1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This program is a utility that works like binutils "objdump", that is, it 11 // dumps out a plethora of information about an object file depending on the 12 // flags. 13 // 14 // The flags and output of this program should be near identical to those of 15 // binutils objdump. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm-objdump.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringSet.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/FaultMaps.h" 26 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 27 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 28 #include "llvm/Demangle/Demangle.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 33 #include "llvm/MC/MCInst.h" 34 #include "llvm/MC/MCInstPrinter.h" 35 #include "llvm/MC/MCInstrAnalysis.h" 36 #include "llvm/MC/MCInstrInfo.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSubtargetInfo.h" 40 #include "llvm/Object/Archive.h" 41 #include "llvm/Object/COFF.h" 42 #include "llvm/Object/COFFImportFile.h" 43 #include "llvm/Object/ELFObjectFile.h" 44 #include "llvm/Object/MachO.h" 45 #include "llvm/Object/MachOUniversal.h" 46 #include "llvm/Object/ObjectFile.h" 47 #include "llvm/Object/Wasm.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/Errc.h" 52 #include "llvm/Support/FileSystem.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/GraphWriter.h" 55 #include "llvm/Support/Host.h" 56 #include "llvm/Support/InitLLVM.h" 57 #include "llvm/Support/MemoryBuffer.h" 58 #include "llvm/Support/SourceMgr.h" 59 #include "llvm/Support/StringSaver.h" 60 #include "llvm/Support/TargetRegistry.h" 61 #include "llvm/Support/TargetSelect.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include <algorithm> 64 #include <cctype> 65 #include <cstring> 66 #include <system_error> 67 #include <unordered_map> 68 #include <utility> 69 70 using namespace llvm; 71 using namespace object; 72 73 cl::opt<bool> 74 llvm::AllHeaders("all-headers", 75 cl::desc("Display all available header information")); 76 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 77 cl::aliasopt(AllHeaders)); 78 79 static cl::list<std::string> 80 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore); 81 82 cl::opt<bool> 83 llvm::Disassemble("disassemble", 84 cl::desc("Display assembler mnemonics for the machine instructions")); 85 static cl::alias 86 Disassembled("d", cl::desc("Alias for --disassemble"), 87 cl::aliasopt(Disassemble)); 88 89 cl::opt<bool> 90 llvm::DisassembleAll("disassemble-all", 91 cl::desc("Display assembler mnemonics for the machine instructions")); 92 static cl::alias 93 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"), 94 cl::aliasopt(DisassembleAll)); 95 96 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"), 97 cl::init(false)); 98 99 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 100 cl::aliasopt(llvm::Demangle)); 101 102 static cl::list<std::string> 103 DisassembleFunctions("df", 104 cl::CommaSeparated, 105 cl::desc("List of functions to disassemble")); 106 static StringSet<> DisasmFuncsSet; 107 108 cl::opt<bool> 109 llvm::Relocations("r", cl::desc("Display the relocation entries in the file")); 110 111 cl::opt<bool> 112 llvm::DynamicRelocations("dynamic-reloc", 113 cl::desc("Display the dynamic relocation entries in the file")); 114 static cl::alias 115 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"), 116 cl::aliasopt(DynamicRelocations)); 117 118 cl::opt<bool> 119 llvm::SectionContents("full-contents", 120 cl::desc("Display the content of each section")); 121 static cl::alias SectionContentsShort("s", 122 cl::desc("Alias for --full-contents"), 123 cl::aliasopt(SectionContents)); 124 125 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table")); 126 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), 127 cl::aliasopt(llvm::SymbolTable)); 128 129 cl::opt<bool> 130 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols")); 131 132 cl::opt<bool> 133 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info")); 134 135 cl::opt<bool> 136 llvm::Bind("bind", cl::desc("Display mach-o binding info")); 137 138 cl::opt<bool> 139 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info")); 140 141 cl::opt<bool> 142 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info")); 143 144 cl::opt<bool> 145 llvm::RawClangAST("raw-clang-ast", 146 cl::desc("Dump the raw binary contents of the clang AST section")); 147 148 static cl::opt<bool> 149 MachOOpt("macho", cl::desc("Use MachO specific object file parser")); 150 static cl::alias 151 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt)); 152 153 cl::opt<std::string> 154 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, " 155 "see -version for available targets")); 156 157 cl::opt<std::string> 158 llvm::MCPU("mcpu", 159 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 160 cl::value_desc("cpu-name"), 161 cl::init("")); 162 163 cl::opt<std::string> 164 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, " 165 "see -version for available targets")); 166 167 cl::opt<bool> 168 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the " 169 "headers for each section.")); 170 static cl::alias 171 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"), 172 cl::aliasopt(SectionHeaders)); 173 static cl::alias 174 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"), 175 cl::aliasopt(SectionHeaders)); 176 177 cl::list<std::string> 178 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. " 179 "With -macho dump segment,section")); 180 cl::alias 181 static FilterSectionsj("j", cl::desc("Alias for --section"), 182 cl::aliasopt(llvm::FilterSections)); 183 184 cl::list<std::string> 185 llvm::MAttrs("mattr", 186 cl::CommaSeparated, 187 cl::desc("Target specific attributes"), 188 cl::value_desc("a1,+a2,-a3,...")); 189 190 cl::opt<bool> 191 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling " 192 "instructions, do not print " 193 "the instruction bytes.")); 194 cl::opt<bool> 195 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address")); 196 197 cl::opt<bool> 198 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information")); 199 200 static cl::alias 201 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 202 cl::aliasopt(UnwindInfo)); 203 204 cl::opt<bool> 205 llvm::PrivateHeaders("private-headers", 206 cl::desc("Display format specific file headers")); 207 208 cl::opt<bool> 209 llvm::FirstPrivateHeader("private-header", 210 cl::desc("Display only the first format specific file " 211 "header")); 212 213 static cl::alias 214 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"), 215 cl::aliasopt(PrivateHeaders)); 216 217 cl::opt<bool> llvm::FileHeaders( 218 "file-headers", 219 cl::desc("Display the contents of the overall file header")); 220 221 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 222 cl::aliasopt(FileHeaders)); 223 224 cl::opt<bool> 225 llvm::ArchiveHeaders("archive-headers", 226 cl::desc("Display archive header information")); 227 228 cl::alias 229 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"), 230 cl::aliasopt(ArchiveHeaders)); 231 232 cl::opt<bool> 233 llvm::PrintImmHex("print-imm-hex", 234 cl::desc("Use hex format for immediate values")); 235 236 cl::opt<bool> PrintFaultMaps("fault-map-section", 237 cl::desc("Display contents of faultmap section")); 238 239 cl::opt<DIDumpType> llvm::DwarfDumpType( 240 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 241 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame"))); 242 243 cl::opt<bool> PrintSource( 244 "source", 245 cl::desc( 246 "Display source inlined with disassembly. Implies disassemble object")); 247 248 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 249 cl::aliasopt(PrintSource)); 250 251 cl::opt<bool> PrintLines("line-numbers", 252 cl::desc("Display source line numbers with " 253 "disassembly. Implies disassemble object")); 254 255 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"), 256 cl::aliasopt(PrintLines)); 257 258 cl::opt<unsigned long long> 259 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 260 cl::value_desc("address"), cl::init(0)); 261 cl::opt<unsigned long long> 262 StopAddress("stop-address", cl::desc("Stop disassembly at address"), 263 cl::value_desc("address"), cl::init(UINT64_MAX)); 264 static StringRef ToolName; 265 266 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy; 267 268 namespace { 269 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate; 270 271 class SectionFilterIterator { 272 public: 273 SectionFilterIterator(FilterPredicate P, 274 llvm::object::section_iterator const &I, 275 llvm::object::section_iterator const &E) 276 : Predicate(std::move(P)), Iterator(I), End(E) { 277 ScanPredicate(); 278 } 279 const llvm::object::SectionRef &operator*() const { return *Iterator; } 280 SectionFilterIterator &operator++() { 281 ++Iterator; 282 ScanPredicate(); 283 return *this; 284 } 285 bool operator!=(SectionFilterIterator const &Other) const { 286 return Iterator != Other.Iterator; 287 } 288 289 private: 290 void ScanPredicate() { 291 while (Iterator != End && !Predicate(*Iterator)) { 292 ++Iterator; 293 } 294 } 295 FilterPredicate Predicate; 296 llvm::object::section_iterator Iterator; 297 llvm::object::section_iterator End; 298 }; 299 300 class SectionFilter { 301 public: 302 SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O) 303 : Predicate(std::move(P)), Object(O) {} 304 SectionFilterIterator begin() { 305 return SectionFilterIterator(Predicate, Object.section_begin(), 306 Object.section_end()); 307 } 308 SectionFilterIterator end() { 309 return SectionFilterIterator(Predicate, Object.section_end(), 310 Object.section_end()); 311 } 312 313 private: 314 FilterPredicate Predicate; 315 llvm::object::ObjectFile const &Object; 316 }; 317 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) { 318 return SectionFilter( 319 [](llvm::object::SectionRef const &S) { 320 if (FilterSections.empty()) 321 return true; 322 llvm::StringRef String; 323 std::error_code error = S.getName(String); 324 if (error) 325 return false; 326 return is_contained(FilterSections, String); 327 }, 328 O); 329 } 330 } 331 332 void llvm::error(std::error_code EC) { 333 if (!EC) 334 return; 335 336 errs() << ToolName << ": error reading file: " << EC.message() << ".