xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 3335f25d506c1e16df7482341b55d03e9b0eb109)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace object;
73 
74 cl::opt<bool>
75     llvm::AllHeaders("all-headers",
76                      cl::desc("Display all available header information"));
77 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
78                                  cl::NotHidden, cl::aliasopt(AllHeaders));
79 
80 static cl::list<std::string>
81 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 
83 cl::opt<bool>
84 llvm::Disassemble("disassemble",
85   cl::desc("Display assembler mnemonics for the machine instructions"));
86 static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"),
87                               cl::NotHidden, cl::aliasopt(Disassemble));
88 
89 cl::opt<bool>
90 llvm::DisassembleAll("disassemble-all",
91   cl::desc("Display assembler mnemonics for the machine instructions"));
92 static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
93                                  cl::NotHidden, cl::aliasopt(DisassembleAll));
94 
95 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
96                              cl::init(false));
97 
98 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
99                                cl::NotHidden, cl::aliasopt(llvm::Demangle));
100 
101 static cl::list<std::string>
102 DisassembleFunctions("df",
103                      cl::CommaSeparated,
104                      cl::desc("List of functions to disassemble"));
105 static StringSet<> DisasmFuncsSet;
106 
107 cl::opt<bool>
108 llvm::Relocations("reloc",
109                   cl::desc("Display the relocation entries in the file"));
110 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
111                                   cl::NotHidden,
112                                   cl::aliasopt(llvm::Relocations));
113 
114 cl::opt<bool>
115 llvm::DynamicRelocations("dynamic-reloc",
116   cl::desc("Display the dynamic relocation entries in the file"));
117 static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
118                                      cl::NotHidden,
119                                      cl::aliasopt(DynamicRelocations));
120 
121 cl::opt<bool>
122     llvm::SectionContents("full-contents",
123                           cl::desc("Display the content of each section"));
124 static cl::alias SectionContentsShort("s",
125                                       cl::desc("Alias for --full-contents"),
126                                       cl::NotHidden,
127                                       cl::aliasopt(SectionContents));
128 
129 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
130 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
131                                   cl::NotHidden,
132                                   cl::aliasopt(llvm::SymbolTable));
133 
134 cl::opt<bool>
135 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
136 
137 cl::opt<bool>
138 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
139 
140 cl::opt<bool>
141 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
142 
143 cl::opt<bool>
144 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
145 
146 cl::opt<bool>
147 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
148 
149 cl::opt<bool>
150 llvm::RawClangAST("raw-clang-ast",
151     cl::desc("Dump the raw binary contents of the clang AST section"));
152 
153 static cl::opt<bool>
154 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
155 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
156                         cl::aliasopt(MachOOpt));
157 
158 cl::opt<std::string>
159 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
160                                     "see -version for available targets"));
161 
162 cl::opt<std::string>
163 llvm::MCPU("mcpu",
164      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
165      cl::value_desc("cpu-name"),
166      cl::init(""));
167 
168 cl::opt<std::string>
169 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
170                                 "see -version for available targets"));
171 
172 cl::opt<bool>
173 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
174                                                  "headers for each section."));
175 static cl::alias SectionHeadersShort("headers",
176                                      cl::desc("Alias for --section-headers"),
177                                      cl::NotHidden,
178                                      cl::aliasopt(SectionHeaders));
179 static cl::alias SectionHeadersShorter("h",
180                                        cl::desc("Alias for --section-headers"),
181                                        cl::NotHidden,
182                                        cl::aliasopt(SectionHeaders));
183 
184 cl::list<std::string>
185 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
186                                          "With -macho dump segment,section"));
187 cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"),
188                                  cl::NotHidden,
189                                  cl::aliasopt(llvm::FilterSections));
190 
191 cl::list<std::string>
192 llvm::MAttrs("mattr",
193   cl::CommaSeparated,
194   cl::desc("Target specific attributes"),
195   cl::value_desc("a1,+a2,-a3,..."));
196 
197 cl::opt<bool>
198 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
199                                                  "instructions, do not print "
200                                                  "the instruction bytes."));
201 cl::opt<bool>
202 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
203 
204 cl::opt<bool>
205 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
206 
207 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
208                                  cl::NotHidden, cl::aliasopt(UnwindInfo));
209 
210 cl::opt<bool>
211 llvm::PrivateHeaders("private-headers",
212                      cl::desc("Display format specific file headers"));
213 
214 cl::opt<bool>
215 llvm::FirstPrivateHeader("private-header",
216                          cl::desc("Display only the first format specific file "
217                                   "header"));
218 
219 static cl::alias PrivateHeadersShort("p",
220                                      cl::desc("Alias for --private-headers"),
221                                      cl::NotHidden,
222                                      cl::aliasopt(PrivateHeaders));
223 
224 cl::opt<bool> llvm::FileHeaders(
225     "file-headers",
226     cl::desc("Display the contents of the overall file header"));
227 
228 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
229                                   cl::NotHidden, cl::aliasopt(FileHeaders));
230 
231 cl::opt<bool>
232     llvm::ArchiveHeaders("archive-headers",
233                          cl::desc("Display archive header information"));
234 
235 cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
236                               cl::NotHidden, cl::aliasopt(ArchiveHeaders));
237 
238 cl::opt<bool>
239     llvm::PrintImmHex("print-imm-hex",
240                       cl::desc("Use hex format for immediate values"));
241 
242 cl::opt<bool> PrintFaultMaps("fault-map-section",
243                              cl::desc("Display contents of faultmap section"));
244 
245 cl::opt<DIDumpType> llvm::DwarfDumpType(
246     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
247     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
248 
249 cl::opt<bool> PrintSource(
250     "source",
251     cl::desc(
252         "Display source inlined with disassembly. Implies disassemble object"));
253 
254 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden,
255                            cl::aliasopt(PrintSource));
256 
257 cl::opt<bool> PrintLines("line-numbers",
258                          cl::desc("Display source line numbers with "
259                                   "disassembly. Implies disassemble object"));
260 
261 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
262                           cl::NotHidden, cl::aliasopt(PrintLines));
263 
264 cl::opt<unsigned long long>
265     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
266                  cl::value_desc("address"), cl::init(0));
267 cl::opt<unsigned long long>
268     StopAddress("stop-address",
269                 cl::desc("Stop disassembly at address"),
270                 cl::value_desc("address"), cl::init(UINT64_MAX));
271 
272 cl::opt<bool> DisassembleZeroes(
273                 "disassemble-zeroes",
274                 cl::desc("Do not skip blocks of zeroes when disassembling"));
275 cl::alias DisassembleZeroesShort("z",
276                                  cl::desc("Alias for --disassemble-zeroes"),
277                                  cl::NotHidden,
278                                  cl::aliasopt(DisassembleZeroes));
279 
280 static StringRef ToolName;
281 
282 namespace {
283 struct SectionSymbol : public std::tuple<uint64_t, StringRef, uint8_t> {
284   SectionSymbol(uint64_t Address, StringRef Name, uint8_t Type)
285       : std::tuple<uint64_t, StringRef, uint8_t>(Address, Name, Type) {}
286 
287   uint64_t Address() const { return std::get<0>(*this); }
288   StringRef Name() const { return std::get<1>(*this); }
289   uint8_t Type() const { return std::get<2>(*this); }
290 };
291 
292 typedef std::vector<SectionSymbol> SectionSymbolsTy;
293 } // namespace
294 
295 SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) {
296   return SectionFilter(
297       [](llvm::object::SectionRef const &S) {
298         if (FilterSections.empty())
299           return true;
300         llvm::StringRef String;
301         std::error_code error = S.getName(String);
302         if (error)
303           return false;
304         return is_contained(FilterSections, String);
305       },
306       O);
307 }
308 
309 void llvm::error(std::error_code EC) {
310   if (!EC)
311     return;
312   WithColor::error(errs(), ToolName)
313       << "reading file: " << EC.message() << ".\n";
314   errs().flush();
315   exit(1);
316 }
317 
318 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
319   WithColor::error(errs(), ToolName) << Message << ".\n";
320   errs().flush();
321   exit(1);
322 }
323 
324 void llvm::warn(StringRef Message) {
325   WithColor::warning(errs(), ToolName) << Message << ".\n";
326   errs().flush();
327 }
328 
329 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
330                                                 Twine Message) {
331   WithColor::error(errs(), ToolName)
332       << "'" << File << "': " << Message << ".\n";
333   exit(1);
334 }
335 
336 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
337                                                 std::error_code EC) {
338   assert(EC);
339   WithColor::error(errs(), ToolName)
340       << "'" << File << "': " << EC.message() << ".\n";
341   exit(1);
342 }
343 
344 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
345                                                 llvm::Error E) {
346   assert(E);
347   std::string Buf;
348   raw_string_ostream OS(Buf);
349   logAllUnhandledErrors(std::move(E), OS);
350   OS.flush();
351   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
352   exit(1);
353 }
354 
355 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
356                                                 StringRef FileName,
357                                                 llvm::Error E,
358                                                 StringRef ArchitectureName) {
359   assert(E);
360   WithColor::error(errs(), ToolName);
361   if (ArchiveName != "")
362     errs() << ArchiveName << "(" << FileName << ")";
363   else
364     errs() << "'" << FileName << "'";
365   if (!ArchitectureName.empty())
366     errs() << " (for architecture " << ArchitectureName << ")";
367   std::string Buf;
368   raw_string_ostream OS(Buf);
369   logAllUnhandledErrors(std::move(E), OS);
370   OS.flush();
371   errs() << ": " << Buf;
372   exit(1);
373 }
374 
375 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
376                                                 const object::Archive::Child &C,
377                                                 llvm::Error E,
378                                                 StringRef ArchitectureName) {
379   Expected<StringRef> NameOrErr = C.getName();
380   // TODO: if we have a error getting the name then it would be nice to print
381   // the index of which archive member this is and or its offset in the
382   // archive instead of "???" as the name.
