1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/DebugInfo/BTF/BTFParser.h" 33 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 34 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 35 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 36 #include "llvm/Debuginfod/BuildIDFetcher.h" 37 #include "llvm/Debuginfod/Debuginfod.h" 38 #include "llvm/Debuginfod/HTTPClient.h" 39 #include "llvm/Demangle/Demangle.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 44 #include "llvm/MC/MCInst.h" 45 #include "llvm/MC/MCInstPrinter.h" 46 #include "llvm/MC/MCInstrAnalysis.h" 47 #include "llvm/MC/MCInstrInfo.h" 48 #include "llvm/MC/MCObjectFileInfo.h" 49 #include "llvm/MC/MCRegisterInfo.h" 50 #include "llvm/MC/MCTargetOptions.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Object/Archive.h" 53 #include "llvm/Object/BuildID.h" 54 #include "llvm/Object/COFF.h" 55 #include "llvm/Object/COFFImportFile.h" 56 #include "llvm/Object/ELFObjectFile.h" 57 #include "llvm/Object/ELFTypes.h" 58 #include "llvm/Object/FaultMapParser.h" 59 #include "llvm/Object/MachO.h" 60 #include "llvm/Object/MachOUniversal.h" 61 #include "llvm/Object/ObjectFile.h" 62 #include "llvm/Object/OffloadBinary.h" 63 #include "llvm/Object/Wasm.h" 64 #include "llvm/Option/Arg.h" 65 #include "llvm/Option/ArgList.h" 66 #include "llvm/Option/Option.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Errc.h" 70 #include "llvm/Support/FileSystem.h" 71 #include "llvm/Support/Format.h" 72 #include "llvm/Support/FormatVariadic.h" 73 #include "llvm/Support/GraphWriter.h" 74 #include "llvm/Support/LLVMDriver.h" 75 #include "llvm/Support/MemoryBuffer.h" 76 #include "llvm/Support/SourceMgr.h" 77 #include "llvm/Support/StringSaver.h" 78 #include "llvm/Support/TargetSelect.h" 79 #include "llvm/Support/WithColor.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/TargetParser/Host.h" 82 #include "llvm/TargetParser/Triple.h" 83 #include <algorithm> 84 #include <cctype> 85 #include <cstring> 86 #include <optional> 87 #include <set> 88 #include <system_error> 89 #include <unordered_map> 90 #include <utility> 91 92 using namespace llvm; 93 using namespace llvm::object; 94 using namespace llvm::objdump; 95 using namespace llvm::opt; 96 97 namespace { 98 99 class CommonOptTable : public opt::GenericOptTable { 100 public: 101 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 102 const char *Description) 103 : opt::GenericOptTable(OptionInfos), Usage(Usage), 104 Description(Description) { 105 setGroupedShortOptions(true); 106 } 107 108 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 109 Argv0 = sys::path::filename(Argv0); 110 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 111 Description, ShowHidden, ShowHidden); 112 // TODO Replace this with OptTable API once it adds extrahelp support. 113 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 114 } 115 116 private: 117 const char *Usage; 118 const char *Description; 119 }; 120 121 // ObjdumpOptID is in ObjdumpOptID.h 122 namespace objdump_opt { 123 #define PREFIX(NAME, VALUE) \ 124 static constexpr StringLiteral NAME##_init[] = VALUE; \ 125 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 126 std::size(NAME##_init) - 1); 127 #include "ObjdumpOpts.inc" 128 #undef PREFIX 129 130 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 131 #define OPTION(...) \ 132 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), 133 #include "ObjdumpOpts.inc" 134 #undef OPTION 135 }; 136 } // namespace objdump_opt 137 138 class ObjdumpOptTable : public CommonOptTable { 139 public: 140 ObjdumpOptTable() 141 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 142 " [options] <input object files>", 143 "llvm object file dumper") {} 144 }; 145 146 enum OtoolOptID { 147 OTOOL_INVALID = 0, // This is not an option ID. 148 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 149 #include "OtoolOpts.inc" 150 #undef OPTION 151 }; 152 153 namespace otool { 154 #define PREFIX(NAME, VALUE) \ 155 static constexpr StringLiteral NAME##_init[] = VALUE; \ 156 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 157 std::size(NAME##_init) - 1); 158 #include "OtoolOpts.inc" 159 #undef PREFIX 160 161 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 162 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 163 #include "OtoolOpts.inc" 164 #undef OPTION 165 }; 166 } // namespace otool 167 168 class OtoolOptTable : public CommonOptTable { 169 public: 170 OtoolOptTable() 171 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 172 "Mach-O object file displaying tool") {} 173 }; 174 175 } // namespace 176 177 #define DEBUG_TYPE "objdump" 178 179 enum class ColorOutput { 180 Auto, 181 Enable, 182 Disable, 183 Invalid, 184 }; 185 186 static uint64_t AdjustVMA; 187 static bool AllHeaders; 188 static std::string ArchName; 189 bool objdump::ArchiveHeaders; 190 bool objdump::Demangle; 191 bool objdump::Disassemble; 192 bool objdump::DisassembleAll; 193 bool objdump::SymbolDescription; 194 bool objdump::TracebackTable; 195 static std::vector<std::string> DisassembleSymbols; 196 static bool DisassembleZeroes; 197 static std::vector<std::string> DisassemblerOptions; 198 static ColorOutput DisassemblyColor; 199 DIDumpType objdump::DwarfDumpType; 200 static bool DynamicRelocations; 201 static bool FaultMapSection; 202 static bool FileHeaders; 203 bool objdump::SectionContents; 204 static std::vector<std::string> InputFilenames; 205 bool objdump::PrintLines; 206 static bool MachOOpt; 207 std::string objdump::MCPU; 208 std::vector<std::string> objdump::MAttrs; 209 bool objdump::ShowRawInsn; 210 bool objdump::LeadingAddr; 211 static bool Offloading; 212 static bool RawClangAST; 213 bool objdump::Relocations; 214 bool objdump::PrintImmHex; 215 bool objdump::PrivateHeaders; 216 std::vector<std::string> objdump::FilterSections; 217 bool objdump::SectionHeaders; 218 static bool ShowAllSymbols; 219 static bool ShowLMA; 220 bool objdump::PrintSource; 221 222 static uint64_t StartAddress; 223 static bool HasStartAddressFlag; 224 static uint64_t StopAddress = UINT64_MAX; 225 static bool HasStopAddressFlag; 226 227 bool objdump::SymbolTable; 228 static bool SymbolizeOperands; 229 static bool DynamicSymbolTable; 230 std::string objdump::TripleName; 231 bool objdump::UnwindInfo; 232 static bool Wide; 233 std::string objdump::Prefix; 234 uint32_t objdump::PrefixStrip; 235 236 DebugVarsFormat objdump::DbgVariables = DVDisabled; 237 238 int objdump::DbgIndent = 52; 239 240 static StringSet<> DisasmSymbolSet; 241 StringSet<> objdump::FoundSectionSet; 242 static StringRef ToolName; 243 244 std::unique_ptr<BuildIDFetcher> BIDFetcher; 245 246 Dumper::Dumper(const object::ObjectFile &O) : O(O) { 247 WarningHandler = [this](const Twine &Msg) { 248 if (Warnings.insert(Msg.str()).second) 249 reportWarning(Msg, this->O.getFileName()); 250 return Error::success(); 251 }; 252 } 253 254 void Dumper::reportUniqueWarning(Error Err) { 255 reportUniqueWarning(toString(std::move(Err))); 256 } 257 258 void Dumper::reportUniqueWarning(const Twine &Msg) { 259 cantFail(WarningHandler(Msg)); 260 } 261 262 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { 263 if (const auto *O = dyn_cast<COFFObjectFile>(&Obj)) 264 return createCOFFDumper(*O); 265 if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj)) 266 return createELFDumper(*O); 267 if (const auto *O = dyn_cast<MachOObjectFile>(&Obj)) 268 return createMachODumper(*O); 269 if (const auto *O = dyn_cast<WasmObjectFile>(&Obj)) 270 return createWasmDumper(*O); 271 if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj)) 272 return createXCOFFDumper(*O); 273 274 return createStringError(errc::invalid_argument, 275 "unsupported object file format"); 276 } 277 278 namespace { 279 struct FilterResult { 280 // True if the section should not be skipped. 281 bool Keep; 282 283 // True if the index counter should be incremented, even if the section should 284 // be skipped. For example, sections may be skipped if they are not included 285 // in the --section flag, but we still want those to count toward the section 286 // count. 287 bool IncrementIndex; 288 }; 289 } // namespace 290 291 static FilterResult checkSectionFilter(object::SectionRef S) { 292 if (FilterSections.empty()) 293 return {/*Keep=*/true, /*IncrementIndex=*/true}; 294 295 Expected<StringRef> SecNameOrErr = S.getName(); 296 if (!SecNameOrErr) { 297 consumeError(SecNameOrErr.takeError()); 298 return {/*Keep=*/false, /*IncrementIndex=*/false}; 299 } 300 StringRef SecName = *SecNameOrErr; 301 302 // StringSet does not allow empty key so avoid adding sections with 303 // no name (such as the section with index 0) here. 304 if (!SecName.empty()) 305 FoundSectionSet.insert(SecName); 306 307 // Only show the section if it's in the FilterSections list, but always 308 // increment so the indexing is stable. 309 return {/*Keep=*/is_contained(FilterSections, SecName), 310 /*IncrementIndex=*/true}; 311 } 312 313 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 314 uint64_t *Idx) { 315 // Start at UINT64_MAX so that the first index returned after an increment is 316 // zero (after the unsigned wrap). 317 if (Idx) 318 *Idx = UINT64_MAX; 319 return SectionFilter( 320 [Idx](object::SectionRef S) { 321 FilterResult Result = checkSectionFilter(S); 322 if (Idx != nullptr && Result.IncrementIndex) 323 *Idx += 1; 324 return Result.Keep; 325 }, 326 O); 327 } 328 329 std::string objdump::getFileNameForError(const object::Archive::Child &C, 330 unsigned Index) { 331 Expected<StringRef> NameOrErr = C.getName(); 332 if (NameOrErr) 333 return std::string(NameOrErr.get()); 334 // If we have an error getting the name then we print the index of the archive 335 // member. Since we are already in an error state, we just ignore this error. 336 consumeError(NameOrErr.takeError()); 337 return "<file index: " + std::to_string(Index) + ">"; 338 } 339 340 void objdump::reportWarning(const Twine &Message, StringRef File) { 341 // Output order between errs() and outs() matters especially for archive 342 // files where the output is per member object. 343 outs().flush(); 344 WithColor::warning(errs(), ToolName) 345 << "'" << File << "': " << Message << "\n"; 346 } 347 348 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 349 outs().flush(); 350 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 351 exit(1); 352 } 353 354 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 355 StringRef ArchiveName, 356 StringRef ArchitectureName) { 357 assert(E); 358 outs().flush(); 359 WithColor::error(errs(), ToolName); 360 if (ArchiveName != "") 361 errs() << ArchiveName << "(" << FileName << ")"; 362 else 363 errs() << "'" << FileName << "'"; 364 if (!ArchitectureName.empty()) 365 errs() << " (for architecture " << ArchitectureName << ")"; 366 errs() << ": "; 367 logAllUnhandledErrors(std::move(E), errs()); 368 exit(1); 369 } 370 371 static void reportCmdLineWarning(const Twine &Message) { 372 WithColor::warning(errs(), ToolName) << Message << "\n"; 373 } 374 375 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 376 WithColor::error(errs(), ToolName) << Message << "\n"; 377 exit(1); 378 } 379 380 static void warnOnNoMatchForSections() { 381 SetVector<StringRef> MissingSections; 382 for (StringRef S : FilterSections) { 383 if (FoundSectionSet.count(S)) 384 return; 385 // User may specify a unnamed section. Don't warn for it. 386 if (!S.empty()) 387 MissingSections.insert(S); 388 } 389 390 // Warn only if no section in FilterSections is matched. 391 for (StringRef S : MissingSections) 392 reportCmdLineWarning("section '" + S + 393 "' mentioned in a -j/--section option, but not " 394 "found in any input file"); 395 } 396 397 static const Target *getTarget(const ObjectFile *Obj) { 398 // Figure out the target triple. 399 Triple TheTriple("unknown-unknown-unknown"); 400 if (TripleName.empty()) { 401 TheTriple = Obj->makeTriple(); 402 } else { 403 TheTriple.setTriple(Triple::normalize(TripleName)); 404 auto Arch = Obj->getArch(); 405 if (Arch == Triple::arm || Arch == Triple::armeb) 406 Obj->setARMSubArch(TheTriple); 407 } 408 409 // Get the target specific parser. 410 std::string Error; 411 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 412 Error); 413 if (!TheTarget) 414 reportError(Obj->getFileName(), "can't find target: " + Error); 415 416 // Update the triple name and return the found target. 417 TripleName = TheTriple.getTriple(); 418 return TheTarget; 419 } 420 421 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 422 return A.getOffset() < B.getOffset(); 423 } 424 425 static Error getRelocationValueString(const RelocationRef &Rel, 426 bool SymbolDescription, 427 SmallVectorImpl<char> &Result) { 428 const ObjectFile *Obj = Rel.getObject(); 429 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 430 return getELFRelocationValueString(ELF, Rel, Result); 431 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 432 return getCOFFRelocationValueString(COFF, Rel, Result); 433 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 434 return getWasmRelocationValueString(Wasm, Rel, Result); 435 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 436 return getMachORelocationValueString(MachO, Rel, Result); 437 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 438 return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription, 439 Result); 440 llvm_unreachable("unknown object file format"); 441 } 442 443 /// Indicates whether this relocation should hidden when listing 444 /// relocations, usually because it is the trailing part of a multipart 445 /// relocation that will be printed as part of the leading relocation. 446 static bool getHidden(RelocationRef RelRef) { 447 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 448 if (!MachO) 449 return false; 450 451 unsigned Arch = MachO->getArch(); 452 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 453 uint64_t Type = MachO->getRelocationType(Rel); 454 455 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 456 // is always hidden. 457 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 458 return Type == MachO::GENERIC_RELOC_PAIR; 459 460 if (Arch == Triple::x86_64) { 461 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 462 // an X86_64_RELOC_SUBTRACTOR. 