\n"; 337 errs().flush(); 338 exit(1); 339 } 340 341 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) { 342 errs() << ToolName << ": " << Message << ".\n"; 343 errs().flush(); 344 exit(1); 345 } 346 347 void llvm::warn(StringRef Message) { 348 errs() << ToolName << ": warning: " << Message << ".\n"; 349 errs().flush(); 350 } 351 352 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 353 Twine Message) { 354 errs() << ToolName << ": '" << File << "': " << Message << ".\n"; 355 exit(1); 356 } 357 358 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 359 std::error_code EC) { 360 assert(EC); 361 errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n"; 362 exit(1); 363 } 364 365 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File, 366 llvm::Error E) { 367 assert(E); 368 std::string Buf; 369 raw_string_ostream OS(Buf); 370 logAllUnhandledErrors(std::move(E), OS, ""); 371 OS.flush(); 372 errs() << ToolName << ": '" << File << "': " << Buf; 373 exit(1); 374 } 375 376 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, 377 StringRef FileName, 378 llvm::Error E, 379 StringRef ArchitectureName) { 380 assert(E); 381 errs() << ToolName << ": "; 382 if (ArchiveName != "") 383 errs() << ArchiveName << "(" << FileName << ")"; 384 else 385 errs() << "'" << FileName << "'"; 386 if (!ArchitectureName.empty()) 387 errs() << " (for architecture " << ArchitectureName << ")"; 388 std::string Buf; 389 raw_string_ostream OS(Buf); 390 logAllUnhandledErrors(std::move(E), OS, ""); 391 OS.flush(); 392 errs() << ": " << Buf; 393 exit(1); 394 } 395 396 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName, 397 const object::Archive::Child &C, 398 llvm::Error E, 399 StringRef ArchitectureName) { 400 Expected<StringRef> NameOrErr = C.getName(); 401 // TODO: if we have a error getting the name then it would be nice to print 402 // the index of which archive member this is and or its offset in the 403 // archive instead of "???" as the name. 404 if (!NameOrErr) { 405 consumeError(NameOrErr.takeError()); 406 llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName); 407 } else 408 llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E), 409 ArchitectureName); 410 } 411 412 static const Target *getTarget(const ObjectFile *Obj = nullptr) { 413 // Figure out the target triple. 414 llvm::Triple TheTriple("unknown-unknown-unknown"); 415 if (TripleName.empty()) { 416 if (Obj) { 417 TheTriple = Obj->makeTriple(); 418 } 419 } else { 420 TheTriple.setTriple(Triple::normalize(TripleName)); 421 422 // Use the triple, but also try to combine with ARM build attributes. 423 if (Obj) { 424 auto Arch = Obj->getArch(); 425 if (Arch == Triple::arm || Arch == Triple::armeb) { 426 Obj->setARMSubArch(TheTriple); 427 } 428 } 429 } 430 431 // Get the target specific parser. 432 std::string Error; 433 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 434 Error); 435 if (!TheTarget) { 436 if (Obj) 437 report_error(Obj->getFileName(), "can't find target: " + Error); 438 else 439 error("can't find target: " + Error); 440 } 441 442 // Update the triple name and return the found target. 443 TripleName = TheTriple.getTriple(); 444 return TheTarget; 445 } 446 447 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) { 448 return a.getOffset() < b.getOffset(); 449 } 450 451 template <class ELFT> 452 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj, 453 const RelocationRef &RelRef, 454 SmallVectorImpl<char> &Result) { 455 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 456 457 typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym; 458 typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr; 459 typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela; 460 461 const ELFFile<ELFT> &EF = *Obj->getELFFile(); 462 463 auto SecOrErr = EF.getSection(Rel.d.a); 464 if (!SecOrErr) 465 return errorToErrorCode(SecOrErr.takeError()); 466 const Elf_Shdr *Sec = *SecOrErr; 467 auto SymTabOrErr = EF.getSection(Sec->sh_link); 468 if (!SymTabOrErr) 469 return errorToErrorCode(SymTabOrErr.takeError()); 470 const Elf_Shdr *SymTab = *SymTabOrErr; 471 assert(SymTab->sh_type == ELF::SHT_SYMTAB || 472 SymTab->sh_type == ELF::SHT_DYNSYM); 473 auto StrTabSec = EF.getSection(SymTab->sh_link); 474 if (!StrTabSec) 475 return errorToErrorCode(StrTabSec.takeError()); 476 auto StrTabOrErr = EF.getStringTable(*StrTabSec); 477 if (!StrTabOrErr) 478 return errorToErrorCode(StrTabOrErr.takeError()); 479 StringRef StrTab = *StrTabOrErr; 480 int64_t addend = 0; 481 // If there is no Symbol associated with the relocation, we set the undef 482 // boolean value to 'true'. This will prevent us from calling functions that 483 // requires the relocation to be associated with a symbol. 484 bool undef = false; 485 switch (Sec->sh_type) { 486 default: 487 return object_error::parse_failed; 488 case ELF::SHT_REL: { 489 // TODO: Read implicit addend from section data. 490 break; 491 } 492 case ELF::SHT_RELA: { 493 const Elf_Rela *ERela = Obj->getRela(Rel); 494 addend = ERela->r_addend; 495 undef = ERela->getSymbol(false) == 0; 496 break; 497 } 498 } 499 StringRef Target; 500 if (!undef) { 501 symbol_iterator SI = RelRef.getSymbol(); 502 const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl()); 503 if (symb->getType() == ELF::STT_SECTION) { 504 Expected<section_iterator> SymSI = SI->getSection(); 505 if (!SymSI) 506 return errorToErrorCode(SymSI.takeError()); 507 const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl()); 508 auto SecName = EF.getSectionName(SymSec); 509 if (!SecName) 510 return errorToErrorCode(SecName.takeError()); 511 Target = *SecName; 512 } else { 513 Expected<StringRef> SymName = symb->getName(StrTab); 514 if (!SymName) 515 return errorToErrorCode(SymName.takeError()); 516 Target = *SymName; 517 } 518 } else 519 Target = "*ABS*"; 520 521 // Default scheme is to print Target, as well as "+ <addend>" for nonzero 522 // addend. Should be acceptable for all normal purposes. 523 std::string fmtbuf; 524 raw_string_ostream fmt(fmtbuf); 525 fmt << Target; 526 if (addend != 0) 527 fmt << (addend < 0 ? "" : "+") << addend; 528 fmt.flush(); 529 Result.append(fmtbuf.begin(), fmtbuf.end()); 530 return std::error_code(); 531 } 532 533 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj, 534 const RelocationRef &Rel, 535 SmallVectorImpl<char> &Result) { 536 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 537 return getRelocationValueString(ELF32LE, Rel, Result); 538 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 539 return getRelocationValueString(ELF64LE, Rel, Result); 540 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 541 return getRelocationValueString(ELF32BE, Rel, Result); 542 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 543 return getRelocationValueString(ELF64BE, Rel, Result); 544 } 545 546 static std::error_code getRelocationValueString(const COFFObjectFile *Obj, 547 const RelocationRef &Rel, 548 SmallVectorImpl<char> &Result) { 549 symbol_iterator SymI = Rel.getSymbol(); 550 Expected<StringRef> SymNameOrErr = SymI->getName(); 551 if (!SymNameOrErr) 552 return errorToErrorCode(SymNameOrErr.takeError()); 553 StringRef SymName = *SymNameOrErr; 554 Result.append(SymName.begin(), SymName.end()); 555 return std::error_code(); 556 } 557 558 static void printRelocationTargetName(const MachOObjectFile *O, 559 const MachO::any_relocation_info &RE, 560 raw_string_ostream &fmt) { 561 bool IsScattered = O->isRelocationScattered(RE); 562 563 // Target of a scattered relocation is an address. In the interest of 564 // generating pretty output, scan through the symbol table looking for a 565 // symbol that aligns with that address. If we find one, print it. 566 // Otherwise, we just print the hex address of the target. 567 if (IsScattered) { 568 uint32_t Val = O->getPlainRelocationSymbolNum(RE); 569 570 for (const SymbolRef &Symbol : O->symbols()) { 571 std::error_code ec; 572 Expected<uint64_t> Addr = Symbol.getAddress(); 573 if (!Addr) 574 report_error(O->getFileName(), Addr.takeError()); 575 if (*Addr != Val) 576 continue; 577 Expected<StringRef> Name = Symbol.getName(); 578 if (!Name) 579 report_error(O->getFileName(), Name.takeError()); 580 fmt << *Name; 581 return; 582 } 583 584 // If we couldn't find a symbol that this relocation refers to, try 585 // to find a section beginning instead. 586 for (const SectionRef &Section : ToolSectionFilter(*O)) { 587 std::error_code ec; 588 589 StringRef Name; 590 uint64_t Addr = Section.getAddress(); 591 if (Addr != Val) 592 continue; 593 if ((ec = Section.getName(Name))) 594 report_error(O->getFileName(), ec); 595 fmt << Name; 596 return; 597 } 598 599 fmt << format("0x%x", Val); 600 return; 601 } 602 603 StringRef S; 604 bool isExtern = O->getPlainRelocationExternal(RE); 605 uint64_t Val = O->getPlainRelocationSymbolNum(RE); 606 607 if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) { 608 fmt << format("0x%0" PRIx64, Val); 609 return; 610 } else if (isExtern) { 611 symbol_iterator SI = O->symbol_begin(); 612 advance(SI, Val); 613 Expected<StringRef> SOrErr = SI->getName(); 614 if (!SOrErr) 615 report_error(O->getFileName(), SOrErr.takeError()); 616 S = *SOrErr; 617 } else { 618 section_iterator SI = O->section_begin(); 619 // Adjust for the fact that sections are 1-indexed. 