383   if (!NameOrErr) {
384     consumeError(NameOrErr.takeError());
385     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
386   } else
387     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
388                        ArchitectureName);
389 }
390 
391 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
392   // Figure out the target triple.
393   llvm::Triple TheTriple("unknown-unknown-unknown");
394   if (TripleName.empty()) {
395     if (Obj)
396       TheTriple = Obj->makeTriple();
397   } else {
398     TheTriple.setTriple(Triple::normalize(TripleName));
399 
400     // Use the triple, but also try to combine with ARM build attributes.
401     if (Obj) {
402       auto Arch = Obj->getArch();
403       if (Arch == Triple::arm || Arch == Triple::armeb)
404         Obj->setARMSubArch(TheTriple);
405     }
406   }
407 
408   // Get the target specific parser.
409   std::string Error;
410   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
411                                                          Error);
412   if (!TheTarget) {
413     if (Obj)
414       report_error(Obj->getFileName(), "can't find target: " + Error);
415     else
416       error("can't find target: " + Error);
417   }
418 
419   // Update the triple name and return the found target.
420   TripleName = TheTriple.getTriple();
421   return TheTarget;
422 }
423 
424 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
425   return A.getOffset() < B.getOffset();
426 }
427 
428 static std::error_code getRelocationValueString(const RelocationRef &Rel,
429                                                 SmallVectorImpl<char> &Result) {
430   const ObjectFile *Obj = Rel.getObject();
431   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
432     return getELFRelocationValueString(ELF, Rel, Result);
433   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
434     return getCOFFRelocationValueString(COFF, Rel, Result);
435   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
436     return getWasmRelocationValueString(Wasm, Rel, Result);
437   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
438     return getMachORelocationValueString(MachO, Rel, Result);
439   llvm_unreachable("unknown object file format");
440 }
441 
442 /// Indicates whether this relocation should hidden when listing
443 /// relocations, usually because it is the trailing part of a multipart
444 /// relocation that will be printed as part of the leading relocation.
445 static bool getHidden(RelocationRef RelRef) {
446   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
447   if (!MachO)
448     return false;
449 
450   unsigned Arch = MachO->getArch();
451   DataRefImpl Rel = RelRef.getRawDataRefImpl();
452   uint64_t Type = MachO->getRelocationType(Rel);
453 
454   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
455   // is always hidden.
456   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
457     return Type == MachO::GENERIC_RELOC_PAIR;
458 
459   if (Arch == Triple::x86_64) {
460     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
461     // an X86_64_RELOC_SUBTRACTOR.
462     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
463       DataRefImpl RelPrev = Rel;
464       RelPrev.d.a--;
465       uint64_t PrevType = MachO->getRelocationType(RelPrev);
466       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
467         return true;
468     }
469   }
470 
471   return false;
472 }
473 
474 namespace {
475 class SourcePrinter {
476 protected:
477   DILineInfo OldLineInfo;
478   const ObjectFile *Obj = nullptr;
479   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
480   // File name to file contents of source
481   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
482   // Mark the line endings of the cached source
483   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
484 
485 private:
486   bool cacheSource(const DILineInfo& LineInfoFile);
487 
488 public:
489   SourcePrinter() = default;
490   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
491     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
492         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
493         DefaultArch);
494     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
495   }
496   virtual ~SourcePrinter() = default;
497   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
498                                StringRef Delimiter = "; ");
499 };
500 
501 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
502   std::unique_ptr<MemoryBuffer> Buffer;
503   if (LineInfo.Source) {
504     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
505   } else {
506     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
507     if (!BufferOrError)
508       return false;
509     Buffer = std::move(*BufferOrError);
510   }
511   // Chomp the file to get lines
512   size_t BufferSize = Buffer->getBufferSize();
513   const char *BufferStart = Buffer->getBufferStart();
514   for (const char *Start = BufferStart, *End = BufferStart;
515        End < BufferStart + BufferSize; End++)
516     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
517         (*End == '\r' && *(End + 1) == '\n')) {
518       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
519       if (*End == '\r')
520         End++;
521       Start = End + 1;
522     }
523   SourceCache[LineInfo.FileName] = std::move(Buffer);
524   return true;
525 }
526 
527 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
528                                     StringRef Delimiter) {
529   if (!Symbolizer)
530     return;
531   DILineInfo LineInfo = DILineInfo();
532   auto ExpectecLineInfo =
533       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
534   if (!ExpectecLineInfo)
535     consumeError(ExpectecLineInfo.takeError());
536   else
537     LineInfo = *ExpectecLineInfo;
538 
539   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
540       LineInfo.Line == 0)
541     return;
542 
543   if (PrintLines)
544     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
545   if (PrintSource) {
546     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
547       if (!cacheSource(LineInfo))
548         return;
549     auto FileBuffer = SourceCache.find(LineInfo.FileName);
550     if (FileBuffer != SourceCache.end()) {
551       auto LineBuffer = LineCache.find(LineInfo.FileName);
552       if (LineBuffer != LineCache.end()) {
553         if (LineInfo.Line > LineBuffer->second.size())
554           return;
555         // Vector begins at 0, line numbers are non-zero
556         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
557            << "\n";
558       }
559     }
560   }
561   OldLineInfo = LineInfo;
562 }
563 
564 static bool isArmElf(const ObjectFile *Obj) {
565   return (Obj->isELF() &&
566           (Obj->getArch() == Triple::aarch64 ||
567            Obj->getArch() == Triple::aarch64_be ||
568            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
569            Obj->getArch() == Triple::thumb ||
570            Obj->getArch() == Triple::thumbeb));
571 }
572 
573 class PrettyPrinter {
574 public:
575   virtual ~PrettyPrinter() = default;
576   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
577                          ArrayRef<uint8_t> Bytes, uint64_t Address,
578                          raw_ostream &OS, StringRef Annot,
579                          MCSubtargetInfo const &STI, SourcePrinter *SP,
580                          std::vector<RelocationRef> *Rels = nullptr) {
581     if (SP && (PrintSource || PrintLines))
582       SP->printSourceLine(OS, Address);
583     if (!NoLeadingAddr)
584       OS << format("%8" PRIx64 ":", Address);
585     if (!NoShowRawInsn) {
586       OS << "\t";
587       dumpBytes(Bytes, OS);
588     }
589     if (MI)
590       IP.printInst(MI, OS, "", STI);
591     else
592       OS << " <unknown>";
593   }
594 };
595 PrettyPrinter PrettyPrinterInst;
596 class HexagonPrettyPrinter : public PrettyPrinter {
597 public:
598   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
599                  raw_ostream &OS) {
600     uint32_t opcode =
601       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
602     if (!NoLeadingAddr)
603       OS << format("%8" PRIx64 ":", Address);
604     if (!NoShowRawInsn) {
605       OS << "\t";
606       dumpBytes(Bytes.slice(0, 4), OS);
607       OS << format("%08" PRIx32, opcode);
608     }
609   }
610   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
611                  uint64_t Address, raw_ostream &OS, StringRef Annot,
612                  MCSubtargetInfo const &STI, SourcePrinter *SP,
613                  std::vector<RelocationRef> *Rels) override {
614     if (SP && (PrintSource || PrintLines))
615       SP->printSourceLine(OS, Address, "");
616     if (!MI) {
617       printLead(Bytes, Address, OS);
618       OS << " <unknown>";
619       return;
620     }
621     std::string Buffer;
622     {
623       raw_string_ostream TempStream(Buffer);
624       IP.printInst(MI, TempStream, "", STI);
625     }
626     StringRef Contents(Buffer);
627     // Split off bundle attributes
628     auto PacketBundle = Contents.rsplit('\n');
629     // Split off first instruction from the rest
630     auto HeadTail = PacketBundle.first.split('\n');
631     auto Preamble = " { ";
632     auto Separator = "";
633     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
634     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
635     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
636 
637     // Hexagon's packets require relocations to be inline rather than
638     // clustered at the end of the packet.
