xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 3edef604cfbcdf9a658213de1340e4b6b63eb9d3)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
36 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
37 #include "llvm/Debuginfod/BuildIDFetcher.h"
38 #include "llvm/Debuginfod/Debuginfod.h"
39 #include "llvm/Debuginfod/HTTPClient.h"
40 #include "llvm/Demangle/Demangle.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/MC/MCContext.h"
43 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
45 #include "llvm/MC/MCInst.h"
46 #include "llvm/MC/MCInstPrinter.h"
47 #include "llvm/MC/MCInstrAnalysis.h"
48 #include "llvm/MC/MCInstrInfo.h"
49 #include "llvm/MC/MCObjectFileInfo.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/BuildID.h"
55 #include "llvm/Object/COFF.h"
56 #include "llvm/Object/COFFImportFile.h"
57 #include "llvm/Object/ELFObjectFile.h"
58 #include "llvm/Object/ELFTypes.h"
59 #include "llvm/Object/FaultMapParser.h"
60 #include "llvm/Object/MachO.h"
61 #include "llvm/Object/MachOUniversal.h"
62 #include "llvm/Object/ObjectFile.h"
63 #include "llvm/Object/OffloadBinary.h"
64 #include "llvm/Object/Wasm.h"
65 #include "llvm/Option/Arg.h"
66 #include "llvm/Option/ArgList.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Errc.h"
71 #include "llvm/Support/FileSystem.h"
72 #include "llvm/Support/Format.h"
73 #include "llvm/Support/FormatVariadic.h"
74 #include "llvm/Support/GraphWriter.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/TargetParser/Host.h"
83 #include "llvm/TargetParser/Triple.h"
84 #include <algorithm>
85 #include <cctype>
86 #include <cstring>
87 #include <optional>
88 #include <system_error>
89 #include <unordered_map>
90 #include <utility>
91 
92 using namespace llvm;
93 using namespace llvm::object;
94 using namespace llvm::objdump;
95 using namespace llvm::opt;
96 
97 namespace {
98 
99 class CommonOptTable : public opt::GenericOptTable {
100 public:
101   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
102                  const char *Description)
103       : opt::GenericOptTable(OptionInfos), Usage(Usage),
104         Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(),
111                                     Description, ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 namespace objdump_opt {
123 #define PREFIX(NAME, VALUE)                                                    \
124   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
125   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
126                                                 std::size(NAME##_init) - 1);
127 #include "ObjdumpOpts.inc"
128 #undef PREFIX
129 
130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
131 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
132                HELPTEXT, METAVAR, VALUES)                                      \
133   {PREFIX,          NAME,         HELPTEXT,                                    \
134    METAVAR,         OBJDUMP_##ID, opt::Option::KIND##Class,                    \
135    PARAM,           FLAGS,        OBJDUMP_##GROUP,                             \
136    OBJDUMP_##ALIAS, ALIASARGS,    VALUES},
137 #include "ObjdumpOpts.inc"
138 #undef OPTION
139 };
140 } // namespace objdump_opt
141 
142 class ObjdumpOptTable : public CommonOptTable {
143 public:
144   ObjdumpOptTable()
145       : CommonOptTable(objdump_opt::ObjdumpInfoTable,
146                        " [options] <input object files>",
147                        "llvm object file dumper") {}
148 };
149 
150 enum OtoolOptID {
151   OTOOL_INVALID = 0, // This is not an option ID.
152 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
153                HELPTEXT, METAVAR, VALUES)                                      \
154   OTOOL_##ID,
155 #include "OtoolOpts.inc"
156 #undef OPTION
157 };
158 
159 namespace otool {
160 #define PREFIX(NAME, VALUE)                                                    \
161   static constexpr StringLiteral NAME##_init[] = VALUE;                        \
162   static constexpr ArrayRef<StringLiteral> NAME(NAME##_init,                   \
163                                                 std::size(NAME##_init) - 1);
164 #include "OtoolOpts.inc"
165 #undef PREFIX
166 
167 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
168 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
169                HELPTEXT, METAVAR, VALUES)                                      \
170   {PREFIX,        NAME,       HELPTEXT,                                        \
171    METAVAR,       OTOOL_##ID, opt::Option::KIND##Class,                        \
172    PARAM,         FLAGS,      OTOOL_##GROUP,                                   \
173    OTOOL_##ALIAS, ALIASARGS,  VALUES},
174 #include "OtoolOpts.inc"
175 #undef OPTION
176 };
177 } // namespace otool
178 
179 class OtoolOptTable : public CommonOptTable {
180 public:
181   OtoolOptTable()
182       : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]",
183                        "Mach-O object file displaying tool") {}
184 };
185 
186 } // namespace
187 
188 #define DEBUG_TYPE "objdump"
189 
190 static uint64_t AdjustVMA;
191 static bool AllHeaders;
192 static std::string ArchName;
193 bool objdump::ArchiveHeaders;
194 bool objdump::Demangle;
195 bool objdump::Disassemble;
196 bool objdump::DisassembleAll;
197 bool objdump::SymbolDescription;
198 bool objdump::TracebackTable;
199 static std::vector<std::string> DisassembleSymbols;
200 static bool DisassembleZeroes;
201 static std::vector<std::string> DisassemblerOptions;
202 DIDumpType objdump::DwarfDumpType;
203 static bool DynamicRelocations;
204 static bool FaultMapSection;
205 static bool FileHeaders;
206 bool objdump::SectionContents;
207 static std::vector<std::string> InputFilenames;
208 bool objdump::PrintLines;
209 static bool MachOOpt;
210 std::string objdump::MCPU;
211 std::vector<std::string> objdump::MAttrs;
212 bool objdump::ShowRawInsn;
213 bool objdump::LeadingAddr;
214 static bool Offloading;
215 static bool RawClangAST;
216 bool objdump::Relocations;
217 bool objdump::PrintImmHex;
218 bool objdump::PrivateHeaders;
219 std::vector<std::string> objdump::FilterSections;
220 bool objdump::SectionHeaders;
221 static bool ShowAllSymbols;
222 static bool ShowLMA;
223 bool objdump::PrintSource;
224 
225 static uint64_t StartAddress;
226 static bool HasStartAddressFlag;
227 static uint64_t StopAddress = UINT64_MAX;
228 static bool HasStopAddressFlag;
229 
230 bool objdump::SymbolTable;
231 static bool SymbolizeOperands;
232 static bool DynamicSymbolTable;
233 std::string objdump::TripleName;
234 bool objdump::UnwindInfo;
235 static bool Wide;
236 std::string objdump::Prefix;
237 uint32_t objdump::PrefixStrip;
238 
239 DebugVarsFormat objdump::DbgVariables = DVDisabled;
240 
241 int objdump::DbgIndent = 52;
242 
243 static StringSet<> DisasmSymbolSet;
244 StringSet<> objdump::FoundSectionSet;
245 static StringRef ToolName;
246 
247 std::unique_ptr<BuildIDFetcher> BIDFetcher;
248 ExitOnError ExitOnErr;
249 
250 void Dumper::reportUniqueWarning(Error Err) {
251   reportUniqueWarning(toString(std::move(Err)));
252 }
253 
254 void Dumper::reportUniqueWarning(const Twine &Msg) {
255   if (Warnings.insert(StringRef(Msg.str())).second)
256     reportWarning(Msg, O.getFileName());
257 }
258 
259 namespace {
260 struct FilterResult {
261   // True if the section should not be skipped.
262   bool Keep;
263 
264   // True if the index counter should be incremented, even if the section should
265   // be skipped. For example, sections may be skipped if they are not included
266   // in the --section flag, but we still want those to count toward the section
267   // count.
268   bool IncrementIndex;
269 };
270 } // namespace
271 
272 static FilterResult checkSectionFilter(object::SectionRef S) {
273   if (FilterSections.empty())
274     return {/*Keep=*/true, /*IncrementIndex=*/true};
275 
276   Expected<StringRef> SecNameOrErr = S.getName();
277   if (!SecNameOrErr) {
278     consumeError(SecNameOrErr.takeError());
279     return {/*Keep=*/false, /*IncrementIndex=*/false};
280   }
281   StringRef SecName = *SecNameOrErr;
282 
283   // StringSet does not allow empty key so avoid adding sections with
284   // no name (such as the section with index 0) here.
285   if (!SecName.empty())
286     FoundSectionSet.insert(SecName);
287 
288   // Only show the section if it's in the FilterSections list, but always
289   // increment so the indexing is stable.
290   return {/*Keep=*/is_contained(FilterSections, SecName),
291           /*IncrementIndex=*/true};
292 }
293 
294 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
295                                          uint64_t *Idx) {
296   // Start at UINT64_MAX so that the first index returned after an increment is
297   // zero (after the unsigned wrap).
298   if (Idx)
299     *Idx = UINT64_MAX;
300   return SectionFilter(
301       [Idx](object::SectionRef S) {
302         FilterResult Result = checkSectionFilter(S);
303         if (Idx != nullptr && Result.IncrementIndex)
304           *Idx += 1;
305         return Result.Keep;
306       },
307       O);
308 }
309 
310 std::string objdump::getFileNameForError(const object::Archive::Child &C,
311                                          unsigned Index) {
312   Expected<StringRef> NameOrErr = C.getName();
313   if (NameOrErr)
314     return std::string(NameOrErr.get());
315   // If we have an error getting the name then we print the index of the archive
316   // member. Since we are already in an error state, we just ignore this error.
317   consumeError(NameOrErr.takeError());
318   return "<file index: " + std::to_string(Index) + ">";
319 }
320 
321 void objdump::reportWarning(const Twine &Message, StringRef File) {
322   // Output order between errs() and outs() matters especially for archive
323   // files where the output is per member object.
324   outs().flush();
325   WithColor::warning(errs(), ToolName)
326       << "'" << File << "': " << Message << "\n";
327 }
328 
329 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
330   outs().flush();
331   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
332   exit(1);
333 }
334 
335 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
336                                        StringRef ArchiveName,
337                                        StringRef ArchitectureName) {
338   assert(E);
339   outs().flush();
340   WithColor::error(errs(), ToolName);
341   if (ArchiveName != "")
342     errs() << ArchiveName << "(" << FileName << ")";
343   else
344     errs() << "'" << FileName << "'";
345   if (!ArchitectureName.empty())
346     errs() << " (for architecture " << ArchitectureName << ")";
347   errs() << ": ";
348   logAllUnhandledErrors(std::move(E), errs());
349   exit(1);
350 }
351 
352 static void reportCmdLineWarning(const Twine &Message) {
353   WithColor::warning(errs(), ToolName) << Message << "\n";
354 }
355 
356 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
357   WithColor::error(errs(), ToolName) << Message << "\n";
358   exit(1);
359 }
360 
361 static void warnOnNoMatchForSections() {
362   SetVector<StringRef> MissingSections;
363   for (StringRef S : FilterSections) {
364     if (FoundSectionSet.count(S))
365       return;
366     // User may specify a unnamed section. Don't warn for it.
367     if (!S.empty())
368       MissingSections.insert(S);
369   }
370 
371   // Warn only if no section in FilterSections is matched.
372   for (StringRef S : MissingSections)
373     reportCmdLineWarning("section '" + S +
374                          "' mentioned in a -j/--section option, but not "
375                          "found in any input file");
376 }
377 
378 static const Target *getTarget(const ObjectFile *Obj) {
379   // Figure out the target triple.
380   Triple TheTriple("unknown-unknown-unknown");
381   if (TripleName.empty()) {
382     TheTriple = Obj->makeTriple();
383   } else {
384     TheTriple.setTriple(Triple::normalize(TripleName));
385     auto Arch = Obj->getArch();
386     if (Arch == Triple::arm || Arch == Triple::armeb)
387       Obj->setARMSubArch(TheTriple);
388   }
389 
390   // Get the target specific parser.
391   std::string Error;
392   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
393                                                          Error);
394   if (!TheTarget)
395     reportError(Obj->getFileName(), "can't find target: " + Error);
396 
397   // Update the triple name and return the found target.
398   TripleName = TheTriple.getTriple();
399   return TheTarget;
400 }
401 
402 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
403   return A.getOffset() < B.getOffset();
404 }
405 
406 static Error getRelocationValueString(const RelocationRef &Rel,
407                                       SmallVectorImpl<char> &Result) {
408   const ObjectFile *Obj = Rel.getObject();
409   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
410     return getELFRelocationValueString(ELF, Rel, Result);
411   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
412     return getCOFFRelocationValueString(COFF, Rel, Result);
413   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
414     return getWasmRelocationValueString(Wasm, Rel, Result);
415   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
416     return getMachORelocationValueString(MachO, Rel, Result);
417   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
418     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
419   llvm_unreachable("unknown object file format");
420 }
421 
422 /// Indicates whether this relocation should hidden when listing
423 /// relocations, usually because it is the trailing part of a multipart
424 /// relocation that will be printed as part of the leading relocation.
425 static bool getHidden(RelocationRef RelRef) {
426   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
427   if (!MachO)
428     return false;
429 
430   unsigned Arch = MachO->getArch();
431   DataRefImpl Rel = RelRef.getRawDataRefImpl();
432   uint64_t Type = MachO->getRelocationType(Rel);
433 
434   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
435   // is always hidden.