463 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 464 DataRefImpl RelPrev = Rel; 465 RelPrev.d.a--; 466 uint64_t PrevType = MachO->getRelocationType(RelPrev); 467 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 468 return true; 469 } 470 } 471 472 return false; 473 } 474 475 /// Get the column at which we want to start printing the instruction 476 /// disassembly, taking into account anything which appears to the left of it. 477 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { 478 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 479 } 480 481 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 482 raw_ostream &OS) { 483 // The output of printInst starts with a tab. Print some spaces so that 484 // the tab has 1 column and advances to the target tab stop. 485 unsigned TabStop = getInstStartColumn(STI); 486 unsigned Column = OS.tell() - Start; 487 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 488 } 489 490 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, 491 formatted_raw_ostream &OS, 492 MCSubtargetInfo const &STI) { 493 size_t Start = OS.tell(); 494 if (LeadingAddr) 495 OS << format("%8" PRIx64 ":", Address); 496 if (ShowRawInsn) { 497 OS << ' '; 498 dumpBytes(Bytes, OS); 499 } 500 AlignToInstStartColumn(Start, STI, OS); 501 } 502 503 namespace { 504 505 static bool isAArch64Elf(const ObjectFile &Obj) { 506 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 507 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 508 } 509 510 static bool isArmElf(const ObjectFile &Obj) { 511 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 512 return Elf && Elf->getEMachine() == ELF::EM_ARM; 513 } 514 515 static bool isCSKYElf(const ObjectFile &Obj) { 516 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 517 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 518 } 519 520 static bool hasMappingSymbols(const ObjectFile &Obj) { 521 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 522 } 523 524 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 525 const RelocationRef &Rel, uint64_t Address, 526 bool Is64Bits) { 527 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 528 SmallString<16> Name; 529 SmallString<32> Val; 530 Rel.getTypeName(Name); 531 if (Error E = getRelocationValueString(Rel, SymbolDescription, Val)) 532 reportError(std::move(E), FileName); 533 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 534 if (LeadingAddr) 535 OS << format(Fmt.data(), Address); 536 OS << Name << "\t" << Val; 537 } 538 539 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF, 540 object::SectionedAddress Address, 541 LiveVariablePrinter &LVP) { 542 const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address); 543 if (!Reloc) 544 return; 545 546 SmallString<64> Val; 547 BTF.symbolize(Reloc, Val); 548 FOS << "\t\t"; 549 if (LeadingAddr) 550 FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA); 551 FOS << "CO-RE " << Val; 552 LVP.printAfterOtherLine(FOS, true); 553 } 554 555 class PrettyPrinter { 556 public: 557 virtual ~PrettyPrinter() = default; 558 virtual void 559 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 560 object::SectionedAddress Address, formatted_raw_ostream &OS, 561 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 562 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 563 LiveVariablePrinter &LVP) { 564 if (SP && (PrintSource || PrintLines)) 565 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 566 LVP.printBetweenInsts(OS, false); 567 568 printRawData(Bytes, Address.Address, OS, STI); 569 570 if (MI) { 571 // See MCInstPrinter::printInst. On targets where a PC relative immediate 572 // is relative to the next instruction and the length of a MCInst is 573 // difficult to measure (x86), this is the address of the next 574 // instruction. 575 uint64_t Addr = 576 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 577 IP.printInst(MI, Addr, "", STI, OS); 578 } else 579 OS << "\t<unknown>"; 580 } 581 }; 582 PrettyPrinter PrettyPrinterInst; 583 584 class HexagonPrettyPrinter : public PrettyPrinter { 585 public: 586 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 587 formatted_raw_ostream &OS) { 588 uint32_t opcode = 589 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 590 if (LeadingAddr) 591 OS << format("%8" PRIx64 ":", Address); 592 if (ShowRawInsn) { 593 OS << "\t"; 594 dumpBytes(Bytes.slice(0, 4), OS); 595 OS << format("\t%08" PRIx32, opcode); 596 } 597 } 598 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 599 object::SectionedAddress Address, formatted_raw_ostream &OS, 600 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 601 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 602 LiveVariablePrinter &LVP) override { 603 if (SP && (PrintSource || PrintLines)) 604 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 605 if (!MI) { 606 printLead(Bytes, Address.Address, OS); 607 OS << " <unknown>"; 608 return; 609 } 610 std::string Buffer; 611 { 612 raw_string_ostream TempStream(Buffer); 613 IP.printInst(MI, Address.Address, "", STI, TempStream); 614 } 615 StringRef Contents(Buffer); 616 // Split off bundle attributes 617 auto PacketBundle = Contents.rsplit('\n'); 618 // Split off first instruction from the rest 619 auto HeadTail = PacketBundle.first.split('\n'); 620 auto Preamble = " { "; 621 auto Separator = ""; 622 623 // Hexagon's packets require relocations to be inline rather than 624 // clustered at the end of the packet. 625 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 626 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 627 auto PrintReloc = [&]() -> void { 628 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 629 if (RelCur->getOffset() == Address.Address) { 630 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 631 return; 632 } 633 ++RelCur; 634 } 635 }; 636 637 while (!HeadTail.first.empty()) { 638 OS << Separator; 639 Separator = "\n"; 640 if (SP && (PrintSource || PrintLines)) 641 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 642 printLead(Bytes, Address.Address, OS); 643 OS << Preamble; 644 Preamble = " "; 645 StringRef Inst; 646 auto Duplex = HeadTail.first.split('\v'); 647 if (!Duplex.second.empty()) { 648 OS << Duplex.first; 649 OS << "; "; 650 Inst = Duplex.second; 651 } 652 else 653 Inst = HeadTail.first; 654 OS << Inst; 655 HeadTail = HeadTail.second.split('\n'); 656 if (HeadTail.first.empty()) 657 OS << " } " << PacketBundle.second; 658 PrintReloc(); 659 Bytes = Bytes.slice(4); 660 Address.Address += 4; 661 } 662 } 663 }; 664 HexagonPrettyPrinter HexagonPrettyPrinterInst; 665 666 class AMDGCNPrettyPrinter : public PrettyPrinter { 667 public: 668 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 669 object::SectionedAddress Address, formatted_raw_ostream &OS, 670 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 671 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 672 LiveVariablePrinter &LVP) override { 673 if (SP && (PrintSource || PrintLines)) 674 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 675 676 if (MI) { 677 SmallString<40> InstStr; 678 raw_svector_ostream IS(InstStr); 679 680 IP.printInst(MI, Address.Address, "", STI, IS); 681 682 OS << left_justify(IS.str(), 60); 683 } else { 684 // an unrecognized encoding - this is probably data so represent it 685 // using the .long directive, or .byte directive if fewer than 4 bytes 686 // remaining 687 if (Bytes.size() >= 4) { 688 OS << format( 689 "\t.long 0x%08" PRIx32 " ", 690 support::endian::read32<llvm::endianness::little>(Bytes.data())); 691 OS.indent(42); 692 } else { 693 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 694 for (unsigned int i = 1; i < Bytes.size(); i++) 695 OS << format(", 0x%02" PRIx8, Bytes[i]); 696 OS.indent(55 - (6 * Bytes.size())); 697 } 698 } 699 700 OS << format("// %012" PRIX64 ":", Address.Address); 701 if (Bytes.size() >= 4) { 702 // D should be casted to uint32_t here as it is passed by format to 703 // snprintf as vararg. 704 for (uint32_t D : 705 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 706 Bytes.size() / 4)) 707 OS << format(" %08" PRIX32, D); 708 } else { 709 for (unsigned char B : Bytes) 710 OS << format(" %02" PRIX8, B); 711 } 712 713 if (!Annot.empty()) 714 OS << " // " << Annot; 715 } 716 }; 717 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 718 719 class BPFPrettyPrinter : public PrettyPrinter { 720 public: 721 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 722 object::SectionedAddress Address, formatted_raw_ostream &OS, 723 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 724 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 725 LiveVariablePrinter &LVP) override { 726 if (SP && (PrintSource || PrintLines)) 727 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 728 if (LeadingAddr) 729 OS << format("%8" PRId64 ":", Address.Address / 8); 730 if (ShowRawInsn) { 731 OS << "\t"; 732 dumpBytes(Bytes, OS); 733 } 734 if (MI) 735 IP.printInst(MI, Address.Address, "", STI, OS); 736 else 737 OS << "\t<unknown>"; 738 } 739 }; 740 BPFPrettyPrinter BPFPrettyPrinterInst; 741 742 class ARMPrettyPrinter : public PrettyPrinter { 743 public: 744 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 745 object::SectionedAddress Address, formatted_raw_ostream &OS, 746 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 747 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 748 LiveVariablePrinter &LVP) override { 749 if (SP && (PrintSource || PrintLines)) 750 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 751 LVP.printBetweenInsts(OS, false); 752 753 size_t Start = OS.tell(); 754 if (LeadingAddr) 755 OS << format("%8" PRIx64 ":", Address.Address); 756 if (ShowRawInsn) { 757 size_t Pos = 0, End = Bytes.size(); 758 if (STI.checkFeatures("+thumb-mode")) { 759 for (; Pos + 2 <= End; Pos += 2) 760 OS << ' ' 761 << format_hex_no_prefix( 762 llvm::support::endian::read<uint16_t>( 763 Bytes.data() + Pos, InstructionEndianness), 764 4); 765 } else { 766 for (; Pos + 4 <= End; Pos += 4) 767 OS << ' ' 768 << format_hex_no_prefix( 769 llvm::support::endian::read<uint32_t>( 770 Bytes.data() + Pos, InstructionEndianness), 771 8); 772 } 773 if (Pos < End) { 774 OS << ' '; 775 dumpBytes(Bytes.slice(Pos), OS); 776 } 777 } 778 779 AlignToInstStartColumn(Start, STI, OS); 780 781 if (MI) { 782 IP.printInst(MI, Address.Address, "", STI, OS); 783 } else 784 OS << "\t<unknown>"; 785 } 786 787 void setInstructionEndianness(llvm::endianness Endianness) { 788 InstructionEndianness = Endianness; 789 } 790 791 private: 792 llvm::endianness InstructionEndianness = llvm::endianness::little; 793 }; 794 ARMPrettyPrinter ARMPrettyPrinterInst; 795 796 class AArch64PrettyPrinter : public PrettyPrinter { 797 public: 798 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 799 object::SectionedAddress Address, formatted_raw_ostream &OS, 800 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 801 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 802 LiveVariablePrinter &LVP) override { 803 if (SP && (PrintSource || PrintLines)) 804 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 805 LVP.printBetweenInsts(OS, false); 806 807 size_t Start = OS.tell(); 808 if (LeadingAddr) 809 OS << format("%8" PRIx64 ":", Address.Address); 810 if (ShowRawInsn) { 811 size_t Pos = 0, End = Bytes.size(); 812 for (; Pos + 4 <= End; Pos += 4) 813 OS << ' ' 814 << format_hex_no_prefix( 815 llvm::support::endian::read<uint32_t>( 816 Bytes.data() + Pos, llvm::endianness::little), 817 8); 818 if (Pos < End) { 819 OS << ' '; 820 dumpBytes(Bytes.slice(Pos), OS); 821 } 822 } 823 824 AlignToInstStartColumn(Start, STI, OS); 825 826 if (MI) { 827 IP.printInst(MI, Address.Address, "", STI, OS); 828 } else 829 OS << "\t<unknown>"; 830 } 831 }; 832 AArch64PrettyPrinter AArch64PrettyPrinterInst; 833 834 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 835 switch(Triple.getArch()) { 836 default: 837 return PrettyPrinterInst; 838 case Triple::hexagon: 839 return HexagonPrettyPrinterInst; 840 case Triple::amdgcn: 841 return AMDGCNPrettyPrinterInst; 842 case Triple::bpfel: 843 case Triple::bpfeb: 844 return BPFPrettyPrinterInst; 845 case Triple::arm: 846 case Triple::armeb: 847 case Triple::thumb: 848 case Triple::thumbeb: 849 return ARMPrettyPrinterInst; 850 case Triple::aarch64: 851 case Triple::aarch64_be: 852 case Triple::aarch64_32: 853 return AArch64PrettyPrinterInst; 854 } 855 } 856 857 class DisassemblerTarget { 858 public: 859 const Target *TheTarget; 860 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; 861 std::shared_ptr<MCContext> Context; 862 std::unique_ptr<MCDisassembler> DisAsm; 863 std::shared_ptr<MCInstrAnalysis> InstrAnalysis; 864 std::shared_ptr<MCInstPrinter> InstPrinter; 865 PrettyPrinter *Printer; 866 867 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 868 StringRef TripleName, StringRef MCPU, 869 SubtargetFeatures &Features); 870 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); 871 872 private: 873 MCTargetOptions Options; 874 std::shared_ptr<const MCRegisterInfo> RegisterInfo; 875 std::shared_ptr<const MCAsmInfo> AsmInfo; 876 std::shared_ptr<const MCInstrInfo> InstrInfo; 877 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; 878 }; 879 880 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 881 StringRef TripleName, StringRef MCPU, 882 SubtargetFeatures &Features) 883 : TheTarget(TheTarget), 884 Printer(&selectPrettyPrinter(Triple(TripleName))), 885 RegisterInfo(TheTarget->createMCRegInfo(TripleName)) { 886 if (!RegisterInfo) 887 reportError(Obj.getFileName(), "no register info for target " + TripleName); 888 889 // Set up disassembler. 890 AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options)); 891 if (!AsmInfo) 892 reportError(Obj.getFileName(), "no assembly info for target " + TripleName); 893 894 SubtargetInfo.reset( 895 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 896 if (!SubtargetInfo) 897 reportError(Obj.getFileName(), 898 "no subtarget info for target " + TripleName); 899 InstrInfo.reset(TheTarget->createMCInstrInfo()); 900 if (!InstrInfo) 901 reportError(Obj.getFileName(), 902 "no instruction info for target " + TripleName); 903 Context = 904 std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(), 905 RegisterInfo.get(), SubtargetInfo.get()); 906 907 // FIXME: for now initialize MCObjectFileInfo with default values 908 ObjectFileInfo.reset( 909 TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false)); 910 Context->setObjectFileInfo(ObjectFileInfo.get()); 911 912 DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)); 913 if (!DisAsm) 914 reportError(Obj.getFileName(), "no disassembler for target " + TripleName); 915 916 InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get())); 917 918 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 919 InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName), 920 AsmPrinterVariant, *AsmInfo, 921 *InstrInfo, *RegisterInfo)); 922 if (!InstPrinter) 923 reportError(Obj.getFileName(), 924 "no instruction printer for target " + TripleName); 925 InstPrinter->setPrintImmHex(PrintImmHex); 926 InstPrinter->setPrintBranchImmAsAddress(true); 927 InstPrinter->setSymbolizeOperands(SymbolizeOperands); 928 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); 929 930 switch (DisassemblyColor) { 931 case ColorOutput::Enable: 932 InstPrinter->setUseColor(true); 933 break; 934 case ColorOutput::Auto: 935 InstPrinter->setUseColor(outs().has_colors()); 936 break; 937 case ColorOutput::Disable: 938 case ColorOutput::Invalid: 939 InstPrinter->setUseColor(false); 940 break; 941 }; 942 } 943 944 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, 945 SubtargetFeatures &Features) 946 : TheTarget(Other.TheTarget), 947 SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 948 Features.getString())), 949 Context(Other.Context), 950 DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)), 951 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), 952 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), 953 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), 954 ObjectFileInfo(Other.ObjectFileInfo) {} 955 } // namespace 956 957 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 958 assert(Obj.isELF()); 959 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 960 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 961 Obj.getFileName()) 962 ->getType(); 963 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 964 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 965 Obj.getFileName()) 966 ->getType(); 967 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 968 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 969 Obj.getFileName()) 970 ->getType(); 971 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 972 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 973 Obj.getFileName()) 974 ->getType(); 975 llvm_unreachable("Unsupported binary format"); 976 } 977 978 template <class ELFT> 979 static void 980 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 981 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 982 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 983 uint8_t SymbolType = Symbol.getELFType(); 984 if (SymbolType == ELF::STT_SECTION) 985 continue; 986 987 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 988 // ELFSymbolRef::getAddress() returns size instead of value for common 989 // symbols which is not desirable for disassembly output. Overriding. 