639     auto PrintReloc = [&]() -> void {
640       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address)) {
641         if (RelCur->getOffset() == Address) {
642           SmallString<16> Name;
643           SmallString<32> Val;
644           RelCur->getTypeName(Name);
645           error(getRelocationValueString(*RelCur, Val));
646           OS << Separator << format(Fmt.data(), Address) << Name << "\t" << Val
647                 << "\n";
648           return;
649         }
650         ++RelCur;
651       }
652     };
653 
654     while (!HeadTail.first.empty()) {
655       OS << Separator;
656       Separator = "\n";
657       if (SP && (PrintSource || PrintLines))
658         SP->printSourceLine(OS, Address, "");
659       printLead(Bytes, Address, OS);
660       OS << Preamble;
661       Preamble = "   ";
662       StringRef Inst;
663       auto Duplex = HeadTail.first.split('\v');
664       if (!Duplex.second.empty()) {
665         OS << Duplex.first;
666         OS << "; ";
667         Inst = Duplex.second;
668       }
669       else
670         Inst = HeadTail.first;
671       OS << Inst;
672       HeadTail = HeadTail.second.split('\n');
673       if (HeadTail.first.empty())
674         OS << " } " << PacketBundle.second;
675       PrintReloc();
676       Bytes = Bytes.slice(4);
677       Address += 4;
678     }
679   }
680 };
681 HexagonPrettyPrinter HexagonPrettyPrinterInst;
682 
683 class AMDGCNPrettyPrinter : public PrettyPrinter {
684 public:
685   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
686                  uint64_t Address, raw_ostream &OS, StringRef Annot,
687                  MCSubtargetInfo const &STI, SourcePrinter *SP,
688                  std::vector<RelocationRef> *Rels) override {
689     if (SP && (PrintSource || PrintLines))
690       SP->printSourceLine(OS, Address);
691 
692     typedef support::ulittle32_t U32;
693 
694     if (MI) {
695       SmallString<40> InstStr;
696       raw_svector_ostream IS(InstStr);
697 
698       IP.printInst(MI, IS, "", STI);
699 
700       OS << left_justify(IS.str(), 60);
701     } else {
702       // an unrecognized encoding - this is probably data so represent it
703       // using the .long directive, or .byte directive if fewer than 4 bytes
704       // remaining
705       if (Bytes.size() >= 4) {
706         OS << format("\t.long 0x%08" PRIx32 " ",
707                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
708         OS.indent(42);
709       } else {
710           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
711           for (unsigned int i = 1; i < Bytes.size(); i++)
712             OS << format(", 0x%02" PRIx8, Bytes[i]);
713           OS.indent(55 - (6 * Bytes.size()));
714       }
715     }
716 
717     OS << format("// %012" PRIX64 ": ", Address);
718     if (Bytes.size() >=4) {
719       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
720                                  Bytes.size() / sizeof(U32)))
721         // D should be explicitly casted to uint32_t here as it is passed
722         // by format to snprintf as vararg.
723         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
724     } else {
725       for (unsigned int i = 0; i < Bytes.size(); i++)
726         OS << format("%02" PRIX8 " ", Bytes[i]);
727     }
728 
729     if (!Annot.empty())
730       OS << "// " << Annot;
731   }
732 };
733 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
734 
735 class BPFPrettyPrinter : public PrettyPrinter {
736 public:
737   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
738                  uint64_t Address, raw_ostream &OS, StringRef Annot,
739                  MCSubtargetInfo const &STI, SourcePrinter *SP,
740                  std::vector<RelocationRef> *Rels) override {
741     if (SP && (PrintSource || PrintLines))
742       SP->printSourceLine(OS, Address);
743     if (!NoLeadingAddr)
744       OS << format("%8" PRId64 ":", Address / 8);
745     if (!NoShowRawInsn) {
746       OS << "\t";
747       dumpBytes(Bytes, OS);
748     }
749     if (MI)
750       IP.printInst(MI, OS, "", STI);
751     else
752       OS << " <unknown>";
753   }
754 };
755 BPFPrettyPrinter BPFPrettyPrinterInst;
756 
757 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
758   switch(Triple.getArch()) {
759   default:
760     return PrettyPrinterInst;
761   case Triple::hexagon:
762     return HexagonPrettyPrinterInst;
763   case Triple::amdgcn:
764     return AMDGCNPrettyPrinterInst;
765   case Triple::bpfel:
766   case Triple::bpfeb:
767     return BPFPrettyPrinterInst;
768   }
769 }
770 }
771 
772 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
773   assert(Obj->isELF());
774   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
775     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
776   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
777     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
778   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
779     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
780   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
781     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
782   llvm_unreachable("Unsupported binary format");
783 }
784 
785 template <class ELFT> static void
786 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
787                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
788   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
789     uint8_t SymbolType = Symbol.getELFType();
790     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
791       continue;
792 
793     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
794     if (!AddressOrErr)
795       report_error(Obj->getFileName(), AddressOrErr.takeError());
796 
797     Expected<StringRef> Name = Symbol.getName();
798     if (!Name)
799       report_error(Obj->getFileName(), Name.takeError());
800     if (Name->empty())
801       continue;
802 
803     Expected<section_iterator> SectionOrErr = Symbol.getSection();
804     if (!SectionOrErr)
805       report_error(Obj->getFileName(), SectionOrErr.takeError());
806     section_iterator SecI = *SectionOrErr;
807     if (SecI == Obj->section_end())
808       continue;
809 
810     AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType);
811   }
812 }
813 
814 static void
815 addDynamicElfSymbols(const ObjectFile *Obj,
816                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
817   assert(Obj->isELF());
818   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
819     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
820   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
821     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
822   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
823     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
824   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
825     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
826   else
827     llvm_unreachable("Unsupported binary format");
828 }
829 
830 static void addPltEntries(const ObjectFile *Obj,
831                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
832                           StringSaver &Saver) {
833   Optional<SectionRef> Plt = None;
834   for (const SectionRef &Section : Obj->sections()) {
835     StringRef Name;
836     if (Section.getName(Name))
837       continue;
838     if (Name == ".plt")
839       Plt = Section;
840   }
841   if (!Plt)
842     return;
843   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
844     for (auto PltEntry : ElfObj->getPltAddresses()) {
845       SymbolRef Symbol(PltEntry.first, ElfObj);
846       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
847 
848       Expected<StringRef> NameOrErr = Symbol.getName();
849       if (!NameOrErr)
850         report_error(Obj->getFileName(), NameOrErr.takeError());
851       if (NameOrErr->empty())
852         continue;
853       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
854 
855       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
856     }
857   }
858 }
859 
860 // Normally the disassembly output will skip blocks of zeroes. This function
861 // returns the number of zero bytes that can be skipped when dumping the
862 // disassembly of the instructions in Buf.
863 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
864   // When -z or --disassemble-zeroes are given we always dissasemble them.
865   if (DisassembleZeroes)
866     return 0;
867 
868   // Find the number of leading zeroes.
869   size_t N = 0;
870   while (N < Buf.size() && !Buf[N])
871     ++N;
872 
873   // We may want to skip blocks of zero bytes, but unless we see
874   // at least 8 of them in a row.