436   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
437     return Type == MachO::GENERIC_RELOC_PAIR;
438 
439   if (Arch == Triple::x86_64) {
440     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
441     // an X86_64_RELOC_SUBTRACTOR.
442     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
443       DataRefImpl RelPrev = Rel;
444       RelPrev.d.a--;
445       uint64_t PrevType = MachO->getRelocationType(RelPrev);
446       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
447         return true;
448     }
449   }
450 
451   return false;
452 }
453 
454 /// Get the column at which we want to start printing the instruction
455 /// disassembly, taking into account anything which appears to the left of it.
456 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) {
457   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
458 }
459 
460 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
461                                    raw_ostream &OS) {
462   // The output of printInst starts with a tab. Print some spaces so that
463   // the tab has 1 column and advances to the target tab stop.
464   unsigned TabStop = getInstStartColumn(STI);
465   unsigned Column = OS.tell() - Start;
466   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
467 }
468 
469 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address,
470                            formatted_raw_ostream &OS,
471                            MCSubtargetInfo const &STI) {
472   size_t Start = OS.tell();
473   if (LeadingAddr)
474     OS << format("%8" PRIx64 ":", Address);
475   if (ShowRawInsn) {
476     OS << ' ';
477     dumpBytes(Bytes, OS);
478   }
479   AlignToInstStartColumn(Start, STI, OS);
480 }
481 
482 namespace {
483 
484 static bool isAArch64Elf(const ObjectFile &Obj) {
485   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
486   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
487 }
488 
489 static bool isArmElf(const ObjectFile &Obj) {
490   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
491   return Elf && Elf->getEMachine() == ELF::EM_ARM;
492 }
493 
494 static bool isCSKYElf(const ObjectFile &Obj) {
495   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
496   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
497 }
498 
499 static bool hasMappingSymbols(const ObjectFile &Obj) {
500   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
501 }
502 
503 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
504   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
505          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
506 }
507 
508 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
509                             const RelocationRef &Rel, uint64_t Address,
510                             bool Is64Bits) {
511   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
512   SmallString<16> Name;
513   SmallString<32> Val;
514   Rel.getTypeName(Name);
515   if (Error E = getRelocationValueString(Rel, Val))
516     reportError(std::move(E), FileName);
517   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
518   if (LeadingAddr)
519     OS << format(Fmt.data(), Address);
520   OS << Name << "\t" << Val;
521 }
522 
523 class PrettyPrinter {
524 public:
525   virtual ~PrettyPrinter() = default;
526   virtual void
527   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
528             object::SectionedAddress Address, formatted_raw_ostream &OS,
529             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
530             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
531             LiveVariablePrinter &LVP) {
532     if (SP && (PrintSource || PrintLines))
533       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
534     LVP.printBetweenInsts(OS, false);
535 
536     printRawData(Bytes, Address.Address, OS, STI);
537 
538     if (MI) {
539       // See MCInstPrinter::printInst. On targets where a PC relative immediate
540       // is relative to the next instruction and the length of a MCInst is
541       // difficult to measure (x86), this is the address of the next
542       // instruction.
543       uint64_t Addr =
544           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
545       IP.printInst(MI, Addr, "", STI, OS);
546     } else
547       OS << "\t<unknown>";
548   }
549 };
550 PrettyPrinter PrettyPrinterInst;
551 
552 class HexagonPrettyPrinter : public PrettyPrinter {
553 public:
554   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
555                  formatted_raw_ostream &OS) {
556     uint32_t opcode =
557       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
558     if (LeadingAddr)
559       OS << format("%8" PRIx64 ":", Address);
560     if (ShowRawInsn) {
561       OS << "\t";
562       dumpBytes(Bytes.slice(0, 4), OS);
563       OS << format("\t%08" PRIx32, opcode);
564     }
565   }
566   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
567                  object::SectionedAddress Address, formatted_raw_ostream &OS,
568                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
569                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
570                  LiveVariablePrinter &LVP) override {
571     if (SP && (PrintSource || PrintLines))
572       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
573     if (!MI) {
574       printLead(Bytes, Address.Address, OS);
575       OS << " <unknown>";
576       return;
577     }
578     std::string Buffer;
579     {
580       raw_string_ostream TempStream(Buffer);
581       IP.printInst(MI, Address.Address, "", STI, TempStream);
582     }
583     StringRef Contents(Buffer);
584     // Split off bundle attributes
585     auto PacketBundle = Contents.rsplit('\n');
586     // Split off first instruction from the rest
587     auto HeadTail = PacketBundle.first.split('\n');
588     auto Preamble = " { ";
589     auto Separator = "";
590 
591     // Hexagon's packets require relocations to be inline rather than
592     // clustered at the end of the packet.
593     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
594     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
595     auto PrintReloc = [&]() -> void {
596       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
597         if (RelCur->getOffset() == Address.Address) {
598           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
599           return;
600         }
601         ++RelCur;
602       }
603     };
604 
605     while (!HeadTail.first.empty()) {
606       OS << Separator;
607       Separator = "\n";
608       if (SP && (PrintSource || PrintLines))
609         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
610       printLead(Bytes, Address.Address, OS);
611       OS << Preamble;
612       Preamble = "   ";
613       StringRef Inst;
614       auto Duplex = HeadTail.first.split('\v');
615       if (!Duplex.second.empty()) {
616         OS << Duplex.first;
617         OS << "; ";
618         Inst = Duplex.second;
619       }
620       else
621         Inst = HeadTail.first;
622       OS << Inst;
623       HeadTail = HeadTail.second.split('\n');
624       if (HeadTail.first.empty())
625         OS << " } " << PacketBundle.second;
626       PrintReloc();
627       Bytes = Bytes.slice(4);
628       Address.Address += 4;
629     }
630   }
631 };
632 HexagonPrettyPrinter HexagonPrettyPrinterInst;
633 
634 class AMDGCNPrettyPrinter : public PrettyPrinter {
635 public:
636   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
637                  object::SectionedAddress Address, formatted_raw_ostream &OS,
638                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
639                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
640                  LiveVariablePrinter &LVP) override {
641     if (SP && (PrintSource || PrintLines))
642       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
643 
644     if (MI) {
645       SmallString<40> InstStr;
646       raw_svector_ostream IS(InstStr);
647 
648       IP.printInst(MI, Address.Address, "", STI, IS);
649 
650       OS << left_justify(IS.str(), 60);
651     } else {
652       // an unrecognized encoding - this is probably data so represent it
653       // using the .long directive, or .byte directive if fewer than 4 bytes
654       // remaining
655       if (Bytes.size() >= 4) {
656         OS << format("\t.long 0x%08" PRIx32 " ",
657                      support::endian::read32<support::little>(Bytes.data()));
658         OS.indent(42);
659       } else {
660           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
661           for (unsigned int i = 1; i < Bytes.size(); i++)
662             OS << format(", 0x%02" PRIx8, Bytes[i]);
663           OS.indent(55 - (6 * Bytes.size()));
664       }
665     }
666 
667     OS << format("// %012" PRIX64 ":", Address.Address);
668     if (Bytes.size() >= 4) {
669       // D should be casted to uint32_t here as it is passed by format to
670       // snprintf as vararg.
671       for (uint32_t D :
672            ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()),
673                     Bytes.size() / 4))
674           OS << format(" %08" PRIX32, D);
675     } else {
676       for (unsigned char B : Bytes)
677         OS << format(" %02" PRIX8, B);
678     }
679 
680     if (!Annot.empty())
681       OS << " // " << Annot;
682   }
683 };
684 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
685 
686 class BPFPrettyPrinter : public PrettyPrinter {
687 public:
688   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
689                  object::SectionedAddress Address, formatted_raw_ostream &OS,
690                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
691                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
692                  LiveVariablePrinter &LVP) override {
693     if (SP && (PrintSource || PrintLines))
694       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
695     if (LeadingAddr)
696       OS << format("%8" PRId64 ":", Address.Address / 8);
697     if (ShowRawInsn) {
698       OS << "\t";
699       dumpBytes(Bytes, OS);
700     }
701     if (MI)
702       IP.printInst(MI, Address.Address, "", STI, OS);
703     else
704       OS << "\t<unknown>";
705   }
706 };
707 BPFPrettyPrinter BPFPrettyPrinterInst;
708 
709 class ARMPrettyPrinter : public PrettyPrinter {
710 public:
711   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
712                  object::SectionedAddress Address, formatted_raw_ostream &OS,
713                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
714                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
715                  LiveVariablePrinter &LVP) override {
716     if (SP && (PrintSource || PrintLines))
717       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
718     LVP.printBetweenInsts(OS, false);
719 
720     size_t Start = OS.tell();
721     if (LeadingAddr)
722       OS << format("%8" PRIx64 ":", Address.Address);
723     if (ShowRawInsn) {
724       size_t Pos = 0, End = Bytes.size();
725       if (STI.checkFeatures("+thumb-mode")) {
726         for (; Pos + 2 <= End; Pos += 2)
727           OS << ' '
728              << format_hex_no_prefix(
729                     llvm::support::endian::read<uint16_t>(
730                         Bytes.data() + Pos, InstructionEndianness),
731                     4);
732       } else {
733         for (; Pos + 4 <= End; Pos += 4)
734           OS << ' '
735              << format_hex_no_prefix(
736                     llvm::support::endian::read<uint32_t>(
737                         Bytes.data() + Pos, InstructionEndianness),
738                     8);
739       }
740       if (Pos < End) {
741         OS << ' ';
742         dumpBytes(Bytes.slice(Pos), OS);
743       }
744     }
745 
746     AlignToInstStartColumn(Start, STI, OS);
747 
748     if (MI) {
749       IP.printInst(MI, Address.Address, "", STI, OS);
750     } else
751       OS << "\t<unknown>";
752   }
753 
754   void setInstructionEndianness(llvm::support::endianness Endianness) {
755     InstructionEndianness = Endianness;
756   }
757 
758 private:
759   llvm::support::endianness InstructionEndianness = llvm::support::little;
760 };
761 ARMPrettyPrinter ARMPrettyPrinterInst;
762 
763 class AArch64PrettyPrinter : public PrettyPrinter {
764 public:
765   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
766                  object::SectionedAddress Address, formatted_raw_ostream &OS,
767                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
768                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
769                  LiveVariablePrinter &LVP) override {
770     if (SP && (PrintSource || PrintLines))
771       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
772     LVP.printBetweenInsts(OS, false);
773 
774     size_t Start = OS.tell();
775     if (LeadingAddr)
776       OS << format("%8" PRIx64 ":", Address.Address);
777     if (ShowRawInsn) {
778       size_t Pos = 0, End = Bytes.size();
779       for (; Pos + 4 <= End; Pos += 4)
780         OS << ' '
781            << format_hex_no_prefix(
782                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
783                                                         llvm::support::little),
784                   8);
785       if (Pos < End) {
786         OS << ' ';
787         dumpBytes(Bytes.slice(Pos), OS);
788       }
789     }
790 
791     AlignToInstStartColumn(Start, STI, OS);
792 
793     if (MI) {
794       IP.printInst(MI, Address.Address, "", STI, OS);
795     } else
796       OS << "\t<unknown>";
797   }
798 };
799 AArch64PrettyPrinter AArch64PrettyPrinterInst;
800 
801 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
802   switch(Triple.getArch()) {
803   default:
804     return PrettyPrinterInst;
805   case Triple::hexagon:
806     return HexagonPrettyPrinterInst;
807   case Triple::amdgcn:
808     return AMDGCNPrettyPrinterInst;
809   case Triple::bpfel:
810   case Triple::bpfeb:
811     return BPFPrettyPrinterInst;
812   case Triple::arm:
813   case Triple::armeb:
814   case Triple::thumb:
815   case Triple::thumbeb:
816     return ARMPrettyPrinterInst;
817   case Triple::aarch64:
818   case Triple::aarch64_be:
819   case Triple::aarch64_32:
820     return AArch64PrettyPrinterInst;
821   }
822 }
823 } // namespace
824 
825 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
826   assert(Obj.isELF());
827   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
828     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
829                          Obj.getFileName())
830         ->getType();
831   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
832     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
833                          Obj.getFileName())
834         ->getType();
835   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
836     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
837                          Obj.getFileName())
838         ->getType();
839   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
840     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
841                          Obj.getFileName())
842         ->getType();
843   llvm_unreachable("Unsupported binary format");
844 }
845 
846 template <class ELFT>
847 static void
848 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
849                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
850   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
851     uint8_t SymbolType = Symbol.getELFType();
852     if (SymbolType == ELF::STT_SECTION)
853       continue;
854 
855     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
856     // ELFSymbolRef::getAddress() returns size instead of value for common
857     // symbols which is not desirable for disassembly output. Overriding.