990 if (SymbolType == ELF::STT_COMMON) 991 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 992 Obj.getFileName()) 993 ->st_value; 994 995 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 996 if (Name.empty()) 997 continue; 998 999 section_iterator SecI = 1000 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 1001 if (SecI == Obj.section_end()) 1002 continue; 1003 1004 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1005 } 1006 } 1007 1008 static void 1009 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 1010 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1011 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1012 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 1013 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1014 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 1015 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1016 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 1017 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1018 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 1019 else 1020 llvm_unreachable("Unsupported binary format"); 1021 } 1022 1023 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 1024 for (auto SecI : Obj.sections()) { 1025 const WasmSection &Section = Obj.getWasmSection(SecI); 1026 if (Section.Type == wasm::WASM_SEC_CODE) 1027 return SecI; 1028 } 1029 return std::nullopt; 1030 } 1031 1032 static void 1033 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 1034 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1035 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 1036 if (!Section) 1037 return; 1038 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 1039 1040 std::set<uint64_t> SymbolAddresses; 1041 for (const auto &Sym : Symbols) 1042 SymbolAddresses.insert(Sym.Addr); 1043 1044 for (const wasm::WasmFunction &Function : Obj.functions()) { 1045 uint64_t Address = Function.CodeSectionOffset; 1046 // Only add fallback symbols for functions not already present in the symbol 1047 // table. 1048 if (SymbolAddresses.count(Address)) 1049 continue; 1050 // This function has no symbol, so it should have no SymbolName. 1051 assert(Function.SymbolName.empty()); 1052 // We use DebugName for the name, though it may be empty if there is no 1053 // "name" custom section, or that section is missing a name for this 1054 // function. 1055 StringRef Name = Function.DebugName; 1056 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 1057 } 1058 } 1059 1060 static void addPltEntries(const ObjectFile &Obj, 1061 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1062 StringSaver &Saver) { 1063 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 1064 if (!ElfObj) 1065 return; 1066 DenseMap<StringRef, SectionRef> Sections; 1067 for (SectionRef Section : Obj.sections()) { 1068 Expected<StringRef> SecNameOrErr = Section.getName(); 1069 if (!SecNameOrErr) { 1070 consumeError(SecNameOrErr.takeError()); 1071 continue; 1072 } 1073 Sections[*SecNameOrErr] = Section; 1074 } 1075 for (auto Plt : ElfObj->getPltEntries()) { 1076 if (Plt.Symbol) { 1077 SymbolRef Symbol(*Plt.Symbol, ElfObj); 1078 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1079 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 1080 if (!NameOrErr->empty()) 1081 AllSymbols[Sections[Plt.Section]].emplace_back( 1082 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); 1083 continue; 1084 } else { 1085 // The warning has been reported in disassembleObject(). 1086 consumeError(NameOrErr.takeError()); 1087 } 1088 } 1089 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + 1090 " references an invalid symbol", 1091 Obj.getFileName()); 1092 } 1093 } 1094 1095 // Normally the disassembly output will skip blocks of zeroes. This function 1096 // returns the number of zero bytes that can be skipped when dumping the 1097 // disassembly of the instructions in Buf. 1098 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 1099 // Find the number of leading zeroes. 1100 size_t N = 0; 1101 while (N < Buf.size() && !Buf[N]) 1102 ++N; 1103 1104 // We may want to skip blocks of zero bytes, but unless we see 1105 // at least 8 of them in a row. 1106 if (N < 8) 1107 return 0; 1108 1109 // We skip zeroes in multiples of 4 because do not want to truncate an 1110 // instruction if it starts with a zero byte. 1111 return N & ~0x3; 1112 } 1113 1114 // Returns a map from sections to their relocations. 1115 static std::map<SectionRef, std::vector<RelocationRef>> 1116 getRelocsMap(object::ObjectFile const &Obj) { 1117 std::map<SectionRef, std::vector<RelocationRef>> Ret; 1118 uint64_t I = (uint64_t)-1; 1119 for (SectionRef Sec : Obj.sections()) { 1120 ++I; 1121 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1122 if (!RelocatedOrErr) 1123 reportError(Obj.getFileName(), 1124 "section (" + Twine(I) + 1125 "): failed to get a relocated section: " + 1126 toString(RelocatedOrErr.takeError())); 1127 1128 section_iterator Relocated = *RelocatedOrErr; 1129 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1130 continue; 1131 std::vector<RelocationRef> &V = Ret[*Relocated]; 1132 append_range(V, Sec.relocations()); 1133 // Sort relocations by address. 1134 llvm::stable_sort(V, isRelocAddressLess); 1135 } 1136 return Ret; 1137 } 1138 1139 // Used for --adjust-vma to check if address should be adjusted by the 1140 // specified value for a given section. 1141 // For ELF we do not adjust non-allocatable sections like debug ones, 1142 // because they are not loadable. 1143 // TODO: implement for other file formats. 1144 static bool shouldAdjustVA(const SectionRef &Section) { 1145 const ObjectFile *Obj = Section.getObject(); 1146 if (Obj->isELF()) 1147 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1148 return false; 1149 } 1150 1151 1152 typedef std::pair<uint64_t, char> MappingSymbolPair; 1153 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1154 uint64_t Address) { 1155 auto It = 1156 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1157 return Val.first <= Address; 1158 }); 1159 // Return zero for any address before the first mapping symbol; this means 1160 // we should use the default disassembly mode, depending on the target. 1161 if (It == MappingSymbols.begin()) 1162 return '\x00'; 1163 return (It - 1)->second; 1164 } 1165 1166 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1167 uint64_t End, const ObjectFile &Obj, 1168 ArrayRef<uint8_t> Bytes, 1169 ArrayRef<MappingSymbolPair> MappingSymbols, 1170 const MCSubtargetInfo &STI, raw_ostream &OS) { 1171 llvm::endianness Endian = 1172 Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1173 size_t Start = OS.tell(); 1174 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1175 if (Index + 4 <= End) { 1176 dumpBytes(Bytes.slice(Index, 4), OS); 1177 AlignToInstStartColumn(Start, STI, OS); 1178 OS << "\t.word\t" 1179 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1180 10); 1181 return 4; 1182 } 1183 if (Index + 2 <= End) { 1184 dumpBytes(Bytes.slice(Index, 2), OS); 1185 AlignToInstStartColumn(Start, STI, OS); 1186 OS << "\t.short\t" 1187 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1188 return 2; 1189 } 1190 dumpBytes(Bytes.slice(Index, 1), OS); 1191 AlignToInstStartColumn(Start, STI, OS); 1192 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1193 return 1; 1194 } 1195 1196 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1197 ArrayRef<uint8_t> Bytes) { 1198 // print out data up to 8 bytes at a time in hex and ascii 1199 uint8_t AsciiData[9] = {'\0'}; 1200 uint8_t Byte; 1201 int NumBytes = 0; 1202 1203 for (; Index < End; ++Index) { 1204 if (NumBytes == 0) 1205 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1206 Byte = Bytes.slice(Index)[0]; 1207 outs() << format(" %02x", Byte); 1208 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1209 1210 uint8_t IndentOffset = 0; 1211 NumBytes++; 1212 if (Index == End - 1 || NumBytes > 8) { 1213 // Indent the space for less than 8 bytes data. 1214 // 2 spaces for byte and one for space between bytes 1215 IndentOffset = 3 * (8 - NumBytes); 1216 for (int Excess = NumBytes; Excess < 8; Excess++) 1217 AsciiData[Excess] = '\0'; 1218 NumBytes = 8; 1219 } 1220 if (NumBytes == 8) { 1221 AsciiData[8] = '\0'; 1222 outs() << std::string(IndentOffset, ' ') << " "; 1223 outs() << reinterpret_cast<char *>(AsciiData); 1224 outs() << '\n'; 1225 NumBytes = 0; 1226 } 1227 } 1228 } 1229 1230 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1231 const SymbolRef &Symbol, 1232 bool IsMappingSymbol) { 1233 const StringRef FileName = Obj.getFileName(); 1234 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1235 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1236 1237 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { 1238 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1239 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1240 1241 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1242 std::optional<XCOFF::StorageMappingClass> Smc = 1243 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1244 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, 1245 isLabel(XCOFFObj, Symbol)); 1246 } else if (Obj.isXCOFF()) { 1247 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1248 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, 1249 /*IsXCOFF=*/true); 1250 } else { 1251 uint8_t Type = 1252 Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE; 1253 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); 1254 } 1255 } 1256 1257 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1258 const uint64_t Addr, StringRef &Name, 1259 uint8_t Type) { 1260 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) 1261 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); 1262 else 1263 return SymbolInfoTy(Addr, Name, Type); 1264 } 1265 1266 static void 1267 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1268 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1269 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1270 if (AddrToBBAddrMap.empty()) 1271 return; 1272 Labels.clear(); 1273 uint64_t StartAddress = SectionAddr + Start; 1274 uint64_t EndAddress = SectionAddr + End; 1275 auto Iter = AddrToBBAddrMap.find(StartAddress); 1276 if (Iter == AddrToBBAddrMap.end()) 1277 return; 1278 for (const BBAddrMap::BBEntry &BBEntry : Iter->second.getBBEntries()) { 1279 uint64_t BBAddress = BBEntry.Offset + Iter->second.getFunctionAddress(); 1280 if (BBAddress >= EndAddress) 1281 continue; 1282 Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str()); 1283 } 1284 } 1285 1286 static void 1287 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA, 1288 MCDisassembler *DisAsm, MCInstPrinter *IP, 1289 const MCSubtargetInfo *STI, uint64_t SectionAddr, 1290 uint64_t Start, uint64_t End, 1291 std::unordered_map<uint64_t, std::string> &Labels) { 1292 // So far only supports PowerPC and X86. 1293 const bool isPPC = STI->getTargetTriple().isPPC(); 1294 if (!isPPC && !STI->getTargetTriple().isX86()) 1295 return; 1296 1297 if (MIA) 1298 MIA->resetState(); 1299 1300 Labels.clear(); 1301 unsigned LabelCount = 0; 1302 Start += SectionAddr; 1303 End += SectionAddr; 1304 const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF(); 1305 for (uint64_t Index = Start; Index < End;) { 1306 // Disassemble a real instruction and record function-local branch labels. 1307 MCInst Inst; 1308 uint64_t Size; 1309 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1310 bool Disassembled = 1311 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1312 if (Size == 0) 1313 Size = std::min<uint64_t>(ThisBytes.size(), 1314 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1315 1316 if (MIA) { 1317 if (Disassembled) { 1318 uint64_t Target; 1319 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1320 if (TargetKnown && (Target >= Start && Target < End) && 1321 !Labels.count(Target)) { 1322 // On PowerPC and AIX, a function call is encoded as a branch to 0. 1323 // On other PowerPC platforms (ELF), a function call is encoded as 1324 // a branch to self. Do not add a label for these cases. 1325 if (!(isPPC && 1326 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF)))) 1327 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1328 } 1329 MIA->updateState(Inst, Index); 1330 } else 1331 MIA->resetState(); 1332 } 1333 Index += Size; 1334 } 1335 } 1336 1337 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1338 // This is currently only used on AMDGPU, and assumes the format of the 1339 // void * argument passed to AMDGPU's createMCSymbolizer. 1340 static void addSymbolizer( 1341 MCContext &Ctx, const Target *Target, StringRef TripleName, 1342 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1343 SectionSymbolsTy &Symbols, 1344 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1345 1346 std::unique_ptr<MCRelocationInfo> RelInfo( 1347 Target->createMCRelocationInfo(TripleName, Ctx)); 1348 if (!RelInfo) 1349 return; 1350 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1351 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1352 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1353 DisAsm->setSymbolizer(std::move(Symbolizer)); 1354 1355 if (!SymbolizeOperands) 1356 return; 1357 1358 // Synthesize labels referenced by branch instructions by 1359 // disassembling, discarding the output, and collecting the referenced 1360 // addresses from the symbolizer. 1361 for (size_t Index = 0; Index != Bytes.size();) { 1362 MCInst Inst; 1363 uint64_t Size; 1364 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1365 const uint64_t ThisAddr = SectionAddr + Index; 1366 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1367 if (Size == 0) 1368 Size = std::min<uint64_t>(ThisBytes.size(), 1369 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1370 Index += Size; 1371 } 1372 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1373 // Copy and sort to remove duplicates. 1374 std::vector<uint64_t> LabelAddrs; 1375 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1376 LabelAddrsRef.end()); 1377 llvm::sort(LabelAddrs); 1378 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1379 LabelAddrs.begin()); 1380 // Add the labels. 