875   if (N < 8)
876     return 0;
877 
878   // We skip zeroes in multiples of 4 because do not want to truncate an
879   // instruction if it starts with a zero byte.
880   return N & ~0x3;
881 }
882 
883 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
884   if (StartAddress > StopAddress)
885     error("Start address should be less than stop address");
886 
887   const Target *TheTarget = getTarget(Obj);
888 
889   // Package up features to be passed to target/subtarget
890   SubtargetFeatures Features = Obj->getFeatures();
891   if (!MAttrs.empty())
892     for (unsigned I = 0; I != MAttrs.size(); ++I)
893       Features.AddFeature(MAttrs[I]);
894 
895   std::unique_ptr<const MCRegisterInfo> MRI(
896       TheTarget->createMCRegInfo(TripleName));
897   if (!MRI)
898     report_error(Obj->getFileName(), "no register info for target " +
899                  TripleName);
900 
901   // Set up disassembler.
902   std::unique_ptr<const MCAsmInfo> AsmInfo(
903       TheTarget->createMCAsmInfo(*MRI, TripleName));
904   if (!AsmInfo)
905     report_error(Obj->getFileName(), "no assembly info for target " +
906                  TripleName);
907   std::unique_ptr<const MCSubtargetInfo> STI(
908       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
909   if (!STI)
910     report_error(Obj->getFileName(), "no subtarget info for target " +
911                  TripleName);
912   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
913   if (!MII)
914     report_error(Obj->getFileName(), "no instruction info for target " +
915                  TripleName);
916   MCObjectFileInfo MOFI;
917   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
918   // FIXME: for now initialize MCObjectFileInfo with default values
919   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
920 
921   std::unique_ptr<MCDisassembler> DisAsm(
922     TheTarget->createMCDisassembler(*STI, Ctx));
923   if (!DisAsm)
924     report_error(Obj->getFileName(), "no disassembler for target " +
925                  TripleName);
926 
927   std::unique_ptr<const MCInstrAnalysis> MIA(
928       TheTarget->createMCInstrAnalysis(MII.get()));
929 
930   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
931   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
932       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
933   if (!IP)
934     report_error(Obj->getFileName(), "no instruction printer for target " +
935                  TripleName);
936   IP->setPrintImmHex(PrintImmHex);
937   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
938 
939   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
940                                                  "\t\t\t%08" PRIx64 ":  ";
941 
942   SourcePrinter SP(Obj, TheTarget->getName());
943 
944   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
945   // in RelocSecs contain the relocations for section S.
946   std::error_code EC;
947   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
948   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
949     section_iterator Sec2 = Section.getRelocatedSection();
950     if (Sec2 != Obj->section_end())
951       SectionRelocMap[*Sec2].push_back(Section);
952   }
953 
954   // Create a mapping from virtual address to symbol name.  This is used to
955   // pretty print the symbols while disassembling.
956   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
957   SectionSymbolsTy AbsoluteSymbols;
958   for (const SymbolRef &Symbol : Obj->symbols()) {
959     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
960     if (!AddressOrErr)
961       report_error(Obj->getFileName(), AddressOrErr.takeError());
962     uint64_t Address = *AddressOrErr;
963 
964     Expected<StringRef> Name = Symbol.getName();
965     if (!Name)
966       report_error(Obj->getFileName(), Name.takeError());
967     if (Name->empty())
968       continue;
969 
970     Expected<section_iterator> SectionOrErr = Symbol.getSection();
971     if (!SectionOrErr)
972       report_error(Obj->getFileName(), SectionOrErr.takeError());
973 
974     uint8_t SymbolType = ELF::STT_NOTYPE;
975     if (Obj->isELF())
976       SymbolType = getElfSymbolType(Obj, Symbol);
977 
978     section_iterator SecI = *SectionOrErr;
979     if (SecI != Obj->section_end())
980       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
981     else
982       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
983 
984 
985   }
986   if (AllSymbols.empty() && Obj->isELF())
987     addDynamicElfSymbols(Obj, AllSymbols);
988 
989   BumpPtrAllocator A;
990   StringSaver Saver(A);
991   addPltEntries(Obj, AllSymbols, Saver);
992 
993   // Create a mapping from virtual address to section.
994   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
995   for (SectionRef Sec : Obj->sections())
996     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
997   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
998 
999   // Linked executables (.exe and .dll files) typically don't include a real
1000   // symbol table but they might contain an export table.
1001   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1002     for (const auto &ExportEntry : COFFObj->export_directories()) {
1003       StringRef Name;
1004       error(ExportEntry.getSymbolName(Name));
1005       if (Name.empty())
1006         continue;
1007       uint32_t RVA;
1008       error(ExportEntry.getExportRVA(RVA));
1009 
1010       uint64_t VA = COFFObj->getImageBase() + RVA;
1011       auto Sec = std::upper_bound(
1012           SectionAddresses.begin(), SectionAddresses.end(), VA,
1013           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1014             return LHS < RHS.first;
1015           });
1016       if (Sec != SectionAddresses.begin())
1017         --Sec;
1018       else
1019         Sec = SectionAddresses.end();
1020 
1021       if (Sec != SectionAddresses.end())
1022         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1023       else
1024         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1025     }
1026   }
1027 
1028   // Sort all the symbols, this allows us to use a simple binary search to find
1029   // a symbol near an address.
1030   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1031     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1032   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1033 
1034   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1035     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1036       continue;
1037 
1038     uint64_t SectionAddr = Section.getAddress();
1039     uint64_t SectSize = Section.getSize();
1040     if (!SectSize)
1041       continue;
1042 
1043     // Get the list of all the symbols in this section.
1044     SectionSymbolsTy &Symbols = AllSymbols[Section];
1045     std::vector<uint64_t> DataMappingSymsAddr;
1046     std::vector<uint64_t> TextMappingSymsAddr;
1047     if (isArmElf(Obj)) {
1048       for (const auto &Symb : Symbols) {
1049         uint64_t Address = Symb.Address();
1050         StringRef Name = Symb.Name();
1051         if (Name.startswith("$d"))
1052           DataMappingSymsAddr.push_back(Address - SectionAddr);
1053         if (Name.startswith("$x"))
1054           TextMappingSymsAddr.push_back(Address - SectionAddr);
1055         if (Name.startswith("$a"))
1056           TextMappingSymsAddr.push_back(Address - SectionAddr);
1057         if (Name.startswith("$t"))
1058           TextMappingSymsAddr.push_back(Address - SectionAddr);
1059       }
1060     }
1061 
1062     llvm::sort(DataMappingSymsAddr);
1063     llvm::sort(TextMappingSymsAddr);
1064 
1065     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1066       // AMDGPU disassembler uses symbolizer for printing labels
1067       std::unique_ptr<MCRelocationInfo> RelInfo(
1068         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1069       if (RelInfo) {
1070         std::unique_ptr<MCSymbolizer> Symbolizer(
1071           TheTarget->createMCSymbolizer(
1072             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1073         DisAsm->setSymbolizer(std::move(Symbolizer));
1074       }
1075     }
1076 
1077     // Make a list of all the relocations for this section.
1078     std::vector<RelocationRef> Rels;
1079     if (InlineRelocs) {
1080       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1081         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1082           Rels.push_back(Reloc);
1083         }
1084       }
1085     }
1086 
1087     // Sort relocations by address.
1088     llvm::sort(Rels, isRelocAddressLess);
1089 
1090     StringRef SegmentName = "";
1091     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1092       DataRefImpl DR = Section.getRawDataRefImpl();
1093       SegmentName = MachO->getSectionFinalSegmentName(DR);
1094     }
1095     StringRef SectionName;
1096     error(Section.getName(SectionName));
1097 
1098     // If the section has no symbol at the start, just insert a dummy one.
1099     if (Symbols.empty() || Symbols[0].Address() != 0) {
1100       Symbols.insert(
1101           Symbols.begin(),
1102           SectionSymbol(SectionAddr, SectionName,
1103                         Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1104     }
1105 
1106     SmallString<40> Comments;
1107     raw_svector_ostream CommentStream(Comments);
1108 
1109     StringRef BytesStr;
1110     error(Section.getContents(BytesStr));
1111     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1112                             BytesStr.size());
1113 
1114     uint64_t Size;
1115     uint64_t Index;
1116     bool PrintedSection = false;
1117 
1118     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1119     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1120     // Disassemble symbol by symbol.
