954 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 955 if (SecI == Obj.section_end()) 956 continue; 957 958 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 959 } 960 } 961 962 static void 963 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 964 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 965 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 966 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 967 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 968 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 969 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 970 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 971 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 972 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 973 else 974 llvm_unreachable("Unsupported binary format"); 975 } 976 977 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 978 for (auto SecI : Obj.sections()) { 979 const WasmSection &Section = Obj.getWasmSection(SecI); 980 if (Section.Type == wasm::WASM_SEC_CODE) 981 return SecI; 982 } 983 return std::nullopt; 984 } 985 986 static void 987 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 988 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 989 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 990 if (!Section) 991 return; 992 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 993 994 std::set<uint64_t> SymbolAddresses; 995 for (const auto &Sym : Symbols) 996 SymbolAddresses.insert(Sym.Addr); 997 998 for (const wasm::WasmFunction &Function : Obj.functions()) { 999 uint64_t Address = Function.CodeSectionOffset; 1000 // Only add fallback symbols for functions not already present in the symbol 1001 // table. 1002 if (SymbolAddresses.count(Address)) 1003 continue; 1004 // This function has no symbol, so it should have no SymbolName. 1005 assert(Function.SymbolName.empty()); 1006 // We use DebugName for the name, though it may be empty if there is no 1007 // "name" custom section, or that section is missing a name for this 1008 // function. 1009 StringRef Name = Function.DebugName; 1010 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 1011 } 1012 } 1013 1014 static void addPltEntries(const ObjectFile &Obj, 1015 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1016 StringSaver &Saver) { 1017 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 1018 if (!ElfObj) 1019 return; 1020 DenseMap<StringRef, SectionRef> Sections; 1021 for (SectionRef Section : Obj.sections()) { 1022 Expected<StringRef> SecNameOrErr = Section.getName(); 1023 if (!SecNameOrErr) { 1024 consumeError(SecNameOrErr.takeError()); 1025 continue; 1026 } 1027 Sections[*SecNameOrErr] = Section; 1028 } 1029 for (auto Plt : ElfObj->getPltEntries()) { 1030 if (Plt.Symbol) { 1031 SymbolRef Symbol(*Plt.Symbol, ElfObj); 1032 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1033 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 1034 if (!NameOrErr->empty()) 1035 AllSymbols[Sections[Plt.Section]].emplace_back( 1036 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); 1037 continue; 1038 } else { 1039 // The warning has been reported in disassembleObject(). 1040 consumeError(NameOrErr.takeError()); 1041 } 1042 } 1043 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + 1044 " references an invalid symbol", 1045 Obj.getFileName()); 1046 } 1047 } 1048 1049 // Normally the disassembly output will skip blocks of zeroes. This function 1050 // returns the number of zero bytes that can be skipped when dumping the 1051 // disassembly of the instructions in Buf. 1052 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 1053 // Find the number of leading zeroes. 1054 size_t N = 0; 1055 while (N < Buf.size() && !Buf[N]) 1056 ++N; 1057 1058 // We may want to skip blocks of zero bytes, but unless we see 1059 // at least 8 of them in a row. 1060 if (N < 8) 1061 return 0; 1062 1063 // We skip zeroes in multiples of 4 because do not want to truncate an 1064 // instruction if it starts with a zero byte. 1065 return N & ~0x3; 1066 } 1067 1068 // Returns a map from sections to their relocations. 1069 static std::map<SectionRef, std::vector<RelocationRef>> 1070 getRelocsMap(object::ObjectFile const &Obj) { 1071 std::map<SectionRef, std::vector<RelocationRef>> Ret; 1072 uint64_t I = (uint64_t)-1; 1073 for (SectionRef Sec : Obj.sections()) { 1074 ++I; 1075 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1076 if (!RelocatedOrErr) 1077 reportError(Obj.getFileName(), 1078 "section (" + Twine(I) + 1079 "): failed to get a relocated section: " + 1080 toString(RelocatedOrErr.takeError())); 1081 1082 section_iterator Relocated = *RelocatedOrErr; 1083 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1084 continue; 1085 std::vector<RelocationRef> &V = Ret[*Relocated]; 1086 append_range(V, Sec.relocations()); 1087 // Sort relocations by address. 1088 llvm::stable_sort(V, isRelocAddressLess); 1089 } 1090 return Ret; 1091 } 1092 1093 // Used for --adjust-vma to check if address should be adjusted by the 1094 // specified value for a given section. 1095 // For ELF we do not adjust non-allocatable sections like debug ones, 1096 // because they are not loadable. 1097 // TODO: implement for other file formats. 1098 static bool shouldAdjustVA(const SectionRef &Section) { 1099 const ObjectFile *Obj = Section.getObject(); 1100 if (Obj->isELF()) 1101 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1102 return false; 1103 } 1104 1105 1106 typedef std::pair<uint64_t, char> MappingSymbolPair; 1107 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1108 uint64_t Address) { 1109 auto It = 1110 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1111 return Val.first <= Address; 1112 }); 1113 // Return zero for any address before the first mapping symbol; this means 1114 // we should use the default disassembly mode, depending on the target. 1115 if (It == MappingSymbols.begin()) 1116 return '\x00'; 1117 return (It - 1)->second; 1118 } 1119 1120 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1121 uint64_t End, const ObjectFile &Obj, 1122 ArrayRef<uint8_t> Bytes, 1123 ArrayRef<MappingSymbolPair> MappingSymbols, 1124 const MCSubtargetInfo &STI, raw_ostream &OS) { 1125 support::endianness Endian = 1126 Obj.isLittleEndian() ? support::little : support::big; 1127 size_t Start = OS.tell(); 1128 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1129 if (Index + 4 <= End) { 1130 dumpBytes(Bytes.slice(Index, 4), OS); 1131 AlignToInstStartColumn(Start, STI, OS); 1132 OS << "\t.word\t" 1133 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1134 10); 1135 return 4; 1136 } 1137 if (Index + 2 <= End) { 1138 dumpBytes(Bytes.slice(Index, 2), OS); 1139 AlignToInstStartColumn(Start, STI, OS); 1140 OS << "\t.short\t" 1141 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1142 return 2; 1143 } 1144 dumpBytes(Bytes.slice(Index, 1), OS); 1145 AlignToInstStartColumn(Start, STI, OS); 1146 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1147 return 1; 1148 } 1149 1150 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1151 ArrayRef<uint8_t> Bytes) { 1152 // print out data up to 8 bytes at a time in hex and ascii 1153 uint8_t AsciiData[9] = {'\0'}; 1154 uint8_t Byte; 1155 int NumBytes = 0; 1156 1157 for (; Index < End; ++Index) { 1158 if (NumBytes == 0) 1159 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1160 Byte = Bytes.slice(Index)[0]; 1161 outs() << format(" %02x", Byte); 1162 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1163 1164 uint8_t IndentOffset = 0; 1165 NumBytes++; 1166 if (Index == End - 1 || NumBytes > 8) { 1167 // Indent the space for less than 8 bytes data. 1168 // 2 spaces for byte and one for space between bytes 1169 IndentOffset = 3 * (8 - NumBytes); 1170 for (int Excess = NumBytes; Excess < 8; Excess++) 1171 AsciiData[Excess] = '\0'; 1172 NumBytes = 8; 1173 } 1174 if (NumBytes == 8) { 1175 AsciiData[8] = '\0'; 1176 outs() << std::string(IndentOffset, ' ') << " "; 1177 outs() << reinterpret_cast<char *>(AsciiData); 1178 outs() << '\n'; 1179 NumBytes = 0; 1180 } 1181 } 1182 } 1183 1184 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1185 const SymbolRef &Symbol, 1186 bool IsMappingSymbol) { 1187 const StringRef FileName = Obj.getFileName(); 1188 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1189 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1190 1191 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { 1192 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1193 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1194 1195 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1196 std::optional<XCOFF::StorageMappingClass> Smc = 1197 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1198 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, 1199 isLabel(XCOFFObj, Symbol)); 1200 } else if (Obj.isXCOFF()) { 1201 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1202 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, 1203 /*IsXCOFF=*/true); 1204 } else { 1205 uint8_t Type = 1206 Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE; 1207 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); 1208 } 1209 } 1210 1211 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1212 const uint64_t Addr, StringRef &Name, 1213 uint8_t Type) { 1214 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) 1215 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); 1216 else 1217 return SymbolInfoTy(Addr, Name, Type); 1218 } 1219 1220 static void 1221 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1222 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1223 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1224 if (AddrToBBAddrMap.empty()) 1225 return; 1226 Labels.clear(); 1227 uint64_t StartAddress = SectionAddr + Start; 1228 uint64_t EndAddress = SectionAddr + End; 1229 auto Iter = AddrToBBAddrMap.find(StartAddress); 1230 if (Iter == AddrToBBAddrMap.end()) 1231 return; 1232 for (const BBAddrMap::BBEntry &BBEntry : Iter->second.BBEntries) { 1233 uint64_t BBAddress = BBEntry.Offset + Iter->second.Addr; 1234 if (BBAddress >= EndAddress) 1235 continue; 1236 Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str()); 1237 } 1238 } 1239 1240 static void collectLocalBranchTargets( 1241 ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, 1242 MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, 1243 uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { 1244 // So far only supports PowerPC and X86. 