1381 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1382 auto Name = std::make_unique<std::string>(); 1383 *Name = (Twine("L") + Twine(LabelNum)).str(); 1384 SynthesizedLabelNames.push_back(std::move(Name)); 1385 Symbols.push_back(SymbolInfoTy( 1386 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1387 } 1388 llvm::stable_sort(Symbols); 1389 // Recreate the symbolizer with the new symbols list. 1390 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1391 Symbolizer.reset(Target->createMCSymbolizer( 1392 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1393 DisAsm->setSymbolizer(std::move(Symbolizer)); 1394 } 1395 1396 static StringRef getSegmentName(const MachOObjectFile *MachO, 1397 const SectionRef &Section) { 1398 if (MachO) { 1399 DataRefImpl DR = Section.getRawDataRefImpl(); 1400 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1401 return SegmentName; 1402 } 1403 return ""; 1404 } 1405 1406 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1407 const MCAsmInfo &MAI, 1408 const MCSubtargetInfo &STI, 1409 StringRef Comments, 1410 LiveVariablePrinter &LVP) { 1411 do { 1412 if (!Comments.empty()) { 1413 // Emit a line of comments. 1414 StringRef Comment; 1415 std::tie(Comment, Comments) = Comments.split('\n'); 1416 // MAI.getCommentColumn() assumes that instructions are printed at the 1417 // position of 8, while getInstStartColumn() returns the actual position. 1418 unsigned CommentColumn = 1419 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1420 FOS.PadToColumn(CommentColumn); 1421 FOS << MAI.getCommentString() << ' ' << Comment; 1422 } 1423 LVP.printAfterInst(FOS); 1424 FOS << '\n'; 1425 } while (!Comments.empty()); 1426 FOS.flush(); 1427 } 1428 1429 static void createFakeELFSections(ObjectFile &Obj) { 1430 assert(Obj.isELF()); 1431 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1432 Elf32LEObj->createFakeSections(); 1433 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1434 Elf64LEObj->createFakeSections(); 1435 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1436 Elf32BEObj->createFakeSections(); 1437 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1438 Elf64BEObj->createFakeSections(); 1439 else 1440 llvm_unreachable("Unsupported binary format"); 1441 } 1442 1443 // Tries to fetch a more complete version of the given object file using its 1444 // Build ID. Returns std::nullopt if nothing was found. 1445 static std::optional<OwningBinary<Binary>> 1446 fetchBinaryByBuildID(const ObjectFile &Obj) { 1447 object::BuildIDRef BuildID = getBuildID(&Obj); 1448 if (BuildID.empty()) 1449 return std::nullopt; 1450 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1451 if (!Path) 1452 return std::nullopt; 1453 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1454 if (!DebugBinary) { 1455 reportWarning(toString(DebugBinary.takeError()), *Path); 1456 return std::nullopt; 1457 } 1458 return std::move(*DebugBinary); 1459 } 1460 1461 static void 1462 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, 1463 DisassemblerTarget &PrimaryTarget, 1464 std::optional<DisassemblerTarget> &SecondaryTarget, 1465 SourcePrinter &SP, bool InlineRelocs) { 1466 DisassemblerTarget *DT = &PrimaryTarget; 1467 bool PrimaryIsThumb = false; 1468 SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap; 1469 1470 if (SecondaryTarget) { 1471 if (isArmElf(Obj)) { 1472 PrimaryIsThumb = 1473 PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"); 1474 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1475 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 1476 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 1477 uintptr_t CodeMapInt; 1478 cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt)); 1479 auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt); 1480 1481 for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) { 1482 if (CodeMap[i].getType() == chpe_range_type::Amd64 && 1483 CodeMap[i].Length) { 1484 // Store x86_64 CHPE code ranges. 1485 uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase(); 1486 CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length); 1487 } 1488 } 1489 llvm::sort(CHPECodeMap); 1490 } 1491 } 1492 } 1493 1494 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1495 if (InlineRelocs || Obj.isXCOFF()) 1496 RelocMap = getRelocsMap(Obj); 1497 bool Is64Bits = Obj.getBytesInAddress() > 4; 1498 1499 // Create a mapping from virtual address to symbol name. This is used to 1500 // pretty print the symbols while disassembling. 1501 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1502 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; 1503 SectionSymbolsTy AbsoluteSymbols; 1504 const StringRef FileName = Obj.getFileName(); 1505 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1506 for (const SymbolRef &Symbol : Obj.symbols()) { 1507 Expected<StringRef> NameOrErr = Symbol.getName(); 1508 if (!NameOrErr) { 1509 reportWarning(toString(NameOrErr.takeError()), FileName); 1510 continue; 1511 } 1512 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1513 continue; 1514 1515 if (Obj.isELF() && 1516 (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { 1517 // Symbol is intended not to be displayed by default (STT_FILE, 1518 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will 1519 // synthesize a section symbol if no symbol is defined at offset 0. 1520 // 1521 // For a mapping symbol, store it within both AllSymbols and 1522 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will 1523 // not be printed in disassembly listing. 1524 if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION && 1525 hasMappingSymbols(Obj)) { 1526 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1527 if (SecI != Obj.section_end()) { 1528 uint64_t SectionAddr = SecI->getAddress(); 1529 uint64_t Address = cantFail(Symbol.getAddress()); 1530 StringRef Name = *NameOrErr; 1531 if (Name.consume_front("$") && Name.size() && 1532 strchr("adtx", Name[0])) { 1533 AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr, 1534 Name[0]); 1535 AllSymbols[*SecI].push_back( 1536 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true)); 1537 } 1538 } 1539 } 1540 continue; 1541 } 1542 1543 if (MachO) { 1544 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1545 // symbols that support MachO header introspection. They do not bind to 1546 // code locations and are irrelevant for disassembly. 1547 if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header")) 1548 continue; 1549 // Don't ask a Mach-O STAB symbol for its section unless you know that 1550 // STAB symbol's section field refers to a valid section index. Otherwise 1551 // the symbol may error trying to load a section that does not exist. 1552 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1553 uint8_t NType = (MachO->is64Bit() ? 1554 MachO->getSymbol64TableEntry(SymDRI).n_type: 1555 MachO->getSymbolTableEntry(SymDRI).n_type); 1556 if (NType & MachO::N_STAB) 1557 continue; 1558 } 1559 1560 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1561 if (SecI != Obj.section_end()) 1562 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1563 else 1564 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1565 } 1566 1567 if (AllSymbols.empty() && Obj.isELF()) 1568 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1569 1570 if (Obj.isWasm()) 1571 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1572 1573 if (Obj.isELF() && Obj.sections().empty()) 1574 createFakeELFSections(Obj); 1575 1576 BumpPtrAllocator A; 1577 StringSaver Saver(A); 1578 addPltEntries(Obj, AllSymbols, Saver); 1579 1580 // Create a mapping from virtual address to section. An empty section can 1581 // cause more than one section at the same address. Sort such sections to be 1582 // before same-addressed non-empty sections so that symbol lookups prefer the 1583 // non-empty section. 1584 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1585 for (SectionRef Sec : Obj.sections()) 1586 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1587 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1588 if (LHS.first != RHS.first) 1589 return LHS.first < RHS.first; 1590 return LHS.second.getSize() < RHS.second.getSize(); 1591 }); 1592 1593 // Linked executables (.exe and .dll files) typically don't include a real 1594 // symbol table but they might contain an export table. 1595 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1596 for (const auto &ExportEntry : COFFObj->export_directories()) { 1597 StringRef Name; 1598 if (Error E = ExportEntry.getSymbolName(Name)) 1599 reportError(std::move(E), Obj.getFileName()); 1600 if (Name.empty()) 1601 continue; 1602 1603 uint32_t RVA; 1604 if (Error E = ExportEntry.getExportRVA(RVA)) 1605 reportError(std::move(E), Obj.getFileName()); 1606 1607 uint64_t VA = COFFObj->getImageBase() + RVA; 1608 auto Sec = partition_point( 1609 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1610 return O.first <= VA; 1611 }); 1612 if (Sec != SectionAddresses.begin()) { 1613 --Sec; 1614 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1615 } else 1616 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1617 } 1618 } 1619 1620 // Sort all the symbols, this allows us to use a simple binary search to find 1621 // Multiple symbols can have the same address. Use a stable sort to stabilize 1622 // the output. 1623 StringSet<> FoundDisasmSymbolSet; 1624 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1625 llvm::stable_sort(SecSyms.second); 1626 llvm::stable_sort(AbsoluteSymbols); 1627 1628 std::unique_ptr<DWARFContext> DICtx; 1629 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); 1630 1631 if (DbgVariables != DVDisabled) { 1632 DICtx = DWARFContext::create(DbgObj); 1633 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1634 LVP.addCompileUnit(CU->getUnitDIE(false)); 1635 } 1636 1637 LLVM_DEBUG(LVP.dump()); 1638 1639 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1640 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1641 std::nullopt) { 1642 AddrToBBAddrMap.clear(); 1643 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1644 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1645 if (!BBAddrMapsOrErr) { 1646 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1647 return; 1648 } 1649 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1650 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1651 std::move(FunctionBBAddrMap)); 1652 } 1653 }; 1654 1655 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1656 // single mapping, since they don't have any conflicts. 1657 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1658 ReadBBAddrMap(); 1659 1660 std::optional<llvm::BTFParser> BTF; 1661 if (InlineRelocs && BTFParser::hasBTFSections(Obj)) { 1662 BTF.emplace(); 1663 BTFParser::ParseOptions Opts = {}; 1664 Opts.LoadTypes = true; 1665 Opts.LoadRelocs = true; 1666 if (Error E = BTF->parse(Obj, Opts)) 1667 WithColor::defaultErrorHandler(std::move(E)); 1668 } 1669 1670 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1671 if (FilterSections.empty() && !DisassembleAll && 1672 (!Section.isText() || Section.isVirtual())) 1673 continue; 1674 1675 uint64_t SectionAddr = Section.getAddress(); 1676 uint64_t SectSize = Section.getSize(); 1677 if (!SectSize) 1678 continue; 1679 1680 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1681 // corresponding to this section, if present. 1682 if (SymbolizeOperands && Obj.isRelocatableObject()) 1683 ReadBBAddrMap(Section.getIndex()); 1684 1685 // Get the list of all the symbols in this section. 1686 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1687 auto &MappingSymbols = AllMappingSymbols[Section]; 1688 llvm::sort(MappingSymbols); 1689 1690 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1691 unwrapOrError(Section.getContents(), Obj.getFileName())); 1692 1693 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1694 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1695 // AMDGPU disassembler uses symbolizer for printing labels 1696 addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(), 1697 SectionAddr, Bytes, Symbols, SynthesizedLabelNames); 1698 } 1699 1700 StringRef SegmentName = getSegmentName(MachO, Section); 1701 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1702 // If the section has no symbol at the start, just insert a dummy one. 1703 // Without --show-all-symbols, also insert one if all symbols at the start 1704 // are mapping symbols. 1705 bool CreateDummy = Symbols.empty(); 1706 if (!CreateDummy) { 1707 CreateDummy = true; 1708 for (auto &Sym : Symbols) { 1709 if (Sym.Addr != SectionAddr) 1710 break; 1711 if (!Sym.IsMappingSymbol || ShowAllSymbols) 1712 CreateDummy = false; 1713 } 1714 } 1715 if (CreateDummy) { 1716 SymbolInfoTy Sym = createDummySymbolInfo( 1717 Obj, SectionAddr, SectionName, 1718 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); 1719 if (Obj.isXCOFF()) 1720 Symbols.insert(Symbols.begin(), Sym); 1721 else 1722 Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym); 1723 } 1724 1725 SmallString<40> Comments; 1726 raw_svector_ostream CommentStream(Comments); 1727 1728 uint64_t VMAAdjustment = 0; 1729 if (shouldAdjustVA(Section)) 1730 VMAAdjustment = AdjustVMA; 1731 1732 // In executable and shared objects, r_offset holds a virtual address. 1733 // Subtract SectionAddr from the r_offset field of a relocation to get 1734 // the section offset. 1735 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1736 uint64_t Size; 1737 uint64_t Index; 1738 bool PrintedSection = false; 1739 std::vector<RelocationRef> Rels = RelocMap[Section]; 1740 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1741 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1742 1743 // Loop over each chunk of code between two points where at least 1744 // one symbol is defined. 1745 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1746 // Advance SI past all the symbols starting at the same address, 1747 // and make an ArrayRef of them. 1748 unsigned FirstSI = SI; 1749 uint64_t Start = Symbols[SI].Addr; 1750 ArrayRef<SymbolInfoTy> SymbolsHere; 1751 while (SI != SE && Symbols[SI].Addr == Start) 1752 ++SI; 1753 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1754 1755 // Get the demangled names of all those symbols. We end up with a vector 1756 // of StringRef that holds the names we're going to use, and a vector of 1757 // std::string that stores the new strings returned by demangle(), if 1758 // any. If we don't call demangle() then that vector can stay empty. 1759 std::vector<StringRef> SymNamesHere; 1760 std::vector<std::string> DemangledSymNamesHere; 1761 if (Demangle) { 1762 // Fetch the demangled names and store them locally. 1763 for (const SymbolInfoTy &Symbol : SymbolsHere) 1764 DemangledSymNamesHere.push_back(demangle(Symbol.Name)); 1765 // Now we've finished modifying that vector, it's safe to make 1766 // a vector of StringRefs pointing into it. 1767 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1768 DemangledSymNamesHere.end()); 1769 } else { 1770 for (const SymbolInfoTy &Symbol : SymbolsHere) 1771 SymNamesHere.push_back(Symbol.Name); 1772 } 1773 1774 // Distinguish ELF data from code symbols, which will be used later on to 1775 // decide whether to 'disassemble' this chunk as a data declaration via 1776 // dumpELFData(), or whether to treat it as code. 1777 // 1778 // If data _and_ code symbols are defined at the same address, the code 1779 // takes priority, on the grounds that disassembling code is our main 1780 // purpose here, and it would be a worse failure to _not_ interpret 1781 // something that _was_ meaningful as code than vice versa. 1782 // 1783 // Any ELF symbol type that is not clearly data will be regarded as code. 1784 // In particular, one of the uses of STT_NOTYPE is for branch targets 1785 // inside functions, for which STT_FUNC would be inaccurate. 