1121     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1122       uint64_t Start = Symbols[SI].Address() - SectionAddr;
1123       // The end is either the section end or the beginning of the next
1124       // symbol.
1125       uint64_t End =
1126           (SI == SE - 1) ? SectSize : Symbols[SI + 1].Address() - SectionAddr;
1127       // Don't try to disassemble beyond the end of section contents.
1128       if (End > SectSize)
1129         End = SectSize;
1130       // If this symbol has the same address as the next symbol, then skip it.
1131       if (Start >= End)
1132         continue;
1133 
1134       // Check if we need to skip symbol
1135       // Skip if the symbol's data is not between StartAddress and StopAddress
1136       if (End + SectionAddr < StartAddress ||
1137           Start + SectionAddr > StopAddress) {
1138         continue;
1139       }
1140 
1141       /// Skip if user requested specific symbols and this is not in the list
1142       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(Symbols[SI].Name()))
1143         continue;
1144 
1145       if (!PrintedSection) {
1146         PrintedSection = true;
1147         outs() << "Disassembly of section ";
1148         if (!SegmentName.empty())
1149           outs() << SegmentName << ",";
1150         outs() << SectionName << ':';
1151       }
1152 
1153       // Stop disassembly at the stop address specified
1154       if (End + SectionAddr > StopAddress)
1155         End = StopAddress - SectionAddr;
1156 
1157       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1158         if (Symbols[SI].Type() == ELF::STT_AMDGPU_HSA_KERNEL) {
1159           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1160           Start += 256;
1161         }
1162         if (SI == SE - 1 ||
1163             Symbols[SI + 1].Type() == ELF::STT_AMDGPU_HSA_KERNEL) {
1164           // cut trailing zeroes at the end of kernel
1165           // cut up to 256 bytes
1166           const uint64_t EndAlign = 256;
1167           const auto Limit = End - (std::min)(EndAlign, End - Start);
1168           while (End > Limit &&
1169             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1170             End -= 4;
1171         }
1172       }
1173 
1174       outs() << '\n';
1175       if (!NoLeadingAddr)
1176         outs() << format("%016" PRIx64 " ", SectionAddr + Start);
1177 
1178       StringRef SymbolName = Symbols[SI].Name();
1179       if (Demangle)
1180         outs() << demangle(SymbolName) << ":\n";
1181       else
1182         outs() << SymbolName << ":\n";
1183 
1184       // Don't print raw contents of a virtual section. A virtual section
1185       // doesn't have any contents in the file.
1186       if (Section.isVirtual()) {
1187         outs() << "...\n";
1188         continue;
1189       }
1190 
1191 #ifndef NDEBUG
1192       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1193 #else
1194       raw_ostream &DebugOut = nulls();
1195 #endif
1196 
1197       // Some targets (like WebAssembly) have a special prelude at the start
1198       // of each symbol.
1199       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1200                             SectionAddr + Start, DebugOut, CommentStream);
1201       Start += Size;
1202 
1203       for (Index = Start; Index < End; Index += Size) {
1204         MCInst Inst;
1205 
1206         if (Index + SectionAddr < StartAddress ||
1207             Index + SectionAddr > StopAddress) {
1208           // skip byte by byte till StartAddress is reached
1209           Size = 1;
1210           continue;
1211         }
1212         // AArch64 ELF binaries can interleave data and text in the
1213         // same section. We rely on the markers introduced to
1214         // understand what we need to dump. If the data marker is within a
1215         // function, it is denoted as a word/short etc
1216         if (isArmElf(Obj) && Symbols[SI].Type() != ELF::STT_OBJECT &&
1217             !DisassembleAll) {
1218           uint64_t Stride = 0;
1219 
1220           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1221                                       DataMappingSymsAddr.end(), Index);
1222           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1223             // Switch to data.
1224             while (Index < End) {
1225               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1226               outs() << "\t";
1227               if (Index + 4 <= End) {
1228                 Stride = 4;
1229                 dumpBytes(Bytes.slice(Index, 4), outs());
1230                 outs() << "\t.word\t";
1231                 uint32_t Data = 0;
1232                 if (Obj->isLittleEndian()) {
1233                   const auto Word =
1234                       reinterpret_cast<const support::ulittle32_t *>(
1235                           Bytes.data() + Index);
1236                   Data = *Word;
1237                 } else {
1238                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1239                       Bytes.data() + Index);
1240                   Data = *Word;
1241                 }
1242                 outs() << "0x" << format("%08" PRIx32, Data);
1243               } else if (Index + 2 <= End) {
1244                 Stride = 2;
1245                 dumpBytes(Bytes.slice(Index, 2), outs());
1246                 outs() << "\t\t.short\t";
1247                 uint16_t Data = 0;
1248                 if (Obj->isLittleEndian()) {
1249                   const auto Short =
1250                       reinterpret_cast<const support::ulittle16_t *>(
1251                           Bytes.data() + Index);
1252                   Data = *Short;
1253                 } else {
1254                   const auto Short =
1255                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1256                                                                   Index);
1257                   Data = *Short;
1258                 }
1259                 outs() << "0x" << format("%04" PRIx16, Data);
1260               } else {
1261                 Stride = 1;
1262                 dumpBytes(Bytes.slice(Index, 1), outs());
1263                 outs() << "\t\t.byte\t";
1264                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1265               }
1266               Index += Stride;
1267               outs() << "\n";
1268               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1269                                           TextMappingSymsAddr.end(), Index);
1270               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1271                 break;
1272             }
1273           }
1274         }
1275 
1276         // If there is a data symbol inside an ELF text section and we are only
1277         // disassembling text (applicable all architectures),
1278         // we are in a situation where we must print the data and not
1279         // disassemble it.
1280         if (Obj->isELF() && Symbols[SI].Type() == ELF::STT_OBJECT &&
1281             !DisassembleAll && Section.isText()) {
1282           // print out data up to 8 bytes at a time in hex and ascii
1283           uint8_t AsciiData[9] = {'\0'};
1284           uint8_t Byte;
1285           int NumBytes = 0;
1286 
1287           for (Index = Start; Index < End; Index += 1) {
1288             if (((SectionAddr + Index) < StartAddress) ||
1289                 ((SectionAddr + Index) > StopAddress))
1290               continue;
1291             if (NumBytes == 0) {
1292               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1293               outs() << "\t";
1294             }
1295             Byte = Bytes.slice(Index)[0];
1296             outs() << format(" %02x", Byte);
1297             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1298 
1299             uint8_t IndentOffset = 0;
1300             NumBytes++;
1301             if (Index == End - 1 || NumBytes > 8) {
1302               // Indent the space for less than 8 bytes data.
1303               // 2 spaces for byte and one for space between bytes
1304               IndentOffset = 3 * (8 - NumBytes);
1305               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1306                 AsciiData[Excess] = '\0';
1307               NumBytes = 8;
1308             }
1309             if (NumBytes == 8) {
1310               AsciiData[8] = '\0';
1311               outs() << std::string(IndentOffset, ' ') << "         ";
1312               outs() << reinterpret_cast<char *>(AsciiData);
1313               outs() << '\n';
1314               NumBytes = 0;
1315             }
1316           }
1317         }
1318         if (Index >= End)
1319           break;
1320 
1321         if (size_t N =
1322                 countSkippableZeroBytes(Bytes.slice(Index, End - Index))) {
1323           outs() << "\t\t..." << '\n';
1324           Index += N;
1325           if (Index >= End)
1326             break;
1327         }
1328 
1329         // Disassemble a real instruction or a data when disassemble all is
1330         // provided
1331         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1332                                                    SectionAddr + Index, DebugOut,
1333                                                    CommentStream);
1334         if (Size == 0)
1335           Size = 1;
1336 
1337         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1338                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1339                       *STI, &SP, &Rels);
1340         outs() << CommentStream.str();
1341         Comments.clear();
1342 
1343         // Try to resolve the target of a call, tail call, etc. to a specific
1344         // symbol.
1345         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1346                     MIA->isConditionalBranch(Inst))) {
1347           uint64_t Target;
1348           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1349             // In a relocatable object, the target's section must reside in
1350             // the same section as the call instruction or it is accessed
1351             // through a relocation.