1245 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 1246 return; 1247 1248 Labels.clear(); 1249 unsigned LabelCount = 0; 1250 Start += SectionAddr; 1251 End += SectionAddr; 1252 uint64_t Index = Start; 1253 while (Index < End) { 1254 // Disassemble a real instruction and record function-local branch labels. 1255 MCInst Inst; 1256 uint64_t Size; 1257 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1258 bool Disassembled = 1259 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1260 if (Size == 0) 1261 Size = std::min<uint64_t>(ThisBytes.size(), 1262 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1263 1264 if (Disassembled && MIA) { 1265 uint64_t Target; 1266 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1267 // On PowerPC, if the address of a branch is the same as the target, it 1268 // means that it's a function call. Do not mark the label for this case. 1269 if (TargetKnown && (Target >= Start && Target < End) && 1270 !Labels.count(Target) && 1271 !(STI->getTargetTriple().isPPC() && Target == Index)) 1272 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1273 } 1274 Index += Size; 1275 } 1276 } 1277 1278 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1279 // This is currently only used on AMDGPU, and assumes the format of the 1280 // void * argument passed to AMDGPU's createMCSymbolizer. 1281 static void addSymbolizer( 1282 MCContext &Ctx, const Target *Target, StringRef TripleName, 1283 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1284 SectionSymbolsTy &Symbols, 1285 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1286 1287 std::unique_ptr<MCRelocationInfo> RelInfo( 1288 Target->createMCRelocationInfo(TripleName, Ctx)); 1289 if (!RelInfo) 1290 return; 1291 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1292 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1293 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1294 DisAsm->setSymbolizer(std::move(Symbolizer)); 1295 1296 if (!SymbolizeOperands) 1297 return; 1298 1299 // Synthesize labels referenced by branch instructions by 1300 // disassembling, discarding the output, and collecting the referenced 1301 // addresses from the symbolizer. 1302 for (size_t Index = 0; Index != Bytes.size();) { 1303 MCInst Inst; 1304 uint64_t Size; 1305 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1306 const uint64_t ThisAddr = SectionAddr + Index; 1307 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1308 if (Size == 0) 1309 Size = std::min<uint64_t>(ThisBytes.size(), 1310 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1311 Index += Size; 1312 } 1313 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1314 // Copy and sort to remove duplicates. 1315 std::vector<uint64_t> LabelAddrs; 1316 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1317 LabelAddrsRef.end()); 1318 llvm::sort(LabelAddrs); 1319 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1320 LabelAddrs.begin()); 1321 // Add the labels. 1322 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1323 auto Name = std::make_unique<std::string>(); 1324 *Name = (Twine("L") + Twine(LabelNum)).str(); 1325 SynthesizedLabelNames.push_back(std::move(Name)); 1326 Symbols.push_back(SymbolInfoTy( 1327 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1328 } 1329 llvm::stable_sort(Symbols); 1330 // Recreate the symbolizer with the new symbols list. 1331 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1332 Symbolizer.reset(Target->createMCSymbolizer( 1333 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1334 DisAsm->setSymbolizer(std::move(Symbolizer)); 1335 } 1336 1337 static StringRef getSegmentName(const MachOObjectFile *MachO, 1338 const SectionRef &Section) { 1339 if (MachO) { 1340 DataRefImpl DR = Section.getRawDataRefImpl(); 1341 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1342 return SegmentName; 1343 } 1344 return ""; 1345 } 1346 1347 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1348 const MCAsmInfo &MAI, 1349 const MCSubtargetInfo &STI, 1350 StringRef Comments, 1351 LiveVariablePrinter &LVP) { 1352 do { 1353 if (!Comments.empty()) { 1354 // Emit a line of comments. 1355 StringRef Comment; 1356 std::tie(Comment, Comments) = Comments.split('\n'); 1357 // MAI.getCommentColumn() assumes that instructions are printed at the 1358 // position of 8, while getInstStartColumn() returns the actual position. 1359 unsigned CommentColumn = 1360 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1361 FOS.PadToColumn(CommentColumn); 1362 FOS << MAI.getCommentString() << ' ' << Comment; 1363 } 1364 LVP.printAfterInst(FOS); 1365 FOS << '\n'; 1366 } while (!Comments.empty()); 1367 FOS.flush(); 1368 } 1369 1370 static void createFakeELFSections(ObjectFile &Obj) { 1371 assert(Obj.isELF()); 1372 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1373 Elf32LEObj->createFakeSections(); 1374 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1375 Elf64LEObj->createFakeSections(); 1376 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1377 Elf32BEObj->createFakeSections(); 1378 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1379 Elf64BEObj->createFakeSections(); 1380 else 1381 llvm_unreachable("Unsupported binary format"); 1382 } 1383 1384 // Tries to fetch a more complete version of the given object file using its 1385 // Build ID. Returns std::nullopt if nothing was found. 1386 static std::optional<OwningBinary<Binary>> 1387 fetchBinaryByBuildID(const ObjectFile &Obj) { 1388 object::BuildIDRef BuildID = getBuildID(&Obj); 1389 if (BuildID.empty()) 1390 return std::nullopt; 1391 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1392 if (!Path) 1393 return std::nullopt; 1394 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1395 if (!DebugBinary) { 1396 reportWarning(toString(DebugBinary.takeError()), *Path); 1397 return std::nullopt; 1398 } 1399 return std::move(*DebugBinary); 1400 } 1401 1402 static void 1403 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, 1404 DisassemblerTarget &PrimaryTarget, 1405 std::optional<DisassemblerTarget> &SecondaryTarget, 1406 SourcePrinter &SP, bool InlineRelocs) { 1407 DisassemblerTarget *DT = &PrimaryTarget; 1408 bool PrimaryIsThumb = false; 1409 if (isArmElf(Obj)) 1410 PrimaryIsThumb = PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"); 1411 1412 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1413 if (InlineRelocs) 1414 RelocMap = getRelocsMap(Obj); 1415 bool Is64Bits = Obj.getBytesInAddress() > 4; 1416 1417 // Create a mapping from virtual address to symbol name. This is used to 1418 // pretty print the symbols while disassembling. 1419 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1420 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; 1421 SectionSymbolsTy AbsoluteSymbols; 1422 const StringRef FileName = Obj.getFileName(); 1423 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1424 for (const SymbolRef &Symbol : Obj.symbols()) { 1425 Expected<StringRef> NameOrErr = Symbol.getName(); 1426 if (!NameOrErr) { 1427 reportWarning(toString(NameOrErr.takeError()), FileName); 1428 continue; 1429 } 1430 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1431 continue; 1432 1433 if (Obj.isELF() && 1434 (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { 1435 // Symbol is intended not to be displayed by default (STT_FILE, 1436 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will 1437 // synthesize a section symbol if no symbol is defined at offset 0. 1438 // 1439 // For a mapping symbol, store it within both AllSymbols and 1440 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will 1441 // not be printed in disassembly listing. 1442 if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION && 1443 hasMappingSymbols(Obj)) { 1444 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1445 if (SecI != Obj.section_end()) { 1446 uint64_t SectionAddr = SecI->getAddress(); 1447 uint64_t Address = cantFail(Symbol.getAddress()); 1448 StringRef Name = *NameOrErr; 1449 if (Name.consume_front("$") && Name.size() && 1450 strchr("adtx", Name[0])) { 1451 AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr, 1452 Name[0]); 1453 AllSymbols[*SecI].push_back( 1454 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true)); 1455 } 1456 } 1457 } 1458 continue; 1459 } 1460 1461 if (MachO) { 1462 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1463 // symbols that support MachO header introspection. They do not bind to 1464 // code locations and are irrelevant for disassembly. 1465 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1466 continue; 1467 // Don't ask a Mach-O STAB symbol for its section unless you know that 1468 // STAB symbol's section field refers to a valid section index. Otherwise 1469 // the symbol may error trying to load a section that does not exist. 1470 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1471 uint8_t NType = (MachO->is64Bit() ? 1472 MachO->getSymbol64TableEntry(SymDRI).n_type: 1473 MachO->getSymbolTableEntry(SymDRI).n_type); 1474 if (NType & MachO::N_STAB) 1475 continue; 1476 } 1477 1478 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1479 if (SecI != Obj.section_end()) 1480 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1481 else 1482 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1483 } 1484 1485 if (AllSymbols.empty() && Obj.isELF()) 1486 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1487 1488 if (Obj.isWasm()) 1489 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1490 1491 if (Obj.isELF() && Obj.sections().empty()) 1492 createFakeELFSections(Obj); 1493 1494 BumpPtrAllocator A; 1495 StringSaver Saver(A); 1496 addPltEntries(Obj, AllSymbols, Saver); 1497 1498 // Create a mapping from virtual address to section. An empty section can 1499 // cause more than one section at the same address. Sort such sections to be 1500 // before same-addressed non-empty sections so that symbol lookups prefer the 1501 // non-empty section. 1502 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1503 for (SectionRef Sec : Obj.sections()) 1504 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1505 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1506 if (LHS.first != RHS.first) 1507 return LHS.first < RHS.first; 1508 return LHS.second.getSize() < RHS.second.getSize(); 1509 }); 1510 1511 // Linked executables (.exe and .dll files) typically don't include a real 1512 // symbol table but they might contain an export table. 