1786 // 1787 // So here, we spot whether there's any non-data symbol present at all, 1788 // and only set the DisassembleAsELFData flag if there isn't. Also, we use 1789 // this distinction to inform the decision of which symbol to print at 1790 // the head of the section, so that if we're printing code, we print a 1791 // code-related symbol name to go with it. 1792 bool DisassembleAsELFData = false; 1793 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1794 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1795 DisassembleAsELFData = true; // unless we find a code symbol below 1796 1797 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1798 uint8_t SymTy = SymbolsHere[i].Type; 1799 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1800 DisassembleAsELFData = false; 1801 DisplaySymIndex = i; 1802 } 1803 } 1804 } 1805 1806 // Decide which symbol(s) from this collection we're going to print. 1807 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1808 // If the user has given the --disassemble-symbols option, then we must 1809 // display every symbol in that set, and no others. 1810 if (!DisasmSymbolSet.empty()) { 1811 bool FoundAny = false; 1812 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1813 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1814 SymsToPrint[i] = true; 1815 FoundAny = true; 1816 } 1817 } 1818 1819 // And if none of the symbols here is one that the user asked for, skip 1820 // disassembling this entire chunk of code. 1821 if (!FoundAny) 1822 continue; 1823 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { 1824 // Otherwise, print whichever symbol at this location is last in the 1825 // Symbols array, because that array is pre-sorted in a way intended to 1826 // correlate with priority of which symbol to display. 1827 SymsToPrint[DisplaySymIndex] = true; 1828 } 1829 1830 // Now that we know we're disassembling this section, override the choice 1831 // of which symbols to display by printing _all_ of them at this address 1832 // if the user asked for all symbols. 1833 // 1834 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1835 // only the chunk of code headed by 'foo', but also show any other 1836 // symbols defined at that address, such as aliases for 'foo', or the ARM 1837 // mapping symbol preceding its code. 1838 if (ShowAllSymbols) { 1839 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1840 SymsToPrint[i] = true; 1841 } 1842 1843 if (Start < SectionAddr || StopAddress <= Start) 1844 continue; 1845 1846 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1847 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1848 1849 // The end is the section end, the beginning of the next symbol, or 1850 // --stop-address. 1851 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1852 if (SI < SE) 1853 End = std::min(End, Symbols[SI].Addr); 1854 if (Start >= End || End <= StartAddress) 1855 continue; 1856 Start -= SectionAddr; 1857 End -= SectionAddr; 1858 1859 if (!PrintedSection) { 1860 PrintedSection = true; 1861 outs() << "\nDisassembly of section "; 1862 if (!SegmentName.empty()) 1863 outs() << SegmentName << ","; 1864 outs() << SectionName << ":\n"; 1865 } 1866 1867 bool PrintedLabel = false; 1868 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1869 if (!SymsToPrint[i]) 1870 continue; 1871 1872 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1873 const StringRef SymbolName = SymNamesHere[i]; 1874 1875 if (!PrintedLabel) { 1876 outs() << '\n'; 1877 PrintedLabel = true; 1878 } 1879 if (LeadingAddr) 1880 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1881 SectionAddr + Start + VMAAdjustment); 1882 if (Obj.isXCOFF() && SymbolDescription) { 1883 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1884 } else 1885 outs() << '<' << SymbolName << ">:\n"; 1886 } 1887 1888 // Don't print raw contents of a virtual section. A virtual section 1889 // doesn't have any contents in the file. 1890 if (Section.isVirtual()) { 1891 outs() << "...\n"; 1892 continue; 1893 } 1894 1895 // See if any of the symbols defined at this location triggers target- 1896 // specific disassembly behavior, e.g. of special descriptors or function 1897 // prelude information. 1898 // 1899 // We stop this loop at the first symbol that triggers some kind of 1900 // interesting behavior (if any), on the assumption that if two symbols 1901 // defined at the same address trigger two conflicting symbol handlers, 1902 // the object file is probably confused anyway, and it would make even 1903 // less sense to present the output of _both_ handlers, because that 1904 // would describe the same data twice. 1905 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1906 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1907 1908 auto Status = DT->DisAsm->onSymbolStart( 1909 Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start, 1910 CommentStream); 1911 1912 if (!Status) { 1913 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1914 // any interesting handling for this symbol. Try the other symbols 1915 // defined at this address. 1916 continue; 1917 } 1918 1919 if (*Status == MCDisassembler::Fail) { 1920 // If onSymbolStart returns Fail, that means it identified some kind 1921 // of special data at this address, but wasn't able to disassemble it 1922 // meaningfully. So we fall back to disassembling the failed region 1923 // as bytes, assuming that the target detected the failure before 1924 // printing anything. 1925 // 1926 // Return values Success or SoftFail (i.e no 'real' failure) are 1927 // expected to mean that the target has emitted its own output. 1928 // 1929 // Either way, 'Size' will have been set to the amount of data 1930 // covered by whatever prologue the target identified. So we advance 1931 // our own position to beyond that. Sometimes that will be the entire 1932 // distance to the next symbol, and sometimes it will be just a 1933 // prologue and we should start disassembling instructions from where 1934 // it left off. 1935 outs() << DT->Context->getAsmInfo()->getCommentString() 1936 << " error in decoding " << SymNamesHere[SHI] 1937 << " : decoding failed region as bytes.\n"; 1938 for (uint64_t I = 0; I < Size; ++I) { 1939 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1940 << "\n"; 1941 } 1942 } 1943 Start += Size; 1944 break; 1945 } 1946 1947 Index = Start; 1948 if (SectionAddr < StartAddress) 1949 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1950 1951 if (DisassembleAsELFData) { 1952 dumpELFData(SectionAddr, Index, End, Bytes); 1953 Index = End; 1954 continue; 1955 } 1956 1957 // Skip relocations from symbols that are not dumped. 1958 for (; RelCur != RelEnd; ++RelCur) { 1959 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1960 if (Index <= Offset) 1961 break; 1962 } 1963 1964 bool DumpARMELFData = false; 1965 bool DumpTracebackTableForXCOFFFunction = 1966 Obj.isXCOFF() && Section.isText() && TracebackTable && 1967 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && 1968 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); 1969 1970 formatted_raw_ostream FOS(outs()); 1971 1972 // FIXME: Workaround for bug in formatted_raw_ostream. Color escape codes 1973 // are (incorrectly) written directly to the unbuffered raw_ostream 1974 // wrapped by the formatted_raw_ostream. 1975 if (DisassemblyColor == ColorOutput::Enable || 1976 DisassemblyColor == ColorOutput::Auto) 1977 FOS.SetUnbuffered(); 1978 1979 std::unordered_map<uint64_t, std::string> AllLabels; 1980 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1981 if (SymbolizeOperands) { 1982 collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(), 1983 DT->DisAsm.get(), DT->InstPrinter.get(), 1984 PrimaryTarget.SubtargetInfo.get(), 1985 SectionAddr, Index, End, AllLabels); 1986 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1987 BBAddrMapLabels); 1988 } 1989 1990 if (DT->InstrAnalysis) 1991 DT->InstrAnalysis->resetState(); 1992 1993 while (Index < End) { 1994 uint64_t RelOffset; 1995 1996 // ARM and AArch64 ELF binaries can interleave data and text in the 1997 // same section. We rely on the markers introduced to understand what 1998 // we need to dump. If the data marker is within a function, it is 1999 // denoted as a word/short etc. 2000 if (!MappingSymbols.empty()) { 2001 char Kind = getMappingSymbolKind(MappingSymbols, Index); 2002 DumpARMELFData = Kind == 'd'; 2003 if (SecondaryTarget) { 2004 if (Kind == 'a') { 2005 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; 2006 } else if (Kind == 't') { 2007 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; 2008 } 2009 } 2010 } else if (!CHPECodeMap.empty()) { 2011 uint64_t Address = SectionAddr + Index; 2012 auto It = partition_point( 2013 CHPECodeMap, 2014 [Address](const std::pair<uint64_t, uint64_t> &Entry) { 2015 return Entry.first <= Address; 2016 }); 2017 if (It != CHPECodeMap.begin() && Address < (It - 1)->second) { 2018 DT = &*SecondaryTarget; 2019 } else { 2020 DT = &PrimaryTarget; 2021 // X64 disassembler range may have left Index unaligned, so 2022 // make sure that it's aligned when we switch back to ARM64 2023 // code. 2024 Index = llvm::alignTo(Index, 4); 2025 if (Index >= End) 2026 break; 2027 } 2028 } 2029 2030 auto findRel = [&]() { 2031 while (RelCur != RelEnd) { 2032 RelOffset = RelCur->getOffset() - RelAdjustment; 2033 // If this relocation is hidden, skip it. 2034 if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) { 2035 ++RelCur; 2036 continue; 2037 } 2038 2039 // Stop when RelCur's offset is past the disassembled 2040 // instruction/data. 2041 if (RelOffset >= Index + Size) 2042 return false; 2043 if (RelOffset >= Index) 2044 return true; 2045 ++RelCur; 2046 } 2047 return false; 2048 }; 2049 2050 if (DumpARMELFData) { 2051 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 2052 MappingSymbols, *DT->SubtargetInfo, FOS); 2053 } else { 2054 // When -z or --disassemble-zeroes are given we always dissasemble 2055 // them. Otherwise we might want to skip zero bytes we see. 2056 if (!DisassembleZeroes) { 2057 uint64_t MaxOffset = End - Index; 2058 // For --reloc: print zero blocks patched by relocations, so that 2059 // relocations can be shown in the dump. 2060 if (InlineRelocs && RelCur != RelEnd) 2061 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 2062 MaxOffset); 2063 2064 if (size_t N = 2065 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 2066 FOS << "\t\t..." << '\n'; 2067 Index += N; 2068 continue; 2069 } 2070 } 2071 2072 if (DumpTracebackTableForXCOFFFunction && 2073 doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) { 2074 dumpTracebackTable(Bytes.slice(Index), 2075 SectionAddr + Index + VMAAdjustment, FOS, 2076 SectionAddr + End + VMAAdjustment, 2077 *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj)); 2078 Index = End; 2079 continue; 2080 } 2081 2082 // Print local label if there's any. 2083 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 2084 if (Iter1 != BBAddrMapLabels.end()) { 2085 for (StringRef Label : Iter1->second) 2086 FOS << "<" << Label << ">:\n"; 2087 } else { 2088 auto Iter2 = AllLabels.find(SectionAddr + Index); 2089 if (Iter2 != AllLabels.end()) 2090 FOS << "<" << Iter2->second << ">:\n"; 2091 } 2092 2093 // Disassemble a real instruction or a data when disassemble all is 2094 // provided 2095 MCInst Inst; 2096 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 2097 uint64_t ThisAddr = SectionAddr + Index; 2098 bool Disassembled = DT->DisAsm->getInstruction( 2099 Inst, Size, ThisBytes, ThisAddr, CommentStream); 2100 if (Size == 0) 2101 Size = std::min<uint64_t>( 2102 ThisBytes.size(), 2103 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 2104 2105 LVP.update({Index, Section.getIndex()}, 2106 {Index + Size, Section.getIndex()}, Index + Size != End); 2107 2108 DT->InstPrinter->setCommentStream(CommentStream); 2109 2110 DT->Printer->printInst( 2111 *DT->InstPrinter, Disassembled ? &Inst : nullptr, 2112 Bytes.slice(Index, Size), 2113 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 2114 "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP); 2115 2116 DT->InstPrinter->setCommentStream(llvm::nulls()); 2117 2118 // If disassembly succeeds, we try to resolve the target address 2119 // (jump target or memory operand address) and print it to the 2120 // right of the instruction. 2121 // 2122 // Otherwise, we don't print anything else so that we avoid 2123 // analyzing invalid or incomplete instruction information. 2124 if (Disassembled && DT->InstrAnalysis) { 2125 llvm::raw_ostream *TargetOS = &FOS; 2126 uint64_t Target; 2127 bool PrintTarget = DT->InstrAnalysis->evaluateBranch( 2128 Inst, SectionAddr + Index, Size, Target); 2129 2130 if (!PrintTarget) { 2131 if (std::optional<uint64_t> MaybeTarget = 2132 DT->InstrAnalysis->evaluateMemoryOperandAddress( 2133 Inst, DT->SubtargetInfo.get(), SectionAddr + Index, 2134 Size)) { 2135 Target = *MaybeTarget; 2136 PrintTarget = true; 2137 // Do not print real address when symbolizing. 2138 if (!SymbolizeOperands) { 2139 // Memory operand addresses are printed as comments. 2140 TargetOS = &CommentStream; 2141 *TargetOS << "0x" << Twine::utohexstr(Target); 2142 } 2143 } 2144 } 2145 2146 if (PrintTarget) { 2147 // In a relocatable object, the target's section must reside in 2148 // the same section as the call instruction or it is accessed 2149 // through a relocation. 2150 // 2151 // In a non-relocatable object, the target may be in any section. 2152 // In that case, locate the section(s) containing the target 2153 // address and find the symbol in one of those, if possible. 2154 // 2155 // N.B. Except for XCOFF, we don't walk the relocations in the 2156 // relocatable case yet. 2157 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 2158 if (!Obj.isRelocatableObject()) { 2159 auto It = llvm::partition_point( 2160 SectionAddresses, 2161 [=](const std::pair<uint64_t, SectionRef> &O) { 2162 return O.first <= Target; 2163 }); 2164 uint64_t TargetSecAddr = 0; 2165 while (It != SectionAddresses.begin()) { 2166 --It; 2167 if (TargetSecAddr == 0) 2168 TargetSecAddr = It->first; 2169 if (It->first != TargetSecAddr) 2170 break; 2171 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 2172 } 2173 } else { 2174 TargetSectionSymbols.push_back(&Symbols); 2175 } 2176 TargetSectionSymbols.push_back(&AbsoluteSymbols); 2177 2178 // Find the last symbol in the first candidate section whose 2179 // offset is less than or equal to the target. If there are no 2180 // such symbols, try in the next section and so on, before finally 2181 // using the nearest preceding absolute symbol (if any), if there 2182 // are no other valid symbols. 2183 const SymbolInfoTy *TargetSym = nullptr; 2184 for (const SectionSymbolsTy *TargetSymbols : 2185 TargetSectionSymbols) { 2186 auto It = llvm::partition_point( 2187 *TargetSymbols, 2188 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 2189 while (It != TargetSymbols->begin()) { 2190 --It; 2191 // Skip mapping symbols to avoid possible ambiguity as they 2192 // do not allow uniquely identifying the target address. 2193 if (!It->IsMappingSymbol) { 2194 TargetSym = &*It; 2195 break; 2196 } 2197 } 2198 if (TargetSym) 2199 break; 2200 } 2201 2202 // Branch targets are printed just after the instructions. 