858     if (SymbolType == ELF::STT_COMMON)
859       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
860                               Obj.getFileName())
861                     ->st_value;
862 
863     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
864     if (Name.empty())
865       continue;
866 
867     section_iterator SecI =
868         unwrapOrError(Symbol.getSection(), Obj.getFileName());
869     if (SecI == Obj.section_end())
870       continue;
871 
872     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
873   }
874 }
875 
876 static void
877 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
878                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
879   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
880     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
881   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
882     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
883   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
884     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
885   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
886     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
887   else
888     llvm_unreachable("Unsupported binary format");
889 }
890 
891 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
892   for (auto SecI : Obj.sections()) {
893     const WasmSection &Section = Obj.getWasmSection(SecI);
894     if (Section.Type == wasm::WASM_SEC_CODE)
895       return SecI;
896   }
897   return std::nullopt;
898 }
899 
900 static void
901 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
902                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
903   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
904   if (!Section)
905     return;
906   SectionSymbolsTy &Symbols = AllSymbols[*Section];
907 
908   std::set<uint64_t> SymbolAddresses;
909   for (const auto &Sym : Symbols)
910     SymbolAddresses.insert(Sym.Addr);
911 
912   for (const wasm::WasmFunction &Function : Obj.functions()) {
913     uint64_t Address = Function.CodeSectionOffset;
914     // Only add fallback symbols for functions not already present in the symbol
915     // table.
916     if (SymbolAddresses.count(Address))
917       continue;
918     // This function has no symbol, so it should have no SymbolName.
919     assert(Function.SymbolName.empty());
920     // We use DebugName for the name, though it may be empty if there is no
921     // "name" custom section, or that section is missing a name for this
922     // function.
923     StringRef Name = Function.DebugName;
924     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
925   }
926 }
927 
928 static void addPltEntries(const ObjectFile &Obj,
929                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
930                           StringSaver &Saver) {
931   auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj);
932   if (!ElfObj)
933     return;
934   DenseMap<StringRef, SectionRef> Sections;
935   for (SectionRef Section : Obj.sections()) {
936     Expected<StringRef> SecNameOrErr = Section.getName();
937     if (!SecNameOrErr) {
938       consumeError(SecNameOrErr.takeError());
939       continue;
940     }
941     Sections[*SecNameOrErr] = Section;
942   }
943   for (auto Plt : ElfObj->getPltEntries()) {
944     if (Plt.Symbol) {
945       SymbolRef Symbol(*Plt.Symbol, ElfObj);
946       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
947       if (Expected<StringRef> NameOrErr = Symbol.getName()) {
948         if (!NameOrErr->empty())
949           AllSymbols[Sections[Plt.Section]].emplace_back(
950               Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType);
951         continue;
952       } else {
953         // The warning has been reported in disassembleObject().
954         consumeError(NameOrErr.takeError());
955       }
956     }
957     reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) +
958                       " references an invalid symbol",
959                   Obj.getFileName());
960   }
961 }
962 
963 // Normally the disassembly output will skip blocks of zeroes. This function
964 // returns the number of zero bytes that can be skipped when dumping the
965 // disassembly of the instructions in Buf.
966 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
967   // Find the number of leading zeroes.
968   size_t N = 0;
969   while (N < Buf.size() && !Buf[N])
970     ++N;
971 
972   // We may want to skip blocks of zero bytes, but unless we see
973   // at least 8 of them in a row.
974   if (N < 8)
975     return 0;
976 
977   // We skip zeroes in multiples of 4 because do not want to truncate an
978   // instruction if it starts with a zero byte.
979   return N & ~0x3;
980 }
981 
982 // Returns a map from sections to their relocations.
983 static std::map<SectionRef, std::vector<RelocationRef>>
984 getRelocsMap(object::ObjectFile const &Obj) {
985   std::map<SectionRef, std::vector<RelocationRef>> Ret;
986   uint64_t I = (uint64_t)-1;
987   for (SectionRef Sec : Obj.sections()) {
988     ++I;
989     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
990     if (!RelocatedOrErr)
991       reportError(Obj.getFileName(),
992                   "section (" + Twine(I) +
993                       "): failed to get a relocated section: " +
994                       toString(RelocatedOrErr.takeError()));
995 
996     section_iterator Relocated = *RelocatedOrErr;
997     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
998       continue;
999     std::vector<RelocationRef> &V = Ret[*Relocated];
1000     append_range(V, Sec.relocations());
1001     // Sort relocations by address.
1002     llvm::stable_sort(V, isRelocAddressLess);
1003   }
1004   return Ret;
1005 }
1006 
1007 // Used for --adjust-vma to check if address should be adjusted by the
1008 // specified value for a given section.
1009 // For ELF we do not adjust non-allocatable sections like debug ones,
1010 // because they are not loadable.
1011 // TODO: implement for other file formats.
1012 static bool shouldAdjustVA(const SectionRef &Section) {
1013   const ObjectFile *Obj = Section.getObject();
1014   if (Obj->isELF())
1015     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
1016   return false;
1017 }
1018 
1019 
1020 typedef std::pair<uint64_t, char> MappingSymbolPair;
1021 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1022                                  uint64_t Address) {
1023   auto It =
1024       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1025         return Val.first <= Address;
1026       });
1027   // Return zero for any address before the first mapping symbol; this means
1028   // we should use the default disassembly mode, depending on the target.
1029   if (It == MappingSymbols.begin())
1030     return '\x00';
1031   return (It - 1)->second;
1032 }
1033 
1034 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1035                                uint64_t End, const ObjectFile &Obj,
1036                                ArrayRef<uint8_t> Bytes,
1037                                ArrayRef<MappingSymbolPair> MappingSymbols,
1038                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1039   support::endianness Endian =
1040       Obj.isLittleEndian() ? support::little : support::big;
1041   size_t Start = OS.tell();
1042   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1043   if (Index + 4 <= End) {
1044     dumpBytes(Bytes.slice(Index, 4), OS);
1045     AlignToInstStartColumn(Start, STI, OS);
1046     OS << "\t.word\t"
1047            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1048                          10);
1049     return 4;
1050   }
1051   if (Index + 2 <= End) {
1052     dumpBytes(Bytes.slice(Index, 2), OS);
1053     AlignToInstStartColumn(Start, STI, OS);
1054     OS << "\t.short\t"
1055        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1056     return 2;
1057   }
1058   dumpBytes(Bytes.slice(Index, 1), OS);
1059   AlignToInstStartColumn(Start, STI, OS);
1060   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1061   return 1;
1062 }
1063 
1064 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1065                         ArrayRef<uint8_t> Bytes) {
1066   // print out data up to 8 bytes at a time in hex and ascii
1067   uint8_t AsciiData[9] = {'\0'};
1068   uint8_t Byte;
1069   int NumBytes = 0;
1070 
1071   for (; Index < End; ++Index) {
1072     if (NumBytes == 0)
1073       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1074     Byte = Bytes.slice(Index)[0];
1075     outs() << format(" %02x", Byte);
1076     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1077 
1078     uint8_t IndentOffset = 0;
1079     NumBytes++;
1080     if (Index == End - 1 || NumBytes > 8) {
1081       // Indent the space for less than 8 bytes data.
1082       // 2 spaces for byte and one for space between bytes
1083       IndentOffset = 3 * (8 - NumBytes);
1084       for (int Excess = NumBytes; Excess < 8; Excess++)
1085         AsciiData[Excess] = '\0';
1086       NumBytes = 8;
1087     }
1088     if (NumBytes == 8) {
1089       AsciiData[8] = '\0';
1090       outs() << std::string(IndentOffset, ' ') << "         ";
1091       outs() << reinterpret_cast<char *>(AsciiData);
1092       outs() << '\n';
1093       NumBytes = 0;
1094     }
1095   }
1096 }
1097 
1098 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1099                                        const SymbolRef &Symbol) {
1100   const StringRef FileName = Obj.getFileName();
1101   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1102   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1103 
1104   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) {
1105     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1106     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1107 
1108     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1109     std::optional<XCOFF::StorageMappingClass> Smc =
1110         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1111     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1112                         isLabel(XCOFFObj, Symbol));
1113   } else if (Obj.isXCOFF()) {
1114     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1115     return SymbolInfoTy(Addr, Name, SymType, true);
1116   } else
1117     return SymbolInfoTy(Addr, Name,
1118                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1119                                     : (uint8_t)ELF::STT_NOTYPE);
1120 }
1121 
1122 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1123                                           const uint64_t Addr, StringRef &Name,
1124                                           uint8_t Type) {
1125   if (Obj.isXCOFF() && (SymbolDescription || TracebackTable))
1126     return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
1127   else
1128     return SymbolInfoTy(Addr, Name, Type);
1129 }
1130 
1131 static void
1132 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1133                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1134                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1135   if (AddrToBBAddrMap.empty())
1136     return;
1137   Labels.clear();
1138   uint64_t StartAddress = SectionAddr + Start;
1139   uint64_t EndAddress = SectionAddr + End;
1140   auto Iter = AddrToBBAddrMap.find(StartAddress);
1141   if (Iter == AddrToBBAddrMap.end())
1142     return;
1143   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1144     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1145     if (BBAddress >= EndAddress)
1146       continue;
1147     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1148   }
1149 }
1150 
1151 static void collectLocalBranchTargets(
1152     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1153     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1154     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1155   // So far only supports PowerPC and X86.
1156   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1157     return;
1158 
1159   Labels.clear();
1160   unsigned LabelCount = 0;
1161   Start += SectionAddr;
1162   End += SectionAddr;
1163   uint64_t Index = Start;
1164   while (Index < End) {
1165     // Disassemble a real instruction and record function-local branch labels.
1166     MCInst Inst;
1167     uint64_t Size;
1168     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1169     bool Disassembled =
1170         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1171     if (Size == 0)
1172       Size = std::min<uint64_t>(ThisBytes.size(),
1173                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1174 
1175     if (Disassembled && MIA) {
1176       uint64_t Target;
1177       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1178       // On PowerPC, if the address of a branch is the same as the target, it
1179       // means that it's a function call. Do not mark the label for this case.
1180       if (TargetKnown && (Target >= Start && Target < End) &&
1181           !Labels.count(Target) &&
1182           !(STI->getTargetTriple().isPPC() && Target == Index))
1183         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1184     }
1185     Index += Size;
1186   }
1187 }
1188 
1189 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1190 // This is currently only used on AMDGPU, and assumes the format of the
1191 // void * argument passed to AMDGPU's createMCSymbolizer.
1192 static void addSymbolizer(
1193     MCContext &Ctx, const Target *Target, StringRef TripleName,
1194     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1195     SectionSymbolsTy &Symbols,
1196     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1197 
1198   std::unique_ptr<MCRelocationInfo> RelInfo(
1199       Target->createMCRelocationInfo(TripleName, Ctx));
1200   if (!RelInfo)
1201     return;
1202   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1203       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1204   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1205   DisAsm->setSymbolizer(std::move(Symbolizer));
1206 
1207   if (!SymbolizeOperands)
1208     return;
1209 
1210   // Synthesize labels referenced by branch instructions by
1211   // disassembling, discarding the output, and collecting the referenced
1212   // addresses from the symbolizer.
1213   for (size_t Index = 0; Index != Bytes.size();) {
1214     MCInst Inst;
1215     uint64_t Size;
1216     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1217     const uint64_t ThisAddr = SectionAddr + Index;
1218     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1219     if (Size == 0)
1220       Size = std::min<uint64_t>(ThisBytes.size(),
1221                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1222     Index += Size;
1223   }
1224   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1225   // Copy and sort to remove duplicates.
1226   std::vector<uint64_t> LabelAddrs;
1227   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1228                     LabelAddrsRef.end());
1229   llvm::sort(LabelAddrs);
1230   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1231                     LabelAddrs.begin());
1232   // Add the labels.
1233   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1234     auto Name = std::make_unique<std::string>();
1235     *Name = (Twine("L") + Twine(LabelNum)).str();
1236     SynthesizedLabelNames.push_back(std::move(Name));
1237     Symbols.push_back(SymbolInfoTy(
1238         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1239   }
1240   llvm::stable_sort(Symbols);
1241   // Recreate the symbolizer with the new symbols list.
1242   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1243   Symbolizer.reset(Target->createMCSymbolizer(
1244       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1245   DisAsm->setSymbolizer(std::move(Symbolizer));
1246 }
1247 
1248 static StringRef getSegmentName(const MachOObjectFile *MachO,
1249                                 const SectionRef &Section) {
1250   if (MachO) {
1251     DataRefImpl DR = Section.getRawDataRefImpl();
1252     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1253     return SegmentName;
1254   }
1255   return "";
1256 }
1257 
1258 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1259                                     const MCAsmInfo &MAI,
1260                                     const MCSubtargetInfo &STI,
1261                                     StringRef Comments,
1262                                     LiveVariablePrinter &LVP) {
1263   do {
1264     if (!Comments.empty()) {
1265       // Emit a line of comments.
1266       StringRef Comment;
1267       std::tie(Comment, Comments) = Comments.split('\n');
1268       // MAI.getCommentColumn() assumes that instructions are printed at the
1269       // position of 8, while getInstStartColumn() returns the actual position.