1352             //
1353             // In a non-relocatable object, the target may be in any section.
1354             //
1355             // N.B. We don't walk the relocations in the relocatable case yet.
1356             auto *TargetSectionSymbols = &Symbols;
1357             if (!Obj->isRelocatableObject()) {
1358               auto SectionAddress = std::upper_bound(
1359                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1360                   [](uint64_t LHS,
1361                       const std::pair<uint64_t, SectionRef> &RHS) {
1362                     return LHS < RHS.first;
1363                   });
1364               if (SectionAddress != SectionAddresses.begin()) {
1365                 --SectionAddress;
1366                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1367               } else {
1368                 TargetSectionSymbols = &AbsoluteSymbols;
1369               }
1370             }
1371 
1372             // Find the first symbol in the section whose offset is less than
1373             // or equal to the target. If there isn't a section that contains
1374             // the target, find the nearest preceding absolute symbol.
1375             auto TargetSym = std::upper_bound(
1376                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1377                 Target, [](uint64_t LHS, const SectionSymbol &RHS) {
1378                   return LHS < RHS.Address();
1379                 });
1380             if (TargetSym == TargetSectionSymbols->begin()) {
1381               TargetSectionSymbols = &AbsoluteSymbols;
1382               TargetSym = std::upper_bound(
1383                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(), Target,
1384                   [](uint64_t LHS, const SectionSymbol &RHS) {
1385                     return LHS < RHS.Address();
1386                   });
1387             }
1388             if (TargetSym != TargetSectionSymbols->begin()) {
1389               --TargetSym;
1390               outs() << " <" << TargetSym->Name();
1391               uint64_t Disp = Target - TargetSym->Address();
1392               if (Disp)
1393                 outs() << "+0x" << Twine::utohexstr(Disp);
1394               outs() << '>';
1395             }
1396           }
1397         }
1398         outs() << "\n";
1399 
1400         // Hexagon does this in pretty printer
1401         if (Obj->getArch() != Triple::hexagon)
1402           // Print relocation for instruction.
1403           while (RelCur != RelEnd) {
1404             uint64_t Addr = RelCur->getOffset();
1405             SmallString<16> Name;
1406             SmallString<32> Val;
1407 
1408             // If this relocation is hidden, skip it.
1409             if (getHidden(*RelCur) || ((SectionAddr + Addr) < StartAddress)) {
1410               ++RelCur;
1411               continue;
1412             }
1413 
1414             // Stop when rel_cur's address is past the current instruction.
1415             if (Addr >= Index + Size)
1416               break;
1417             RelCur->getTypeName(Name);
1418             error(getRelocationValueString(*RelCur, Val));
1419             outs() << format(Fmt.data(), SectionAddr + Addr) << Name << "\t"
1420                    << Val << "\n";
1421             ++RelCur;
1422           }
1423       }
1424     }
1425   }
1426 }
1427 
1428 void llvm::printRelocations(const ObjectFile *Obj) {
1429   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1430                                                  "%08" PRIx64;
1431   // Regular objdump doesn't print relocations in non-relocatable object
1432   // files.
1433   if (!Obj->isRelocatableObject())
1434     return;
1435 
1436   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1437     if (Section.relocation_begin() == Section.relocation_end())
1438       continue;
1439     StringRef SecName;
1440     error(Section.getName(SecName));
1441     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1442     for (const RelocationRef &Reloc : Section.relocations()) {
1443       uint64_t Address = Reloc.getOffset();
1444       SmallString<32> RelocName;
1445       SmallString<32> ValueStr;
1446       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1447         continue;
1448       Reloc.getTypeName(RelocName);
1449       error(getRelocationValueString(Reloc, ValueStr));
1450       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1451              << ValueStr << "\n";
1452     }
1453     outs() << "\n";
1454   }
1455 }
1456 
1457 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1458   // For the moment, this option is for ELF only
1459   if (!Obj->isELF())
1460     return;
1461 
1462   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1463   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1464     error("not a dynamic object");
1465     return;
1466   }
1467 
1468   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1469   if (DynRelSec.empty())
1470     return;
1471 
1472   outs() << "DYNAMIC RELOCATION RECORDS\n";
1473   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1474   for (const SectionRef &Section : DynRelSec) {
1475     if (Section.relocation_begin() == Section.relocation_end())
1476       continue;
1477     for (const RelocationRef &Reloc : Section.relocations()) {
1478       uint64_t Address = Reloc.getOffset();
1479       SmallString<32> RelocName;
1480       SmallString<32> ValueStr;
1481       Reloc.getTypeName(RelocName);
1482       error(getRelocationValueString(Reloc, ValueStr));
1483       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1484              << ValueStr << "\n";
1485     }
1486   }
1487 }
1488 
1489 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1490   outs() << "Sections:\n"
1491             "Idx Name          Size      Address          Type\n";
1492   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1493     StringRef Name;
1494     error(Section.getName(Name));
1495     uint64_t Address = Section.getAddress();
1496     uint64_t Size = Section.getSize();
1497     bool Text = Section.isText();
1498     bool Data = Section.isData();
1499     bool BSS = Section.isBSS();
1500     std::string Type = (std::string(Text ? "TEXT " : "") +
1501                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1502     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1503                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1504                      Address, Type.c_str());
1505   }
1506   outs() << "\n";
1507 }
1508 
1509 void llvm::printSectionContents(const ObjectFile *Obj) {
1510   std::error_code EC;
1511   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1512     StringRef Name;
1513     StringRef Contents;
1514     error(Section.getName(Name));
1515     uint64_t BaseAddr = Section.getAddress();
1516     uint64_t Size = Section.getSize();
1517     if (!Size)
1518       continue;
1519 
1520     outs() << "Contents of section " << Name << ":\n";
1521     if (Section.isBSS()) {
1522       outs() << format("<skipping contents of bss section at [%04" PRIx64
1523                        ", %04" PRIx64 ")>\n",
1524                        BaseAddr, BaseAddr + Size);
1525       continue;
1526     }
1527 
1528     error(Section.getContents(Contents));
1529 
1530     // Dump out the content as hex and printable ascii characters.
1531     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1532       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1533       // Dump line of hex.
1534       for (std::size_t I = 0; I < 16; ++I) {
1535         if (I != 0 && I % 4 == 0)
1536           outs() << ' ';
1537         if (Addr + I < End)
1538           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1539                  << hexdigit(Contents[Addr + I] & 0xF, true);
1540         else
1541           outs() << "  ";
1542       }
1543       // Print ascii.
1544       outs() << "  ";
1545       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1546         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1547           outs() << Contents[Addr + I];
1548         else
1549           outs() << ".";
1550       }
1551       outs() << "\n";
1552     }
1553   }
1554 }
1555 
1556 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1557                             StringRef ArchitectureName) {
1558   outs() << "SYMBOL TABLE:\n";
1559 
1560   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1561     printCOFFSymbolTable(Coff);
1562     return;
1563   }
1564 
1565   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1566     // Skip printing the special zero symbol when dumping an ELF file.
1567     // This makes the output consistent with the GNU objdump.
1568     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1569       continue;
1570 
1571     const SymbolRef &Symbol = *I;
1572     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1573     if (!AddressOrError)
1574       report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(),
1575                    ArchitectureName);
1576     uint64_t Address = *AddressOrError;
1577     if ((Address < StartAddress) || (Address > StopAddress))
1578       continue;
1579     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1580     if (!TypeOrError)
1581       report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(),
1582                    ArchitectureName);
1583     SymbolRef::Type Type = *TypeOrError;
1584     uint32_t Flags = Symbol.getFlags();
1585     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1586     if (!SectionOrErr)
1587       report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(),
1588                    ArchitectureName);
1589     section_iterator Section = *SectionOrErr;
1590     StringRef Name;
1591     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1592       Section->getName(Name);
1593     } else {
1594       Expected<StringRef> NameOrErr = Symbol.getName();
1595       if (!NameOrErr)
1596         report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(),
1597                      ArchitectureName);
1598       Name = *NameOrErr;
1599     }
1600 
1601     bool Global = Flags & SymbolRef::SF_Global;
1602     bool Weak = Flags & SymbolRef::SF_Weak;
1603     bool Absolute = Flags & SymbolRef::SF_Absolute;
1604     bool Common = Flags & SymbolRef::SF_Common;
1605     bool Hidden = Flags & SymbolRef::SF_Hidden;
1606 
1607     char GlobLoc = ' ';
1608     if (Type != SymbolRef::ST_Unknown)
1609       GlobLoc = Global ? 'g' : 'l';
1610     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1611                  ? 'd' : ' ';
1612     char FileFunc = ' ';
1613     if (Type == SymbolRef::ST_File)
1614       FileFunc = 'f';
1615     else if (Type == SymbolRef::ST_Function)
1616       FileFunc = 'F';
1617     else if (Type == SymbolRef::ST_Data)
1618       FileFunc = 'O';
1619 
1620     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1621                                                    "%08" PRIx64;
1622 
1623     outs() << format(Fmt, Address) << " "
1624            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1625            << (Weak ? 'w' : ' ') // Weak?