2203 // Print the labels corresponding to the target if there's any. 2204 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 2205 bool LabelAvailable = AllLabels.count(Target); 2206 2207 if (TargetSym != nullptr) { 2208 uint64_t TargetAddress = TargetSym->Addr; 2209 uint64_t Disp = Target - TargetAddress; 2210 std::string TargetName = Demangle ? demangle(TargetSym->Name) 2211 : TargetSym->Name.str(); 2212 bool RelFixedUp = false; 2213 SmallString<32> Val; 2214 2215 *TargetOS << " <"; 2216 // On XCOFF, we use relocations, even without -r, so we 2217 // can print the correct name for an extern function call. 2218 if (Obj.isXCOFF() && findRel()) { 2219 // Check for possible branch relocations and 2220 // branches to fixup code. 2221 bool BranchRelocationType = true; 2222 XCOFF::RelocationType RelocType; 2223 if (Obj.is64Bit()) { 2224 const XCOFFRelocation64 *Reloc = 2225 reinterpret_cast<XCOFFRelocation64 *>( 2226 RelCur->getRawDataRefImpl().p); 2227 RelFixedUp = Reloc->isFixupIndicated(); 2228 RelocType = Reloc->Type; 2229 } else { 2230 const XCOFFRelocation32 *Reloc = 2231 reinterpret_cast<XCOFFRelocation32 *>( 2232 RelCur->getRawDataRefImpl().p); 2233 RelFixedUp = Reloc->isFixupIndicated(); 2234 RelocType = Reloc->Type; 2235 } 2236 BranchRelocationType = 2237 RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR || 2238 RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR; 2239 2240 // If we have a valid relocation, try to print its 2241 // corresponding symbol name. Multiple relocations on the 2242 // same instruction are not handled. 2243 // Branches to fixup code will have the RelFixedUp flag set in 2244 // the RLD. For these instructions, we print the correct 2245 // branch target, but print the referenced symbol as a 2246 // comment. 2247 if (Error E = getRelocationValueString(*RelCur, false, Val)) { 2248 // If -r was used, this error will be printed later. 2249 // Otherwise, we ignore the error and print what 2250 // would have been printed without using relocations. 2251 consumeError(std::move(E)); 2252 *TargetOS << TargetName; 2253 RelFixedUp = false; // Suppress comment for RLD sym name 2254 } else if (BranchRelocationType && !RelFixedUp) 2255 *TargetOS << Val; 2256 else 2257 *TargetOS << TargetName; 2258 if (Disp) 2259 *TargetOS << "+0x" << Twine::utohexstr(Disp); 2260 } else if (!Disp) { 2261 *TargetOS << TargetName; 2262 } else if (BBAddrMapLabelAvailable) { 2263 *TargetOS << BBAddrMapLabels[Target].front(); 2264 } else if (LabelAvailable) { 2265 *TargetOS << AllLabels[Target]; 2266 } else { 2267 // Always Print the binary symbol plus an offset if there's no 2268 // local label corresponding to the target address. 2269 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 2270 } 2271 *TargetOS << ">"; 2272 if (RelFixedUp && !InlineRelocs) { 2273 // We have fixup code for a relocation. We print the 2274 // referenced symbol as a comment. 2275 *TargetOS << "\t# " << Val; 2276 } 2277 2278 } else if (BBAddrMapLabelAvailable) { 2279 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 2280 } else if (LabelAvailable) { 2281 *TargetOS << " <" << AllLabels[Target] << ">"; 2282 } 2283 // By convention, each record in the comment stream should be 2284 // terminated. 2285 if (TargetOS == &CommentStream) 2286 *TargetOS << "\n"; 2287 } 2288 2289 DT->InstrAnalysis->updateState(Inst, SectionAddr + Index); 2290 } else if (!Disassembled && DT->InstrAnalysis) { 2291 DT->InstrAnalysis->resetState(); 2292 } 2293 } 2294 2295 assert(DT->Context->getAsmInfo()); 2296 emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(), 2297 *DT->SubtargetInfo, CommentStream.str(), LVP); 2298 Comments.clear(); 2299 2300 if (BTF) 2301 printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP); 2302 2303 // Hexagon handles relocs in pretty printer 2304 if (InlineRelocs && Obj.getArch() != Triple::hexagon) { 2305 while (findRel()) { 2306 // When --adjust-vma is used, update the address printed. 2307 if (RelCur->getSymbol() != Obj.symbol_end()) { 2308 Expected<section_iterator> SymSI = 2309 RelCur->getSymbol()->getSection(); 2310 if (SymSI && *SymSI != Obj.section_end() && 2311 shouldAdjustVA(**SymSI)) 2312 RelOffset += AdjustVMA; 2313 } 2314 2315 printRelocation(FOS, Obj.getFileName(), *RelCur, 2316 SectionAddr + RelOffset, Is64Bits); 2317 LVP.printAfterOtherLine(FOS, true); 2318 ++RelCur; 2319 } 2320 } 2321 2322 Index += Size; 2323 } 2324 } 2325 } 2326 StringSet<> MissingDisasmSymbolSet = 2327 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 2328 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 2329 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 2330 } 2331 2332 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 2333 // If information useful for showing the disassembly is missing, try to find a 2334 // more complete binary and disassemble that instead. 2335 OwningBinary<Binary> FetchedBinary; 2336 if (Obj->symbols().empty()) { 2337 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2338 fetchBinaryByBuildID(*Obj)) { 2339 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2340 if (!O->symbols().empty() || 2341 (!O->sections().empty() && Obj->sections().empty())) { 2342 FetchedBinary = std::move(*FetchedBinaryOpt); 2343 Obj = O; 2344 } 2345 } 2346 } 2347 } 2348 2349 const Target *TheTarget = getTarget(Obj); 2350 2351 // Package up features to be passed to target/subtarget 2352 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2353 if (!FeaturesValue) 2354 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2355 SubtargetFeatures Features = *FeaturesValue; 2356 if (!MAttrs.empty()) { 2357 for (unsigned I = 0; I != MAttrs.size(); ++I) 2358 Features.AddFeature(MAttrs[I]); 2359 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2360 Features.AddFeature("+all"); 2361 } 2362 2363 if (MCPU.empty()) 2364 MCPU = Obj->tryGetCPUName().value_or("").str(); 2365 2366 if (isArmElf(*Obj)) { 2367 // When disassembling big-endian Arm ELF, the instruction endianness is 2368 // determined in a complex way. In relocatable objects, AAELF32 mandates 2369 // that instruction endianness matches the ELF file endianness; in 2370 // executable images, that's true unless the file header has the EF_ARM_BE8 2371 // flag, in which case instructions are little-endian regardless of data 2372 // endianness. 2373 // 2374 // We must set the big-endian-instructions SubtargetFeature to make the 2375 // disassembler read the instructions the right way round, and also tell 2376 // our own prettyprinter to retrieve the encodings the same way to print in 2377 // hex. 2378 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2379 2380 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2381 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2382 Features.AddFeature("+big-endian-instructions"); 2383 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big); 2384 } else { 2385 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little); 2386 } 2387 } 2388 2389 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); 2390 2391 // If we have an ARM object file, we need a second disassembler, because 2392 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2393 // We use mapping symbols to switch between the two assemblers, where 2394 // appropriate. 2395 std::optional<DisassemblerTarget> SecondaryTarget; 2396 2397 if (isArmElf(*Obj)) { 2398 if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) { 2399 if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode")) 2400 Features.AddFeature("-thumb-mode"); 2401 else 2402 Features.AddFeature("+thumb-mode"); 2403 SecondaryTarget.emplace(PrimaryTarget, Features); 2404 } 2405 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 2406 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 2407 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 2408 // Set up x86_64 disassembler for ARM64EC binaries. 2409 Triple X64Triple(TripleName); 2410 X64Triple.setArch(Triple::ArchType::x86_64); 2411 2412 std::string Error; 2413 const Target *X64Target = 2414 TargetRegistry::lookupTarget("", X64Triple, Error); 2415 if (X64Target) { 2416 SubtargetFeatures X64Features; 2417 SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "", 2418 X64Features); 2419 } else { 2420 reportWarning(Error, Obj->getFileName()); 2421 } 2422 } 2423 } 2424 2425 const ObjectFile *DbgObj = Obj; 2426 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2427 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2428 fetchBinaryByBuildID(*Obj)) { 2429 if (auto *FetchedObj = 2430 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2431 if (FetchedObj->hasDebugInfo()) { 2432 FetchedBinary = std::move(*DebugBinaryOpt); 2433 DbgObj = FetchedObj; 2434 } 2435 } 2436 } 2437 } 2438 2439 std::unique_ptr<object::Binary> DSYMBinary; 2440 std::unique_ptr<MemoryBuffer> DSYMBuf; 2441 if (!DbgObj->hasDebugInfo()) { 2442 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2443 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2444 DSYMBinary, DSYMBuf); 2445 if (!DbgObj) 2446 return; 2447 } 2448 } 2449 2450 SourcePrinter SP(DbgObj, TheTarget->getName()); 2451 2452 for (StringRef Opt : DisassemblerOptions) 2453 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) 2454 reportError(Obj->getFileName(), 2455 "Unrecognized disassembler option: " + Opt); 2456 2457 disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP, 2458 InlineRelocs); 2459 } 2460 2461 void Dumper::printRelocations() { 2462 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2463 2464 // Build a mapping from relocation target to a vector of relocation 2465 // sections. Usually, there is an only one relocation section for 2466 // each relocated section. 2467 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2468 uint64_t Ndx; 2469 for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) { 2470 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2471 continue; 2472 if (Section.relocation_begin() == Section.relocation_end()) 2473 continue; 2474 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2475 if (!SecOrErr) 2476 reportError(O.getFileName(), 2477 "section (" + Twine(Ndx) + 2478 "): unable to get a relocation target: " + 2479 toString(SecOrErr.takeError())); 2480 SecToRelSec[**SecOrErr].push_back(Section); 2481 } 2482 2483 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2484 StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName()); 2485 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2486 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); 2487 uint32_t TypePadding = 24; 2488 outs() << left_justify("OFFSET", OffsetPadding) << " " 2489 << left_justify("TYPE", TypePadding) << " " 2490 << "VALUE\n"; 2491 2492 for (SectionRef Section : P.second) { 2493 for (const RelocationRef &Reloc : Section.relocations()) { 2494 uint64_t Address = Reloc.getOffset(); 2495 SmallString<32> RelocName; 2496 SmallString<32> ValueStr; 2497 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2498 continue; 2499 Reloc.getTypeName(RelocName); 2500 if (Error E = 2501 getRelocationValueString(Reloc, SymbolDescription, ValueStr)) 2502 reportUniqueWarning(std::move(E)); 2503 2504 outs() << format(Fmt.data(), Address) << " " 2505 << left_justify(RelocName, TypePadding) << " " << ValueStr 2506 << "\n"; 2507 } 2508 } 2509 } 2510 } 2511 2512 // Returns true if we need to show LMA column when dumping section headers. We 2513 // show it only when the platform is ELF and either we have at least one section 2514 // whose VMA and LMA are different and/or when --show-lma flag is used. 2515 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2516 if (!Obj.isELF()) 2517 return false; 2518 for (const SectionRef &S : ToolSectionFilter(Obj)) 2519 if (S.getAddress() != getELFSectionLMA(S)) 2520 return true; 2521 return ShowLMA; 2522 } 2523 2524 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2525 // Default column width for names is 13 even if no names are that long. 2526 size_t MaxWidth = 13; 2527 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2528 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2529 MaxWidth = std::max(MaxWidth, Name.size()); 2530 } 2531 return MaxWidth; 2532 } 2533 2534 void objdump::printSectionHeaders(ObjectFile &Obj) { 2535 if (Obj.isELF() && Obj.sections().empty()) 2536 createFakeELFSections(Obj); 2537 2538 size_t NameWidth = getMaxSectionNameWidth(Obj); 2539 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2540 bool HasLMAColumn = shouldDisplayLMA(Obj); 2541 outs() << "\nSections:\n"; 2542 if (HasLMAColumn) 2543 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2544 << left_justify("VMA", AddressWidth) << " " 2545 << left_justify("LMA", AddressWidth) << " Type\n"; 2546 else 2547 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2548 << left_justify("VMA", AddressWidth) << " Type\n"; 2549 2550 uint64_t Idx; 2551 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2552 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2553 uint64_t VMA = Section.getAddress(); 2554 if (shouldAdjustVA(Section)) 2555 VMA += AdjustVMA; 2556 2557 uint64_t Size = Section.getSize(); 2558 2559 std::string Type = Section.isText() ? "TEXT" : ""; 2560 if (Section.isData()) 2561 Type += Type.empty() ? "DATA" : ", DATA"; 2562 if (Section.isBSS()) 2563 Type += Type.empty() ? "BSS" : ", BSS"; 2564 if (Section.isDebugSection()) 2565 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2566 2567 if (HasLMAColumn) 2568 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2569 Name.str().c_str(), Size) 2570 << format_hex_no_prefix(VMA, AddressWidth) << " " 2571 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2572 << " " << Type << "\n"; 2573 else 2574 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2575 Name.str().c_str(), Size) 2576 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2577 } 2578 } 2579 2580 void objdump::printSectionContents(const ObjectFile *Obj) { 2581 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2582 2583 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2584 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2585 uint64_t BaseAddr = Section.getAddress(); 2586 uint64_t Size = Section.getSize(); 2587 if (!Size) 2588 continue; 2589 2590 outs() << "Contents of section "; 2591 StringRef SegmentName = getSegmentName(MachO, Section); 2592 if (!SegmentName.empty()) 2593 outs() << SegmentName << ","; 2594 outs() << Name << ":\n"; 2595 if (Section.isBSS()) { 2596 outs() << format("<skipping contents of bss section at [%04" PRIx64 2597 ", %04" PRIx64 ")>\n", 2598 BaseAddr, BaseAddr + Size); 2599 continue; 2600 } 2601 2602 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2603 2604 // Dump out the content as hex and printable ascii characters. 2605 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2606 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2607 // Dump line of hex. 2608 for (std::size_t I = 0; I < 16; ++I) { 2609 if (I != 0 && I % 4 == 0) 2610 outs() << ' '; 2611 if (Addr + I < End) 2612 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2613 << hexdigit(Contents[Addr + I] & 0xF, true); 2614 else 2615 outs() << " "; 2616 } 2617 // Print ascii. 