1270       unsigned CommentColumn =
1271           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1272       FOS.PadToColumn(CommentColumn);
1273       FOS << MAI.getCommentString() << ' ' << Comment;
1274     }
1275     LVP.printAfterInst(FOS);
1276     FOS << '\n';
1277   } while (!Comments.empty());
1278   FOS.flush();
1279 }
1280 
1281 static void createFakeELFSections(ObjectFile &Obj) {
1282   assert(Obj.isELF());
1283   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1284     Elf32LEObj->createFakeSections();
1285   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1286     Elf64LEObj->createFakeSections();
1287   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1288     Elf32BEObj->createFakeSections();
1289   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1290     Elf64BEObj->createFakeSections();
1291   else
1292     llvm_unreachable("Unsupported binary format");
1293 }
1294 
1295 // Tries to fetch a more complete version of the given object file using its
1296 // Build ID. Returns std::nullopt if nothing was found.
1297 static std::optional<OwningBinary<Binary>>
1298 fetchBinaryByBuildID(const ObjectFile &Obj) {
1299   object::BuildIDRef BuildID = getBuildID(&Obj);
1300   if (BuildID.empty())
1301     return std::nullopt;
1302   std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
1303   if (!Path)
1304     return std::nullopt;
1305   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1306   if (!DebugBinary) {
1307     reportWarning(toString(DebugBinary.takeError()), *Path);
1308     return std::nullopt;
1309   }
1310   return std::move(*DebugBinary);
1311 }
1312 
1313 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1314                               const ObjectFile &DbgObj, MCContext &Ctx,
1315                               MCDisassembler *PrimaryDisAsm,
1316                               MCDisassembler *SecondaryDisAsm,
1317                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1318                               const MCSubtargetInfo *PrimarySTI,
1319                               const MCSubtargetInfo *SecondarySTI,
1320                               PrettyPrinter &PIP, SourcePrinter &SP,
1321                               bool InlineRelocs) {
1322   const MCSubtargetInfo *STI = PrimarySTI;
1323   MCDisassembler *DisAsm = PrimaryDisAsm;
1324   bool PrimaryIsThumb = false;
1325   if (isArmElf(Obj))
1326     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1327 
1328   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1329   if (InlineRelocs)
1330     RelocMap = getRelocsMap(Obj);
1331   bool Is64Bits = Obj.getBytesInAddress() > 4;
1332 
1333   // Create a mapping from virtual address to symbol name.  This is used to
1334   // pretty print the symbols while disassembling.
1335   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1336   SectionSymbolsTy AbsoluteSymbols;
1337   const StringRef FileName = Obj.getFileName();
1338   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1339   for (const SymbolRef &Symbol : Obj.symbols()) {
1340     Expected<StringRef> NameOrErr = Symbol.getName();
1341     if (!NameOrErr) {
1342       reportWarning(toString(NameOrErr.takeError()), FileName);
1343       continue;
1344     }
1345     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1346       continue;
1347 
1348     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1349       continue;
1350 
1351     if (MachO) {
1352       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1353       // symbols that support MachO header introspection. They do not bind to
1354       // code locations and are irrelevant for disassembly.
1355       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1356         continue;
1357       // Don't ask a Mach-O STAB symbol for its section unless you know that
1358       // STAB symbol's section field refers to a valid section index. Otherwise
1359       // the symbol may error trying to load a section that does not exist.
1360       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1361       uint8_t NType = (MachO->is64Bit() ?
1362                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1363                        MachO->getSymbolTableEntry(SymDRI).n_type);
1364       if (NType & MachO::N_STAB)
1365         continue;
1366     }
1367 
1368     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1369     if (SecI != Obj.section_end())
1370       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1371     else
1372       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1373   }
1374 
1375   if (AllSymbols.empty() && Obj.isELF())
1376     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1377 
1378   if (Obj.isWasm())
1379     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1380 
1381   if (Obj.isELF() && Obj.sections().empty())
1382     createFakeELFSections(Obj);
1383 
1384   BumpPtrAllocator A;
1385   StringSaver Saver(A);
1386   addPltEntries(Obj, AllSymbols, Saver);
1387 
1388   // Create a mapping from virtual address to section. An empty section can
1389   // cause more than one section at the same address. Sort such sections to be
1390   // before same-addressed non-empty sections so that symbol lookups prefer the
1391   // non-empty section.
1392   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1393   for (SectionRef Sec : Obj.sections())
1394     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1395   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1396     if (LHS.first != RHS.first)
1397       return LHS.first < RHS.first;
1398     return LHS.second.getSize() < RHS.second.getSize();
1399   });
1400 
1401   // Linked executables (.exe and .dll files) typically don't include a real
1402   // symbol table but they might contain an export table.
1403   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1404     for (const auto &ExportEntry : COFFObj->export_directories()) {
1405       StringRef Name;
1406       if (Error E = ExportEntry.getSymbolName(Name))
1407         reportError(std::move(E), Obj.getFileName());
1408       if (Name.empty())
1409         continue;
1410 
1411       uint32_t RVA;
1412       if (Error E = ExportEntry.getExportRVA(RVA))
1413         reportError(std::move(E), Obj.getFileName());
1414 
1415       uint64_t VA = COFFObj->getImageBase() + RVA;
1416       auto Sec = partition_point(
1417           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1418             return O.first <= VA;
1419           });
1420       if (Sec != SectionAddresses.begin()) {
1421         --Sec;
1422         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1423       } else
1424         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1425     }
1426   }
1427 
1428   // Sort all the symbols, this allows us to use a simple binary search to find
1429   // Multiple symbols can have the same address. Use a stable sort to stabilize
1430   // the output.
1431   StringSet<> FoundDisasmSymbolSet;
1432   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1433     llvm::stable_sort(SecSyms.second);
1434   llvm::stable_sort(AbsoluteSymbols);
1435 
1436   std::unique_ptr<DWARFContext> DICtx;
1437   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1438 
1439   if (DbgVariables != DVDisabled) {
1440     DICtx = DWARFContext::create(DbgObj);
1441     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1442       LVP.addCompileUnit(CU->getUnitDIE(false));
1443   }
1444 
1445   LLVM_DEBUG(LVP.dump());
1446 
1447   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1448   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1449                                std::nullopt) {
1450     AddrToBBAddrMap.clear();
1451     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1452       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1453       if (!BBAddrMapsOrErr) {
1454         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1455         return;
1456       }
1457       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1458         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1459                                 std::move(FunctionBBAddrMap));
1460     }
1461   };
1462 
1463   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1464   // single mapping, since they don't have any conflicts.
1465   if (SymbolizeOperands && !Obj.isRelocatableObject())
1466     ReadBBAddrMap();
1467 
1468   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1469     if (FilterSections.empty() && !DisassembleAll &&
1470         (!Section.isText() || Section.isVirtual()))
1471       continue;
1472 
1473     uint64_t SectionAddr = Section.getAddress();
1474     uint64_t SectSize = Section.getSize();
1475     if (!SectSize)
1476       continue;
1477 
1478     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1479     // corresponding to this section, if present.
1480     if (SymbolizeOperands && Obj.isRelocatableObject())
1481       ReadBBAddrMap(Section.getIndex());
1482 
1483     // Get the list of all the symbols in this section.
1484     SectionSymbolsTy &Symbols = AllSymbols[Section];
1485     std::vector<MappingSymbolPair> MappingSymbols;
1486     if (hasMappingSymbols(Obj)) {
1487       for (const auto &Symb : Symbols) {
1488         uint64_t Address = Symb.Addr;
1489         StringRef Name = Symb.Name;
1490         if (Name.startswith("$d"))
1491           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1492         if (Name.startswith("$x"))
1493           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1494         if (Name.startswith("$a"))
1495           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1496         if (Name.startswith("$t"))
1497           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1498       }
1499     }
1500 
1501     llvm::sort(MappingSymbols);
1502 
1503     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1504         unwrapOrError(Section.getContents(), Obj.getFileName()));
1505 
1506     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1507     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1508       // AMDGPU disassembler uses symbolizer for printing labels
1509       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1510                     Symbols, SynthesizedLabelNames);
1511     }
1512 
1513     StringRef SegmentName = getSegmentName(MachO, Section);
1514     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1515     // If the section has no symbol at the start, just insert a dummy one.
1516     if (Symbols.empty() || Symbols[0].Addr != 0) {
1517       Symbols.insert(Symbols.begin(),
1518                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1519                                            Section.isText() ? ELF::STT_FUNC
1520                                                             : ELF::STT_OBJECT));
1521     }
1522 
1523     SmallString<40> Comments;
1524     raw_svector_ostream CommentStream(Comments);
1525 
1526     uint64_t VMAAdjustment = 0;
1527     if (shouldAdjustVA(Section))
1528       VMAAdjustment = AdjustVMA;
1529 
1530     // In executable and shared objects, r_offset holds a virtual address.
1531     // Subtract SectionAddr from the r_offset field of a relocation to get
1532     // the section offset.
1533     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1534     uint64_t Size;
1535     uint64_t Index;
1536     bool PrintedSection = false;
1537     std::vector<RelocationRef> Rels = RelocMap[Section];
1538     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1539     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1540 
1541     // Loop over each chunk of code between two points where at least
1542     // one symbol is defined.
1543     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1544       // Advance SI past all the symbols starting at the same address,
1545       // and make an ArrayRef of them.
1546       unsigned FirstSI = SI;
1547       uint64_t Start = Symbols[SI].Addr;
1548       ArrayRef<SymbolInfoTy> SymbolsHere;
1549       while (SI != SE && Symbols[SI].Addr == Start)
1550         ++SI;
1551       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1552 
1553       // Get the demangled names of all those symbols. We end up with a vector
1554       // of StringRef that holds the names we're going to use, and a vector of
1555       // std::string that stores the new strings returned by demangle(), if
1556       // any. If we don't call demangle() then that vector can stay empty.
1557       std::vector<StringRef> SymNamesHere;
1558       std::vector<std::string> DemangledSymNamesHere;
1559       if (Demangle) {
1560         // Fetch the demangled names and store them locally.
1561         for (const SymbolInfoTy &Symbol : SymbolsHere)
1562           DemangledSymNamesHere.push_back(demangle(Symbol.Name));
1563         // Now we've finished modifying that vector, it's safe to make
1564         // a vector of StringRefs pointing into it.
1565         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1566                             DemangledSymNamesHere.end());
1567       } else {
1568         for (const SymbolInfoTy &Symbol : SymbolsHere)
1569           SymNamesHere.push_back(Symbol.Name);
1570       }
1571 
1572       // Distinguish ELF data from code symbols, which will be used later on to
1573       // decide whether to 'disassemble' this chunk as a data declaration via
1574       // dumpELFData(), or whether to treat it as code.
1575       //
1576       // If data _and_ code symbols are defined at the same address, the code
1577       // takes priority, on the grounds that disassembling code is our main
1578       // purpose here, and it would be a worse failure to _not_ interpret
1579       // something that _was_ meaningful as code than vice versa.
1580       //
1581       // Any ELF symbol type that is not clearly data will be regarded as code.
1582       // In particular, one of the uses of STT_NOTYPE is for branch targets
1583       // inside functions, for which STT_FUNC would be inaccurate.
1584       //
1585       // So here, we spot whether there's any non-data symbol present at all,
1586       // and only set the DisassembleAsData flag if there isn't. Also, we use
1587       // this distinction to inform the decision of which symbol to print at
1588       // the head of the section, so that if we're printing code, we print a
1589       // code-related symbol name to go with it.
1590       bool DisassembleAsData = false;
1591       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1592       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1593         DisassembleAsData = true; // unless we find a code symbol below
1594 
1595         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1596           uint8_t SymTy = SymbolsHere[i].Type;
1597           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1598             DisassembleAsData = false;
1599             DisplaySymIndex = i;
1600           }
1601         }
1602       }
1603 
1604       // Decide which symbol(s) from this collection we're going to print.
1605       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1606       // If the user has given the --disassemble-symbols option, then we must
1607       // display every symbol in that set, and no others.
1608       if (!DisasmSymbolSet.empty()) {
1609         bool FoundAny = false;
1610         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1611           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1612             SymsToPrint[i] = true;
1613             FoundAny = true;
1614           }
1615         }
1616 
1617         // And if none of the symbols here is one that the user asked for, skip
1618         // disassembling this entire chunk of code.
1619         if (!FoundAny)
1620           continue;
1621       } else {
1622         // Otherwise, print whichever symbol at this location is last in the
1623         // Symbols array, because that array is pre-sorted in a way intended to
1624         // correlate with priority of which symbol to display.
1625         SymsToPrint[DisplaySymIndex] = true;
1626       }
1627 
1628       // Now that we know we're disassembling this section, override the choice
1629       // of which symbols to display by printing _all_ of them at this address
1630       // if the user asked for all symbols.
1631       //
1632       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1633       // only the chunk of code headed by 'foo', but also show any other
1634       // symbols defined at that address, such as aliases for 'foo', or the ARM
1635       // mapping symbol preceding its code.
1636       if (ShowAllSymbols) {
1637         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1638           SymsToPrint[i] = true;
1639       }
1640 
1641       if (Start < SectionAddr || StopAddress <= Start)
1642         continue;
1643 
1644       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1645         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1646 
1647       // The end is the section end, the beginning of the next symbol, or
1648       // --stop-address.