620 if (Val == 0) { 621 fmt << "0 (?,?)"; 622 return; 623 } 624 uint32_t i = Val - 1; 625 while (i != 0 && SI != O->section_end()) { 626 i--; 627 advance(SI, 1); 628 } 629 if (SI == O->section_end()) 630 fmt << Val << " (?,?)"; 631 else 632 SI->getName(S); 633 } 634 635 fmt << S; 636 } 637 638 static std::error_code getRelocationValueString(const WasmObjectFile *Obj, 639 const RelocationRef &RelRef, 640 SmallVectorImpl<char> &Result) { 641 const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef); 642 symbol_iterator SI = RelRef.getSymbol(); 643 std::string fmtbuf; 644 raw_string_ostream fmt(fmtbuf); 645 if (SI == Obj->symbol_end()) { 646 // Not all wasm relocations have symbols associated with them. 647 // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB. 648 fmt << Rel.Index; 649 } else { 650 Expected<StringRef> SymNameOrErr = SI->getName(); 651 if (!SymNameOrErr) 652 return errorToErrorCode(SymNameOrErr.takeError()); 653 StringRef SymName = *SymNameOrErr; 654 Result.append(SymName.begin(), SymName.end()); 655 } 656 fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend; 657 fmt.flush(); 658 Result.append(fmtbuf.begin(), fmtbuf.end()); 659 return std::error_code(); 660 } 661 662 static std::error_code getRelocationValueString(const MachOObjectFile *Obj, 663 const RelocationRef &RelRef, 664 SmallVectorImpl<char> &Result) { 665 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 666 MachO::any_relocation_info RE = Obj->getRelocation(Rel); 667 668 unsigned Arch = Obj->getArch(); 669 670 std::string fmtbuf; 671 raw_string_ostream fmt(fmtbuf); 672 unsigned Type = Obj->getAnyRelocationType(RE); 673 bool IsPCRel = Obj->getAnyRelocationPCRel(RE); 674 675 // Determine any addends that should be displayed with the relocation. 676 // These require decoding the relocation type, which is triple-specific. 677 678 // X86_64 has entirely custom relocation types. 679 if (Arch == Triple::x86_64) { 680 bool isPCRel = Obj->getAnyRelocationPCRel(RE); 681 682 switch (Type) { 683 case MachO::X86_64_RELOC_GOT_LOAD: 684 case MachO::X86_64_RELOC_GOT: { 685 printRelocationTargetName(Obj, RE, fmt); 686 fmt << "@GOT"; 687 if (isPCRel) 688 fmt << "PCREL"; 689 break; 690 } 691 case MachO::X86_64_RELOC_SUBTRACTOR: { 692 DataRefImpl RelNext = Rel; 693 Obj->moveRelocationNext(RelNext); 694 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 695 696 // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type 697 // X86_64_RELOC_UNSIGNED. 698 // NOTE: Scattered relocations don't exist on x86_64. 699 unsigned RType = Obj->getAnyRelocationType(RENext); 700 if (RType != MachO::X86_64_RELOC_UNSIGNED) 701 report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after " 702 "X86_64_RELOC_SUBTRACTOR."); 703 704 // The X86_64_RELOC_UNSIGNED contains the minuend symbol; 705 // X86_64_RELOC_SUBTRACTOR contains the subtrahend. 706 printRelocationTargetName(Obj, RENext, fmt); 707 fmt << "-"; 708 printRelocationTargetName(Obj, RE, fmt); 709 break; 710 } 711 case MachO::X86_64_RELOC_TLV: 712 printRelocationTargetName(Obj, RE, fmt); 713 fmt << "@TLV"; 714 if (isPCRel) 715 fmt << "P"; 716 break; 717 case MachO::X86_64_RELOC_SIGNED_1: 718 printRelocationTargetName(Obj, RE, fmt); 719 fmt << "-1"; 720 break; 721 case MachO::X86_64_RELOC_SIGNED_2: 722 printRelocationTargetName(Obj, RE, fmt); 723 fmt << "-2"; 724 break; 725 case MachO::X86_64_RELOC_SIGNED_4: 726 printRelocationTargetName(Obj, RE, fmt); 727 fmt << "-4"; 728 break; 729 default: 730 printRelocationTargetName(Obj, RE, fmt); 731 break; 732 } 733 // X86 and ARM share some relocation types in common. 734 } else if (Arch == Triple::x86 || Arch == Triple::arm || 735 Arch == Triple::ppc) { 736 // Generic relocation types... 737 switch (Type) { 738 case MachO::GENERIC_RELOC_PAIR: // prints no info 739 return std::error_code(); 740 case MachO::GENERIC_RELOC_SECTDIFF: { 741 DataRefImpl RelNext = Rel; 742 Obj->moveRelocationNext(RelNext); 743 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 744 745 // X86 sect diff's must be followed by a relocation of type 746 // GENERIC_RELOC_PAIR. 747 unsigned RType = Obj->getAnyRelocationType(RENext); 748 749 if (RType != MachO::GENERIC_RELOC_PAIR) 750 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " 751 "GENERIC_RELOC_SECTDIFF."); 752 753 printRelocationTargetName(Obj, RE, fmt); 754 fmt << "-"; 755 printRelocationTargetName(Obj, RENext, fmt); 756 break; 757 } 758 } 759 760 if (Arch == Triple::x86 || Arch == Triple::ppc) { 761 switch (Type) { 762 case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: { 763 DataRefImpl RelNext = Rel; 764 Obj->moveRelocationNext(RelNext); 765 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 766 767 // X86 sect diff's must be followed by a relocation of type 768 // GENERIC_RELOC_PAIR. 769 unsigned RType = Obj->getAnyRelocationType(RENext); 770 if (RType != MachO::GENERIC_RELOC_PAIR) 771 report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after " 772 "GENERIC_RELOC_LOCAL_SECTDIFF."); 773 774 printRelocationTargetName(Obj, RE, fmt); 775 fmt << "-"; 776 printRelocationTargetName(Obj, RENext, fmt); 777 break; 778 } 779 case MachO::GENERIC_RELOC_TLV: { 780 printRelocationTargetName(Obj, RE, fmt); 781 fmt << "@TLV"; 782 if (IsPCRel) 783 fmt << "P"; 784 break; 785 } 786 default: 787 printRelocationTargetName(Obj, RE, fmt); 788 } 789 } else { // ARM-specific relocations 790 switch (Type) { 791 case MachO::ARM_RELOC_HALF: 792 case MachO::ARM_RELOC_HALF_SECTDIFF: { 793 // Half relocations steal a bit from the length field to encode 794 // whether this is an upper16 or a lower16 relocation. 795 bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1; 796 797 if (isUpper) 798 fmt << ":upper16:("; 799 else 800 fmt << ":lower16:("; 801 printRelocationTargetName(Obj, RE, fmt); 802 803 DataRefImpl RelNext = Rel; 804 Obj->moveRelocationNext(RelNext); 805 MachO::any_relocation_info RENext = Obj->getRelocation(RelNext); 806 807 // ARM half relocs must be followed by a relocation of type 808 // ARM_RELOC_PAIR. 809 unsigned RType = Obj->getAnyRelocationType(RENext); 810 if (RType != MachO::ARM_RELOC_PAIR) 811 report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after " 812 "ARM_RELOC_HALF"); 813 814 // NOTE: The half of the target virtual address is stashed in the 815 // address field of the secondary relocation, but we can't reverse 816 // engineer the constant offset from it without decoding the movw/movt 817 // instruction to find the other half in its immediate field. 818 819 // ARM_RELOC_HALF_SECTDIFF encodes the second section in the 820 // symbol/section pointer of the follow-on relocation. 821 if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) { 822 fmt << "-"; 823 printRelocationTargetName(Obj, RENext, fmt); 824 } 825 826 fmt << ")"; 827 break; 828 } 829 default: { printRelocationTargetName(Obj, RE, fmt); } 830 } 831 } 832 } else 833 printRelocationTargetName(Obj, RE, fmt); 834 835 fmt.flush(); 836 Result.append(fmtbuf.begin(), fmtbuf.end()); 837 return std::error_code(); 838 } 839 840 static std::error_code getRelocationValueString(const RelocationRef &Rel, 841 SmallVectorImpl<char> &Result) { 842 const ObjectFile *Obj = Rel.getObject(); 843 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 844 return getRelocationValueString(ELF, Rel, Result); 845 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 846 return getRelocationValueString(COFF, Rel, Result); 847 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 848 return getRelocationValueString(Wasm, Rel, Result); 849 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 850 return getRelocationValueString(MachO, Rel, Result); 851 llvm_unreachable("unknown object file format"); 852 } 853 854 /// Indicates whether this relocation should hidden when listing 855 /// relocations, usually because it is the trailing part of a multipart 856 /// relocation that will be printed as part of the leading relocation. 857 static bool getHidden(RelocationRef RelRef) { 858 const ObjectFile *Obj = RelRef.getObject(); 859 auto *MachO = dyn_cast<MachOObjectFile>(Obj); 860 if (!MachO) 861 return false; 862 863 unsigned Arch = MachO->getArch(); 864 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 865 uint64_t Type = MachO->getRelocationType(Rel); 866 867 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 868 // is always hidden. 869 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) { 870 if (Type == MachO::GENERIC_RELOC_PAIR) 871 return true; 872 } else if (Arch == Triple::x86_64) { 873 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 874 // an X86_64_RELOC_SUBTRACTOR. 875 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 876 DataRefImpl RelPrev = Rel; 877 RelPrev.d.a--; 878 uint64_t PrevType = MachO->getRelocationType(RelPrev); 879 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 880 return true; 881 } 882 } 883 884 return false; 885 } 886 887 namespace { 888 class SourcePrinter { 889 protected: 890 DILineInfo OldLineInfo; 891 const ObjectFile *Obj = nullptr; 892 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 893 // File name to file contents of source 894 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 895 // Mark the line endings of the cached source 896 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 897 898 private: 899 bool cacheSource(const DILineInfo& LineInfoFile); 900 901 public: 902 SourcePrinter() = default; 903 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) { 904 symbolize::LLVMSymbolizer::Options SymbolizerOpts( 905 DILineInfoSpecifier::FunctionNameKind::None, true, false, false, 906 DefaultArch); 907 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 908 } 909 virtual ~SourcePrinter() = default; 910 virtual void printSourceLine(raw_ostream &OS, uint64_t Address, 911 StringRef Delimiter = "; "); 912 }; 913 914 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 915 std::unique_ptr<MemoryBuffer> Buffer; 916 if (LineInfo.Source) { 917 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 918 } else { 919 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 920 if (!BufferOrError) 921 return false; 922 Buffer = std::move(*BufferOrError); 923 } 924 // Chomp the file to get lines 925 size_t BufferSize = Buffer->getBufferSize(); 926 const char *BufferStart = Buffer->getBufferStart(); 927 for (const char *Start = BufferStart, *End = BufferStart; 928 End < BufferStart + BufferSize; End++) 929 if (*End == '\n' || End == BufferStart + BufferSize - 1 || 930 (*End == '\r' && *(End + 1) == '\n')) { 931 LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start)); 932 if (*End == '\r') 933 End++; 934 Start = End + 1; 935 } 936 SourceCache[LineInfo.FileName] = std::move(Buffer); 937 return true; 938 } 939 940 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address, 941 StringRef Delimiter) { 942 if (!Symbolizer) 943 return; 944 DILineInfo LineInfo = DILineInfo(); 945 auto ExpectecLineInfo = 946 