2618 outs() << " "; 2619 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2620 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2621 outs() << Contents[Addr + I]; 2622 else 2623 outs() << "."; 2624 } 2625 outs() << "\n"; 2626 } 2627 } 2628 } 2629 2630 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName, 2631 bool DumpDynamic) { 2632 if (O.isCOFF() && !DumpDynamic) { 2633 outs() << "\nSYMBOL TABLE:\n"; 2634 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2635 return; 2636 } 2637 2638 const StringRef FileName = O.getFileName(); 2639 2640 if (!DumpDynamic) { 2641 outs() << "\nSYMBOL TABLE:\n"; 2642 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2643 printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic); 2644 return; 2645 } 2646 2647 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2648 if (!O.isELF()) { 2649 reportWarning( 2650 "this operation is not currently supported for this file format", 2651 FileName); 2652 return; 2653 } 2654 2655 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2656 auto Symbols = ELF->getDynamicSymbolIterators(); 2657 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2658 ELF->readDynsymVersions(); 2659 if (!SymbolVersionsOrErr) { 2660 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2661 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2662 (void)!SymbolVersionsOrErr; 2663 } 2664 for (auto &Sym : Symbols) 2665 printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2666 ArchitectureName, DumpDynamic); 2667 } 2668 2669 void Dumper::printSymbol(const SymbolRef &Symbol, 2670 ArrayRef<VersionEntry> SymbolVersions, 2671 StringRef FileName, StringRef ArchiveName, 2672 StringRef ArchitectureName, bool DumpDynamic) { 2673 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2674 Expected<uint64_t> AddrOrErr = Symbol.getAddress(); 2675 if (!AddrOrErr) { 2676 reportUniqueWarning(AddrOrErr.takeError()); 2677 return; 2678 } 2679 uint64_t Address = *AddrOrErr; 2680 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 2681 if (SecI != O.section_end() && shouldAdjustVA(*SecI)) 2682 Address += AdjustVMA; 2683 if ((Address < StartAddress) || (Address > StopAddress)) 2684 return; 2685 SymbolRef::Type Type = 2686 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2687 uint32_t Flags = 2688 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2689 2690 // Don't ask a Mach-O STAB symbol for its section unless you know that 2691 // STAB symbol's section field refers to a valid section index. Otherwise 2692 // the symbol may error trying to load a section that does not exist. 2693 bool IsSTAB = false; 2694 if (MachO) { 2695 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2696 uint8_t NType = 2697 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2698 : MachO->getSymbolTableEntry(SymDRI).n_type); 2699 if (NType & MachO::N_STAB) 2700 IsSTAB = true; 2701 } 2702 section_iterator Section = IsSTAB 2703 ? O.section_end() 2704 : unwrapOrError(Symbol.getSection(), FileName, 2705 ArchiveName, ArchitectureName); 2706 2707 StringRef Name; 2708 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2709 if (Expected<StringRef> NameOrErr = Section->getName()) 2710 Name = *NameOrErr; 2711 else 2712 consumeError(NameOrErr.takeError()); 2713 2714 } else { 2715 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2716 ArchitectureName); 2717 } 2718 2719 bool Global = Flags & SymbolRef::SF_Global; 2720 bool Weak = Flags & SymbolRef::SF_Weak; 2721 bool Absolute = Flags & SymbolRef::SF_Absolute; 2722 bool Common = Flags & SymbolRef::SF_Common; 2723 bool Hidden = Flags & SymbolRef::SF_Hidden; 2724 2725 char GlobLoc = ' '; 2726 if ((Section != O.section_end() || Absolute) && !Weak) 2727 GlobLoc = Global ? 'g' : 'l'; 2728 char IFunc = ' '; 2729 if (O.isELF()) { 2730 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2731 IFunc = 'i'; 2732 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2733 GlobLoc = 'u'; 2734 } 2735 2736 char Debug = ' '; 2737 if (DumpDynamic) 2738 Debug = 'D'; 2739 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2740 Debug = 'd'; 2741 2742 char FileFunc = ' '; 2743 if (Type == SymbolRef::ST_File) 2744 FileFunc = 'f'; 2745 else if (Type == SymbolRef::ST_Function) 2746 FileFunc = 'F'; 2747 else if (Type == SymbolRef::ST_Data) 2748 FileFunc = 'O'; 2749 2750 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2751 2752 outs() << format(Fmt, Address) << " " 2753 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2754 << (Weak ? 'w' : ' ') // Weak? 2755 << ' ' // Constructor. Not supported yet. 2756 << ' ' // Warning. Not supported yet. 2757 << IFunc // Indirect reference to another symbol. 2758 << Debug // Debugging (d) or dynamic (D) symbol. 2759 << FileFunc // Name of function (F), file (f) or object (O). 2760 << ' '; 2761 if (Absolute) { 2762 outs() << "*ABS*"; 2763 } else if (Common) { 2764 outs() << "*COM*"; 2765 } else if (Section == O.section_end()) { 2766 if (O.isXCOFF()) { 2767 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2768 Symbol.getRawDataRefImpl()); 2769 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2770 outs() << "*DEBUG*"; 2771 else 2772 outs() << "*UND*"; 2773 } else 2774 outs() << "*UND*"; 2775 } else { 2776 StringRef SegmentName = getSegmentName(MachO, *Section); 2777 if (!SegmentName.empty()) 2778 outs() << SegmentName << ","; 2779 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2780 outs() << SectionName; 2781 if (O.isXCOFF()) { 2782 std::optional<SymbolRef> SymRef = 2783 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2784 if (SymRef) { 2785 2786 Expected<StringRef> NameOrErr = SymRef->getName(); 2787 2788 if (NameOrErr) { 2789 outs() << " (csect:"; 2790 std::string SymName = 2791 Demangle ? demangle(*NameOrErr) : NameOrErr->str(); 2792 2793 if (SymbolDescription) 2794 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2795 SymName); 2796 2797 outs() << ' ' << SymName; 2798 outs() << ") "; 2799 } else 2800 reportWarning(toString(NameOrErr.takeError()), FileName); 2801 } 2802 } 2803 } 2804 2805 if (Common) 2806 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2807 else if (O.isXCOFF()) 2808 outs() << '\t' 2809 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2810 Symbol.getRawDataRefImpl())); 2811 else if (O.isELF()) 2812 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2813 2814 if (O.isELF()) { 2815 if (!SymbolVersions.empty()) { 2816 const VersionEntry &Ver = 2817 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2818 std::string Str; 2819 if (!Ver.Name.empty()) 2820 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2821 outs() << ' ' << left_justify(Str, 12); 2822 } 2823 2824 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2825 switch (Other) { 2826 case ELF::STV_DEFAULT: 2827 break; 2828 case ELF::STV_INTERNAL: 2829 outs() << " .internal"; 2830 break; 2831 case ELF::STV_HIDDEN: 2832 outs() << " .hidden"; 2833 break; 2834 case ELF::STV_PROTECTED: 2835 outs() << " .protected"; 2836 break; 2837 default: 2838 outs() << format(" 0x%02x", Other); 2839 break; 2840 } 2841 } else if (Hidden) { 2842 outs() << " .hidden"; 2843 } 2844 2845 std::string SymName = Demangle ? demangle(Name) : Name.str(); 2846 if (O.isXCOFF() && SymbolDescription) 2847 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2848 2849 outs() << ' ' << SymName << '\n'; 2850 } 2851 2852 static void printUnwindInfo(const ObjectFile *O) { 2853 outs() << "Unwind info:\n\n"; 2854 2855 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2856 printCOFFUnwindInfo(Coff); 2857 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2858 printMachOUnwindInfo(MachO); 2859 else 2860 // TODO: Extract DWARF dump tool to objdump. 2861 WithColor::error(errs(), ToolName) 2862 << "This operation is only currently supported " 2863 "for COFF and MachO object files.\n"; 2864 } 2865 2866 /// Dump the raw contents of the __clangast section so the output can be piped 2867 /// into llvm-bcanalyzer. 2868 static void printRawClangAST(const ObjectFile *Obj) { 2869 if (outs().is_displayed()) { 2870 WithColor::error(errs(), ToolName) 2871 << "The -raw-clang-ast option will dump the raw binary contents of " 2872 "the clang ast section.\n" 2873 "Please redirect the output to a file or another program such as " 2874 "llvm-bcanalyzer.\n"; 2875 return; 2876 } 2877 2878 StringRef ClangASTSectionName("__clangast"); 2879 if (Obj->isCOFF()) { 2880 ClangASTSectionName = "clangast"; 2881 } 2882 2883 std::optional<object::SectionRef> ClangASTSection; 2884 for (auto Sec : ToolSectionFilter(*Obj)) { 2885 StringRef Name; 2886 if (Expected<StringRef> NameOrErr = Sec.getName()) 2887 Name = *NameOrErr; 2888 else 2889 consumeError(NameOrErr.takeError()); 2890 2891 if (Name == ClangASTSectionName) { 2892 ClangASTSection = Sec; 2893 break; 2894 } 2895 } 2896 if (!ClangASTSection) 2897 return; 2898 2899 StringRef ClangASTContents = 2900 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2901 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2902 } 2903 2904 static void printFaultMaps(const ObjectFile *Obj) { 2905 StringRef FaultMapSectionName; 2906 2907 if (Obj->isELF()) { 2908 FaultMapSectionName = ".llvm_faultmaps"; 2909 } else if (Obj->isMachO()) { 2910 FaultMapSectionName = "__llvm_faultmaps"; 2911 } else { 2912 WithColor::error(errs(), ToolName) 2913 << "This operation is only currently supported " 2914 "for ELF and Mach-O executable files.\n"; 2915 return; 2916 } 2917 2918 std::optional<object::SectionRef> FaultMapSection; 2919 2920 for (auto Sec : ToolSectionFilter(*Obj)) { 2921 StringRef Name; 2922 if (Expected<StringRef> NameOrErr = Sec.getName()) 2923 Name = *NameOrErr; 2924 else 2925 consumeError(NameOrErr.takeError()); 2926 2927 if (Name == FaultMapSectionName) { 2928 FaultMapSection = Sec; 2929 break; 2930 } 2931 } 2932 2933 outs() << "FaultMap table:\n"; 2934 2935 if (!FaultMapSection) { 2936 outs() << "<not found>\n"; 2937 return; 2938 } 2939 2940 StringRef FaultMapContents = 2941 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2942 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2943 FaultMapContents.bytes_end()); 2944 2945 outs() << FMP; 2946 } 2947 2948 void Dumper::printPrivateHeaders() { 2949 reportError(O.getFileName(), "Invalid/Unsupported object file format"); 2950 } 2951 2952 static void printFileHeaders(const ObjectFile *O) { 2953 if (!O->isELF() && !O->isCOFF()) 2954 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2955 2956 Triple::ArchType AT = O->getArch(); 2957 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2958 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2959 2960 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2961 outs() << "start address: " 2962 << "0x" << format(Fmt.data(), Address) << "\n"; 2963 } 2964 2965 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2966 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2967 if (!ModeOrErr) { 2968 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2969 consumeError(ModeOrErr.takeError()); 2970 return; 2971 } 2972 sys::fs::perms Mode = ModeOrErr.get(); 2973 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2974 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2975 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2976 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2977 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2978 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2979 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2980 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2981 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2982 2983 outs() << " "; 2984 2985 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2986 unwrapOrError(C.getGID(), Filename), 2987 unwrapOrError(C.getRawSize(), Filename)); 2988 2989 StringRef RawLastModified = C.getRawLastModified(); 2990 unsigned Seconds; 2991 if (RawLastModified.getAsInteger(10, Seconds)) 2992 outs() << "(date: \"" << RawLastModified 2993 << "\" contains non-decimal chars) "; 2994 else { 2995 // Since ctime(3) returns a 26 character string of the form: 2996 // "Sun Sep 16 01:03:52 1973\n\0" 2997 // just print 24 characters. 2998 time_t t = Seconds; 2999 outs() << format("%.24s ", ctime(&t)); 3000 } 3001 3002 StringRef Name = ""; 3003 Expected<StringRef> NameOrErr = C.getName(); 3004 if (!NameOrErr) { 3005 consumeError(NameOrErr.takeError()); 3006 Name = unwrapOrError(C.getRawName(), Filename); 3007 } else { 3008 Name = NameOrErr.get(); 3009 } 3010 outs() << Name << "\n"; 3011 } 3012 3013 // For ELF only now. 3014 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 3015 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 3016 if (Elf->getEType() != ELF::ET_REL) 3017 return true; 3018 } 3019 return false; 3020 } 3021 3022 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 3023 uint64_t Start, uint64_t Stop) { 3024 if (!shouldWarnForInvalidStartStopAddress(Obj)) 3025 return; 3026 3027 for (const SectionRef &Section : Obj->sections()) 3028 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 3029 uint64_t BaseAddr = Section.getAddress(); 3030 uint64_t Size = Section.getSize(); 3031 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 3032 return; 3033 } 3034 3035 if (!HasStartAddressFlag) 3036 reportWarning("no section has address less than 0x" + 3037 Twine::utohexstr(Stop) + " specified by --stop-address", 3038 Obj->getFileName()); 3039 else if (!HasStopAddressFlag) 3040 reportWarning("no section has address greater than or equal to 0x" + 3041 Twine::utohexstr(Start) + " specified by --start-address", 3042 Obj->getFileName()); 3043 else 3044 reportWarning("no section overlaps the range [0x" + 3045 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 3046 ") specified by --start-address/--stop-address", 3047 Obj->getFileName()); 3048 } 3049 3050 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 3051 const Archive::Child *C = nullptr) { 3052 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O); 3053 if (!DumperOrErr) { 3054 reportError(DumperOrErr.takeError(), O->getFileName(), 3055 A ? A->getFileName() : ""); 3056 return; 3057 } 3058 Dumper &D = **DumperOrErr; 3059 3060 // Avoid other output when using a raw option. 3061 if (!RawClangAST) { 3062 outs() << '\n'; 3063 if (A) 3064 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 3065 else 3066 outs() << O->getFileName(); 3067 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 3068 } 3069 3070 if (HasStartAddressFlag || HasStopAddressFlag) 3071 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 3072 3073 // TODO: Change print* free functions to Dumper member functions to utilitize 3074 // stateful functions like reportUniqueWarning. 3075 3076 // Note: the order here matches GNU objdump for compatability. 3077 StringRef ArchiveName = A ? A->getFileName() : ""; 3078 if (ArchiveHeaders && !MachOOpt && C) 3079 printArchiveChild(ArchiveName, *C); 3080 if (FileHeaders) 3081 printFileHeaders(O); 3082 if (PrivateHeaders || FirstPrivateHeader) 3083 D.printPrivateHeaders(); 3084 if (SectionHeaders) 3085 printSectionHeaders(*O); 3086 if (SymbolTable) 3087 D.printSymbolTable(ArchiveName); 3088 if (DynamicSymbolTable) 3089 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"", 3090 /*DumpDynamic=*/true); 3091 if (DwarfDumpType != DIDT_Null) { 3092 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 3093 // Dump the complete DWARF structure. 