1513 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1514 for (const auto &ExportEntry : COFFObj->export_directories()) { 1515 StringRef Name; 1516 if (Error E = ExportEntry.getSymbolName(Name)) 1517 reportError(std::move(E), Obj.getFileName()); 1518 if (Name.empty()) 1519 continue; 1520 1521 uint32_t RVA; 1522 if (Error E = ExportEntry.getExportRVA(RVA)) 1523 reportError(std::move(E), Obj.getFileName()); 1524 1525 uint64_t VA = COFFObj->getImageBase() + RVA; 1526 auto Sec = partition_point( 1527 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1528 return O.first <= VA; 1529 }); 1530 if (Sec != SectionAddresses.begin()) { 1531 --Sec; 1532 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1533 } else 1534 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1535 } 1536 } 1537 1538 // Sort all the symbols, this allows us to use a simple binary search to find 1539 // Multiple symbols can have the same address. Use a stable sort to stabilize 1540 // the output. 1541 StringSet<> FoundDisasmSymbolSet; 1542 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1543 llvm::stable_sort(SecSyms.second); 1544 llvm::stable_sort(AbsoluteSymbols); 1545 1546 std::unique_ptr<DWARFContext> DICtx; 1547 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); 1548 1549 if (DbgVariables != DVDisabled) { 1550 DICtx = DWARFContext::create(DbgObj); 1551 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1552 LVP.addCompileUnit(CU->getUnitDIE(false)); 1553 } 1554 1555 LLVM_DEBUG(LVP.dump()); 1556 1557 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1558 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1559 std::nullopt) { 1560 AddrToBBAddrMap.clear(); 1561 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1562 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1563 if (!BBAddrMapsOrErr) { 1564 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1565 return; 1566 } 1567 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1568 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1569 std::move(FunctionBBAddrMap)); 1570 } 1571 }; 1572 1573 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1574 // single mapping, since they don't have any conflicts. 1575 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1576 ReadBBAddrMap(); 1577 1578 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1579 if (FilterSections.empty() && !DisassembleAll && 1580 (!Section.isText() || Section.isVirtual())) 1581 continue; 1582 1583 uint64_t SectionAddr = Section.getAddress(); 1584 uint64_t SectSize = Section.getSize(); 1585 if (!SectSize) 1586 continue; 1587 1588 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1589 // corresponding to this section, if present. 1590 if (SymbolizeOperands && Obj.isRelocatableObject()) 1591 ReadBBAddrMap(Section.getIndex()); 1592 1593 // Get the list of all the symbols in this section. 1594 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1595 auto &MappingSymbols = AllMappingSymbols[Section]; 1596 llvm::sort(MappingSymbols); 1597 1598 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1599 unwrapOrError(Section.getContents(), Obj.getFileName())); 1600 1601 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1602 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1603 // AMDGPU disassembler uses symbolizer for printing labels 1604 addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(), 1605 SectionAddr, Bytes, Symbols, SynthesizedLabelNames); 1606 } 1607 1608 StringRef SegmentName = getSegmentName(MachO, Section); 1609 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1610 // If the section has no symbol at the start, just insert a dummy one. 1611 // Without --show-all-symbols, also insert one if all symbols at the start 1612 // are mapping symbols. 1613 bool CreateDummy = Symbols.empty(); 1614 if (!CreateDummy) { 1615 CreateDummy = true; 1616 for (auto &Sym : Symbols) { 1617 if (Sym.Addr != SectionAddr) 1618 break; 1619 if (!Sym.IsMappingSymbol || ShowAllSymbols) 1620 CreateDummy = false; 1621 } 1622 } 1623 if (CreateDummy) { 1624 SymbolInfoTy Sym = createDummySymbolInfo( 1625 Obj, SectionAddr, SectionName, 1626 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); 1627 if (Obj.isXCOFF()) 1628 Symbols.insert(Symbols.begin(), Sym); 1629 else 1630 Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym); 1631 } 1632 1633 SmallString<40> Comments; 1634 raw_svector_ostream CommentStream(Comments); 1635 1636 uint64_t VMAAdjustment = 0; 1637 if (shouldAdjustVA(Section)) 1638 VMAAdjustment = AdjustVMA; 1639 1640 // In executable and shared objects, r_offset holds a virtual address. 1641 // Subtract SectionAddr from the r_offset field of a relocation to get 1642 // the section offset. 1643 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1644 uint64_t Size; 1645 uint64_t Index; 1646 bool PrintedSection = false; 1647 std::vector<RelocationRef> Rels = RelocMap[Section]; 1648 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1649 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1650 1651 // Loop over each chunk of code between two points where at least 1652 // one symbol is defined. 1653 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1654 // Advance SI past all the symbols starting at the same address, 1655 // and make an ArrayRef of them. 1656 unsigned FirstSI = SI; 1657 uint64_t Start = Symbols[SI].Addr; 1658 ArrayRef<SymbolInfoTy> SymbolsHere; 1659 while (SI != SE && Symbols[SI].Addr == Start) 1660 ++SI; 1661 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1662 1663 // Get the demangled names of all those symbols. We end up with a vector 1664 // of StringRef that holds the names we're going to use, and a vector of 1665 // std::string that stores the new strings returned by demangle(), if 1666 // any. If we don't call demangle() then that vector can stay empty. 1667 std::vector<StringRef> SymNamesHere; 1668 std::vector<std::string> DemangledSymNamesHere; 1669 if (Demangle) { 1670 // Fetch the demangled names and store them locally. 1671 for (const SymbolInfoTy &Symbol : SymbolsHere) 1672 DemangledSymNamesHere.push_back(demangle(Symbol.Name)); 1673 // Now we've finished modifying that vector, it's safe to make 1674 // a vector of StringRefs pointing into it. 1675 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1676 DemangledSymNamesHere.end()); 1677 } else { 1678 for (const SymbolInfoTy &Symbol : SymbolsHere) 1679 SymNamesHere.push_back(Symbol.Name); 1680 } 1681 1682 // Distinguish ELF data from code symbols, which will be used later on to 1683 // decide whether to 'disassemble' this chunk as a data declaration via 1684 // dumpELFData(), or whether to treat it as code. 1685 // 1686 // If data _and_ code symbols are defined at the same address, the code 1687 // takes priority, on the grounds that disassembling code is our main 1688 // purpose here, and it would be a worse failure to _not_ interpret 1689 // something that _was_ meaningful as code than vice versa. 1690 // 1691 // Any ELF symbol type that is not clearly data will be regarded as code. 1692 // In particular, one of the uses of STT_NOTYPE is for branch targets 1693 // inside functions, for which STT_FUNC would be inaccurate. 1694 // 1695 // So here, we spot whether there's any non-data symbol present at all, 1696 // and only set the DisassembleAsData flag if there isn't. Also, we use 1697 // this distinction to inform the decision of which symbol to print at 1698 // the head of the section, so that if we're printing code, we print a 1699 // code-related symbol name to go with it. 1700 bool DisassembleAsData = false; 1701 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1702 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1703 DisassembleAsData = true; // unless we find a code symbol below 1704 1705 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1706 uint8_t SymTy = SymbolsHere[i].Type; 1707 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1708 DisassembleAsData = false; 1709 DisplaySymIndex = i; 1710 } 1711 } 1712 } 1713 1714 // Decide which symbol(s) from this collection we're going to print. 1715 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1716 // If the user has given the --disassemble-symbols option, then we must 1717 // display every symbol in that set, and no others. 1718 if (!DisasmSymbolSet.empty()) { 1719 bool FoundAny = false; 1720 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1721 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1722 SymsToPrint[i] = true; 1723 FoundAny = true; 1724 } 1725 } 1726 1727 // And if none of the symbols here is one that the user asked for, skip 1728 // disassembling this entire chunk of code. 1729 if (!FoundAny) 1730 continue; 1731 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { 1732 // Otherwise, print whichever symbol at this location is last in the 1733 // Symbols array, because that array is pre-sorted in a way intended to 1734 // correlate with priority of which symbol to display. 1735 SymsToPrint[DisplaySymIndex] = true; 1736 } 1737 1738 // Now that we know we're disassembling this section, override the choice 1739 // of which symbols to display by printing _all_ of them at this address 1740 // if the user asked for all symbols. 1741 // 1742 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1743 // only the chunk of code headed by 'foo', but also show any other 1744 // symbols defined at that address, such as aliases for 'foo', or the ARM 1745 // mapping symbol preceding its code. 1746 if (ShowAllSymbols) { 1747 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1748 SymsToPrint[i] = true; 1749 } 1750 1751 if (Start < SectionAddr || StopAddress <= Start) 1752 continue; 1753 1754 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1755 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1756 1757 // The end is the section end, the beginning of the next symbol, or 1758 // --stop-address. 1759 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1760 if (SI < SE) 1761 End = std::min(End, Symbols[SI].Addr); 1762 if (Start >= End || End <= StartAddress) 1763 continue; 1764 Start -= SectionAddr; 1765 End -= SectionAddr; 1766 1767 if (!PrintedSection) { 1768 PrintedSection = true; 1769 outs() << "\nDisassembly of section "; 1770 if (!SegmentName.empty()) 1771 outs() << SegmentName << ","; 1772 outs() << SectionName << ":\n"; 1773 } 1774 1775 bool PrintedLabel = false; 1776 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1777 if (!SymsToPrint[i]) 1778 continue; 1779 1780 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1781 const StringRef SymbolName = SymNamesHere[i]; 1782 1783 if (!PrintedLabel) { 1784 outs() << '\n'; 1785 PrintedLabel = true; 1786 } 1787 if (LeadingAddr) 1788 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1789 SectionAddr + Start + VMAAdjustment); 1790 if (Obj.isXCOFF() && SymbolDescription) { 1791 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1792 } else 1793 outs() << '<' << SymbolName << ">:\n"; 1794 } 1795 1796 // Don't print raw contents of a virtual section. A virtual section 1797 // doesn't have any contents in the file. 1798 if (Section.isVirtual()) { 1799 outs() << "...