Symbolizer->symbolizeCode(Obj->getFileName(), Address); 947 if (!ExpectecLineInfo) 948 consumeError(ExpectecLineInfo.takeError()); 949 else 950 LineInfo = *ExpectecLineInfo; 951 952 if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line || 953 LineInfo.Line == 0) 954 return; 955 956 if (PrintLines) 957 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n"; 958 if (PrintSource) { 959 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 960 if (!cacheSource(LineInfo)) 961 return; 962 auto FileBuffer = SourceCache.find(LineInfo.FileName); 963 if (FileBuffer != SourceCache.end()) { 964 auto LineBuffer = LineCache.find(LineInfo.FileName); 965 if (LineBuffer != LineCache.end()) { 966 if (LineInfo.Line > LineBuffer->second.size()) 967 return; 968 // Vector begins at 0, line numbers are non-zero 969 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim() 970 << "\n"; 971 } 972 } 973 } 974 OldLineInfo = LineInfo; 975 } 976 977 static bool isArmElf(const ObjectFile *Obj) { 978 return (Obj->isELF() && 979 (Obj->getArch() == Triple::aarch64 || 980 Obj->getArch() == Triple::aarch64_be || 981 Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb || 982 Obj->getArch() == Triple::thumb || 983 Obj->getArch() == Triple::thumbeb)); 984 } 985 986 class PrettyPrinter { 987 public: 988 virtual ~PrettyPrinter() = default; 989 virtual void printInst(MCInstPrinter &IP, const MCInst *MI, 990 ArrayRef<uint8_t> Bytes, uint64_t Address, 991 raw_ostream &OS, StringRef Annot, 992 MCSubtargetInfo const &STI, SourcePrinter *SP, 993 std::vector<RelocationRef> *Rels = nullptr) { 994 if (SP && (PrintSource || PrintLines)) 995 SP->printSourceLine(OS, Address); 996 if (!NoLeadingAddr) 997 OS << format("%8" PRIx64 ":", Address); 998 if (!NoShowRawInsn) { 999 OS << "\t"; 1000 dumpBytes(Bytes, OS); 1001 } 1002 if (MI) 1003 IP.printInst(MI, OS, "", STI); 1004 else 1005 OS << " <unknown>"; 1006 } 1007 }; 1008 PrettyPrinter PrettyPrinterInst; 1009 class HexagonPrettyPrinter : public PrettyPrinter { 1010 public: 1011 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 1012 raw_ostream &OS) { 1013 uint32_t opcode = 1014 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 1015 if (!NoLeadingAddr) 1016 OS << format("%8" PRIx64 ":", Address); 1017 if (!NoShowRawInsn) { 1018 OS << "\t"; 1019 dumpBytes(Bytes.slice(0, 4), OS); 1020 OS << format("%08" PRIx32, opcode); 1021 } 1022 } 1023 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1024 uint64_t Address, raw_ostream &OS, StringRef Annot, 1025 MCSubtargetInfo const &STI, SourcePrinter *SP, 1026 std::vector<RelocationRef> *Rels) override { 1027 if (SP && (PrintSource || PrintLines)) 1028 SP->printSourceLine(OS, Address, ""); 1029 if (!MI) { 1030 printLead(Bytes, Address, OS); 1031 OS << " <unknown>"; 1032 return; 1033 } 1034 std::string Buffer; 1035 { 1036 raw_string_ostream TempStream(Buffer); 1037 IP.printInst(MI, TempStream, "", STI); 1038 } 1039 StringRef Contents(Buffer); 1040 // Split off bundle attributes 1041 auto PacketBundle = Contents.rsplit('\n'); 1042 // Split off first instruction from the rest 1043 auto HeadTail = PacketBundle.first.split('\n'); 1044 auto Preamble = " { "; 1045 auto Separator = ""; 1046 StringRef Fmt = "\t\t\t%08" PRIx64 ": "; 1047 std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin(); 1048 std::vector<RelocationRef>::const_iterator rel_end = Rels->end(); 1049 1050 // Hexagon's packets require relocations to be inline rather than 1051 // clustered at the end of the packet. 1052 auto PrintReloc = [&]() -> void { 1053 while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) { 1054 if (rel_cur->getOffset() == Address) { 1055 SmallString<16> name; 1056 SmallString<32> val; 1057 rel_cur->getTypeName(name); 1058 error(getRelocationValueString(*rel_cur, val)); 1059 OS << Separator << format(Fmt.data(), Address) << name << "\t" << val 1060 << "\n"; 1061 return; 1062 } 1063 rel_cur++; 1064 } 1065 }; 1066 1067 while(!HeadTail.first.empty()) { 1068 OS << Separator; 1069 Separator = "\n"; 1070 if (SP && (PrintSource || PrintLines)) 1071 SP->printSourceLine(OS, Address, ""); 1072 printLead(Bytes, Address, OS); 1073 OS << Preamble; 1074 Preamble = " "; 1075 StringRef Inst; 1076 auto Duplex = HeadTail.first.split('\v'); 1077 if(!Duplex.second.empty()){ 1078 OS << Duplex.first; 1079 OS << "; "; 1080 Inst = Duplex.second; 1081 } 1082 else 1083 Inst = HeadTail.first; 1084 OS << Inst; 1085 HeadTail = HeadTail.second.split('\n'); 1086 if (HeadTail.first.empty()) 1087 OS << " } " << PacketBundle.second; 1088 PrintReloc(); 1089 Bytes = Bytes.slice(4); 1090 Address += 4; 1091 } 1092 } 1093 }; 1094 HexagonPrettyPrinter HexagonPrettyPrinterInst; 1095 1096 class AMDGCNPrettyPrinter : public PrettyPrinter { 1097 public: 1098 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1099 uint64_t Address, raw_ostream &OS, StringRef Annot, 1100 MCSubtargetInfo const &STI, SourcePrinter *SP, 1101 std::vector<RelocationRef> *Rels) override { 1102 if (SP && (PrintSource || PrintLines)) 1103 SP->printSourceLine(OS, Address); 1104 1105 typedef support::ulittle32_t U32; 1106 1107 if (MI) { 1108 SmallString<40> InstStr; 1109 raw_svector_ostream IS(InstStr); 1110 1111 IP.printInst(MI, IS, "", STI); 1112 1113 OS << left_justify(IS.str(), 60); 1114 } else { 1115 // an unrecognized encoding - this is probably data so represent it 1116 // using the .long directive, or .byte directive if fewer than 4 bytes 1117 // remaining 1118 if (Bytes.size() >= 4) { 1119 OS << format("\t.long 0x%08" PRIx32 " ", 1120 static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data()))); 1121 OS.indent(42); 1122 } else { 1123 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 1124 for (unsigned int i = 1; i < Bytes.size(); i++) 1125 OS << format(", 0x%02" PRIx8, Bytes[i]); 1126 OS.indent(55 - (6 * Bytes.size())); 1127 } 1128 } 1129 1130 OS << format("// %012" PRIX64 ": ", Address); 1131 if (Bytes.size() >=4) { 1132 for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()), 1133 Bytes.size() / sizeof(U32))) 1134 // D should be explicitly casted to uint32_t here as it is passed 1135 // by format to snprintf as vararg. 1136 OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D)); 1137 } else { 1138 for (unsigned int i = 0; i < Bytes.size(); i++) 1139 OS << format("%02" PRIX8 " ", Bytes[i]); 1140 } 1141 1142 if (!Annot.empty()) 1143 OS << "// " << Annot; 1144 } 1145 }; 1146 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 1147 1148 class BPFPrettyPrinter : public PrettyPrinter { 1149 public: 1150 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1151 uint64_t Address, raw_ostream &OS, StringRef Annot, 1152 MCSubtargetInfo const &STI, SourcePrinter *SP, 1153 std::vector<RelocationRef> *Rels) override { 1154 if (SP && (PrintSource || PrintLines)) 1155 SP->printSourceLine(OS, Address); 1156 if (!NoLeadingAddr) 1157 OS << format("%8" PRId64 ":", Address / 8); 1158 if (!NoShowRawInsn) { 1159 OS << "\t"; 1160 dumpBytes(Bytes, OS); 1161 } 1162 if (MI) 1163 IP.printInst(MI, OS, "", STI); 1164 else 1165 OS << " <unknown>"; 1166 } 1167 }; 1168 BPFPrettyPrinter BPFPrettyPrinterInst; 1169 1170 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 1171 switch(Triple.getArch()) { 1172 default: 1173 return PrettyPrinterInst; 1174 case Triple::hexagon: 1175 return HexagonPrettyPrinterInst; 1176 case Triple::amdgcn: 1177 return AMDGCNPrettyPrinterInst; 1178 case Triple::bpfel: 1179 case Triple::bpfeb: 1180 return BPFPrettyPrinterInst; 1181 } 1182 } 1183 } 1184 1185 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 1186 assert(Obj->isELF()); 1187 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1188 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1189 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1190 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1191 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1192 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1193 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1194 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1195 llvm_unreachable("Unsupported binary format"); 1196 } 1197 1198 template <class ELFT> static void 1199 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 1200 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1201 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 1202 uint8_t SymbolType = Symbol.getELFType(); 1203 if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0) 1204 continue; 1205 1206 Expected<uint64_t> AddressOrErr = Symbol.getAddress(); 1207 if (!AddressOrErr) 1208 report_error(Obj->getFileName(), AddressOrErr.takeError()); 1209 uint64_t Address = *AddressOrErr; 1210 1211 Expected<StringRef> Name = Symbol.getName(); 1212 if (!Name) 1213 report_error(Obj->getFileName(), Name.takeError()); 1214 if (Name->empty()) 1215 continue; 1216 1217 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1218 if (!SectionOrErr) 1219 report_error(Obj->getFileName(), SectionOrErr.takeError()); 1220 section_iterator SecI = *SectionOrErr; 1221 if (SecI == Obj->section_end()) 1222 continue; 1223 1224 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); 1225 } 1226 } 1227 1228 static void 1229 addDynamicElfSymbols(const ObjectFile *Obj, 1230 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1231 assert(Obj->isELF()); 1232 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1233 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 1234 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1235 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 1236 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1237 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 1238 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1239 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 1240 else 1241 llvm_unreachable("Unsupported binary format"); 1242 } 1243 1244 static void addPltEntries(const ObjectFile *Obj, 1245 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1246 StringSaver &Saver) { 1247 Optional<SectionRef> Plt = None; 1248 for (const SectionRef &Section : Obj->sections()) { 1249 StringRef Name; 1250 if (Section.getName(Name)) 1251 continue; 1252 if (Name == ".plt") 1253 Plt = Section; 1254 } 1255 if (!Plt) 1256 return; 1257 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 1258 for (auto PltEntry : ElfObj->getPltAddresses()) { 1259 SymbolRef Symbol(PltEntry.first, ElfObj); 1260 1261 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1262 1263 Expected<StringRef> NameOrErr = Symbol.getName(); 1264 if (!NameOrErr) 1265 report_error(Obj->getFileName(), NameOrErr.takeError()); 1266 if (NameOrErr->empty()) 1267 continue; 1268 StringRef Name = Saver.save((*NameOrErr + "@plt").str()); 1269 1270 AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType); 1271 } 1272 } 1273 } 1274 1275 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1276 if (StartAddress > StopAddress) 1277 error("Start address should be less than stop address"); 1278 1279 const Target *TheTarget = getTarget(Obj); 1280 1281 // Package up features to be passed to target/subtarget 1282 SubtargetFeatures Features = Obj->getFeatures(); 1283 if (MAttrs.size()) { 1284 for (unsigned i = 0; i != MAttrs.size(); ++i) 1285 Features.AddFeature(MAttrs[i]); 1286 } 1287 1288 std::unique_ptr<const MCRegisterInfo> MRI( 1289 TheTarget->createMCRegInfo(TripleName)); 1290 if (!MRI) 1291 report_error(Obj->getFileName(), "no register info for target " + 1292 TripleName); 1293 1294 // Set up disassembler. 