3094 DIDumpOptions DumpOpts; 3095 DumpOpts.DumpType = DwarfDumpType; 3096 DICtx->dump(outs(), DumpOpts); 3097 } 3098 if (Relocations && !Disassemble) 3099 D.printRelocations(); 3100 if (DynamicRelocations) 3101 D.printDynamicRelocations(); 3102 if (SectionContents) 3103 printSectionContents(O); 3104 if (Disassemble) 3105 disassembleObject(O, Relocations); 3106 if (UnwindInfo) 3107 printUnwindInfo(O); 3108 3109 // Mach-O specific options: 3110 if (ExportsTrie) 3111 printExportsTrie(O); 3112 if (Rebase) 3113 printRebaseTable(O); 3114 if (Bind) 3115 printBindTable(O); 3116 if (LazyBind) 3117 printLazyBindTable(O); 3118 if (WeakBind) 3119 printWeakBindTable(O); 3120 3121 // Other special sections: 3122 if (RawClangAST) 3123 printRawClangAST(O); 3124 if (FaultMapSection) 3125 printFaultMaps(O); 3126 if (Offloading) 3127 dumpOffloadBinary(*O); 3128 } 3129 3130 static void dumpObject(const COFFImportFile *I, const Archive *A, 3131 const Archive::Child *C = nullptr) { 3132 StringRef ArchiveName = A ? A->getFileName() : ""; 3133 3134 // Avoid other output when using a raw option. 3135 if (!RawClangAST) 3136 outs() << '\n' 3137 << ArchiveName << "(" << I->getFileName() << ")" 3138 << ":\tfile format COFF-import-file" 3139 << "\n\n"; 3140 3141 if (ArchiveHeaders && !MachOOpt && C) 3142 printArchiveChild(ArchiveName, *C); 3143 if (SymbolTable) 3144 printCOFFSymbolTable(*I); 3145 } 3146 3147 /// Dump each object file in \a a; 3148 static void dumpArchive(const Archive *A) { 3149 Error Err = Error::success(); 3150 unsigned I = -1; 3151 for (auto &C : A->children(Err)) { 3152 ++I; 3153 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 3154 if (!ChildOrErr) { 3155 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 3156 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 3157 continue; 3158 } 3159 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 3160 dumpObject(O, A, &C); 3161 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 3162 dumpObject(I, A, &C); 3163 else 3164 reportError(errorCodeToError(object_error::invalid_file_type), 3165 A->getFileName()); 3166 } 3167 if (Err) 3168 reportError(std::move(Err), A->getFileName()); 3169 } 3170 3171 /// Open file and figure out how to dump it. 3172 static void dumpInput(StringRef file) { 3173 // If we are using the Mach-O specific object file parser, then let it parse 3174 // the file and process the command line options. So the -arch flags can 3175 // be used to select specific slices, etc. 3176 if (MachOOpt) { 3177 parseInputMachO(file); 3178 return; 3179 } 3180 3181 // Attempt to open the binary. 3182 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 3183 Binary &Binary = *OBinary.getBinary(); 3184 3185 if (Archive *A = dyn_cast<Archive>(&Binary)) 3186 dumpArchive(A); 3187 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 3188 dumpObject(O); 3189 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 3190 parseInputMachO(UB); 3191 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 3192 dumpOffloadSections(*OB); 3193 else 3194 reportError(errorCodeToError(object_error::invalid_file_type), file); 3195 } 3196 3197 template <typename T> 3198 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 3199 T &Value) { 3200 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 3201 StringRef V(A->getValue()); 3202 if (!llvm::to_integer(V, Value, 0)) { 3203 reportCmdLineError(A->getSpelling() + 3204 ": expected a non-negative integer, but got '" + V + 3205 "'"); 3206 } 3207 } 3208 } 3209 3210 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 3211 StringRef V(A->getValue()); 3212 object::BuildID BID = parseBuildID(V); 3213 if (BID.empty()) 3214 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 3215 V + "'"); 3216 return BID; 3217 } 3218 3219 void objdump::invalidArgValue(const opt::Arg *A) { 3220 reportCmdLineError("'" + StringRef(A->getValue()) + 3221 "' is not a valid value for '" + A->getSpelling() + "'"); 3222 } 3223 3224 static std::vector<std::string> 3225 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 3226 std::vector<std::string> Values; 3227 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 3228 llvm::SmallVector<StringRef, 2> SplitValues; 3229 llvm::SplitString(Value, SplitValues, ","); 3230 for (StringRef SplitValue : SplitValues) 3231 Values.push_back(SplitValue.str()); 3232 } 3233 return Values; 3234 } 3235 3236 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 3237 MachOOpt = true; 3238 FullLeadingAddr = true; 3239 PrintImmHex = true; 3240 3241 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 3242 LinkOptHints = InputArgs.hasArg(OTOOL_C); 3243 if (InputArgs.hasArg(OTOOL_d)) 3244 FilterSections.push_back("__DATA,__data"); 3245 DylibId = InputArgs.hasArg(OTOOL_D); 3246 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 3247 DataInCode = InputArgs.hasArg(OTOOL_G); 3248 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 3249 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 3250 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 3251 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 3252 DylibsUsed = InputArgs.hasArg(OTOOL_L); 3253 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 3254 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 3255 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 3256 InfoPlist = InputArgs.hasArg(OTOOL_P); 3257 Relocations = InputArgs.hasArg(OTOOL_r); 3258 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 3259 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 3260 FilterSections.push_back(Filter); 3261 } 3262 if (InputArgs.hasArg(OTOOL_t)) 3263 FilterSections.push_back("__TEXT,__text"); 3264 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 3265 InputArgs.hasArg(OTOOL_o); 3266 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3267 if (InputArgs.hasArg(OTOOL_x)) 3268 FilterSections.push_back(",__text"); 3269 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3270 3271 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3272 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3273 3274 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3275 if (InputFilenames.empty()) 3276 reportCmdLineError("no input file"); 3277 3278 for (const Arg *A : InputArgs) { 3279 const Option &O = A->getOption(); 3280 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3281 reportCmdLineWarning(O.getPrefixedName() + 3282 " is obsolete and not implemented"); 3283 } 3284 } 3285 } 3286 3287 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3288 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3289 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3290 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3291 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3292 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3293 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3294 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3295 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3296 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table); 3297 DisassembleSymbols = 3298 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3299 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3300 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3301 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3302 .Case("frames", DIDT_DebugFrame) 3303 .Default(DIDT_Null); 3304 if (DwarfDumpType == DIDT_Null) 3305 invalidArgValue(A); 3306 } 3307 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3308 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3309 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3310 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3311 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3312 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3313 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3314 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3315 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3316 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3317 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3318 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3319 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3320 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3321 PrintImmHex = 3322 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3323 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3324 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3325 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3326 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3327 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3328 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3329 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3330 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3331 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3332 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3333 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3334 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3335 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3336 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3337 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3338 Wide = InputArgs.hasArg(OBJDUMP_wide); 3339 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3340 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3341 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3342 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3343 .Case("ascii", DVASCII) 3344 .Case("unicode", DVUnicode) 3345 .Default(DVInvalid); 3346 if (DbgVariables == DVInvalid) 3347 invalidArgValue(A); 3348 } 3349 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) { 3350 DisassemblyColor = StringSwitch<ColorOutput>(A->getValue()) 3351 .Case("on", ColorOutput::Enable) 3352 .Case("off", ColorOutput::Disable) 3353 .Case("terminal", ColorOutput::Auto) 3354 .Default(ColorOutput::Invalid); 3355 if (DisassemblyColor == ColorOutput::Invalid) 3356 invalidArgValue(A); 3357 } 3358 3359 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3360 3361 parseMachOOptions(InputArgs); 3362 3363 // Parse -M (--disassembler-options) and deprecated 3364 // --x86-asm-syntax={att,intel}. 3365 // 3366 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3367 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3368 // called too late. For now we have to use the internal cl::opt option. 3369 const char *AsmSyntax = nullptr; 3370 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3371 OBJDUMP_x86_asm_syntax_att, 3372 OBJDUMP_x86_asm_syntax_intel)) { 3373 switch (A->getOption().getID()) { 3374 case OBJDUMP_x86_asm_syntax_att: 3375 AsmSyntax = "--x86-asm-syntax=att"; 3376 continue; 3377 case OBJDUMP_x86_asm_syntax_intel: 3378 AsmSyntax = "--x86-asm-syntax=intel"; 3379 continue; 3380 } 3381 3382 SmallVector<StringRef, 2> Values; 3383 llvm::SplitString(A->getValue(), Values, ","); 3384 for (StringRef V : Values) { 3385 if (V == "att") 3386 AsmSyntax = "--x86-asm-syntax=att"; 3387 else if (V == "intel") 3388 AsmSyntax = "--x86-asm-syntax=intel"; 3389 else 3390 DisassemblerOptions.push_back(V.str()); 3391 } 3392 } 3393 SmallVector<const char *> Args = {"llvm-objdump"}; 3394 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm)) 3395 Args.push_back(A->getValue()); 3396 if (AsmSyntax) 3397 Args.push_back(AsmSyntax); 3398 if (Args.size() > 1) 3399 llvm::cl::ParseCommandLineOptions(Args.size(), Args.data()); 3400 3401 // Look up any provided build IDs, then append them to the input filenames. 3402 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3403 object::BuildID BuildID = parseBuildIDArg(A); 3404 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3405 if (!Path) { 3406 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3407 A->getValue() + "'"); 3408 } 3409 InputFilenames.push_back(std::move(*Path)); 3410 } 3411 3412 // objdump defaults to a.out if no filenames specified. 3413 if (InputFilenames.empty()) 3414 InputFilenames.push_back("a.out"); 3415 } 3416 3417 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) { 3418 using namespace llvm; 3419 3420 ToolName = argv[0]; 3421 std::unique_ptr<CommonOptTable> T; 3422 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3423 3424 StringRef Stem = sys::path::stem(ToolName); 3425 auto Is = [=](StringRef Tool) { 3426 // We need to recognize the following filenames: 3427 // 3428 // llvm-objdump -> objdump 3429 // llvm-otool-10.exe -> otool 3430 // powerpc64-unknown-freebsd13-objdump -> objdump 3431 auto I = Stem.rfind_insensitive(Tool); 3432 return I != StringRef::npos && 3433 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3434 }; 3435 if (Is("otool")) { 3436 T = std::make_unique<OtoolOptTable>(); 3437 Unknown = OTOOL_UNKNOWN; 3438 HelpFlag = OTOOL_help; 3439 HelpHiddenFlag = OTOOL_help_hidden; 3440 VersionFlag = OTOOL_version; 3441 } else { 3442 T = std::make_unique<ObjdumpOptTable>(); 3443 Unknown = OBJDUMP_UNKNOWN; 3444 HelpFlag = OBJDUMP_help; 3445 HelpHiddenFlag = OBJDUMP_help_hidden; 3446 VersionFlag = OBJDUMP_version; 3447 } 3448 3449 BumpPtrAllocator A; 3450 StringSaver Saver(A); 3451 opt::InputArgList InputArgs = 3452 T->parseArgs(argc, argv, Unknown, Saver, 3453 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3454 3455 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3456 T->printHelp(ToolName); 3457 return 0; 3458 } 3459 if (InputArgs.hasArg(HelpHiddenFlag)) { 3460 T->printHelp(ToolName, /*ShowHidden=*/true); 3461 return 0; 3462 } 3463 3464 // Initialize targets and assembly printers/parsers. 3465 InitializeAllTargetInfos(); 3466 InitializeAllTargetMCs(); 3467 InitializeAllDisassemblers(); 3468 3469 if (InputArgs.hasArg(VersionFlag)) { 3470 cl::PrintVersionMessage(); 3471 if (!Is("otool")) { 3472 outs() << '\n'; 3473 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3474 } 3475 return 0; 3476 } 3477 3478 // Initialize debuginfod. 3479 const bool ShouldUseDebuginfodByDefault = 3480 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3481 std::vector<std::string> DebugFileDirectories = 3482 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3483 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3484 ShouldUseDebuginfodByDefault)) { 3485 HTTPClient::initialize(); 3486 BIDFetcher = 3487 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3488 } else { 3489 BIDFetcher = 3490 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3491 } 3492 3493 if (Is("otool")) 3494 parseOtoolOptions(InputArgs); 3495 else 3496 parseObjdumpOptions(InputArgs); 3497 3498 if (StartAddress >= StopAddress) 3499 reportCmdLineError("start address should be less than stop address"); 3500 3501 // Removes trailing separators from prefix. 3502 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3503 Prefix.pop_back(); 3504 3505 if (AllHeaders) 3506 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3507 SectionHeaders = SymbolTable = true; 3508 3509 if (DisassembleAll || PrintSource || PrintLines || TracebackTable || 3510 !DisassembleSymbols.empty()) 3511 Disassemble = true; 3512 3513 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3514 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3515 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3516 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3517 !(MachOOpt && 3518 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3519 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3520 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3521 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3522 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3523 T->printHelp(ToolName); 3524 return 2; 3525 } 3526 3527 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3528 3529 llvm::for_each(InputFilenames, dumpInput); 3530 3531 warnOnNoMatchForSections(); 3532 3533 return EXIT_SUCCESS; 3534 } 3535