\n"; 1800 continue; 1801 } 1802 1803 // See if any of the symbols defined at this location triggers target- 1804 // specific disassembly behavior, e.g. of special descriptors or function 1805 // prelude information. 1806 // 1807 // We stop this loop at the first symbol that triggers some kind of 1808 // interesting behavior (if any), on the assumption that if two symbols 1809 // defined at the same address trigger two conflicting symbol handlers, 1810 // the object file is probably confused anyway, and it would make even 1811 // less sense to present the output of _both_ handlers, because that 1812 // would describe the same data twice. 1813 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1814 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1815 1816 auto Status = DT->DisAsm->onSymbolStart( 1817 Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start, 1818 CommentStream); 1819 1820 if (!Status) { 1821 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1822 // any interesting handling for this symbol. Try the other symbols 1823 // defined at this address. 1824 continue; 1825 } 1826 1827 if (*Status == MCDisassembler::Fail) { 1828 // If onSymbolStart returns Fail, that means it identified some kind 1829 // of special data at this address, but wasn't able to disassemble it 1830 // meaningfully. So we fall back to disassembling the failed region 1831 // as bytes, assuming that the target detected the failure before 1832 // printing anything. 1833 // 1834 // Return values Success or SoftFail (i.e no 'real' failure) are 1835 // expected to mean that the target has emitted its own output. 1836 // 1837 // Either way, 'Size' will have been set to the amount of data 1838 // covered by whatever prologue the target identified. So we advance 1839 // our own position to beyond that. Sometimes that will be the entire 1840 // distance to the next symbol, and sometimes it will be just a 1841 // prologue and we should start disassembling instructions from where 1842 // it left off. 1843 outs() << DT->Context->getAsmInfo()->getCommentString() 1844 << " error in decoding " << SymNamesHere[SHI] 1845 << " : decoding failed region as bytes.\n"; 1846 for (uint64_t I = 0; I < Size; ++I) { 1847 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1848 << "\n"; 1849 } 1850 } 1851 Start += Size; 1852 break; 1853 } 1854 1855 Index = Start; 1856 if (SectionAddr < StartAddress) 1857 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1858 1859 if (DisassembleAsData) { 1860 dumpELFData(SectionAddr, Index, End, Bytes); 1861 Index = End; 1862 continue; 1863 } 1864 1865 bool DumpARMELFData = false; 1866 bool DumpTracebackTableForXCOFFFunction = 1867 Obj.isXCOFF() && Section.isText() && TracebackTable && 1868 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && 1869 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); 1870 1871 formatted_raw_ostream FOS(outs()); 1872 1873 std::unordered_map<uint64_t, std::string> AllLabels; 1874 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1875 if (SymbolizeOperands) { 1876 collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(), 1877 DT->DisAsm.get(), DT->InstPrinter.get(), 1878 PrimaryTarget.SubtargetInfo.get(), 1879 SectionAddr, Index, End, AllLabels); 1880 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1881 BBAddrMapLabels); 1882 } 1883 1884 while (Index < End) { 1885 // ARM and AArch64 ELF binaries can interleave data and text in the 1886 // same section. We rely on the markers introduced to understand what 1887 // we need to dump. If the data marker is within a function, it is 1888 // denoted as a word/short etc. 1889 if (!MappingSymbols.empty()) { 1890 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1891 DumpARMELFData = Kind == 'd'; 1892 if (SecondaryTarget) { 1893 if (Kind == 'a') { 1894 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; 1895 } else if (Kind == 't') { 1896 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; 1897 } 1898 } 1899 } 1900 1901 if (DumpARMELFData) { 1902 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1903 MappingSymbols, *DT->SubtargetInfo, FOS); 1904 } else { 1905 // When -z or --disassemble-zeroes are given we always dissasemble 1906 // them. Otherwise we might want to skip zero bytes we see. 1907 if (!DisassembleZeroes) { 1908 uint64_t MaxOffset = End - Index; 1909 // For --reloc: print zero blocks patched by relocations, so that 1910 // relocations can be shown in the dump. 1911 if (RelCur != RelEnd) 1912 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1913 MaxOffset); 1914 1915 if (size_t N = 1916 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1917 FOS << "\t\t..." << '\n'; 1918 Index += N; 1919 continue; 1920 } 1921 } 1922 1923 if (DumpTracebackTableForXCOFFFunction && 1924 doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) { 1925 dumpTracebackTable(Bytes.slice(Index), 1926 SectionAddr + Index + VMAAdjustment, FOS, 1927 SectionAddr + End + VMAAdjustment, 1928 *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj)); 1929 Index = End; 1930 continue; 1931 } 1932 1933 // Print local label if there's any. 1934 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 1935 if (Iter1 != BBAddrMapLabels.end()) { 1936 for (StringRef Label : Iter1->second) 1937 FOS << "<" << Label << ">:\n"; 1938 } else { 1939 auto Iter2 = AllLabels.find(SectionAddr + Index); 1940 if (Iter2 != AllLabels.end()) 1941 FOS << "<" << Iter2->second << ">:\n"; 1942 } 1943 1944 // Disassemble a real instruction or a data when disassemble all is 1945 // provided 1946 MCInst Inst; 1947 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1948 uint64_t ThisAddr = SectionAddr + Index; 1949 bool Disassembled = DT->DisAsm->getInstruction( 1950 Inst, Size, ThisBytes, ThisAddr, CommentStream); 1951 if (Size == 0) 1952 Size = std::min<uint64_t>( 1953 ThisBytes.size(), 1954 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 1955 1956 LVP.update({Index, Section.getIndex()}, 1957 {Index + Size, Section.getIndex()}, Index + Size != End); 1958 1959 DT->InstPrinter->setCommentStream(CommentStream); 1960 1961 DT->Printer->printInst( 1962 *DT->InstPrinter, Disassembled ? &Inst : nullptr, 1963 Bytes.slice(Index, Size), 1964 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1965 "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP); 1966 1967 DT->InstPrinter->setCommentStream(llvm::nulls()); 1968 1969 // If disassembly has failed, avoid analysing invalid/incomplete 1970 // instruction information. Otherwise, try to resolve the target 1971 // address (jump target or memory operand address) and print it on the 1972 // right of the instruction. 1973 if (Disassembled && DT->InstrAnalysis) { 1974 // Branch targets are printed just after the instructions. 1975 llvm::raw_ostream *TargetOS = &FOS; 1976 uint64_t Target; 1977 bool PrintTarget = DT->InstrAnalysis->evaluateBranch( 1978 Inst, SectionAddr + Index, Size, Target); 1979 if (!PrintTarget) 1980 if (std::optional<uint64_t> MaybeTarget = 1981 DT->InstrAnalysis->evaluateMemoryOperandAddress( 1982 Inst, DT->SubtargetInfo.get(), SectionAddr + Index, 1983 Size)) { 1984 Target = *MaybeTarget; 1985 PrintTarget = true; 1986 // Do not print real address when symbolizing. 1987 if (!SymbolizeOperands) { 1988 // Memory operand addresses are printed as comments. 1989 TargetOS = &CommentStream; 1990 *TargetOS << "0x" << Twine::utohexstr(Target); 1991 } 1992 } 1993 if (PrintTarget) { 1994 // In a relocatable object, the target's section must reside in 1995 // the same section as the call instruction or it is accessed 1996 // through a relocation. 1997 // 1998 // In a non-relocatable object, the target may be in any section. 1999 // In that case, locate the section(s) containing the target 2000 // address and find the symbol in one of those, if possible. 2001 // 2002 // N.B. We don't walk the relocations in the relocatable case yet. 2003 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 2004 if (!Obj.isRelocatableObject()) { 2005 auto It = llvm::partition_point( 2006 SectionAddresses, 2007 [=](const std::pair<uint64_t, SectionRef> &O) { 2008 return O.first <= Target; 2009 }); 2010 uint64_t TargetSecAddr = 0; 2011 while (It != SectionAddresses.begin()) { 2012 --It; 2013 if (TargetSecAddr == 0) 2014 TargetSecAddr = It->first; 2015 if (It->first != TargetSecAddr) 2016 break; 2017 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 2018 } 2019 } else { 2020 TargetSectionSymbols.push_back(&Symbols); 2021 } 2022 TargetSectionSymbols.push_back(&AbsoluteSymbols); 2023 2024 // Find the last symbol in the first candidate section whose 2025 // offset is less than or equal to the target. If there are no 2026 // such symbols, try in the next section and so on, before finally 2027 // using the nearest preceding absolute symbol (if any), if there 2028 // are no other valid symbols. 2029 const SymbolInfoTy *TargetSym = nullptr; 2030 for (const SectionSymbolsTy *TargetSymbols : 2031 TargetSectionSymbols) { 2032 auto It = llvm::partition_point( 2033 *TargetSymbols, 2034 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 2035 while (It != TargetSymbols->begin()) { 2036 --It; 2037 // Skip mapping symbols to avoid possible ambiguity as they 2038 // do not allow uniquely identifying the target address. 2039 if (!It->IsMappingSymbol) { 2040 TargetSym = &*It; 2041 break; 2042 } 2043 } 2044 if (TargetSym) 2045 break; 2046 } 2047 2048 // Print the labels corresponding to the target if there's any. 2049 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 2050 bool LabelAvailable = AllLabels.count(Target); 2051 if (TargetSym != nullptr) { 2052 uint64_t TargetAddress = TargetSym->Addr; 2053 uint64_t Disp = Target - TargetAddress; 2054 std::string TargetName = Demangle ? demangle(TargetSym->Name) 2055 : TargetSym->Name.str(); 2056 2057 *TargetOS << " <"; 2058 if (!Disp) { 2059 // Always Print the binary symbol precisely corresponding to 2060 // the target address. 2061 *TargetOS << TargetName; 2062 } else if (BBAddrMapLabelAvailable) { 2063 *TargetOS << BBAddrMapLabels[Target].front(); 2064 } else if (LabelAvailable) { 2065 *TargetOS << AllLabels[Target]; 2066 } else { 2067 // Always Print the binary symbol plus an offset if there's no 2068 // local label corresponding to the target address. 