1295 std::unique_ptr<const MCAsmInfo> AsmInfo( 1296 TheTarget->createMCAsmInfo(*MRI, TripleName)); 1297 if (!AsmInfo) 1298 report_error(Obj->getFileName(), "no assembly info for target " + 1299 TripleName); 1300 std::unique_ptr<const MCSubtargetInfo> STI( 1301 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1302 if (!STI) 1303 report_error(Obj->getFileName(), "no subtarget info for target " + 1304 TripleName); 1305 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1306 if (!MII) 1307 report_error(Obj->getFileName(), "no instruction info for target " + 1308 TripleName); 1309 MCObjectFileInfo MOFI; 1310 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 1311 // FIXME: for now initialize MCObjectFileInfo with default values 1312 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 1313 1314 std::unique_ptr<MCDisassembler> DisAsm( 1315 TheTarget->createMCDisassembler(*STI, Ctx)); 1316 if (!DisAsm) 1317 report_error(Obj->getFileName(), "no disassembler for target " + 1318 TripleName); 1319 1320 std::unique_ptr<const MCInstrAnalysis> MIA( 1321 TheTarget->createMCInstrAnalysis(MII.get())); 1322 1323 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1324 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1325 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1326 if (!IP) 1327 report_error(Obj->getFileName(), "no instruction printer for target " + 1328 TripleName); 1329 IP->setPrintImmHex(PrintImmHex); 1330 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1331 1332 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ": " : 1333 "\t\t\t%08" PRIx64 ": "; 1334 1335 SourcePrinter SP(Obj, TheTarget->getName()); 1336 1337 // Create a mapping, RelocSecs = SectionRelocMap[S], where sections 1338 // in RelocSecs contain the relocations for section S. 1339 std::error_code EC; 1340 std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap; 1341 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1342 section_iterator Sec2 = Section.getRelocatedSection(); 1343 if (Sec2 != Obj->section_end()) 1344 SectionRelocMap[*Sec2].push_back(Section); 1345 } 1346 1347 // Create a mapping from virtual address to symbol name. This is used to 1348 // pretty print the symbols while disassembling. 1349 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1350 SectionSymbolsTy AbsoluteSymbols; 1351 for (const SymbolRef &Symbol : Obj->symbols()) { 1352 Expected<uint64_t> AddressOrErr = Symbol.getAddress(); 1353 if (!AddressOrErr) 1354 report_error(Obj->getFileName(), AddressOrErr.takeError()); 1355 uint64_t Address = *AddressOrErr; 1356 1357 Expected<StringRef> Name = Symbol.getName(); 1358 if (!Name) 1359 report_error(Obj->getFileName(), Name.takeError()); 1360 if (Name->empty()) 1361 continue; 1362 1363 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1364 if (!SectionOrErr) 1365 report_error(Obj->getFileName(), SectionOrErr.takeError()); 1366 1367 uint8_t SymbolType = ELF::STT_NOTYPE; 1368 if (Obj->isELF()) 1369 SymbolType = getElfSymbolType(Obj, Symbol); 1370 1371 section_iterator SecI = *SectionOrErr; 1372 if (SecI != Obj->section_end()) 1373 AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType); 1374 else 1375 AbsoluteSymbols.emplace_back(Address, *Name, SymbolType); 1376 1377 1378 } 1379 if (AllSymbols.empty() && Obj->isELF()) 1380 addDynamicElfSymbols(Obj, AllSymbols); 1381 1382 BumpPtrAllocator A; 1383 StringSaver Saver(A); 1384 addPltEntries(Obj, AllSymbols, Saver); 1385 1386 // Create a mapping from virtual address to section. 1387 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1388 for (SectionRef Sec : Obj->sections()) 1389 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1390 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1391 1392 // Linked executables (.exe and .dll files) typically don't include a real 1393 // symbol table but they might contain an export table. 1394 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1395 for (const auto &ExportEntry : COFFObj->export_directories()) { 1396 StringRef Name; 1397 error(ExportEntry.getSymbolName(Name)); 1398 if (Name.empty()) 1399 continue; 1400 uint32_t RVA; 1401 error(ExportEntry.getExportRVA(RVA)); 1402 1403 uint64_t VA = COFFObj->getImageBase() + RVA; 1404 auto Sec = std::upper_bound( 1405 SectionAddresses.begin(), SectionAddresses.end(), VA, 1406 [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) { 1407 return LHS < RHS.first; 1408 }); 1409 if (Sec != SectionAddresses.begin()) 1410 --Sec; 1411 else 1412 Sec = SectionAddresses.end(); 1413 1414 if (Sec != SectionAddresses.end()) 1415 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1416 else 1417 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1418 } 1419 } 1420 1421 // Sort all the symbols, this allows us to use a simple binary search to find 1422 // a symbol near an address. 1423 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1424 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1425 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1426 1427 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1428 if (!DisassembleAll && (!Section.isText() || Section.isVirtual())) 1429 continue; 1430 1431 uint64_t SectionAddr = Section.getAddress(); 1432 uint64_t SectSize = Section.getSize(); 1433 if (!SectSize) 1434 continue; 1435 1436 // Get the list of all the symbols in this section. 1437 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1438 std::vector<uint64_t> DataMappingSymsAddr; 1439 std::vector<uint64_t> TextMappingSymsAddr; 1440 if (isArmElf(Obj)) { 1441 for (const auto &Symb : Symbols) { 1442 uint64_t Address = std::get<0>(Symb); 1443 StringRef Name = std::get<1>(Symb); 1444 if (Name.startswith("$d")) 1445 DataMappingSymsAddr.push_back(Address - SectionAddr); 1446 if (Name.startswith("$x")) 1447 TextMappingSymsAddr.push_back(Address - SectionAddr); 1448 if (Name.startswith("$a")) 1449 TextMappingSymsAddr.push_back(Address - SectionAddr); 1450 if (Name.startswith("$t")) 1451 TextMappingSymsAddr.push_back(Address - SectionAddr); 1452 } 1453 } 1454 1455 llvm::sort(DataMappingSymsAddr); 1456 llvm::sort(TextMappingSymsAddr); 1457 1458 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1459 // AMDGPU disassembler uses symbolizer for printing labels 1460 std::unique_ptr<MCRelocationInfo> RelInfo( 1461 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1462 if (RelInfo) { 1463 std::unique_ptr<MCSymbolizer> Symbolizer( 1464 TheTarget->createMCSymbolizer( 1465 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1466 DisAsm->setSymbolizer(std::move(Symbolizer)); 1467 } 1468 } 1469 1470 // Make a list of all the relocations for this section. 1471 std::vector<RelocationRef> Rels; 1472 if (InlineRelocs) { 1473 for (const SectionRef &RelocSec : SectionRelocMap[Section]) { 1474 for (const RelocationRef &Reloc : RelocSec.relocations()) { 1475 Rels.push_back(Reloc); 1476 } 1477 } 1478 } 1479 1480 // Sort relocations by address. 1481 llvm::sort(Rels, RelocAddressLess); 1482 1483 StringRef SegmentName = ""; 1484 if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) { 1485 DataRefImpl DR = Section.getRawDataRefImpl(); 1486 SegmentName = MachO->getSectionFinalSegmentName(DR); 1487 } 1488 StringRef SectionName; 1489 error(Section.getName(SectionName)); 1490 1491 // If the section has no symbol at the start, just insert a dummy one. 1492 if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) { 1493 Symbols.insert( 1494 Symbols.begin(), 1495 std::make_tuple(SectionAddr, SectionName, 1496 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1497 } 1498 1499 SmallString<40> Comments; 1500 raw_svector_ostream CommentStream(Comments); 1501 1502 StringRef BytesStr; 1503 error(Section.getContents(BytesStr)); 1504 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()), 1505 BytesStr.size()); 1506 1507 uint64_t Size; 1508 uint64_t Index; 1509 bool PrintedSection = false; 1510 1511 std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin(); 1512 std::vector<RelocationRef>::const_iterator rel_end = Rels.end(); 1513 // Disassemble symbol by symbol. 1514 for (unsigned si = 0, se = Symbols.size(); si != se; ++si) { 1515 uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr; 1516 // The end is either the section end or the beginning of the next 1517 // symbol. 1518 uint64_t End = 1519 (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr; 1520 // Don't try to disassemble beyond the end of section contents. 