1626            << ' ' // Constructor. Not supported yet.
1627            << ' ' // Warning. Not supported yet.
1628            << ' ' // Indirect reference to another symbol.
1629            << Debug // Debugging (d) or dynamic (D) symbol.
1630            << FileFunc // Name of function (F), file (f) or object (O).
1631            << ' ';
1632     if (Absolute) {
1633       outs() << "*ABS*";
1634     } else if (Common) {
1635       outs() << "*COM*";
1636     } else if (Section == O->section_end()) {
1637       outs() << "*UND*";
1638     } else {
1639       if (const MachOObjectFile *MachO =
1640           dyn_cast<const MachOObjectFile>(O)) {
1641         DataRefImpl DR = Section->getRawDataRefImpl();
1642         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1643         outs() << SegmentName << ",";
1644       }
1645       StringRef SectionName;
1646       error(Section->getName(SectionName));
1647       outs() << SectionName;
1648     }
1649 
1650     outs() << '\t';
1651     if (Common || isa<ELFObjectFileBase>(O)) {
1652       uint64_t Val =
1653           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1654       outs() << format("\t %08" PRIx64 " ", Val);
1655     }
1656 
1657     if (Hidden)
1658       outs() << ".hidden ";
1659 
1660     if (Demangle)
1661       outs() << demangle(Name) << '\n';
1662     else
1663       outs() << Name << '\n';
1664   }
1665 }
1666 
1667 static void printUnwindInfo(const ObjectFile *O) {
1668   outs() << "Unwind info:\n\n";
1669 
1670   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1671     printCOFFUnwindInfo(Coff);
1672   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1673     printMachOUnwindInfo(MachO);
1674   else
1675     // TODO: Extract DWARF dump tool to objdump.
1676     WithColor::error(errs(), ToolName)
1677         << "This operation is only currently supported "
1678            "for COFF and MachO object files.\n";
1679 }
1680 
1681 void llvm::printExportsTrie(const ObjectFile *o) {
1682   outs() << "Exports trie:\n";
1683   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1684     printMachOExportsTrie(MachO);
1685   else
1686     WithColor::error(errs(), ToolName)
1687         << "This operation is only currently supported "
1688            "for Mach-O executable files.\n";
1689 }
1690 
1691 void llvm::printRebaseTable(ObjectFile *o) {
1692   outs() << "Rebase table:\n";
1693   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1694     printMachORebaseTable(MachO);
1695   else
1696     WithColor::error(errs(), ToolName)
1697         << "This operation is only currently supported "
1698            "for Mach-O executable files.\n";
1699 }
1700 
1701 void llvm::printBindTable(ObjectFile *o) {
1702   outs() << "Bind table:\n";
1703   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1704     printMachOBindTable(MachO);
1705   else
1706     WithColor::error(errs(), ToolName)
1707         << "This operation is only currently supported "
1708            "for Mach-O executable files.\n";
1709 }
1710 
1711 void llvm::printLazyBindTable(ObjectFile *o) {
1712   outs() << "Lazy bind table:\n";
1713   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1714     printMachOLazyBindTable(MachO);
1715   else
1716     WithColor::error(errs(), ToolName)
1717         << "This operation is only currently supported "
1718            "for Mach-O executable files.\n";
1719 }
1720 
1721 void llvm::printWeakBindTable(ObjectFile *o) {
1722   outs() << "Weak bind table:\n";
1723   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1724     printMachOWeakBindTable(MachO);
1725   else
1726     WithColor::error(errs(), ToolName)
1727         << "This operation is only currently supported "
1728            "for Mach-O executable files.\n";
1729 }
1730 
1731 /// Dump the raw contents of the __clangast section so the output can be piped
1732 /// into llvm-bcanalyzer.
1733 void llvm::printRawClangAST(const ObjectFile *Obj) {
1734   if (outs().is_displayed()) {
1735     WithColor::error(errs(), ToolName)
1736         << "The -raw-clang-ast option will dump the raw binary contents of "
1737            "the clang ast section.\n"
1738            "Please redirect the output to a file or another program such as "
1739            "llvm-bcanalyzer.\n";
1740     return;
1741   }
1742 
1743   StringRef ClangASTSectionName("__clangast");
1744   if (isa<COFFObjectFile>(Obj)) {
1745     ClangASTSectionName = "clangast";
1746   }
1747 
1748   Optional<object::SectionRef> ClangASTSection;
1749   for (auto Sec : ToolSectionFilter(*Obj)) {
1750     StringRef Name;
1751     Sec.getName(Name);
1752     if (Name == ClangASTSectionName) {
1753       ClangASTSection = Sec;
1754       break;
1755     }
1756   }
1757   if (!ClangASTSection)
1758     return;
1759 
1760   StringRef ClangASTContents;
1761   error(ClangASTSection.getValue().getContents(ClangASTContents));
1762   outs().write(ClangASTContents.data(), ClangASTContents.size());
1763 }
1764 
1765 static void printFaultMaps(const ObjectFile *Obj) {
1766   StringRef FaultMapSectionName;
1767 
1768   if (isa<ELFObjectFileBase>(Obj)) {
1769     FaultMapSectionName = ".llvm_faultmaps";
1770   } else if (isa<MachOObjectFile>(Obj)) {
1771     FaultMapSectionName = "__llvm_faultmaps";
1772   } else {
1773     WithColor::error(errs(), ToolName)
1774         << "This operation is only currently supported "
1775            "for ELF and Mach-O executable files.\n";
1776     return;
1777   }
1778 
1779   Optional<object::SectionRef> FaultMapSection;
1780 
1781   for (auto Sec : ToolSectionFilter(*Obj)) {
1782     StringRef Name;
1783     Sec.getName(Name);
1784     if (Name == FaultMapSectionName) {
1785       FaultMapSection = Sec;
1786       break;
1787     }
1788   }
1789 
1790   outs() << "FaultMap table:\n";
1791 
1792   if (!FaultMapSection.hasValue()) {
1793     outs() << "<not found>\n";
1794     return;
1795   }
1796 
1797   StringRef FaultMapContents;
1798   error(FaultMapSection.getValue().getContents(FaultMapContents));
1799 
1800   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1801                      FaultMapContents.bytes_end());
1802 
1803   outs() << FMP;
1804 }
1805 
1806 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1807   if (O->isELF()) {
1808     printELFFileHeader(O);
1809     return printELFDynamicSection(O);
1810   }
1811   if (O->isCOFF())
1812     return printCOFFFileHeader(O);
1813   if (O->isWasm())
1814     return printWasmFileHeader(O);
1815   if (O->isMachO()) {
1816     printMachOFileHeader(O);
1817     if (!OnlyFirst)
1818       printMachOLoadCommands(O);
1819     return;
1820   }
1821   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1822 }
1823 
1824 static void printFileHeaders(const ObjectFile *O) {
1825   if (!O->isELF() && !O->isCOFF())
1826     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1827 
1828   Triple::ArchType AT = O->getArch();
1829   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1830   Expected<uint64_t> StartAddrOrErr = O->getStartAddress();
1831   if (!StartAddrOrErr)
1832     report_error(O->getFileName(), StartAddrOrErr.takeError());
1833 
1834   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1835   uint64_t Address = StartAddrOrErr.get();
1836   outs() << "start address: "
1837          << "0x" << format(Fmt.data(), Address) << "\n\n";
1838 }
1839 
1840 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1841   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1842   if (!ModeOrErr) {
1843     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1844     consumeError(ModeOrErr.takeError());
1845     return;
1846   }
1847   sys::fs::perms Mode = ModeOrErr.get();
1848   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1849   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1850   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1851   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1852   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1853   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1854   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1855   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1856   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1857 
1858   outs() << " ";
1859 
1860   Expected<unsigned> UIDOrErr = C.getUID();
1861   if (!UIDOrErr)
1862     report_error(Filename, UIDOrErr.takeError());
1863   unsigned UID = UIDOrErr.get();
1864   outs() << format("%d/", UID);
1865 
1866   Expected<unsigned> GIDOrErr = C.getGID();
1867   if (!GIDOrErr)
1868     report_error(Filename, GIDOrErr.takeError());
1869   unsigned GID = GIDOrErr.get();
1870   outs() << format("%-d ", GID);
1871 
1872   Expected<uint64_t> Size = C.getRawSize();
1873   if (!Size)
1874     report_error(Filename, Size.takeError());
1875   outs() << format("%6" PRId64, Size.get()) << " ";
1876 
1877   StringRef RawLastModified = C.getRawLastModified();
1878   unsigned Seconds;
1879   if (RawLastModified.getAsInteger(10, Seconds))
1880     outs() << "(date: \"" << RawLastModified
1881            << "\" contains non-decimal chars) ";
1882   else {
1883     // Since ctime(3) returns a 26 character string of the form:
1884     // "Sun Sep 16 01:03:52 1973\n\0"
1885     // just print 24 characters.