2069 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 2070 } 2071 *TargetOS << ">"; 2072 } else if (BBAddrMapLabelAvailable) { 2073 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 2074 } else if (LabelAvailable) { 2075 *TargetOS << " <" << AllLabels[Target] << ">"; 2076 } 2077 // By convention, each record in the comment stream should be 2078 // terminated. 2079 if (TargetOS == &CommentStream) 2080 *TargetOS << "\n"; 2081 } 2082 } 2083 } 2084 2085 assert(DT->Context->getAsmInfo()); 2086 emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(), 2087 *DT->SubtargetInfo, CommentStream.str(), LVP); 2088 Comments.clear(); 2089 2090 // Hexagon does this in pretty printer 2091 if (Obj.getArch() != Triple::hexagon) { 2092 // Print relocation for instruction and data. 2093 while (RelCur != RelEnd) { 2094 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 2095 // If this relocation is hidden, skip it. 2096 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 2097 ++RelCur; 2098 continue; 2099 } 2100 2101 // Stop when RelCur's offset is past the disassembled 2102 // instruction/data. Note that it's possible the disassembled data 2103 // is not the complete data: we might see the relocation printed in 2104 // the middle of the data, but this matches the binutils objdump 2105 // output. 2106 if (Offset >= Index + Size) 2107 break; 2108 2109 // When --adjust-vma is used, update the address printed. 2110 if (RelCur->getSymbol() != Obj.symbol_end()) { 2111 Expected<section_iterator> SymSI = 2112 RelCur->getSymbol()->getSection(); 2113 if (SymSI && *SymSI != Obj.section_end() && 2114 shouldAdjustVA(**SymSI)) 2115 Offset += AdjustVMA; 2116 } 2117 2118 printRelocation(FOS, Obj.getFileName(), *RelCur, 2119 SectionAddr + Offset, Is64Bits); 2120 LVP.printAfterOtherLine(FOS, true); 2121 ++RelCur; 2122 } 2123 } 2124 2125 Index += Size; 2126 } 2127 } 2128 } 2129 StringSet<> MissingDisasmSymbolSet = 2130 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 2131 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 2132 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 2133 } 2134 2135 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 2136 // If information useful for showing the disassembly is missing, try to find a 2137 // more complete binary and disassemble that instead. 2138 OwningBinary<Binary> FetchedBinary; 2139 if (Obj->symbols().empty()) { 2140 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2141 fetchBinaryByBuildID(*Obj)) { 2142 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2143 if (!O->symbols().empty() || 2144 (!O->sections().empty() && Obj->sections().empty())) { 2145 FetchedBinary = std::move(*FetchedBinaryOpt); 2146 Obj = O; 2147 } 2148 } 2149 } 2150 } 2151 2152 const Target *TheTarget = getTarget(Obj); 2153 2154 // Package up features to be passed to target/subtarget 2155 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2156 if (!FeaturesValue) 2157 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2158 SubtargetFeatures Features = *FeaturesValue; 2159 if (!MAttrs.empty()) { 2160 for (unsigned I = 0; I != MAttrs.size(); ++I) 2161 Features.AddFeature(MAttrs[I]); 2162 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2163 Features.AddFeature("+all"); 2164 } 2165 2166 if (MCPU.empty()) 2167 MCPU = Obj->tryGetCPUName().value_or("").str(); 2168 2169 if (isArmElf(*Obj)) { 2170 // When disassembling big-endian Arm ELF, the instruction endianness is 2171 // determined in a complex way. In relocatable objects, AAELF32 mandates 2172 // that instruction endianness matches the ELF file endianness; in 2173 // executable images, that's true unless the file header has the EF_ARM_BE8 2174 // flag, in which case instructions are little-endian regardless of data 2175 // endianness. 2176 // 2177 // We must set the big-endian-instructions SubtargetFeature to make the 2178 // disassembler read the instructions the right way round, and also tell 2179 // our own prettyprinter to retrieve the encodings the same way to print in 2180 // hex. 2181 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2182 2183 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2184 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2185 Features.AddFeature("+big-endian-instructions"); 2186 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); 2187 } else { 2188 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); 2189 } 2190 } 2191 2192 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); 2193 2194 // If we have an ARM object file, we need a second disassembler, because 2195 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2196 // We use mapping symbols to switch between the two assemblers, where 2197 // appropriate. 2198 std::optional<DisassemblerTarget> SecondaryTarget; 2199 2200 if (isArmElf(*Obj)) { 2201 if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) { 2202 if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode")) 2203 Features.AddFeature("-thumb-mode"); 2204 else 2205 Features.AddFeature("+thumb-mode"); 2206 SecondaryTarget.emplace(PrimaryTarget, Features); 2207 } 2208 } 2209 2210 const ObjectFile *DbgObj = Obj; 2211 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2212 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2213 fetchBinaryByBuildID(*Obj)) { 2214 if (auto *FetchedObj = 2215 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2216 if (FetchedObj->hasDebugInfo()) { 2217 FetchedBinary = std::move(*DebugBinaryOpt); 2218 DbgObj = FetchedObj; 2219 } 2220 } 2221 } 2222 } 2223 2224 std::unique_ptr<object::Binary> DSYMBinary; 2225 std::unique_ptr<MemoryBuffer> DSYMBuf; 2226 if (!DbgObj->hasDebugInfo()) { 2227 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2228 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2229 DSYMBinary, DSYMBuf); 2230 if (!DbgObj) 2231 return; 2232 } 2233 } 2234 2235 SourcePrinter SP(DbgObj, TheTarget->getName()); 2236 2237 for (StringRef Opt : DisassemblerOptions) 2238 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) 2239 reportError(Obj->getFileName(), 2240 "Unrecognized disassembler option: " + Opt); 2241 2242 disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP, 2243 InlineRelocs); 2244 } 2245 2246 void Dumper::printRelocations() { 2247 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2248 2249 // Build a mapping from relocation target to a vector of relocation 2250 // sections. Usually, there is an only one relocation section for 2251 // each relocated section. 2252 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2253 uint64_t Ndx; 2254 for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) { 2255 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2256 continue; 2257 if (Section.relocation_begin() == Section.relocation_end()) 2258 continue; 2259 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2260 if (!SecOrErr) 2261 reportError(O.getFileName(), 2262 "section (" + Twine(Ndx) + 2263 "): unable to get a relocation target: " + 2264 toString(SecOrErr.takeError())); 2265 SecToRelSec[**SecOrErr].push_back(Section); 2266 } 2267 2268 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2269 StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName()); 2270 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2271 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); 2272 uint32_t TypePadding = 24; 2273 outs() << left_justify("OFFSET", OffsetPadding) << " " 2274 << left_justify("TYPE", TypePadding) << " " 2275 << "VALUE\n"; 2276 2277 for (SectionRef Section : P.second) { 2278 for (const RelocationRef &Reloc : Section.relocations()) { 2279 uint64_t Address = Reloc.getOffset(); 2280 SmallString<32> RelocName; 2281 SmallString<32> ValueStr; 2282 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2283 continue; 2284 Reloc.getTypeName(RelocName); 2285 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2286 reportUniqueWarning(std::move(E)); 2287 2288 outs() << format(Fmt.data(), Address) << " " 2289 << left_justify(RelocName, TypePadding) << " " << ValueStr 2290 << "\n"; 2291 } 2292 } 2293 } 2294 } 2295 2296 // Returns true if we need to show LMA column when dumping section headers. We 2297 // show it only when the platform is ELF and either we have at least one section 2298 // whose VMA and LMA are different and/or when --show-lma flag is used. 2299 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2300 if (!Obj.isELF()) 2301 return false; 2302 for (const SectionRef &S : ToolSectionFilter(Obj)) 2303 if (S.getAddress() != getELFSectionLMA(S)) 2304 return true; 2305 return ShowLMA; 2306 } 2307 2308 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2309 // Default column width for names is 13 even if no names are that long. 2310 size_t MaxWidth = 13; 2311 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2312 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2313 MaxWidth = std::max(MaxWidth, Name.size()); 2314 } 2315 return MaxWidth; 2316 } 2317 2318 void objdump::printSectionHeaders(ObjectFile &Obj) { 2319 if (Obj.isELF() && Obj.sections().empty()) 2320 createFakeELFSections(Obj); 2321 2322 size_t NameWidth = getMaxSectionNameWidth(Obj); 2323 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2324 bool HasLMAColumn = shouldDisplayLMA(Obj); 2325 outs() << "\nSections:\n"; 2326 if (HasLMAColumn) 2327 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2328 << left_justify("VMA", AddressWidth) << " " 2329 << left_justify("LMA", AddressWidth) << " Type\n"; 2330 else 2331 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2332 << left_justify("VMA", AddressWidth) << " Type\n"; 2333 2334 uint64_t Idx; 2335 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2336 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2337 uint64_t VMA = Section.getAddress(); 2338 if (shouldAdjustVA(Section)) 2339 VMA += AdjustVMA; 2340 2341 uint64_t Size = Section.getSize(); 2342 2343 std::string Type = Section.isText() ? "TEXT" : ""; 2344 if (Section.isData()) 2345 Type += Type.empty() ? "DATA" : ", DATA"; 2346 if (Section.isBSS()) 2347 Type += Type.empty() ? "BSS" : ", BSS"; 2348 if (Section.isDebugSection()) 2349 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2350 2351 if (HasLMAColumn) 2352 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2353 Name.str().c_str(), Size) 2354 << format_hex_no_prefix(VMA, AddressWidth) << " " 2355 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2356 << " " << Type << "\n"; 2357 else 2358 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2359 Name.str().c_str(), Size) 2360 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2361 } 2362 } 2363 2364 void objdump::printSectionContents(const ObjectFile *Obj) { 2365 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2366 2367 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2368 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2369 uint64_t BaseAddr = Section.getAddress(); 2370 uint64_t Size = Section.getSize(); 2371 if (!Size) 2372 continue; 2373 2374 outs() << "Contents of section "; 2375 StringRef SegmentName = getSegmentName(MachO, Section); 2376 if (!SegmentName.empty()) 2377 outs() << SegmentName << ","; 2378 outs() << Name << ":\n"; 2379 if (Section.isBSS()) { 2380 outs() << format("<skipping contents of bss section at [%04" PRIx64 2381 ", %04" PRIx64 ")>\n", 2382 BaseAddr, BaseAddr + Size); 2383 continue; 2384 } 2385 2386 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2387 2388 // Dump out the content as hex and printable ascii characters. 