1649       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1650       if (SI < SE)
1651         End = std::min(End, Symbols[SI].Addr);
1652       if (Start >= End || End <= StartAddress)
1653         continue;
1654       Start -= SectionAddr;
1655       End -= SectionAddr;
1656 
1657       if (!PrintedSection) {
1658         PrintedSection = true;
1659         outs() << "\nDisassembly of section ";
1660         if (!SegmentName.empty())
1661           outs() << SegmentName << ",";
1662         outs() << SectionName << ":\n";
1663       }
1664 
1665       outs() << '\n';
1666 
1667       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1668         if (!SymsToPrint[i])
1669           continue;
1670 
1671         const SymbolInfoTy &Symbol = SymbolsHere[i];
1672         const StringRef SymbolName = SymNamesHere[i];
1673 
1674         if (LeadingAddr)
1675           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1676                            SectionAddr + Start + VMAAdjustment);
1677         if (Obj.isXCOFF() && SymbolDescription) {
1678           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1679         } else
1680           outs() << '<' << SymbolName << ">:\n";
1681       }
1682 
1683       // Don't print raw contents of a virtual section. A virtual section
1684       // doesn't have any contents in the file.
1685       if (Section.isVirtual()) {
1686         outs() << "...\n";
1687         continue;
1688       }
1689 
1690       // See if any of the symbols defined at this location triggers target-
1691       // specific disassembly behavior, e.g. of special descriptors or function
1692       // prelude information.
1693       //
1694       // We stop this loop at the first symbol that triggers some kind of
1695       // interesting behavior (if any), on the assumption that if two symbols
1696       // defined at the same address trigger two conflicting symbol handlers,
1697       // the object file is probably confused anyway, and it would make even
1698       // less sense to present the output of _both_ handlers, because that
1699       // would describe the same data twice.
1700       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1701         SymbolInfoTy Symbol = SymbolsHere[SHI];
1702 
1703         auto Status =
1704             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1705                                   SectionAddr + Start, CommentStream);
1706 
1707         if (!Status) {
1708           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1709           // any interesting handling for this symbol. Try the other symbols
1710           // defined at this address.
1711           continue;
1712         }
1713 
1714         if (*Status == MCDisassembler::Fail) {
1715           // If onSymbolStart returns Fail, that means it identified some kind
1716           // of special data at this address, but wasn't able to disassemble it
1717           // meaningfully. So we fall back to disassembling the failed region
1718           // as bytes, assuming that the target detected the failure before
1719           // printing anything.
1720           //
1721           // Return values Success or SoftFail (i.e no 'real' failure) are
1722           // expected to mean that the target has emitted its own output.
1723           //
1724           // Either way, 'Size' will have been set to the amount of data
1725           // covered by whatever prologue the target identified. So we advance
1726           // our own position to beyond that. Sometimes that will be the entire
1727           // distance to the next symbol, and sometimes it will be just a
1728           // prologue and we should start disassembling instructions from where
1729           // it left off.
1730           outs() << Ctx.getAsmInfo()->getCommentString()
1731                  << " error in decoding " << SymNamesHere[SHI]
1732                  << " : decoding failed region as bytes.\n";
1733           for (uint64_t I = 0; I < Size; ++I) {
1734             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1735                    << "\n";
1736           }
1737         }
1738         Start += Size;
1739         break;
1740       }
1741 
1742       Index = Start;
1743       if (SectionAddr < StartAddress)
1744         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1745 
1746       if (DisassembleAsData) {
1747         dumpELFData(SectionAddr, Index, End, Bytes);
1748         Index = End;
1749         continue;
1750       }
1751 
1752       bool DumpARMELFData = false;
1753       bool DumpTracebackTableForXCOFFFunction =
1754           Obj.isXCOFF() && Section.isText() && TracebackTable &&
1755           Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass &&
1756           (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR);
1757 
1758       formatted_raw_ostream FOS(outs());
1759 
1760       std::unordered_map<uint64_t, std::string> AllLabels;
1761       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1762       if (SymbolizeOperands) {
1763         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1764                                   SectionAddr, Index, End, AllLabels);
1765         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1766                                BBAddrMapLabels);
1767       }
1768 
1769       while (Index < End) {
1770         // ARM and AArch64 ELF binaries can interleave data and text in the
1771         // same section. We rely on the markers introduced to understand what
1772         // we need to dump. If the data marker is within a function, it is
1773         // denoted as a word/short etc.
1774         if (!MappingSymbols.empty()) {
1775           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1776           DumpARMELFData = Kind == 'd';
1777           if (SecondarySTI) {
1778             if (Kind == 'a') {
1779               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1780               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1781             } else if (Kind == 't') {
1782               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1783               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1784             }
1785           }
1786         }
1787 
1788         if (DumpARMELFData) {
1789           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1790                                 MappingSymbols, *STI, FOS);
1791         } else {
1792           // When -z or --disassemble-zeroes are given we always dissasemble
1793           // them. Otherwise we might want to skip zero bytes we see.
1794           if (!DisassembleZeroes) {
1795             uint64_t MaxOffset = End - Index;
1796             // For --reloc: print zero blocks patched by relocations, so that
1797             // relocations can be shown in the dump.
1798             if (RelCur != RelEnd)
1799               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1800                                    MaxOffset);
1801 
1802             if (size_t N =
1803                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1804               FOS << "\t\t..." << '\n';
1805               Index += N;
1806               continue;
1807             }
1808           }
1809 
1810           if (DumpTracebackTableForXCOFFFunction &&
1811               doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) {
1812             dumpTracebackTable(Bytes.slice(Index),
1813                                SectionAddr + Index + VMAAdjustment, FOS,
1814                                SectionAddr + End + VMAAdjustment, *STI,
1815                                cast<XCOFFObjectFile>(&Obj));
1816             Index = End;
1817             continue;
1818           }
1819 
1820           // Print local label if there's any.
1821           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1822           if (Iter1 != BBAddrMapLabels.end()) {
1823             for (StringRef Label : Iter1->second)
1824               FOS << "<" << Label << ">:\n";
1825           } else {
1826             auto Iter2 = AllLabels.find(SectionAddr + Index);
1827             if (Iter2 != AllLabels.end())
1828               FOS << "<" << Iter2->second << ">:\n";
1829           }
1830 
1831           // Disassemble a real instruction or a data when disassemble all is
1832           // provided
1833           MCInst Inst;
1834           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1835           uint64_t ThisAddr = SectionAddr + Index;
1836           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1837                                                      ThisAddr, CommentStream);
1838           if (Size == 0)
1839             Size = std::min<uint64_t>(
1840                 ThisBytes.size(),
1841                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1842 
1843           LVP.update({Index, Section.getIndex()},
1844                      {Index + Size, Section.getIndex()}, Index + Size != End);
1845 
1846           IP->setCommentStream(CommentStream);
1847 
1848           PIP.printInst(
1849               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1850               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1851               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1852 
1853           IP->setCommentStream(llvm::nulls());
1854 
1855           // If disassembly has failed, avoid analysing invalid/incomplete
1856           // instruction information. Otherwise, try to resolve the target
1857           // address (jump target or memory operand address) and print it on the
1858           // right of the instruction.
1859           if (Disassembled && MIA) {
1860             // Branch targets are printed just after the instructions.
1861             llvm::raw_ostream *TargetOS = &FOS;
1862             uint64_t Target;
1863             bool PrintTarget =
1864                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1865             if (!PrintTarget)
1866               if (std::optional<uint64_t> MaybeTarget =
1867                       MIA->evaluateMemoryOperandAddress(
1868                           Inst, STI, SectionAddr + Index, Size)) {
1869                 Target = *MaybeTarget;
1870                 PrintTarget = true;
1871                 // Do not print real address when symbolizing.
1872                 if (!SymbolizeOperands) {
1873                   // Memory operand addresses are printed as comments.
1874                   TargetOS = &CommentStream;
1875                   *TargetOS << "0x" << Twine::utohexstr(Target);
1876                 }
1877               }
1878             if (PrintTarget) {
1879               // In a relocatable object, the target's section must reside in
1880               // the same section as the call instruction or it is accessed
1881               // through a relocation.
1882               //
1883               // In a non-relocatable object, the target may be in any section.
1884               // In that case, locate the section(s) containing the target
1885               // address and find the symbol in one of those, if possible.
1886               //
1887               // N.B. We don't walk the relocations in the relocatable case yet.
1888               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1889               if (!Obj.isRelocatableObject()) {
1890                 auto It = llvm::partition_point(
1891                     SectionAddresses,
1892                     [=](const std::pair<uint64_t, SectionRef> &O) {
1893                       return O.first <= Target;
1894                     });
1895                 uint64_t TargetSecAddr = 0;
1896                 while (It != SectionAddresses.begin()) {
1897                   --It;
1898                   if (TargetSecAddr == 0)
1899                     TargetSecAddr = It->first;
1900                   if (It->first != TargetSecAddr)
1901                     break;
1902                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1903                 }
1904               } else {
1905                 TargetSectionSymbols.push_back(&Symbols);
1906               }
1907               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1908 
1909               // Find the last symbol in the first candidate section whose
1910               // offset is less than or equal to the target. If there are no
1911               // such symbols, try in the next section and so on, before finally
1912               // using the nearest preceding absolute symbol (if any), if there
1913               // are no other valid symbols.
1914               const SymbolInfoTy *TargetSym = nullptr;
1915               for (const SectionSymbolsTy *TargetSymbols :
1916                    TargetSectionSymbols) {
1917                 auto It = llvm::partition_point(
1918                     *TargetSymbols,
1919                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1920                 while (It != TargetSymbols->begin()) {
1921                   --It;
1922                   // Skip mapping symbols to avoid possible ambiguity as they
1923                   // do not allow uniquely identifying the target address.
1924                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
1925                     TargetSym = &*It;
1926                     break;
1927                   }
1928                 }
1929                 if (TargetSym)
1930                   break;
1931               }
1932 
1933               // Print the labels corresponding to the target if there's any.
1934               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1935               bool LabelAvailable = AllLabels.count(Target);
1936               if (TargetSym != nullptr) {
1937                 uint64_t TargetAddress = TargetSym->Addr;
1938                 uint64_t Disp = Target - TargetAddress;
1939                 std::string TargetName = Demangle ? demangle(TargetSym->Name)
1940                                                   : TargetSym->Name.str();
1941 
1942                 *TargetOS << " <";
1943                 if (!Disp) {
1944                   // Always Print the binary symbol precisely corresponding to
1945                   // the target address.
1946                   *TargetOS << TargetName;
1947                 } else if (BBAddrMapLabelAvailable) {
1948                   *TargetOS << BBAddrMapLabels[Target].front();
1949                 } else if (LabelAvailable) {
1950                   *TargetOS << AllLabels[Target];
1951                 } else {
1952                   // Always Print the binary symbol plus an offset if there's no
1953                   // local label corresponding to the target address.
1954                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1955                 }
1956                 *TargetOS << ">";
1957               } else if (BBAddrMapLabelAvailable) {
1958                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1959               } else if (LabelAvailable) {
1960                 *TargetOS << " <" << AllLabels[Target] << ">";
1961               }
1962               // By convention, each record in the comment stream should be
1963               // terminated.
1964               if (TargetOS == &CommentStream)
1965                 *TargetOS << "\n";
1966             }
1967           }
1968         }
1969 
1970         assert(Ctx.getAsmInfo());
1971         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1972                                 CommentStream.str(), LVP);
1973         Comments.clear();
1974 
1975         // Hexagon does this in pretty printer
1976         if (Obj.getArch() != Triple::hexagon) {
1977           // Print relocation for instruction and data.
1978           while (RelCur != RelEnd) {
1979             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1980             // If this relocation is hidden, skip it.
1981             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1982               ++RelCur;
1983               continue;
1984             }
1985 
1986             // Stop when RelCur's offset is past the disassembled
1987             // instruction/data. Note that it's possible the disassembled data
1988             // is not the complete data: we might see the relocation printed in
1989             // the middle of the data, but this matches the binutils objdump
1990             // output.
1991             if (Offset >= Index + Size)
1992               break;
1993 
1994             // When --adjust-vma is used, update the address printed.
1995             if (RelCur->getSymbol() != Obj.symbol_end()) {
1996               Expected<section_iterator> SymSI =
1997                   RelCur->getSymbol()->getSection();
1998               if (SymSI && *SymSI != Obj.section_end() &&
1999                   shouldAdjustVA(**SymSI))
2000                 Offset += AdjustVMA;
2001             }
2002 
2003             printRelocation(FOS, Obj.getFileName(), *RelCur,
2004                             SectionAddr + Offset, Is64Bits);
2005             LVP.printAfterOtherLine(FOS, true);
2006             ++RelCur;
2007           }
2008         }
2009 
2010         Index += Size;
2011       }
2012     }
2013   }
2014   StringSet<> MissingDisasmSymbolSet =
2015       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
2016   for (StringRef Sym : MissingDisasmSymbolSet.keys())
2017     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
2018 }
2019 
2020 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
2021   // If information useful for showing the disassembly is missing, try to find a
2022   // more complete binary and disassemble that instead.