1521 if (End > SectSize) 1522 End = SectSize; 1523 // If this symbol has the same address as the next symbol, then skip it. 1524 if (Start >= End) 1525 continue; 1526 1527 // Check if we need to skip symbol 1528 // Skip if the symbol's data is not between StartAddress and StopAddress 1529 if (End + SectionAddr < StartAddress || 1530 Start + SectionAddr > StopAddress) { 1531 continue; 1532 } 1533 1534 /// Skip if user requested specific symbols and this is not in the list 1535 if (!DisasmFuncsSet.empty() && 1536 !DisasmFuncsSet.count(std::get<1>(Symbols[si]))) 1537 continue; 1538 1539 if (!PrintedSection) { 1540 PrintedSection = true; 1541 outs() << "Disassembly of section "; 1542 if (!SegmentName.empty()) 1543 outs() << SegmentName << ","; 1544 outs() << SectionName << ':'; 1545 } 1546 1547 // Stop disassembly at the stop address specified 1548 if (End + SectionAddr > StopAddress) 1549 End = StopAddress - SectionAddr; 1550 1551 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1552 if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1553 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1554 Start += 256; 1555 } 1556 if (si == se - 1 || 1557 std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) { 1558 // cut trailing zeroes at the end of kernel 1559 // cut up to 256 bytes 1560 const uint64_t EndAlign = 256; 1561 const auto Limit = End - (std::min)(EndAlign, End - Start); 1562 while (End > Limit && 1563 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1564 End -= 4; 1565 } 1566 } 1567 1568 auto PrintSymbol = [](StringRef Name) { 1569 outs() << '\n' << Name << ":\n"; 1570 }; 1571 StringRef SymbolName = std::get<1>(Symbols[si]); 1572 if (Demangle) { 1573 char *DemangledSymbol = nullptr; 1574 size_t Size = 0; 1575 int Status = -1; 1576 if (SymbolName.startswith("_Z")) 1577 DemangledSymbol = itaniumDemangle(SymbolName.data(), DemangledSymbol, 1578 &Size, &Status); 1579 else if (SymbolName.startswith("?")) 1580 DemangledSymbol = microsoftDemangle(SymbolName.data(), 1581 DemangledSymbol, &Size, &Status); 1582 1583 if (Status == 0 && DemangledSymbol) 1584 PrintSymbol(StringRef(DemangledSymbol)); 1585 else 1586 PrintSymbol(SymbolName); 1587 1588 if (DemangledSymbol) 1589 free(DemangledSymbol); 1590 } else 1591 PrintSymbol(SymbolName); 1592 1593 // Don't print raw contents of a virtual section. A virtual section 1594 // doesn't have any contents in the file. 1595 if (Section.isVirtual()) { 1596 outs() << "...\n"; 1597 continue; 1598 } 1599 1600 #ifndef NDEBUG 1601 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); 1602 #else 1603 raw_ostream &DebugOut = nulls(); 1604 #endif 1605 1606 for (Index = Start; Index < End; Index += Size) { 1607 MCInst Inst; 1608 1609 if (Index + SectionAddr < StartAddress || 1610 Index + SectionAddr > StopAddress) { 1611 // skip byte by byte till StartAddress is reached 1612 Size = 1; 1613 continue; 1614 } 1615 // AArch64 ELF binaries can interleave data and text in the 1616 // same section. We rely on the markers introduced to 1617 // understand what we need to dump. If the data marker is within a 1618 // function, it is denoted as a word/short etc 1619 if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT && 1620 !DisassembleAll) { 1621 uint64_t Stride = 0; 1622 1623 auto DAI = std::lower_bound(DataMappingSymsAddr.begin(), 1624 DataMappingSymsAddr.end(), Index); 1625 if (DAI != DataMappingSymsAddr.end() && *DAI == Index) { 1626 // Switch to data. 1627 while (Index < End) { 1628 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1629 outs() << "\t"; 1630 if (Index + 4 <= End) { 1631 Stride = 4; 1632 dumpBytes(Bytes.slice(Index, 4), outs()); 1633 outs() << "\t.word\t"; 1634 uint32_t Data = 0; 1635 if (Obj->isLittleEndian()) { 1636 const auto Word = 1637 reinterpret_cast<const support::ulittle32_t *>( 1638 Bytes.data() + Index); 1639 Data = *Word; 1640 } else { 1641 const auto Word = reinterpret_cast<const support::ubig32_t *>( 1642 Bytes.data() + Index); 1643 Data = *Word; 1644 } 1645 outs() << "0x" << format("%08" PRIx32, Data); 1646 } else if (Index + 2 <= End) { 1647 Stride = 2; 1648 dumpBytes(Bytes.slice(Index, 2), outs()); 1649 outs() << "\t\t.short\t"; 1650 uint16_t Data = 0; 1651 if (Obj->isLittleEndian()) { 1652 const auto Short = 1653 reinterpret_cast<const support::ulittle16_t *>( 1654 Bytes.data() + Index); 1655 Data = *Short; 1656 } else { 1657 const auto Short = 1658 reinterpret_cast<const support::ubig16_t *>(Bytes.data() + 1659 Index); 1660 Data = *Short; 1661 } 1662 outs() << "0x" << format("%04" PRIx16, Data); 1663 } else { 1664 Stride = 1; 1665 dumpBytes(Bytes.slice(Index, 1), outs()); 1666 outs() << "\t\t.byte\t"; 1667 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]); 1668 } 1669 Index += Stride; 1670 outs() << "\n"; 1671 auto TAI = std::lower_bound(TextMappingSymsAddr.begin(), 1672 TextMappingSymsAddr.end(), Index); 1673 if (TAI != TextMappingSymsAddr.end() && *TAI == Index) 1674 break; 1675 } 1676 } 1677 } 1678 1679 // If there is a data symbol inside an ELF text section and we are only 1680 // disassembling text (applicable all architectures), 1681 // we are in a situation where we must print the data and not 1682 // disassemble it. 1683 if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT && 1684 !DisassembleAll && Section.isText()) { 1685 // print out data up to 8 bytes at a time in hex and ascii 1686 uint8_t AsciiData[9] = {'\0'}; 1687 uint8_t Byte; 1688 int NumBytes = 0; 1689 1690 for (Index = Start; Index < End; Index += 1) { 1691 if (((SectionAddr + Index) < StartAddress) || 1692 ((SectionAddr + Index) > StopAddress)) 1693 continue; 1694 if (NumBytes == 0) { 1695 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1696 outs() << "\t"; 1697 } 1698 Byte = Bytes.slice(Index)[0]; 1699 outs() << format(" %02x", Byte); 1700 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1701 1702 uint8_t IndentOffset = 0; 1703 NumBytes++; 1704 if (Index == End - 1 || NumBytes > 8) { 1705 // Indent the space for less than 8 bytes data. 1706 // 2 spaces for byte and one for space between bytes 1707 IndentOffset = 3 * (8 - NumBytes); 1708 for (int Excess = 8 - NumBytes; Excess < 8; Excess++) 1709 AsciiData[Excess] = '\0'; 1710 NumBytes = 8; 1711 } 1712 if (NumBytes == 8) { 1713 AsciiData[8] = '\0'; 1714 outs() << std::string(IndentOffset, ' ') << " "; 1715 outs() << reinterpret_cast<char *>(AsciiData); 1716 outs() << '\n'; 1717 NumBytes = 0; 1718 } 1719 } 1720 } 1721 if (Index >= End) 1722 break; 1723 1724 // Disassemble a real instruction or a data when disassemble all is 1725 // provided 1726 bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1727 SectionAddr + Index, DebugOut, 1728 CommentStream); 1729 if (Size == 0) 1730 Size = 1; 1731 1732 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1733 Bytes.slice(Index, Size), SectionAddr + Index, outs(), "", 1734 *STI, &SP, &Rels); 1735 outs() << CommentStream.str(); 1736 Comments.clear(); 1737 1738 // Try to resolve the target of a call, tail call, etc. to a specific 1739 // symbol. 1740 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1741 MIA->isConditionalBranch(Inst))) { 1742 uint64_t Target; 1743 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1744 // In a relocatable object, the target's section must reside in 1745 // the same section as the call instruction or it is accessed 1746 // through a relocation. 1747 // 1748 // In a non-relocatable object, the target may be in any section. 1749 // 1750 // N.B. We don't walk the relocations in the relocatable case yet. 1751 auto *TargetSectionSymbols = &Symbols; 1752 if (!Obj->isRelocatableObject()) { 1753 auto SectionAddress = std::upper_bound( 1754 SectionAddresses.begin(), SectionAddresses.end(), Target, 1755 [](uint64_t LHS, 1756 const std::pair<uint64_t, SectionRef> &RHS) { 1757 return LHS < RHS.first; 1758 }); 1759 if (SectionAddress != SectionAddresses.begin()) { 1760 --SectionAddress; 1761 TargetSectionSymbols = &AllSymbols[SectionAddress->second]; 1762 } else { 1763 TargetSectionSymbols = &AbsoluteSymbols; 1764 } 1765 } 1766 1767 // Find the first symbol in the section whose offset is less than 1768 // or equal to the target. If there isn't a section that contains 1769 // the target, find the nearest preceding absolute symbol. 1770 auto TargetSym = std::upper_bound( 1771 TargetSectionSymbols->begin(), TargetSectionSymbols->end(), 1772 Target, [](uint64_t LHS, 1773 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) { 1774 return LHS < std::get<0>(RHS); 1775 }); 1776 if (TargetSym == TargetSectionSymbols->begin()) { 1777 TargetSectionSymbols = &AbsoluteSymbols; 1778 TargetSym = std::upper_bound( 1779 AbsoluteSymbols.begin(), AbsoluteSymbols.end(), 1780 Target, [](uint64_t LHS, 1781 const std::tuple<uint64_t, StringRef, uint8_t> &RHS) { 1782 return LHS < std::get<0>(RHS); 1783 }); 1784 } 1785 if (TargetSym != TargetSectionSymbols->begin()) { 1786 --TargetSym; 1787 uint64_t TargetAddress = std::get<0>(*TargetSym); 1788 StringRef TargetName = std::get<1>(*TargetSym); 1789 outs() << " <" << TargetName; 1790 uint64_t Disp = Target - TargetAddress; 1791 if (Disp) 1792 outs() << "+0x" << Twine::utohexstr(Disp); 1793 outs() << '>'; 1794 } 1795 } 1796 } 1797 outs() << "\n"; 1798 1799 // Hexagon does this in pretty printer 1800 if (Obj->getArch() != Triple::hexagon) 1801 // Print relocation for instruction. 1802 while (rel_cur != rel_end) { 1803 bool hidden = getHidden(*rel_cur); 1804 uint64_t addr = rel_cur->getOffset(); 1805 SmallString<16> name; 1806 SmallString<32> val; 1807 1808 // If this relocation is hidden, skip it. 1809 if (hidden || ((SectionAddr + addr) < StartAddress)) { 1810 ++rel_cur; 1811 continue; 1812 } 1813 1814 // Stop when rel_cur's address is past the current instruction. 1815 if (addr >= Index + Size) break; 1816 rel_cur->getTypeName(name); 1817 error(getRelocationValueString(*rel_cur, val)); 1818 outs() << format(Fmt.data(), SectionAddr + addr) << name 1819 << "\t" << val << "\n"; 1820 ++rel_cur; 1821 } 1822 } 1823 } 1824 } 1825 } 1826 1827 void llvm::PrintRelocations(const ObjectFile *Obj) { 1828 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1829 "%08" PRIx64; 1830 // Regular objdump doesn't print relocations in non-relocatable object 1831 // files. 