2389 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2390 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2391 // Dump line of hex. 2392 for (std::size_t I = 0; I < 16; ++I) { 2393 if (I != 0 && I % 4 == 0) 2394 outs() << ' '; 2395 if (Addr + I < End) 2396 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2397 << hexdigit(Contents[Addr + I] & 0xF, true); 2398 else 2399 outs() << " "; 2400 } 2401 // Print ascii. 2402 outs() << " "; 2403 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2404 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2405 outs() << Contents[Addr + I]; 2406 else 2407 outs() << "."; 2408 } 2409 outs() << "\n"; 2410 } 2411 } 2412 } 2413 2414 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName, 2415 bool DumpDynamic) { 2416 if (O.isCOFF() && !DumpDynamic) { 2417 outs() << "\nSYMBOL TABLE:\n"; 2418 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2419 return; 2420 } 2421 2422 const StringRef FileName = O.getFileName(); 2423 2424 if (!DumpDynamic) { 2425 outs() << "\nSYMBOL TABLE:\n"; 2426 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2427 printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic); 2428 return; 2429 } 2430 2431 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2432 if (!O.isELF()) { 2433 reportWarning( 2434 "this operation is not currently supported for this file format", 2435 FileName); 2436 return; 2437 } 2438 2439 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2440 auto Symbols = ELF->getDynamicSymbolIterators(); 2441 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2442 ELF->readDynsymVersions(); 2443 if (!SymbolVersionsOrErr) { 2444 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2445 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2446 (void)!SymbolVersionsOrErr; 2447 } 2448 for (auto &Sym : Symbols) 2449 printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2450 ArchitectureName, DumpDynamic); 2451 } 2452 2453 void Dumper::printSymbol(const SymbolRef &Symbol, 2454 ArrayRef<VersionEntry> SymbolVersions, 2455 StringRef FileName, StringRef ArchiveName, 2456 StringRef ArchitectureName, bool DumpDynamic) { 2457 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2458 Expected<uint64_t> AddrOrErr = Symbol.getAddress(); 2459 if (!AddrOrErr) { 2460 reportUniqueWarning(AddrOrErr.takeError()); 2461 return; 2462 } 2463 uint64_t Address = *AddrOrErr; 2464 if ((Address < StartAddress) || (Address > StopAddress)) 2465 return; 2466 SymbolRef::Type Type = 2467 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2468 uint32_t Flags = 2469 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2470 2471 // Don't ask a Mach-O STAB symbol for its section unless you know that 2472 // STAB symbol's section field refers to a valid section index. Otherwise 2473 // the symbol may error trying to load a section that does not exist. 2474 bool IsSTAB = false; 2475 if (MachO) { 2476 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2477 uint8_t NType = 2478 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2479 : MachO->getSymbolTableEntry(SymDRI).n_type); 2480 if (NType & MachO::N_STAB) 2481 IsSTAB = true; 2482 } 2483 section_iterator Section = IsSTAB 2484 ? O.section_end() 2485 : unwrapOrError(Symbol.getSection(), FileName, 2486 ArchiveName, ArchitectureName); 2487 2488 StringRef Name; 2489 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2490 if (Expected<StringRef> NameOrErr = Section->getName()) 2491 Name = *NameOrErr; 2492 else 2493 consumeError(NameOrErr.takeError()); 2494 2495 } else { 2496 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2497 ArchitectureName); 2498 } 2499 2500 bool Global = Flags & SymbolRef::SF_Global; 2501 bool Weak = Flags & SymbolRef::SF_Weak; 2502 bool Absolute = Flags & SymbolRef::SF_Absolute; 2503 bool Common = Flags & SymbolRef::SF_Common; 2504 bool Hidden = Flags & SymbolRef::SF_Hidden; 2505 2506 char GlobLoc = ' '; 2507 if ((Section != O.section_end() || Absolute) && !Weak) 2508 GlobLoc = Global ? 'g' : 'l'; 2509 char IFunc = ' '; 2510 if (O.isELF()) { 2511 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2512 IFunc = 'i'; 2513 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2514 GlobLoc = 'u'; 2515 } 2516 2517 char Debug = ' '; 2518 if (DumpDynamic) 2519 Debug = 'D'; 2520 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2521 Debug = 'd'; 2522 2523 char FileFunc = ' '; 2524 if (Type == SymbolRef::ST_File) 2525 FileFunc = 'f'; 2526 else if (Type == SymbolRef::ST_Function) 2527 FileFunc = 'F'; 2528 else if (Type == SymbolRef::ST_Data) 2529 FileFunc = 'O'; 2530 2531 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2532 2533 outs() << format(Fmt, Address) << " " 2534 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2535 << (Weak ? 'w' : ' ') // Weak? 2536 << ' ' // Constructor. Not supported yet. 2537 << ' ' // Warning. Not supported yet. 2538 << IFunc // Indirect reference to another symbol. 2539 << Debug // Debugging (d) or dynamic (D) symbol. 2540 << FileFunc // Name of function (F), file (f) or object (O). 2541 << ' '; 2542 if (Absolute) { 2543 outs() << "*ABS*"; 2544 } else if (Common) { 2545 outs() << "*COM*"; 2546 } else if (Section == O.section_end()) { 2547 if (O.isXCOFF()) { 2548 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2549 Symbol.getRawDataRefImpl()); 2550 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2551 outs() << "*DEBUG*"; 2552 else 2553 outs() << "*UND*"; 2554 } else 2555 outs() << "*UND*"; 2556 } else { 2557 StringRef SegmentName = getSegmentName(MachO, *Section); 2558 if (!SegmentName.empty()) 2559 outs() << SegmentName << ","; 2560 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2561 outs() << SectionName; 2562 if (O.isXCOFF()) { 2563 std::optional<SymbolRef> SymRef = 2564 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2565 if (SymRef) { 2566 2567 Expected<StringRef> NameOrErr = SymRef->getName(); 2568 2569 if (NameOrErr) { 2570 outs() << " (csect:"; 2571 std::string SymName = 2572 Demangle ? demangle(*NameOrErr) : NameOrErr->str(); 2573 2574 if (SymbolDescription) 2575 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2576 SymName); 2577 2578 outs() << ' ' << SymName; 2579 outs() << ") "; 2580 } else 2581 reportWarning(toString(NameOrErr.takeError()), FileName); 2582 } 2583 } 2584 } 2585 2586 if (Common) 2587 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2588 else if (O.isXCOFF()) 2589 outs() << '\t' 2590 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2591 Symbol.getRawDataRefImpl())); 2592 else if (O.isELF()) 2593 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2594 2595 if (O.isELF()) { 2596 if (!SymbolVersions.empty()) { 2597 const VersionEntry &Ver = 2598 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2599 std::string Str; 2600 if (!Ver.Name.empty()) 2601 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2602 outs() << ' ' << left_justify(Str, 12); 2603 } 2604 2605 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2606 switch (Other) { 2607 case ELF::STV_DEFAULT: 2608 break; 2609 case ELF::STV_INTERNAL: 2610 outs() << " .internal"; 2611 break; 2612 case ELF::STV_HIDDEN: 2613 outs() << " .hidden"; 2614 break; 2615 case ELF::STV_PROTECTED: 2616 outs() << " .protected"; 2617 break; 2618 default: 2619 outs() << format(" 0x%02x", Other); 2620 break; 2621 } 2622 } else if (Hidden) { 2623 outs() << " .hidden"; 2624 } 2625 2626 std::string SymName = Demangle ? demangle(Name) : Name.str(); 2627 if (O.isXCOFF() && SymbolDescription) 2628 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2629 2630 outs() << ' ' << SymName << '\n'; 2631 } 2632 2633 static void printUnwindInfo(const ObjectFile *O) { 2634 outs() << "Unwind info:\n\n"; 2635 2636 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2637 printCOFFUnwindInfo(Coff); 2638 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2639 printMachOUnwindInfo(MachO); 2640 else 2641 // TODO: Extract DWARF dump tool to objdump. 2642 WithColor::error(errs(), ToolName) 2643 << "This operation is only currently supported " 2644 "for COFF and MachO object files.\n"; 2645 } 2646 2647 /// Dump the raw contents of the __clangast section so the output can be piped 2648 /// into llvm-bcanalyzer. 2649 static void printRawClangAST(const ObjectFile *Obj) { 2650 if (outs().is_displayed()) { 2651 WithColor::error(errs(), ToolName) 2652 << "The -raw-clang-ast option will dump the raw binary contents of " 2653 "the clang ast section.\n" 2654 "Please redirect the output to a file or another program such as " 2655 "llvm-bcanalyzer.\n"; 2656 return; 2657 } 2658 2659 StringRef ClangASTSectionName("__clangast"); 2660 if (Obj->isCOFF()) { 2661 ClangASTSectionName = "clangast"; 2662 } 2663 2664 std::optional<object::SectionRef> ClangASTSection; 2665 for (auto Sec : ToolSectionFilter(*Obj)) { 2666 StringRef Name; 2667 if (Expected<StringRef> NameOrErr = Sec.getName()) 2668 Name = *NameOrErr; 2669 else 2670 consumeError(NameOrErr.takeError()); 2671 2672 if (Name == ClangASTSectionName) { 2673 ClangASTSection = Sec; 2674 break; 2675 } 2676 } 2677 if (!ClangASTSection) 2678 return; 2679 2680 StringRef ClangASTContents = 2681 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2682 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2683 } 2684 2685 static void printFaultMaps(const ObjectFile *Obj) { 2686 StringRef FaultMapSectionName; 2687 2688 if (Obj->isELF()) { 2689 FaultMapSectionName = ".llvm_faultmaps"; 2690 } else if (Obj->isMachO()) { 2691 FaultMapSectionName = "__llvm_faultmaps"; 2692 } else { 2693 WithColor::error(errs(), ToolName) 2694 << "This operation is only currently supported " 2695 "for ELF and Mach-O executable files.