2023   OwningBinary<Binary> FetchedBinary;
2024   if (Obj->symbols().empty()) {
2025     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
2026             fetchBinaryByBuildID(*Obj)) {
2027       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
2028         if (!O->symbols().empty() ||
2029             (!O->sections().empty() && Obj->sections().empty())) {
2030           FetchedBinary = std::move(*FetchedBinaryOpt);
2031           Obj = O;
2032         }
2033       }
2034     }
2035   }
2036 
2037   const Target *TheTarget = getTarget(Obj);
2038 
2039   // Package up features to be passed to target/subtarget
2040   Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures();
2041   if (!FeaturesValue)
2042     reportError(FeaturesValue.takeError(), Obj->getFileName());
2043   SubtargetFeatures Features = *FeaturesValue;
2044   if (!MAttrs.empty()) {
2045     for (unsigned I = 0; I != MAttrs.size(); ++I)
2046       Features.AddFeature(MAttrs[I]);
2047   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2048     Features.AddFeature("+all");
2049   }
2050 
2051   std::unique_ptr<const MCRegisterInfo> MRI(
2052       TheTarget->createMCRegInfo(TripleName));
2053   if (!MRI)
2054     reportError(Obj->getFileName(),
2055                 "no register info for target " + TripleName);
2056 
2057   // Set up disassembler.
2058   MCTargetOptions MCOptions;
2059   std::unique_ptr<const MCAsmInfo> AsmInfo(
2060       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2061   if (!AsmInfo)
2062     reportError(Obj->getFileName(),
2063                 "no assembly info for target " + TripleName);
2064 
2065   if (MCPU.empty())
2066     MCPU = Obj->tryGetCPUName().value_or("").str();
2067 
2068   if (isArmElf(*Obj)) {
2069     // When disassembling big-endian Arm ELF, the instruction endianness is
2070     // determined in a complex way. In relocatable objects, AAELF32 mandates
2071     // that instruction endianness matches the ELF file endianness; in
2072     // executable images, that's true unless the file header has the EF_ARM_BE8
2073     // flag, in which case instructions are little-endian regardless of data
2074     // endianness.
2075     //
2076     // We must set the big-endian-instructions SubtargetFeature to make the
2077     // disassembler read the instructions the right way round, and also tell
2078     // our own prettyprinter to retrieve the encodings the same way to print in
2079     // hex.
2080     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2081 
2082     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2083                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2084       Features.AddFeature("+big-endian-instructions");
2085       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2086     } else {
2087       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2088     }
2089   }
2090 
2091   std::unique_ptr<const MCSubtargetInfo> STI(
2092       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2093   if (!STI)
2094     reportError(Obj->getFileName(),
2095                 "no subtarget info for target " + TripleName);
2096   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2097   if (!MII)
2098     reportError(Obj->getFileName(),
2099                 "no instruction info for target " + TripleName);
2100   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2101   // FIXME: for now initialize MCObjectFileInfo with default values
2102   std::unique_ptr<MCObjectFileInfo> MOFI(
2103       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2104   Ctx.setObjectFileInfo(MOFI.get());
2105 
2106   std::unique_ptr<MCDisassembler> DisAsm(
2107       TheTarget->createMCDisassembler(*STI, Ctx));
2108   if (!DisAsm)
2109     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2110 
2111   // If we have an ARM object file, we need a second disassembler, because
2112   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2113   // We use mapping symbols to switch between the two assemblers, where
2114   // appropriate.
2115   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2116   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2117   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2118     if (STI->checkFeatures("+thumb-mode"))
2119       Features.AddFeature("-thumb-mode");
2120     else
2121       Features.AddFeature("+thumb-mode");
2122     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2123                                                         Features.getString()));
2124     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2125   }
2126 
2127   std::unique_ptr<const MCInstrAnalysis> MIA(
2128       TheTarget->createMCInstrAnalysis(MII.get()));
2129 
2130   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2131   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2132       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2133   if (!IP)
2134     reportError(Obj->getFileName(),
2135                 "no instruction printer for target " + TripleName);
2136   IP->setPrintImmHex(PrintImmHex);
2137   IP->setPrintBranchImmAsAddress(true);
2138   IP->setSymbolizeOperands(SymbolizeOperands);
2139   IP->setMCInstrAnalysis(MIA.get());
2140 
2141   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2142 
2143   const ObjectFile *DbgObj = Obj;
2144   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2145     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2146             fetchBinaryByBuildID(*Obj)) {
2147       if (auto *FetchedObj =
2148               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2149         if (FetchedObj->hasDebugInfo()) {
2150           FetchedBinary = std::move(*DebugBinaryOpt);
2151           DbgObj = FetchedObj;
2152         }
2153       }
2154     }
2155   }
2156 
2157   std::unique_ptr<object::Binary> DSYMBinary;
2158   std::unique_ptr<MemoryBuffer> DSYMBuf;
2159   if (!DbgObj->hasDebugInfo()) {
2160     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2161       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2162                                            DSYMBinary, DSYMBuf);
2163       if (!DbgObj)
2164         return;
2165     }
2166   }
2167 
2168   SourcePrinter SP(DbgObj, TheTarget->getName());
2169 
2170   for (StringRef Opt : DisassemblerOptions)
2171     if (!IP->applyTargetSpecificCLOption(Opt))
2172       reportError(Obj->getFileName(),
2173                   "Unrecognized disassembler option: " + Opt);
2174 
2175   disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
2176                     SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
2177                     SecondarySTI.get(), PIP, SP, InlineRelocs);
2178 }
2179 
2180 void Dumper::printRelocations() {
2181   StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2182 
2183   // Build a mapping from relocation target to a vector of relocation
2184   // sections. Usually, there is an only one relocation section for
2185   // each relocated section.
2186   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2187   uint64_t Ndx;
2188   for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) {
2189     if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2190       continue;
2191     if (Section.relocation_begin() == Section.relocation_end())
2192       continue;
2193     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2194     if (!SecOrErr)
2195       reportError(O.getFileName(),
2196                   "section (" + Twine(Ndx) +
2197                       "): unable to get a relocation target: " +
2198                       toString(SecOrErr.takeError()));
2199     SecToRelSec[**SecOrErr].push_back(Section);
2200   }
2201 
2202   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2203     StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName());
2204     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2205     uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8);
2206     uint32_t TypePadding = 24;
2207     outs() << left_justify("OFFSET", OffsetPadding) << " "
2208            << left_justify("TYPE", TypePadding) << " "
2209            << "VALUE\n";
2210 
2211     for (SectionRef Section : P.second) {
2212       for (const RelocationRef &Reloc : Section.relocations()) {
2213         uint64_t Address = Reloc.getOffset();
2214         SmallString<32> RelocName;
2215         SmallString<32> ValueStr;
2216         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2217           continue;
2218         Reloc.getTypeName(RelocName);
2219         if (Error E = getRelocationValueString(Reloc, ValueStr))
2220           reportUniqueWarning(std::move(E));
2221 
2222         outs() << format(Fmt.data(), Address) << " "
2223                << left_justify(RelocName, TypePadding) << " " << ValueStr
2224                << "\n";
2225       }
2226     }
2227   }
2228 }
2229 
2230 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2231   // For the moment, this option is for ELF only
2232   if (!Obj->isELF())
2233     return;
2234 
2235   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2236   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2237         return Sec.getType() == ELF::SHT_DYNAMIC;
2238       })) {
2239     reportError(Obj->getFileName(), "not a dynamic object");
2240     return;
2241   }
2242 
2243   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2244   if (DynRelSec.empty())
2245     return;
2246 
2247   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2248   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2249   const uint32_t TypePadding = 24;
2250   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2251          << left_justify("TYPE", TypePadding) << " VALUE\n";
2252 
2253   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2254   for (const SectionRef &Section : DynRelSec)
2255     for (const RelocationRef &Reloc : Section.relocations()) {
2256       uint64_t Address = Reloc.getOffset();
2257       SmallString<32> RelocName;
2258       SmallString<32> ValueStr;
2259       Reloc.getTypeName(RelocName);
2260       if (Error E = getRelocationValueString(Reloc, ValueStr))
2261         reportError(std::move(E), Obj->getFileName());
2262       outs() << format(Fmt.data(), Address) << ' '
2263              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2264     }
2265 }
2266 
2267 // Returns true if we need to show LMA column when dumping section headers. We
2268 // show it only when the platform is ELF and either we have at least one section
2269 // whose VMA and LMA are different and/or when --show-lma flag is used.
2270 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2271   if (!Obj.isELF())
2272     return false;
2273   for (const SectionRef &S : ToolSectionFilter(Obj))
2274     if (S.getAddress() != getELFSectionLMA(S))
2275       return true;
2276   return ShowLMA;
2277 }
2278 
2279 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2280   // Default column width for names is 13 even if no names are that long.
2281   size_t MaxWidth = 13;
2282   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2283     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2284     MaxWidth = std::max(MaxWidth, Name.size());
2285   }
2286   return MaxWidth;
2287 }
2288 
2289 void objdump::printSectionHeaders(ObjectFile &Obj) {
2290   if (Obj.isELF() && Obj.sections().empty())
2291     createFakeELFSections(Obj);
2292 
2293   size_t NameWidth = getMaxSectionNameWidth(Obj);
2294   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2295   bool HasLMAColumn = shouldDisplayLMA(Obj);
2296   outs() << "\nSections:\n";
2297   if (HasLMAColumn)
2298     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2299            << left_justify("VMA", AddressWidth) << " "
2300            << left_justify("LMA", AddressWidth) << " Type\n";
2301   else
2302     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2303            << left_justify("VMA", AddressWidth) << " Type\n";
2304 
2305   uint64_t Idx;
2306   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2307     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2308     uint64_t VMA = Section.getAddress();
2309     if (shouldAdjustVA(Section))
2310       VMA += AdjustVMA;
2311 
2312     uint64_t Size = Section.getSize();
2313 
2314     std::string Type = Section.isText() ? "TEXT" : "";
2315     if (Section.isData())
2316       Type += Type.empty() ? "DATA" : ", DATA";
2317     if (Section.isBSS())
2318       Type += Type.empty() ? "BSS" : ", BSS";
2319     if (Section.isDebugSection())
2320       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2321 
2322     if (HasLMAColumn)
2323       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2324                        Name.str().c_str(), Size)
2325              << format_hex_no_prefix(VMA, AddressWidth) << " "
2326              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2327              << " " << Type << "\n";
2328     else
2329       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2330                        Name.str().c_str(), Size)
2331              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2332   }
2333 }
2334 
2335 void objdump::printSectionContents(const ObjectFile *Obj) {
2336   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2337 
2338   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2339     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2340     uint64_t BaseAddr = Section.getAddress();
2341     uint64_t Size = Section.getSize();
2342     if (!Size)
2343       continue;
2344 
2345     outs() << "Contents of section ";
2346     StringRef SegmentName = getSegmentName(MachO, Section);
2347     if (!SegmentName.empty())
2348       outs() << SegmentName << ",";
2349     outs() << Name << ":\n";
2350     if (Section.isBSS()) {
2351       outs() << format("<skipping contents of bss section at [%04" PRIx64
2352                        ", %04" PRIx64 ")>\n",
2353                        BaseAddr, BaseAddr + Size);
2354       continue;
2355     }
2356 
2357     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2358 
2359     // Dump out the content as hex and printable ascii characters.
2360     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2361       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2362       // Dump line of hex.
2363       for (std::size_t I = 0; I < 16; ++I) {
2364         if (I != 0 && I % 4 == 0)
2365           outs() << ' ';
2366         if (Addr + I < End)
2367           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2368                  << hexdigit(Contents[Addr + I] & 0xF, true);
2369         else
2370           outs() << "  ";
2371       }
2372       // Print ascii.
2373       outs() << "  ";
2374       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2375         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2376           outs() << Contents[Addr + I];
2377         else
2378           outs() << ".";
2379       }
2380       outs() << "\n";
2381     }
2382   }
2383 }
2384 
2385 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName,
2386                               bool DumpDynamic) {
2387   if (O.isCOFF() && !DumpDynamic) {
2388     outs() << "\nSYMBOL TABLE:\n";
2389     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2390     return;
2391   }
2392 
2393   const StringRef FileName = O.getFileName();
2394 
2395   if (!DumpDynamic) {
2396     outs() << "\nSYMBOL TABLE:\n";
2397     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2398       printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic);
2399     return;
2400   }
2401 
2402   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2403   if (!O.isELF()) {
2404     reportWarning(
2405         "this operation is not currently supported for this file format",
2406         FileName);
2407     return;
2408   }
2409 
2410   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2411   auto Symbols = ELF->getDynamicSymbolIterators();
2412   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2413       ELF->readDynsymVersions();
2414   if (!SymbolVersionsOrErr) {
2415     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2416     SymbolVersionsOrErr = std::vector<VersionEntry>();
2417     (void)!SymbolVersionsOrErr;
2418   }
2419   for (auto &Sym : Symbols)
2420     printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2421                 ArchitectureName, DumpDynamic);
2422 }
2423 
2424 void Dumper::printSymbol(const SymbolRef &Symbol,
2425                          ArrayRef<VersionEntry> SymbolVersions,
2426                          StringRef FileName, StringRef ArchiveName,
2427                          StringRef ArchitectureName, bool DumpDynamic) {
2428   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2429   Expected<uint64_t> AddrOrErr = Symbol.getAddress();
2430   if (!AddrOrErr) {
2431     reportUniqueWarning(AddrOrErr.takeError());
2432     return;
2433   }
2434   uint64_t Address = *AddrOrErr;
2435   if ((Address < StartAddress) || (Address > StopAddress))
2436     return;
2437   SymbolRef::Type Type =
2438       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2439   uint32_t Flags =
2440       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2441 
2442   // Don't ask a Mach-O STAB symbol for its section unless you know that
2443   // STAB symbol's section field refers to a valid section index. Otherwise
2444   // the symbol may error trying to load a section that does not exist.