1832 if (!Obj->isRelocatableObject()) 1833 return; 1834 1835 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1836 if (Section.relocation_begin() == Section.relocation_end()) 1837 continue; 1838 StringRef secname; 1839 error(Section.getName(secname)); 1840 outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n"; 1841 for (const RelocationRef &Reloc : Section.relocations()) { 1842 bool hidden = getHidden(Reloc); 1843 uint64_t address = Reloc.getOffset(); 1844 SmallString<32> relocname; 1845 SmallString<32> valuestr; 1846 if (address < StartAddress || address > StopAddress || hidden) 1847 continue; 1848 Reloc.getTypeName(relocname); 1849 error(getRelocationValueString(Reloc, valuestr)); 1850 outs() << format(Fmt.data(), address) << " " << relocname << " " 1851 << valuestr << "\n"; 1852 } 1853 outs() << "\n"; 1854 } 1855 } 1856 1857 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) { 1858 1859 // For the moment, this option is for ELF only 1860 if (!Obj->isELF()) 1861 return; 1862 1863 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1864 1865 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 1866 error("not a dynamic object"); 1867 return; 1868 } 1869 1870 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1871 1872 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1873 if (DynRelSec.empty()) 1874 return; 1875 1876 outs() << "DYNAMIC RELOCATION RECORDS\n"; 1877 for (const SectionRef &Section : DynRelSec) { 1878 if (Section.relocation_begin() == Section.relocation_end()) 1879 continue; 1880 for (const RelocationRef &Reloc : Section.relocations()) { 1881 uint64_t address = Reloc.getOffset(); 1882 SmallString<32> relocname; 1883 SmallString<32> valuestr; 1884 Reloc.getTypeName(relocname); 1885 error(getRelocationValueString(Reloc, valuestr)); 1886 outs() << format(Fmt.data(), address) << " " << relocname << " " 1887 << valuestr << "\n"; 1888 } 1889 } 1890 } 1891 1892 void llvm::PrintSectionHeaders(const ObjectFile *Obj) { 1893 outs() << "Sections:\n" 1894 "Idx Name Size Address Type\n"; 1895 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1896 StringRef Name; 1897 error(Section.getName(Name)); 1898 uint64_t Address = Section.getAddress(); 1899 uint64_t Size = Section.getSize(); 1900 bool Text = Section.isText(); 1901 bool Data = Section.isData(); 1902 bool BSS = Section.isBSS(); 1903 std::string Type = (std::string(Text ? "TEXT " : "") + 1904 (Data ? "DATA " : "") + (BSS ? "BSS" : "")); 1905 outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", 1906 (unsigned)Section.getIndex(), Name.str().c_str(), Size, 1907 Address, Type.c_str()); 1908 } 1909 } 1910 1911 void llvm::PrintSectionContents(const ObjectFile *Obj) { 1912 std::error_code EC; 1913 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1914 StringRef Name; 1915 StringRef Contents; 1916 error(Section.getName(Name)); 1917 uint64_t BaseAddr = Section.getAddress(); 1918 uint64_t Size = Section.getSize(); 1919 if (!Size) 1920 continue; 1921 1922 outs() << "Contents of section " << Name << ":\n"; 1923 if (Section.isBSS()) { 1924 outs() << format("<skipping contents of bss section at [%04" PRIx64 1925 ", %04" PRIx64 ")>\n", 1926 BaseAddr, BaseAddr + Size); 1927 continue; 1928 } 1929 1930 error(Section.getContents(Contents)); 1931 1932 // Dump out the content as hex and printable ascii characters. 1933 for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) { 1934 outs() << format(" %04" PRIx64 " ", BaseAddr + addr); 1935 // Dump line of hex. 1936 for (std::size_t i = 0; i < 16; ++i) { 1937 if (i != 0 && i % 4 == 0) 1938 outs() << ' '; 1939 if (addr + i < end) 1940 outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true) 1941 << hexdigit(Contents[addr + i] & 0xF, true); 1942 else 1943 outs() << " "; 1944 } 1945 // Print ascii. 1946 outs() << " "; 1947 for (std::size_t i = 0; i < 16 && addr + i < end; ++i) { 1948 if (isPrint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF)) 1949 outs() << Contents[addr + i]; 1950 else 1951 outs() << "."; 1952 } 1953 outs() << "\n"; 1954 } 1955 } 1956 } 1957 1958 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName, 1959 StringRef ArchitectureName) { 1960 outs() << "SYMBOL TABLE:\n"; 1961 1962 if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) { 1963 printCOFFSymbolTable(coff); 1964 return; 1965 } 1966 for (const SymbolRef &Symbol : o->symbols()) { 1967 Expected<uint64_t> AddressOrError = Symbol.getAddress(); 1968 if (!AddressOrError) 1969 report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(), 1970 ArchitectureName); 1971 uint64_t Address = *AddressOrError; 1972 if ((Address < StartAddress) || (Address > StopAddress)) 1973 continue; 1974 Expected<SymbolRef::Type> TypeOrError = Symbol.getType(); 1975 if (!TypeOrError) 1976 report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(), 1977 ArchitectureName); 1978 SymbolRef::Type Type = *TypeOrError; 1979 uint32_t Flags = Symbol.getFlags(); 1980 Expected<section_iterator> SectionOrErr = Symbol.getSection(); 1981 if (!SectionOrErr) 1982 report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(), 1983 ArchitectureName); 1984 section_iterator Section = *SectionOrErr; 1985 StringRef Name; 1986 if (Type == SymbolRef::ST_Debug && Section != o->section_end()) { 1987 Section->getName(Name); 1988 } else { 1989 Expected<StringRef> NameOrErr = Symbol.getName(); 1990 if (!NameOrErr) 1991 report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(), 1992 ArchitectureName); 1993 Name = *NameOrErr; 1994 } 1995 1996 bool Global = Flags & SymbolRef::SF_Global; 1997 bool Weak = Flags & SymbolRef::SF_Weak; 1998 bool Absolute = Flags & SymbolRef::SF_Absolute; 1999 bool Common = Flags & SymbolRef::SF_Common; 2000 bool Hidden = Flags & SymbolRef::SF_Hidden; 2001 2002 char GlobLoc = ' '; 2003 if (Type != SymbolRef::ST_Unknown) 2004 GlobLoc = Global ? 'g' : 'l'; 2005 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2006 ? 'd' : ' '; 2007 char FileFunc = ' '; 2008 if (Type == SymbolRef::ST_File) 2009 FileFunc = 'f'; 2010 else if (Type == SymbolRef::ST_Function) 2011 FileFunc = 'F'; 2012 2013 const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : 2014 "%08" PRIx64; 2015 2016 outs() << format(Fmt, Address) << " " 2017 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2018 << (Weak ? 'w' : ' ') // Weak? 2019 << ' ' // Constructor. Not supported yet. 2020 << ' ' // Warning. Not supported yet. 2021 << ' ' // Indirect reference to another symbol. 2022 << Debug // Debugging (d) or dynamic (D) symbol. 2023 << FileFunc // Name of function (F), file (f) or object (O). 2024 << ' '; 2025 if (Absolute) { 2026 outs() << "*ABS*"; 2027 } else if (Common) { 2028 outs() << "*COM*"; 2029 } else if (Section == o->section_end()) { 2030 outs() << "*UND*"; 2031 } else { 2032 if (const MachOObjectFile *MachO = 2033 dyn_cast<const MachOObjectFile>(o)) { 2034 DataRefImpl DR = Section->getRawDataRefImpl(); 2035 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 2036 outs() << SegmentName << ","; 2037 } 2038 StringRef SectionName; 2039 error(Section->getName(SectionName)); 2040 outs() << SectionName; 2041 } 2042 2043 outs() << '\t'; 2044 if (Common || isa<ELFObjectFileBase>(o)) { 2045 uint64_t Val = 2046 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 2047 outs() << format("\t %08" PRIx64 " ", Val); 2048 } 2049 2050 if (Hidden) { 2051 outs() << ".hidden "; 2052 } 2053 outs() << Name 2054 << '\n'; 2055 } 2056 } 2057 2058 static void PrintUnwindInfo(const ObjectFile *o) { 2059 outs() << "Unwind info:\n\n"; 2060 2061 if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) { 2062 printCOFFUnwindInfo(coff); 2063 } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2064 printMachOUnwindInfo(MachO); 2065 else { 2066 // TODO: Extract DWARF dump tool to objdump. 2067 errs() << "This operation is only currently supported " 2068 "for COFF and MachO object files.\n"; 2069 return; 2070 } 2071 } 2072 2073 void llvm::printExportsTrie(const ObjectFile *o) { 2074 outs() << "Exports trie:\n"; 2075 if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2076 printMachOExportsTrie(MachO); 2077 else { 2078 errs() << "This operation is only currently supported " 2079 "for Mach-O executable files.\n"; 2080 return; 2081 } 2082 } 2083 2084 void llvm::printRebaseTable(ObjectFile *o) { 2085 outs() << "Rebase table:\n"; 2086 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2087 printMachORebaseTable(MachO); 2088 else { 2089 errs() << "This operation is only currently supported " 2090 "for Mach-O executable files.\n"; 2091 return; 2092 } 2093 } 2094 2095 void llvm::printBindTable(ObjectFile *o) { 2096 outs() << "Bind table:\n"; 2097 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2098 printMachOBindTable(MachO); 2099 else { 2100 errs() << "This operation is only currently supported " 2101 "for Mach-O executable files.\n"; 2102 return; 2103 } 2104 } 2105 2106 void llvm::printLazyBindTable(ObjectFile *o) { 2107 outs() << "Lazy bind table:\n"; 2108 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2109 printMachOLazyBindTable(MachO); 2110 else { 2111 errs() << "This operation is only currently supported " 2112 "for Mach-O executable files.\n"; 2113 return; 2114 } 2115 } 2116 2117 void llvm::printWeakBindTable(ObjectFile *o) { 2118 outs() << "Weak bind table:\n"; 2119 if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o)) 2120 printMachOWeakBindTable(MachO); 2121 else { 2122 errs() << "This operation is only currently supported " 2123 "for Mach-O executable files.\n"; 2124 return; 2125 } 2126 } 2127 2128 /// Dump the raw contents of the __clangast section so the output can be piped 2129 /// into llvm-bcanalyzer. 2130 void llvm::printRawClangAST(const ObjectFile *Obj) { 2131 if (outs().is_displayed()) { 2132 errs() << "The -raw-clang-ast option will dump the raw binary contents of " 2133 "the clang ast section.\n" 2134 "Please redirect the output to a file or another program such as " 2135 "llvm-bcanalyzer.\n"; 2136 return; 2137 } 2138 2139 StringRef ClangASTSectionName("__clangast"); 2140 if (isa<COFFObjectFile>(Obj)) { 2141 ClangASTSectionName = "clangast"; 2142 } 2143 2144 Optional<object::SectionRef> ClangASTSection; 2145 for (auto Sec : ToolSectionFilter(*Obj)) { 2146 StringRef Name; 2147 Sec.getName(Name); 2148 if (Name == ClangASTSectionName) { 2149 ClangASTSection = Sec; 2150 break; 2151 } 2152 } 2153 if (!ClangASTSection) 2154 return; 2155 2156 StringRef ClangASTContents; 2157 error(ClangASTSection.getValue().getContents(ClangASTContents)); 2158 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2159 } 2160 2161 static void printFaultMaps(const ObjectFile *Obj) { 2162 const char *FaultMapSectionName = nullptr; 2163 2164 if (isa<ELFObjectFileBase>(Obj)) { 2165 FaultMapSectionName = ".llvm_faultmaps"; 2166 } else if (isa<MachOObjectFile>(Obj)) { 2167 FaultMapSectionName = "__llvm_faultmaps"; 2168 } else { 2169 errs() << "This operation is only currently supported " 2170 "for ELF and Mach-O executable files.