\n"; 2696 return; 2697 } 2698 2699 std::optional<object::SectionRef> FaultMapSection; 2700 2701 for (auto Sec : ToolSectionFilter(*Obj)) { 2702 StringRef Name; 2703 if (Expected<StringRef> NameOrErr = Sec.getName()) 2704 Name = *NameOrErr; 2705 else 2706 consumeError(NameOrErr.takeError()); 2707 2708 if (Name == FaultMapSectionName) { 2709 FaultMapSection = Sec; 2710 break; 2711 } 2712 } 2713 2714 outs() << "FaultMap table:\n"; 2715 2716 if (!FaultMapSection) { 2717 outs() << "<not found>\n"; 2718 return; 2719 } 2720 2721 StringRef FaultMapContents = 2722 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2723 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2724 FaultMapContents.bytes_end()); 2725 2726 outs() << FMP; 2727 } 2728 2729 void Dumper::printPrivateHeaders() { 2730 reportError(O.getFileName(), "Invalid/Unsupported object file format"); 2731 } 2732 2733 static void printFileHeaders(const ObjectFile *O) { 2734 if (!O->isELF() && !O->isCOFF()) 2735 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2736 2737 Triple::ArchType AT = O->getArch(); 2738 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2739 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2740 2741 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2742 outs() << "start address: " 2743 << "0x" << format(Fmt.data(), Address) << "\n"; 2744 } 2745 2746 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2747 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2748 if (!ModeOrErr) { 2749 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2750 consumeError(ModeOrErr.takeError()); 2751 return; 2752 } 2753 sys::fs::perms Mode = ModeOrErr.get(); 2754 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2755 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2756 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2757 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2758 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2759 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2760 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2761 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2762 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2763 2764 outs() << " "; 2765 2766 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2767 unwrapOrError(C.getGID(), Filename), 2768 unwrapOrError(C.getRawSize(), Filename)); 2769 2770 StringRef RawLastModified = C.getRawLastModified(); 2771 unsigned Seconds; 2772 if (RawLastModified.getAsInteger(10, Seconds)) 2773 outs() << "(date: \"" << RawLastModified 2774 << "\" contains non-decimal chars) "; 2775 else { 2776 // Since ctime(3) returns a 26 character string of the form: 2777 // "Sun Sep 16 01:03:52 1973\n\0" 2778 // just print 24 characters. 2779 time_t t = Seconds; 2780 outs() << format("%.24s ", ctime(&t)); 2781 } 2782 2783 StringRef Name = ""; 2784 Expected<StringRef> NameOrErr = C.getName(); 2785 if (!NameOrErr) { 2786 consumeError(NameOrErr.takeError()); 2787 Name = unwrapOrError(C.getRawName(), Filename); 2788 } else { 2789 Name = NameOrErr.get(); 2790 } 2791 outs() << Name << "\n"; 2792 } 2793 2794 // For ELF only now. 2795 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2796 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2797 if (Elf->getEType() != ELF::ET_REL) 2798 return true; 2799 } 2800 return false; 2801 } 2802 2803 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2804 uint64_t Start, uint64_t Stop) { 2805 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2806 return; 2807 2808 for (const SectionRef &Section : Obj->sections()) 2809 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2810 uint64_t BaseAddr = Section.getAddress(); 2811 uint64_t Size = Section.getSize(); 2812 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2813 return; 2814 } 2815 2816 if (!HasStartAddressFlag) 2817 reportWarning("no section has address less than 0x" + 2818 Twine::utohexstr(Stop) + " specified by --stop-address", 2819 Obj->getFileName()); 2820 else if (!HasStopAddressFlag) 2821 reportWarning("no section has address greater than or equal to 0x" + 2822 Twine::utohexstr(Start) + " specified by --start-address", 2823 Obj->getFileName()); 2824 else 2825 reportWarning("no section overlaps the range [0x" + 2826 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2827 ") specified by --start-address/--stop-address", 2828 Obj->getFileName()); 2829 } 2830 2831 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2832 const Archive::Child *C = nullptr) { 2833 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O); 2834 if (!DumperOrErr) { 2835 reportError(DumperOrErr.takeError(), O->getFileName(), 2836 A ? A->getFileName() : ""); 2837 return; 2838 } 2839 Dumper &D = **DumperOrErr; 2840 2841 // Avoid other output when using a raw option. 2842 if (!RawClangAST) { 2843 outs() << '\n'; 2844 if (A) 2845 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2846 else 2847 outs() << O->getFileName(); 2848 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2849 } 2850 2851 if (HasStartAddressFlag || HasStopAddressFlag) 2852 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2853 2854 // TODO: Change print* free functions to Dumper member functions to utilitize 2855 // stateful functions like reportUniqueWarning. 2856 2857 // Note: the order here matches GNU objdump for compatability. 2858 StringRef ArchiveName = A ? A->getFileName() : ""; 2859 if (ArchiveHeaders && !MachOOpt && C) 2860 printArchiveChild(ArchiveName, *C); 2861 if (FileHeaders) 2862 printFileHeaders(O); 2863 if (PrivateHeaders || FirstPrivateHeader) 2864 D.printPrivateHeaders(); 2865 if (SectionHeaders) 2866 printSectionHeaders(*O); 2867 if (SymbolTable) 2868 D.printSymbolTable(ArchiveName); 2869 if (DynamicSymbolTable) 2870 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"", 2871 /*DumpDynamic=*/true); 2872 if (DwarfDumpType != DIDT_Null) { 2873 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2874 // Dump the complete DWARF structure. 2875 DIDumpOptions DumpOpts; 2876 DumpOpts.DumpType = DwarfDumpType; 2877 DICtx->dump(outs(), DumpOpts); 2878 } 2879 if (Relocations && !Disassemble) 2880 D.printRelocations(); 2881 if (DynamicRelocations) 2882 D.printDynamicRelocations(); 2883 if (SectionContents) 2884 printSectionContents(O); 2885 if (Disassemble) 2886 disassembleObject(O, Relocations); 2887 if (UnwindInfo) 2888 printUnwindInfo(O); 2889 2890 // Mach-O specific options: 2891 if (ExportsTrie) 2892 printExportsTrie(O); 2893 if (Rebase) 2894 printRebaseTable(O); 2895 if (Bind) 2896 printBindTable(O); 2897 if (LazyBind) 2898 printLazyBindTable(O); 2899 if (WeakBind) 2900 printWeakBindTable(O); 2901 2902 // Other special sections: 2903 if (RawClangAST) 2904 printRawClangAST(O); 2905 if (FaultMapSection) 2906 printFaultMaps(O); 2907 if (Offloading) 2908 dumpOffloadBinary(*O); 2909 } 2910 2911 static void dumpObject(const COFFImportFile *I, const Archive *A, 2912 const Archive::Child *C = nullptr) { 2913 StringRef ArchiveName = A ? A->getFileName() : ""; 2914 2915 // Avoid other output when using a raw option. 2916 if (!RawClangAST) 2917 outs() << '\n' 2918 << ArchiveName << "(" << I->getFileName() << ")" 2919 << ":\tfile format COFF-import-file" 2920 << "\n\n"; 2921 2922 if (ArchiveHeaders && !MachOOpt && C) 2923 printArchiveChild(ArchiveName, *C); 2924 if (SymbolTable) 2925 printCOFFSymbolTable(*I); 2926 } 2927 2928 /// Dump each object file in \a a; 2929 static void dumpArchive(const Archive *A) { 2930 Error Err = Error::success(); 2931 unsigned I = -1; 2932 for (auto &C : A->children(Err)) { 2933 ++I; 2934 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2935 if (!ChildOrErr) { 2936 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2937 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2938 continue; 2939 } 2940 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2941 dumpObject(O, A, &C); 2942 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2943 dumpObject(I, A, &C); 2944 else 2945 reportError(errorCodeToError(object_error::invalid_file_type), 2946 A->getFileName()); 2947 } 2948 if (Err) 2949 reportError(std::move(Err), A->getFileName()); 2950 } 2951 2952 /// Open file and figure out how to dump it. 2953 static void dumpInput(StringRef file) { 2954 // If we are using the Mach-O specific object file parser, then let it parse 2955 // the file and process the command line options. So the -arch flags can 2956 // be used to select specific slices, etc. 2957 if (MachOOpt) { 2958 parseInputMachO(file); 2959 return; 2960 } 2961 2962 // Attempt to open the binary. 2963 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2964 Binary &Binary = *OBinary.getBinary(); 2965 2966 if (Archive *A = dyn_cast<Archive>(&Binary)) 2967 dumpArchive(A); 2968 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2969 dumpObject(O); 2970 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2971 parseInputMachO(UB); 2972 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 2973 dumpOffloadSections(*OB); 2974 else 2975 reportError(errorCodeToError(object_error::invalid_file_type), file); 2976 } 2977 2978 template <typename T> 2979 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2980 T &Value) { 2981 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2982 StringRef V(A->getValue()); 2983 if (!llvm::to_integer(V, Value, 0)) { 2984 reportCmdLineError(A->getSpelling() + 2985 ": expected a non-negative integer, but got '" + V + 2986 "'"); 2987 } 2988 } 2989 } 2990 2991 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 2992 StringRef V(A->getValue()); 2993 object::BuildID BID = parseBuildID(V); 2994 if (BID.empty()) 2995 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 2996 V + "'"); 2997 return BID; 2998 } 2999 3000 void objdump::invalidArgValue(const opt::Arg *A) { 3001 reportCmdLineError("'" + StringRef(A->getValue()) + 3002 "' is not a valid value for '" + A->getSpelling() + "'"); 3003 } 3004 3005 static std::vector<std::string> 3006 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 3007 std::vector<std::string> Values; 3008 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 3009 llvm::SmallVector<StringRef, 2> SplitValues; 3010 llvm::SplitString(Value, SplitValues, ","); 3011 for (StringRef SplitValue : SplitValues) 3012 Values.push_back(SplitValue.str()); 3013 } 3014 return Values; 3015 } 3016 3017 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 3018 MachOOpt = true; 3019 FullLeadingAddr = true; 3020 PrintImmHex = true; 3021 3022 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 3023 LinkOptHints = InputArgs.hasArg(OTOOL_C); 3024 if (InputArgs.hasArg(OTOOL_d)) 3025 FilterSections.push_back("__DATA,__data"); 