2445   bool IsSTAB = false;
2446   if (MachO) {
2447     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2448     uint8_t NType =
2449         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2450                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2451     if (NType & MachO::N_STAB)
2452       IsSTAB = true;
2453   }
2454   section_iterator Section = IsSTAB
2455                                  ? O.section_end()
2456                                  : unwrapOrError(Symbol.getSection(), FileName,
2457                                                  ArchiveName, ArchitectureName);
2458 
2459   StringRef Name;
2460   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2461     if (Expected<StringRef> NameOrErr = Section->getName())
2462       Name = *NameOrErr;
2463     else
2464       consumeError(NameOrErr.takeError());
2465 
2466   } else {
2467     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2468                          ArchitectureName);
2469   }
2470 
2471   bool Global = Flags & SymbolRef::SF_Global;
2472   bool Weak = Flags & SymbolRef::SF_Weak;
2473   bool Absolute = Flags & SymbolRef::SF_Absolute;
2474   bool Common = Flags & SymbolRef::SF_Common;
2475   bool Hidden = Flags & SymbolRef::SF_Hidden;
2476 
2477   char GlobLoc = ' ';
2478   if ((Section != O.section_end() || Absolute) && !Weak)
2479     GlobLoc = Global ? 'g' : 'l';
2480   char IFunc = ' ';
2481   if (O.isELF()) {
2482     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2483       IFunc = 'i';
2484     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2485       GlobLoc = 'u';
2486   }
2487 
2488   char Debug = ' ';
2489   if (DumpDynamic)
2490     Debug = 'D';
2491   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2492     Debug = 'd';
2493 
2494   char FileFunc = ' ';
2495   if (Type == SymbolRef::ST_File)
2496     FileFunc = 'f';
2497   else if (Type == SymbolRef::ST_Function)
2498     FileFunc = 'F';
2499   else if (Type == SymbolRef::ST_Data)
2500     FileFunc = 'O';
2501 
2502   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2503 
2504   outs() << format(Fmt, Address) << " "
2505          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2506          << (Weak ? 'w' : ' ') // Weak?
2507          << ' '                // Constructor. Not supported yet.
2508          << ' '                // Warning. Not supported yet.
2509          << IFunc              // Indirect reference to another symbol.
2510          << Debug              // Debugging (d) or dynamic (D) symbol.
2511          << FileFunc           // Name of function (F), file (f) or object (O).
2512          << ' ';
2513   if (Absolute) {
2514     outs() << "*ABS*";
2515   } else if (Common) {
2516     outs() << "*COM*";
2517   } else if (Section == O.section_end()) {
2518     if (O.isXCOFF()) {
2519       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2520           Symbol.getRawDataRefImpl());
2521       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2522         outs() << "*DEBUG*";
2523       else
2524         outs() << "*UND*";
2525     } else
2526       outs() << "*UND*";
2527   } else {
2528     StringRef SegmentName = getSegmentName(MachO, *Section);
2529     if (!SegmentName.empty())
2530       outs() << SegmentName << ",";
2531     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2532     outs() << SectionName;
2533     if (O.isXCOFF()) {
2534       std::optional<SymbolRef> SymRef =
2535           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2536       if (SymRef) {
2537 
2538         Expected<StringRef> NameOrErr = SymRef->getName();
2539 
2540         if (NameOrErr) {
2541           outs() << " (csect:";
2542           std::string SymName =
2543               Demangle ? demangle(*NameOrErr) : NameOrErr->str();
2544 
2545           if (SymbolDescription)
2546             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2547                                                 SymName);
2548 
2549           outs() << ' ' << SymName;
2550           outs() << ") ";
2551         } else
2552           reportWarning(toString(NameOrErr.takeError()), FileName);
2553       }
2554     }
2555   }
2556 
2557   if (Common)
2558     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2559   else if (O.isXCOFF())
2560     outs() << '\t'
2561            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2562                               Symbol.getRawDataRefImpl()));
2563   else if (O.isELF())
2564     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2565 
2566   if (O.isELF()) {
2567     if (!SymbolVersions.empty()) {
2568       const VersionEntry &Ver =
2569           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2570       std::string Str;
2571       if (!Ver.Name.empty())
2572         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2573       outs() << ' ' << left_justify(Str, 12);
2574     }
2575 
2576     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2577     switch (Other) {
2578     case ELF::STV_DEFAULT:
2579       break;
2580     case ELF::STV_INTERNAL:
2581       outs() << " .internal";
2582       break;
2583     case ELF::STV_HIDDEN:
2584       outs() << " .hidden";
2585       break;
2586     case ELF::STV_PROTECTED:
2587       outs() << " .protected";
2588       break;
2589     default:
2590       outs() << format(" 0x%02x", Other);
2591       break;
2592     }
2593   } else if (Hidden) {
2594     outs() << " .hidden";
2595   }
2596 
2597   std::string SymName = Demangle ? demangle(Name) : Name.str();
2598   if (O.isXCOFF() && SymbolDescription)
2599     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2600 
2601   outs() << ' ' << SymName << '\n';
2602 }
2603 
2604 static void printUnwindInfo(const ObjectFile *O) {
2605   outs() << "Unwind info:\n\n";
2606 
2607   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2608     printCOFFUnwindInfo(Coff);
2609   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2610     printMachOUnwindInfo(MachO);
2611   else
2612     // TODO: Extract DWARF dump tool to objdump.
2613     WithColor::error(errs(), ToolName)
2614         << "This operation is only currently supported "
2615            "for COFF and MachO object files.\n";
2616 }
2617 
2618 /// Dump the raw contents of the __clangast section so the output can be piped
2619 /// into llvm-bcanalyzer.
2620 static void printRawClangAST(const ObjectFile *Obj) {
2621   if (outs().is_displayed()) {
2622     WithColor::error(errs(), ToolName)
2623         << "The -raw-clang-ast option will dump the raw binary contents of "
2624            "the clang ast section.\n"
2625            "Please redirect the output to a file or another program such as "
2626            "llvm-bcanalyzer.\n";
2627     return;
2628   }
2629 
2630   StringRef ClangASTSectionName("__clangast");
2631   if (Obj->isCOFF()) {
2632     ClangASTSectionName = "clangast";
2633   }
2634 
2635   std::optional<object::SectionRef> ClangASTSection;
2636   for (auto Sec : ToolSectionFilter(*Obj)) {
2637     StringRef Name;
2638     if (Expected<StringRef> NameOrErr = Sec.getName())
2639       Name = *NameOrErr;
2640     else
2641       consumeError(NameOrErr.takeError());
2642 
2643     if (Name == ClangASTSectionName) {
2644       ClangASTSection = Sec;
2645       break;
2646     }
2647   }
2648   if (!ClangASTSection)
2649     return;
2650 
2651   StringRef ClangASTContents =
2652       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2653   outs().write(ClangASTContents.data(), ClangASTContents.size());
2654 }
2655 
2656 static void printFaultMaps(const ObjectFile *Obj) {
2657   StringRef FaultMapSectionName;
2658 
2659   if (Obj->isELF()) {
2660     FaultMapSectionName = ".llvm_faultmaps";
2661   } else if (Obj->isMachO()) {
2662     FaultMapSectionName = "__llvm_faultmaps";
2663   } else {
2664     WithColor::error(errs(), ToolName)
2665         << "This operation is only currently supported "
2666            "for ELF and Mach-O executable files.\n";
2667     return;
2668   }
2669 
2670   std::optional<object::SectionRef> FaultMapSection;
2671 
2672   for (auto Sec : ToolSectionFilter(*Obj)) {
2673     StringRef Name;
2674     if (Expected<StringRef> NameOrErr = Sec.getName())
2675       Name = *NameOrErr;
2676     else
2677       consumeError(NameOrErr.takeError());
2678 
2679     if (Name == FaultMapSectionName) {
2680       FaultMapSection = Sec;
2681       break;
2682     }
2683   }
2684 
2685   outs() << "FaultMap table:\n";
2686 
2687   if (!FaultMapSection) {
2688     outs() << "<not found>\n";
2689     return;
2690   }
2691 
2692   StringRef FaultMapContents =
2693       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2694   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2695                      FaultMapContents.bytes_end());
2696 
2697   outs() << FMP;
2698 }
2699 
2700 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2701   if (O->isELF()) {
2702     printELFFileHeader(O);
2703     printELFDynamicSection(O);
2704     printELFSymbolVersionInfo(O);
2705     return;
2706   }
2707   if (O->isCOFF())
2708     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2709   if (O->isWasm())
2710     return printWasmFileHeader(O);
2711   if (O->isMachO()) {
2712     printMachOFileHeader(O);
2713     if (!OnlyFirst)
2714       printMachOLoadCommands(O);
2715     return;
2716   }
2717   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2718 }
2719 
2720 static void printFileHeaders(const ObjectFile *O) {
2721   if (!O->isELF() && !O->isCOFF())
2722     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2723 
2724   Triple::ArchType AT = O->getArch();
2725   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2726   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2727 
2728   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2729   outs() << "start address: "
2730          << "0x" << format(Fmt.data(), Address) << "\n";
2731 }
2732 
2733 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2734   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2735   if (!ModeOrErr) {
2736     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2737     consumeError(ModeOrErr.takeError());
2738     return;
2739   }
2740   sys::fs::perms Mode = ModeOrErr.get();
2741   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2742   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2743   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2744   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2745   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2746   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2747   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2748   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2749   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2750 
2751   outs() << " ";
2752 
2753   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2754                    unwrapOrError(C.getGID(), Filename),
2755                    unwrapOrError(C.getRawSize(), Filename));
2756 
2757   StringRef RawLastModified = C.getRawLastModified();
2758   unsigned Seconds;
2759   if (RawLastModified.getAsInteger(10, Seconds))
2760     outs() << "(date: \"" << RawLastModified
2761            << "\" contains non-decimal chars) ";
2762   else {
2763     // Since ctime(3) returns a 26 character string of the form:
2764     // "Sun Sep 16 01:03:52 1973\n\0"
2765     // just print 24 characters.
2766     time_t t = Seconds;
2767     outs() << format("%.24s ", ctime(&t));
2768   }
2769 
2770   StringRef Name = "";
2771   Expected<StringRef> NameOrErr = C.getName();
2772   if (!NameOrErr) {
2773     consumeError(NameOrErr.takeError());
2774     Name = unwrapOrError(C.getRawName(), Filename);
2775   } else {
2776     Name = NameOrErr.get();
2777   }
2778   outs() << Name << "\n";
2779 }
2780 
2781 // For ELF only now.
2782 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2783   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2784     if (Elf->getEType() != ELF::ET_REL)
2785       return true;
2786   }
2787   return false;
2788 }
2789 
2790 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2791                                             uint64_t Start, uint64_t Stop) {
2792   if (!shouldWarnForInvalidStartStopAddress(Obj))
2793     return;
2794 
2795   for (const SectionRef &Section : Obj->sections())
2796     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2797       uint64_t BaseAddr = Section.getAddress();
2798       uint64_t Size = Section.getSize();
2799       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2800         return;
2801     }
2802 
2803   if (!HasStartAddressFlag)
2804     reportWarning("no section has address less than 0x" +
2805                       Twine::utohexstr(Stop) + " specified by --stop-address",
2806                   Obj->getFileName());
2807   else if (!HasStopAddressFlag)
2808     reportWarning("no section has address greater than or equal to 0x" +
2809                       Twine::utohexstr(Start) + " specified by --start-address",
2810                   Obj->getFileName());
2811   else
2812     reportWarning("no section overlaps the range [0x" +
2813                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2814                       ") specified by --start-address/--stop-address",
2815                   Obj->getFileName());
2816 }
2817 
2818 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2819                        const Archive::Child *C = nullptr) {
2820   Dumper D(*O);
2821 
2822   // Avoid other output when using a raw option.
2823   if (!RawClangAST) {
2824     outs() << '\n';
2825     if (A)
2826       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2827     else
2828       outs() << O->getFileName();
2829     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2830   }
2831 
2832   if (HasStartAddressFlag || HasStopAddressFlag)
2833     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2834 
2835   // TODO: Change print* free functions to Dumper member functions to utilitize
2836   // stateful functions like reportUniqueWarning.
2837 
2838   // Note: the order here matches GNU objdump for compatability.