1886     time_t t = Seconds;
1887     outs() << format("%.24s ", ctime(&t));
1888   }
1889 
1890   StringRef Name = "";
1891   Expected<StringRef> NameOrErr = C.getName();
1892   if (!NameOrErr) {
1893     consumeError(NameOrErr.takeError());
1894     Expected<StringRef> RawNameOrErr = C.getRawName();
1895     if (!RawNameOrErr)
1896       report_error(Filename, NameOrErr.takeError());
1897     Name = RawNameOrErr.get();
1898   } else {
1899     Name = NameOrErr.get();
1900   }
1901   outs() << Name << "\n";
1902 }
1903 
1904 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1905                        const Archive::Child *C = nullptr) {
1906   // Avoid other output when using a raw option.
1907   if (!RawClangAST) {
1908     outs() << '\n';
1909     if (A)
1910       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1911     else
1912       outs() << O->getFileName();
1913     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1914   }
1915 
1916   StringRef ArchiveName = A ? A->getFileName() : "";
1917   if (FileHeaders)
1918     printFileHeaders(O);
1919   if (ArchiveHeaders && !MachOOpt && C)
1920     printArchiveChild(ArchiveName, *C);
1921   if (Disassemble)
1922     disassembleObject(O, Relocations);
1923   if (Relocations && !Disassemble)
1924     printRelocations(O);
1925   if (DynamicRelocations)
1926     printDynamicRelocations(O);
1927   if (SectionHeaders)
1928     printSectionHeaders(O);
1929   if (SectionContents)
1930     printSectionContents(O);
1931   if (SymbolTable)
1932     printSymbolTable(O, ArchiveName);
1933   if (UnwindInfo)
1934     printUnwindInfo(O);
1935   if (PrivateHeaders || FirstPrivateHeader)
1936     printPrivateFileHeaders(O, FirstPrivateHeader);
1937   if (ExportsTrie)
1938     printExportsTrie(O);
1939   if (Rebase)
1940     printRebaseTable(O);
1941   if (Bind)
1942     printBindTable(O);
1943   if (LazyBind)
1944     printLazyBindTable(O);
1945   if (WeakBind)
1946     printWeakBindTable(O);
1947   if (RawClangAST)
1948     printRawClangAST(O);
1949   if (PrintFaultMaps)
1950     printFaultMaps(O);
1951   if (DwarfDumpType != DIDT_Null) {
1952     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
1953     // Dump the complete DWARF structure.
1954     DIDumpOptions DumpOpts;
1955     DumpOpts.DumpType = DwarfDumpType;
1956     DICtx->dump(outs(), DumpOpts);
1957   }
1958 }
1959 
1960 static void dumpObject(const COFFImportFile *I, const Archive *A,
1961                        const Archive::Child *C = nullptr) {
1962   StringRef ArchiveName = A ? A->getFileName() : "";
1963 
1964   // Avoid other output when using a raw option.
1965   if (!RawClangAST)
1966     outs() << '\n'
1967            << ArchiveName << "(" << I->getFileName() << ")"
1968            << ":\tfile format COFF-import-file"
1969            << "\n\n";
1970 
1971   if (ArchiveHeaders && !MachOOpt && C)
1972     printArchiveChild(ArchiveName, *C);
1973   if (SymbolTable)
1974     printCOFFSymbolTable(I);
1975 }
1976 
1977 /// Dump each object file in \a a;
1978 static void dumpArchive(const Archive *A) {
1979   Error Err = Error::success();
1980   for (auto &C : A->children(Err)) {
1981     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1982     if (!ChildOrErr) {
1983       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1984         report_error(A->getFileName(), C, std::move(E));
1985       continue;
1986     }
1987     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1988       dumpObject(O, A, &C);
1989     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1990       dumpObject(I, A, &C);
1991     else
1992       report_error(A->getFileName(), object_error::invalid_file_type);
1993   }
1994   if (Err)
1995     report_error(A->getFileName(), std::move(Err));
1996 }
1997 
1998 /// Open file and figure out how to dump it.
1999 static void dumpInput(StringRef file) {
2000   // If we are using the Mach-O specific object file parser, then let it parse
2001   // the file and process the command line options.  So the -arch flags can
2002   // be used to select specific slices, etc.
2003   if (MachOOpt) {
2004     parseInputMachO(file);
2005     return;
2006   }
2007 
2008   // Attempt to open the binary.
2009   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2010   if (!BinaryOrErr)
2011     report_error(file, BinaryOrErr.takeError());
2012   Binary &Binary = *BinaryOrErr.get().getBinary();
2013 
2014   if (Archive *A = dyn_cast<Archive>(&Binary))
2015     dumpArchive(A);
2016   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2017     dumpObject(O);
2018   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2019     parseInputMachO(UB);
2020   else
2021     report_error(file, object_error::invalid_file_type);
2022 }
2023 
2024 int main(int argc, char **argv) {
2025   InitLLVM X(argc, argv);
2026 
2027   // Initialize targets and assembly printers/parsers.
2028   llvm::InitializeAllTargetInfos();
2029   llvm::InitializeAllTargetMCs();
2030   llvm::InitializeAllDisassemblers();
2031 
2032   // Register the target printer for --version.
2033   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2034 
2035   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2036 
2037   ToolName = argv[0];
2038 
2039   // Defaults to a.out if no filenames specified.
2040   if (InputFilenames.empty())
2041     InputFilenames.push_back("a.out");
2042 
2043   if (AllHeaders)
2044     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2045         SectionHeaders = SymbolTable = true;
2046 
2047   if (DisassembleAll || PrintSource || PrintLines)
2048     Disassemble = true;
2049 
2050   if (!Disassemble
2051       && !Relocations
2052       && !DynamicRelocations
2053       && !SectionHeaders
2054       && !SectionContents
2055       && !SymbolTable
2056       && !UnwindInfo
2057       && !PrivateHeaders
2058       && !FileHeaders
2059       && !FirstPrivateHeader
2060       && !ExportsTrie
2061       && !Rebase
2062       && !Bind
2063       && !LazyBind
2064       && !WeakBind
2065       && !RawClangAST
2066       && !(UniversalHeaders && MachOOpt)
2067       && !ArchiveHeaders
2068       && !(IndirectSymbols && MachOOpt)
2069       && !(DataInCode && MachOOpt)
2070       && !(LinkOptHints && MachOOpt)
2071       && !(InfoPlist && MachOOpt)
2072       && !(DylibsUsed && MachOOpt)
2073       && !(DylibId && MachOOpt)
2074       && !(ObjcMetaData && MachOOpt)
2075       && !(!FilterSections.empty() && MachOOpt)
2076       && !PrintFaultMaps
2077       && DwarfDumpType == DIDT_Null) {
2078     cl::PrintHelpMessage();
2079     return 2;
2080   }
2081 
2082   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2083                         DisassembleFunctions.end());
2084 
2085   llvm::for_each(InputFilenames, dumpInput);
2086 
2087   return EXIT_SUCCESS;
2088 }
2089