3026 DylibId = InputArgs.hasArg(OTOOL_D); 3027 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 3028 DataInCode = InputArgs.hasArg(OTOOL_G); 3029 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 3030 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 3031 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 3032 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 3033 DylibsUsed = InputArgs.hasArg(OTOOL_L); 3034 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 3035 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 3036 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 3037 InfoPlist = InputArgs.hasArg(OTOOL_P); 3038 Relocations = InputArgs.hasArg(OTOOL_r); 3039 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 3040 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 3041 FilterSections.push_back(Filter); 3042 } 3043 if (InputArgs.hasArg(OTOOL_t)) 3044 FilterSections.push_back("__TEXT,__text"); 3045 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 3046 InputArgs.hasArg(OTOOL_o); 3047 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3048 if (InputArgs.hasArg(OTOOL_x)) 3049 FilterSections.push_back(",__text"); 3050 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3051 3052 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3053 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3054 3055 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3056 if (InputFilenames.empty()) 3057 reportCmdLineError("no input file"); 3058 3059 for (const Arg *A : InputArgs) { 3060 const Option &O = A->getOption(); 3061 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3062 reportCmdLineWarning(O.getPrefixedName() + 3063 " is obsolete and not implemented"); 3064 } 3065 } 3066 } 3067 3068 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3069 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3070 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3071 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3072 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3073 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3074 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3075 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3076 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3077 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table); 3078 DisassembleSymbols = 3079 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3080 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3081 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3082 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3083 .Case("frames", DIDT_DebugFrame) 3084 .Default(DIDT_Null); 3085 if (DwarfDumpType == DIDT_Null) 3086 invalidArgValue(A); 3087 } 3088 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3089 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3090 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3091 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3092 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3093 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3094 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3095 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3096 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3097 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3098 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3099 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3100 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3101 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3102 PrintImmHex = 3103 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3104 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3105 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3106 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3107 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3108 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3109 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3110 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3111 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3112 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3113 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3114 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3115 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3116 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3117 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3118 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3119 Wide = InputArgs.hasArg(OBJDUMP_wide); 3120 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3121 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3122 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3123 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3124 .Case("ascii", DVASCII) 3125 .Case("unicode", DVUnicode) 3126 .Default(DVInvalid); 3127 if (DbgVariables == DVInvalid) 3128 invalidArgValue(A); 3129 } 3130 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3131 3132 parseMachOOptions(InputArgs); 3133 3134 // Parse -M (--disassembler-options) and deprecated 3135 // --x86-asm-syntax={att,intel}. 3136 // 3137 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3138 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3139 // called too late. For now we have to use the internal cl::opt option. 3140 const char *AsmSyntax = nullptr; 3141 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3142 OBJDUMP_x86_asm_syntax_att, 3143 OBJDUMP_x86_asm_syntax_intel)) { 3144 switch (A->getOption().getID()) { 3145 case OBJDUMP_x86_asm_syntax_att: 3146 AsmSyntax = "--x86-asm-syntax=att"; 3147 continue; 3148 case OBJDUMP_x86_asm_syntax_intel: 3149 AsmSyntax = "--x86-asm-syntax=intel"; 3150 continue; 3151 } 3152 3153 SmallVector<StringRef, 2> Values; 3154 llvm::SplitString(A->getValue(), Values, ","); 3155 for (StringRef V : Values) { 3156 if (V == "att") 3157 AsmSyntax = "--x86-asm-syntax=att"; 3158 else if (V == "intel") 3159 AsmSyntax = "--x86-asm-syntax=intel"; 3160 else 3161 DisassemblerOptions.push_back(V.str()); 3162 } 3163 } 3164 if (AsmSyntax) { 3165 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 3166 llvm::cl::ParseCommandLineOptions(2, Argv); 3167 } 3168 3169 // Look up any provided build IDs, then append them to the input filenames. 3170 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3171 object::BuildID BuildID = parseBuildIDArg(A); 3172 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3173 if (!Path) { 3174 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3175 A->getValue() + "'"); 3176 } 3177 InputFilenames.push_back(std::move(*Path)); 3178 } 3179 3180 // objdump defaults to a.out if no filenames specified. 3181 if (InputFilenames.empty()) 3182 InputFilenames.push_back("a.out"); 3183 } 3184 3185 int main(int argc, char **argv) { 3186 using namespace llvm; 3187 InitLLVM X(argc, argv); 3188 3189 ToolName = argv[0]; 3190 std::unique_ptr<CommonOptTable> T; 3191 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3192 3193 StringRef Stem = sys::path::stem(ToolName); 3194 auto Is = [=](StringRef Tool) { 3195 // We need to recognize the following filenames: 3196 // 3197 // llvm-objdump -> objdump 3198 // llvm-otool-10.exe -> otool 3199 // powerpc64-unknown-freebsd13-objdump -> objdump 3200 auto I = Stem.rfind_insensitive(Tool); 3201 return I != StringRef::npos && 3202 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3203 }; 3204 if (Is("otool")) { 3205 T = std::make_unique<OtoolOptTable>(); 3206 Unknown = OTOOL_UNKNOWN; 3207 HelpFlag = OTOOL_help; 3208 HelpHiddenFlag = OTOOL_help_hidden; 3209 VersionFlag = OTOOL_version; 3210 } else { 3211 T = std::make_unique<ObjdumpOptTable>(); 3212 Unknown = OBJDUMP_UNKNOWN; 3213 HelpFlag = OBJDUMP_help; 3214 HelpHiddenFlag = OBJDUMP_help_hidden; 3215 VersionFlag = OBJDUMP_version; 3216 } 3217 3218 BumpPtrAllocator A; 3219 StringSaver Saver(A); 3220 opt::InputArgList InputArgs = 3221 T->parseArgs(argc, argv, Unknown, Saver, 3222 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3223 3224 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3225 T->printHelp(ToolName); 3226 return 0; 3227 } 3228 if (InputArgs.hasArg(HelpHiddenFlag)) { 3229 T->printHelp(ToolName, /*ShowHidden=*/true); 3230 return 0; 3231 } 3232 3233 // Initialize targets and assembly printers/parsers. 3234 InitializeAllTargetInfos(); 3235 InitializeAllTargetMCs(); 3236 InitializeAllDisassemblers(); 3237 3238 if (InputArgs.hasArg(VersionFlag)) { 3239 cl::PrintVersionMessage(); 3240 if (!Is("otool")) { 3241 outs() << '\n'; 3242 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3243 } 3244 return 0; 3245 } 3246 3247 // Initialize debuginfod. 3248 const bool ShouldUseDebuginfodByDefault = 3249 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3250 std::vector<std::string> DebugFileDirectories = 3251 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3252 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3253 ShouldUseDebuginfodByDefault)) { 3254 HTTPClient::initialize(); 3255 BIDFetcher = 3256 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3257 } else { 3258 BIDFetcher = 3259 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3260 } 3261 3262 if (Is("otool")) 3263 parseOtoolOptions(InputArgs); 3264 else 3265 parseObjdumpOptions(InputArgs); 3266 3267 if (StartAddress >= StopAddress) 3268 reportCmdLineError("start address should be less than stop address"); 3269 3270 // Removes trailing separators from prefix. 3271 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3272 Prefix.pop_back(); 3273 3274 if (AllHeaders) 3275 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3276 SectionHeaders = SymbolTable = true; 3277 3278 if (DisassembleAll || PrintSource || PrintLines || TracebackTable || 3279 !DisassembleSymbols.empty()) 3280 Disassemble = true; 3281 3282 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3283 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3284 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3285 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3286 !(MachOOpt && 3287 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3288 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3289 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3290 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3291 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3292 T->printHelp(ToolName); 3293 return 2; 3294 } 3295 3296 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3297 3298 llvm::for_each(InputFilenames, dumpInput); 3299 3300 warnOnNoMatchForSections(); 3301 3302 return EXIT_SUCCESS; 3303 } 3304