2839   StringRef ArchiveName = A ? A->getFileName() : "";
2840   if (ArchiveHeaders && !MachOOpt && C)
2841     printArchiveChild(ArchiveName, *C);
2842   if (FileHeaders)
2843     printFileHeaders(O);
2844   if (PrivateHeaders || FirstPrivateHeader)
2845     printPrivateFileHeaders(O, FirstPrivateHeader);
2846   if (SectionHeaders)
2847     printSectionHeaders(*O);
2848   if (SymbolTable)
2849     D.printSymbolTable(ArchiveName);
2850   if (DynamicSymbolTable)
2851     D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"",
2852                        /*DumpDynamic=*/true);
2853   if (DwarfDumpType != DIDT_Null) {
2854     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2855     // Dump the complete DWARF structure.
2856     DIDumpOptions DumpOpts;
2857     DumpOpts.DumpType = DwarfDumpType;
2858     DICtx->dump(outs(), DumpOpts);
2859   }
2860   if (Relocations && !Disassemble)
2861     D.printRelocations();
2862   if (DynamicRelocations)
2863     printDynamicRelocations(O);
2864   if (SectionContents)
2865     printSectionContents(O);
2866   if (Disassemble)
2867     disassembleObject(O, Relocations);
2868   if (UnwindInfo)
2869     printUnwindInfo(O);
2870 
2871   // Mach-O specific options:
2872   if (ExportsTrie)
2873     printExportsTrie(O);
2874   if (Rebase)
2875     printRebaseTable(O);
2876   if (Bind)
2877     printBindTable(O);
2878   if (LazyBind)
2879     printLazyBindTable(O);
2880   if (WeakBind)
2881     printWeakBindTable(O);
2882 
2883   // Other special sections:
2884   if (RawClangAST)
2885     printRawClangAST(O);
2886   if (FaultMapSection)
2887     printFaultMaps(O);
2888   if (Offloading)
2889     dumpOffloadBinary(*O);
2890 }
2891 
2892 static void dumpObject(const COFFImportFile *I, const Archive *A,
2893                        const Archive::Child *C = nullptr) {
2894   StringRef ArchiveName = A ? A->getFileName() : "";
2895 
2896   // Avoid other output when using a raw option.
2897   if (!RawClangAST)
2898     outs() << '\n'
2899            << ArchiveName << "(" << I->getFileName() << ")"
2900            << ":\tfile format COFF-import-file"
2901            << "\n\n";
2902 
2903   if (ArchiveHeaders && !MachOOpt && C)
2904     printArchiveChild(ArchiveName, *C);
2905   if (SymbolTable)
2906     printCOFFSymbolTable(*I);
2907 }
2908 
2909 /// Dump each object file in \a a;
2910 static void dumpArchive(const Archive *A) {
2911   Error Err = Error::success();
2912   unsigned I = -1;
2913   for (auto &C : A->children(Err)) {
2914     ++I;
2915     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2916     if (!ChildOrErr) {
2917       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2918         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2919       continue;
2920     }
2921     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2922       dumpObject(O, A, &C);
2923     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2924       dumpObject(I, A, &C);
2925     else
2926       reportError(errorCodeToError(object_error::invalid_file_type),
2927                   A->getFileName());
2928   }
2929   if (Err)
2930     reportError(std::move(Err), A->getFileName());
2931 }
2932 
2933 /// Open file and figure out how to dump it.
2934 static void dumpInput(StringRef file) {
2935   // If we are using the Mach-O specific object file parser, then let it parse
2936   // the file and process the command line options.  So the -arch flags can
2937   // be used to select specific slices, etc.
2938   if (MachOOpt) {
2939     parseInputMachO(file);
2940     return;
2941   }
2942 
2943   // Attempt to open the binary.
2944   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2945   Binary &Binary = *OBinary.getBinary();
2946 
2947   if (Archive *A = dyn_cast<Archive>(&Binary))
2948     dumpArchive(A);
2949   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2950     dumpObject(O);
2951   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2952     parseInputMachO(UB);
2953   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2954     dumpOffloadSections(*OB);
2955   else
2956     reportError(errorCodeToError(object_error::invalid_file_type), file);
2957 }
2958 
2959 template <typename T>
2960 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2961                         T &Value) {
2962   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2963     StringRef V(A->getValue());
2964     if (!llvm::to_integer(V, Value, 0)) {
2965       reportCmdLineError(A->getSpelling() +
2966                          ": expected a non-negative integer, but got '" + V +
2967                          "'");
2968     }
2969   }
2970 }
2971 
2972 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2973   StringRef V(A->getValue());
2974   object::BuildID BID = parseBuildID(V);
2975   if (BID.empty())
2976     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2977                        V + "'");
2978   return BID;
2979 }
2980 
2981 void objdump::invalidArgValue(const opt::Arg *A) {
2982   reportCmdLineError("'" + StringRef(A->getValue()) +
2983                      "' is not a valid value for '" + A->getSpelling() + "'");
2984 }
2985 
2986 static std::vector<std::string>
2987 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2988   std::vector<std::string> Values;
2989   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2990     llvm::SmallVector<StringRef, 2> SplitValues;
2991     llvm::SplitString(Value, SplitValues, ",");
2992     for (StringRef SplitValue : SplitValues)
2993       Values.push_back(SplitValue.str());
2994   }
2995   return Values;
2996 }
2997 
2998 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2999   MachOOpt = true;
3000   FullLeadingAddr = true;
3001   PrintImmHex = true;
3002 
3003   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
3004   LinkOptHints = InputArgs.hasArg(OTOOL_C);
3005   if (InputArgs.hasArg(OTOOL_d))
3006     FilterSections.push_back("__DATA,__data");
3007   DylibId = InputArgs.hasArg(OTOOL_D);
3008   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
3009   DataInCode = InputArgs.hasArg(OTOOL_G);
3010   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
3011   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
3012   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
3013   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
3014   DylibsUsed = InputArgs.hasArg(OTOOL_L);
3015   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
3016   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
3017   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
3018   InfoPlist = InputArgs.hasArg(OTOOL_P);
3019   Relocations = InputArgs.hasArg(OTOOL_r);
3020   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
3021     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
3022     FilterSections.push_back(Filter);
3023   }
3024   if (InputArgs.hasArg(OTOOL_t))
3025     FilterSections.push_back("__TEXT,__text");
3026   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
3027             InputArgs.hasArg(OTOOL_o);
3028   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
3029   if (InputArgs.hasArg(OTOOL_x))
3030     FilterSections.push_back(",__text");
3031   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
3032 
3033   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
3034   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
3035 
3036   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
3037   if (InputFilenames.empty())
3038     reportCmdLineError("no input file");
3039 
3040   for (const Arg *A : InputArgs) {
3041     const Option &O = A->getOption();
3042     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3043       reportCmdLineWarning(O.getPrefixedName() +
3044                            " is obsolete and not implemented");
3045     }
3046   }
3047 }
3048 
3049 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3050   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3051   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3052   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3053   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3054   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3055   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3056   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3057   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3058   TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table);
3059   DisassembleSymbols =
3060       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3061   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3062   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3063     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3064                         .Case("frames", DIDT_DebugFrame)
3065                         .Default(DIDT_Null);
3066     if (DwarfDumpType == DIDT_Null)
3067       invalidArgValue(A);
3068   }
3069   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3070   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3071   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3072   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3073   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3074   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3075   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3076   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3077   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3078   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3079   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3080   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3081   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3082   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3083   PrintImmHex =
3084       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3085   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3086   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3087   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3088   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3089   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3090   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3091   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3092   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3093   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3094   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3095   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3096   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3097   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3098   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3099   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3100   Wide = InputArgs.hasArg(OBJDUMP_wide);
3101   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3102   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3103   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3104     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3105                        .Case("ascii", DVASCII)
3106                        .Case("unicode", DVUnicode)
3107                        .Default(DVInvalid);
3108     if (DbgVariables == DVInvalid)
3109       invalidArgValue(A);
3110   }
3111   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3112 
3113   parseMachOOptions(InputArgs);
3114 
3115   // Parse -M (--disassembler-options) and deprecated
3116   // --x86-asm-syntax={att,intel}.
3117   //
3118   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3119   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3120   // called too late. For now we have to use the internal cl::opt option.
3121   const char *AsmSyntax = nullptr;
3122   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3123                                           OBJDUMP_x86_asm_syntax_att,
3124                                           OBJDUMP_x86_asm_syntax_intel)) {
3125     switch (A->getOption().getID()) {
3126     case OBJDUMP_x86_asm_syntax_att:
3127       AsmSyntax = "--x86-asm-syntax=att";
3128       continue;
3129     case OBJDUMP_x86_asm_syntax_intel:
3130       AsmSyntax = "--x86-asm-syntax=intel";
3131       continue;
3132     }
3133 
3134     SmallVector<StringRef, 2> Values;
3135     llvm::SplitString(A->getValue(), Values, ",");
3136     for (StringRef V : Values) {
3137       if (V == "att")
3138         AsmSyntax = "--x86-asm-syntax=att";
3139       else if (V == "intel")
3140         AsmSyntax = "--x86-asm-syntax=intel";
3141       else
3142         DisassemblerOptions.push_back(V.str());
3143     }
3144   }
3145   if (AsmSyntax) {
3146     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3147     llvm::cl::ParseCommandLineOptions(2, Argv);
3148   }
3149 
3150   // Look up any provided build IDs, then append them to the input filenames.
3151   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3152     object::BuildID BuildID = parseBuildIDArg(A);
3153     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3154     if (!Path) {
3155       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3156                          A->getValue() + "'");
3157     }
3158     InputFilenames.push_back(std::move(*Path));
3159   }
3160 
3161   // objdump defaults to a.out if no filenames specified.
3162   if (InputFilenames.empty())
3163     InputFilenames.push_back("a.out");
3164 }
3165 
3166 int main(int argc, char **argv) {
3167   using namespace llvm;
3168   InitLLVM X(argc, argv);
3169 
3170   ToolName = argv[0];
3171   std::unique_ptr<CommonOptTable> T;
3172   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3173 
3174   StringRef Stem = sys::path::stem(ToolName);
3175   auto Is = [=](StringRef Tool) {
3176     // We need to recognize the following filenames:
3177     //
3178     // llvm-objdump -> objdump
3179     // llvm-otool-10.exe -> otool
3180     // powerpc64-unknown-freebsd13-objdump -> objdump
3181     auto I = Stem.rfind_insensitive(Tool);
3182     return I != StringRef::npos &&
3183            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3184   };
3185   if (Is("otool")) {
3186     T = std::make_unique<OtoolOptTable>();
3187     Unknown = OTOOL_UNKNOWN;
3188     HelpFlag = OTOOL_help;
3189     HelpHiddenFlag = OTOOL_help_hidden;
3190     VersionFlag = OTOOL_version;
3191   } else {
3192     T = std::make_unique<ObjdumpOptTable>();
3193     Unknown = OBJDUMP_UNKNOWN;
3194     HelpFlag = OBJDUMP_help;
3195     HelpHiddenFlag = OBJDUMP_help_hidden;
3196     VersionFlag = OBJDUMP_version;
3197   }
3198 
3199   BumpPtrAllocator A;
3200   StringSaver Saver(A);
3201   opt::InputArgList InputArgs =
3202       T->parseArgs(argc, argv, Unknown, Saver,
3203                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3204 
3205   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3206     T->printHelp(ToolName);
3207     return 0;
3208   }
3209   if (InputArgs.hasArg(HelpHiddenFlag)) {
3210     T->printHelp(ToolName, /*ShowHidden=*/true);
3211     return 0;
3212   }
3213 
3214   // Initialize targets and assembly printers/parsers.
3215   InitializeAllTargetInfos();
3216   InitializeAllTargetMCs();
3217   InitializeAllDisassemblers();
3218 
3219   if (InputArgs.hasArg(VersionFlag)) {
3220     cl::PrintVersionMessage();
3221     if (!Is("otool")) {
3222       outs() << '\n';
3223       TargetRegistry::printRegisteredTargetsForVersion(outs());
3224     }
3225     return 0;
3226   }
3227 
3228   // Initialize debuginfod.
3229   const bool ShouldUseDebuginfodByDefault =
3230       InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod();
3231   std::vector<std::string> DebugFileDirectories =
3232       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3233   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3234                         ShouldUseDebuginfodByDefault)) {
3235     HTTPClient::initialize();
3236     BIDFetcher =
3237         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3238   } else {
3239     BIDFetcher =
3240         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3241   }
3242 
3243   if (Is("otool"))
3244     parseOtoolOptions(InputArgs);
3245   else
3246     parseObjdumpOptions(InputArgs);
3247 
3248   if (StartAddress >= StopAddress)
3249     reportCmdLineError("start address should be less than stop address");
3250 
3251   // Removes trailing separators from prefix.
3252   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3253     Prefix.pop_back();
3254 
3255   if (AllHeaders)
3256     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3257         SectionHeaders = SymbolTable = true;
3258 
3259   if (DisassembleAll || PrintSource || PrintLines || TracebackTable ||
3260       !DisassembleSymbols.empty())
3261     Disassemble = true;
3262 
3263   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3264       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3265       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3266       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3267       !(MachOOpt &&
3268         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3269          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3270          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3271          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3272          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3273     T->printHelp(ToolName);
3274     return 2;
3275   }
3276 
3277   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3278 
3279   llvm::for_each(InputFilenames, dumpInput);
3280 
3281   warnOnNoMatchForSections();
3282 
3283   return EXIT_SUCCESS;
3284 }
3285