\n"; 2171 return; 2172 } 2173 2174 Optional<object::SectionRef> FaultMapSection; 2175 2176 for (auto Sec : ToolSectionFilter(*Obj)) { 2177 StringRef Name; 2178 Sec.getName(Name); 2179 if (Name == FaultMapSectionName) { 2180 FaultMapSection = Sec; 2181 break; 2182 } 2183 } 2184 2185 outs() << "FaultMap table:\n"; 2186 2187 if (!FaultMapSection.hasValue()) { 2188 outs() << "<not found>\n"; 2189 return; 2190 } 2191 2192 StringRef FaultMapContents; 2193 error(FaultMapSection.getValue().getContents(FaultMapContents)); 2194 2195 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2196 FaultMapContents.bytes_end()); 2197 2198 outs() << FMP; 2199 } 2200 2201 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) { 2202 if (o->isELF()) { 2203 printELFFileHeader(o); 2204 return printELFDynamicSection(o); 2205 } 2206 if (o->isCOFF()) 2207 return printCOFFFileHeader(o); 2208 if (o->isWasm()) 2209 return printWasmFileHeader(o); 2210 if (o->isMachO()) { 2211 printMachOFileHeader(o); 2212 if (!onlyFirst) 2213 printMachOLoadCommands(o); 2214 return; 2215 } 2216 report_error(o->getFileName(), "Invalid/Unsupported object file format"); 2217 } 2218 2219 static void printFileHeaders(const ObjectFile *o) { 2220 if (!o->isELF() && !o->isCOFF()) 2221 report_error(o->getFileName(), "Invalid/Unsupported object file format"); 2222 2223 Triple::ArchType AT = o->getArch(); 2224 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2225 Expected<uint64_t> StartAddrOrErr = o->getStartAddress(); 2226 if (!StartAddrOrErr) 2227 report_error(o->getFileName(), StartAddrOrErr.takeError()); 2228 2229 StringRef Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2230 uint64_t Address = StartAddrOrErr.get(); 2231 outs() << "start address: " 2232 << "0x" << format(Fmt.data(), Address) 2233 << "\n"; 2234 } 2235 2236 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2237 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2238 if (!ModeOrErr) { 2239 errs() << "ill-formed archive entry.\n"; 2240 consumeError(ModeOrErr.takeError()); 2241 return; 2242 } 2243 sys::fs::perms Mode = ModeOrErr.get(); 2244 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2245 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2246 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2247 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2248 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2249 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2250 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2251 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2252 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2253 2254 outs() << " "; 2255 2256 Expected<unsigned> UIDOrErr = C.getUID(); 2257 if (!UIDOrErr) 2258 report_error(Filename, UIDOrErr.takeError()); 2259 unsigned UID = UIDOrErr.get(); 2260 outs() << format("%d/", UID); 2261 2262 Expected<unsigned> GIDOrErr = C.getGID(); 2263 if (!GIDOrErr) 2264 report_error(Filename, GIDOrErr.takeError()); 2265 unsigned GID = GIDOrErr.get(); 2266 outs() << format("%-d ", GID); 2267 2268 Expected<uint64_t> Size = C.getRawSize(); 2269 if (!Size) 2270 report_error(Filename, Size.takeError()); 2271 outs() << format("%6" PRId64, Size.get()) << " "; 2272 2273 StringRef RawLastModified = C.getRawLastModified(); 2274 unsigned Seconds; 2275 if (RawLastModified.getAsInteger(10, Seconds)) 2276 outs() << "(date: \"" << RawLastModified 2277 << "\" contains non-decimal chars) "; 2278 else { 2279 // Since ctime(3) returns a 26 character string of the form: 2280 // "Sun Sep 16 01:03:52 1973\n\0" 2281 // just print 24 characters. 2282 time_t t = Seconds; 2283 outs() << format("%.24s ", ctime(&t)); 2284 } 2285 2286 StringRef Name = ""; 2287 Expected<StringRef> NameOrErr = C.getName(); 2288 if (!NameOrErr) { 2289 consumeError(NameOrErr.takeError()); 2290 Expected<StringRef> RawNameOrErr = C.getRawName(); 2291 if (!RawNameOrErr) 2292 report_error(Filename, NameOrErr.takeError()); 2293 Name = RawNameOrErr.get(); 2294 } else { 2295 Name = NameOrErr.get(); 2296 } 2297 outs() << Name << "\n"; 2298 } 2299 2300 static void DumpObject(ObjectFile *o, const Archive *a = nullptr, 2301 const Archive::Child *c = nullptr) { 2302 StringRef ArchiveName = a != nullptr ? a->getFileName() : ""; 2303 // Avoid other output when using a raw option. 2304 if (!RawClangAST) { 2305 outs() << '\n'; 2306 if (a) 2307 outs() << a->getFileName() << "(" << o->getFileName() << ")"; 2308 else 2309 outs() << o->getFileName(); 2310 outs() << ":\tfile format " << o->getFileFormatName() << "\n\n"; 2311 } 2312 2313 if (ArchiveHeaders && !MachOOpt && c) 2314 printArchiveChild(ArchiveName, *c); 2315 if (Disassemble) 2316 DisassembleObject(o, Relocations); 2317 if (Relocations && !Disassemble) 2318 PrintRelocations(o); 2319 if (DynamicRelocations) 2320 PrintDynamicRelocations(o); 2321 if (SectionHeaders) 2322 PrintSectionHeaders(o); 2323 if (SectionContents) 2324 PrintSectionContents(o); 2325 if (SymbolTable) 2326 PrintSymbolTable(o, ArchiveName); 2327 if (UnwindInfo) 2328 PrintUnwindInfo(o); 2329 if (PrivateHeaders || FirstPrivateHeader) 2330 printPrivateFileHeaders(o, FirstPrivateHeader); 2331 if (FileHeaders) 2332 printFileHeaders(o); 2333 if (ExportsTrie) 2334 printExportsTrie(o); 2335 if (Rebase) 2336 printRebaseTable(o); 2337 if (Bind) 2338 printBindTable(o); 2339 if (LazyBind) 2340 printLazyBindTable(o); 2341 if (WeakBind) 2342 printWeakBindTable(o); 2343 if (RawClangAST) 2344 printRawClangAST(o); 2345 if (PrintFaultMaps) 2346 printFaultMaps(o); 2347 if (DwarfDumpType != DIDT_Null) { 2348 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o); 2349 // Dump the complete DWARF structure. 2350 DIDumpOptions DumpOpts; 2351 DumpOpts.DumpType = DwarfDumpType; 2352 DICtx->dump(outs(), DumpOpts); 2353 } 2354 } 2355 2356 static void DumpObject(const COFFImportFile *I, const Archive *A, 2357 const Archive::Child *C = nullptr) { 2358 StringRef ArchiveName = A ? A->getFileName() : ""; 2359 2360 // Avoid other output when using a raw option. 2361 if (!RawClangAST) 2362 outs() << '\n' 2363 << ArchiveName << "(" << I->getFileName() << ")" 2364 << ":\tfile format COFF-import-file" 2365 << "\n\n"; 2366 2367 if (ArchiveHeaders && !MachOOpt && C) 2368 printArchiveChild(ArchiveName, *C); 2369 if (SymbolTable) 2370 printCOFFSymbolTable(I); 2371 } 2372 2373 /// Dump each object file in \a a; 2374 static void DumpArchive(const Archive *a) { 2375 Error Err = Error::success(); 2376 for (auto &C : a->children(Err)) { 2377 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2378 if (!ChildOrErr) { 2379 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2380 report_error(a->getFileName(), C, std::move(E)); 2381 continue; 2382 } 2383 if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2384 DumpObject(o, a, &C); 2385 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2386 DumpObject(I, a, &C); 2387 else 2388 report_error(a->getFileName(), object_error::invalid_file_type); 2389 } 2390 if (Err) 2391 report_error(a->getFileName(), std::move(Err)); 2392 } 2393 2394 /// Open file and figure out how to dump it. 2395 static void DumpInput(StringRef file) { 2396 2397 // If we are using the Mach-O specific object file parser, then let it parse 2398 // the file and process the command line options. So the -arch flags can 2399 // be used to select specific slices, etc. 2400 if (MachOOpt) { 2401 ParseInputMachO(file); 2402 return; 2403 } 2404 2405 // Attempt to open the binary. 2406 Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file); 2407 if (!BinaryOrErr) 2408 report_error(file, BinaryOrErr.takeError()); 2409 Binary &Binary = *BinaryOrErr.get().getBinary(); 2410 2411 if (Archive *a = dyn_cast<Archive>(&Binary)) 2412 DumpArchive(a); 2413 else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary)) 2414 DumpObject(o); 2415 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2416 ParseInputMachO(UB); 2417 else 2418 report_error(file, object_error::invalid_file_type); 2419 } 2420 2421 int main(int argc, char **argv) { 2422 InitLLVM X(argc, argv); 2423 2424 // Initialize targets and assembly printers/parsers. 2425 llvm::InitializeAllTargetInfos(); 2426 llvm::InitializeAllTargetMCs(); 2427 llvm::InitializeAllDisassemblers(); 2428 2429 // Register the target printer for --version. 2430 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2431 2432 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n"); 2433 2434 ToolName = argv[0]; 2435 2436 // Defaults to a.out if no filenames specified. 2437 if (InputFilenames.size() == 0) 2438 InputFilenames.push_back("a.out"); 2439 2440 if (AllHeaders) 2441 PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true; 2442 2443 if (DisassembleAll || PrintSource || PrintLines) 2444 Disassemble = true; 2445 2446 if (!Disassemble 2447 && !Relocations 2448 && !DynamicRelocations 2449 && !SectionHeaders 2450 && !SectionContents 2451 && !SymbolTable 2452 && !UnwindInfo 2453 && !PrivateHeaders 2454 && !FileHeaders 2455 && !FirstPrivateHeader 2456 && !ExportsTrie 2457 && !Rebase 2458 && !Bind 2459 && !LazyBind 2460 && !WeakBind 2461 && !RawClangAST 2462 && !(UniversalHeaders && MachOOpt) 2463 && !ArchiveHeaders 2464 && !(IndirectSymbols && MachOOpt) 2465 && !(DataInCode && MachOOpt) 2466 && !(LinkOptHints && MachOOpt) 2467 && !(InfoPlist && MachOOpt) 2468 && !(DylibsUsed && MachOOpt) 2469 && !(DylibId && MachOOpt) 2470 && !(ObjcMetaData && MachOOpt) 2471 && !(FilterSections.size() != 0 && MachOOpt) 2472 && !PrintFaultMaps 2473 && DwarfDumpType == DIDT_Null) { 2474 cl::PrintHelpMessage(); 2475 return 2; 2476 } 2477 2478 DisasmFuncsSet.insert(DisassembleFunctions.begin(), 2479 DisassembleFunctions.end()); 2480 2481 llvm::for_each(InputFilenames, DumpInput); 2482 2483 return EXIT_SUCCESS; 2484 } 2485