1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "SourcePrinter.h" 24 #include "WasmDump.h" 25 #include "XCOFFDump.h" 26 #include "llvm/ADT/IndexedMap.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Triple.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Demangle/Demangle.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 42 #include "llvm/MC/MCInst.h" 43 #include "llvm/MC/MCInstPrinter.h" 44 #include "llvm/MC/MCInstrAnalysis.h" 45 #include "llvm/MC/MCInstrInfo.h" 46 #include "llvm/MC/MCObjectFileInfo.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/MC/MCSubtargetInfo.h" 49 #include "llvm/MC/MCTargetOptions.h" 50 #include "llvm/MC/TargetRegistry.h" 51 #include "llvm/Object/Archive.h" 52 #include "llvm/Object/COFF.h" 53 #include "llvm/Object/COFFImportFile.h" 54 #include "llvm/Object/ELFObjectFile.h" 55 #include "llvm/Object/FaultMapParser.h" 56 #include "llvm/Object/MachO.h" 57 #include "llvm/Object/MachOUniversal.h" 58 #include "llvm/Object/ObjectFile.h" 59 #include "llvm/Object/Wasm.h" 60 #include "llvm/Option/Arg.h" 61 #include "llvm/Option/ArgList.h" 62 #include "llvm/Option/Option.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Errc.h" 66 #include "llvm/Support/FileSystem.h" 67 #include "llvm/Support/Format.h" 68 #include "llvm/Support/FormatVariadic.h" 69 #include "llvm/Support/GraphWriter.h" 70 #include "llvm/Support/Host.h" 71 #include "llvm/Support/InitLLVM.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/SourceMgr.h" 74 #include "llvm/Support/StringSaver.h" 75 #include "llvm/Support/TargetSelect.h" 76 #include "llvm/Support/WithColor.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <algorithm> 79 #include <cctype> 80 #include <cstring> 81 #include <system_error> 82 #include <unordered_map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::object; 87 using namespace llvm::objdump; 88 using namespace llvm::opt; 89 90 namespace { 91 92 class CommonOptTable : public opt::OptTable { 93 public: 94 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 95 const char *Description) 96 : OptTable(OptionInfos), Usage(Usage), Description(Description) { 97 setGroupedShortOptions(true); 98 } 99 100 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 101 Argv0 = sys::path::filename(Argv0); 102 opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description, 103 ShowHidden, ShowHidden); 104 // TODO Replace this with OptTable API once it adds extrahelp support. 105 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 106 } 107 108 private: 109 const char *Usage; 110 const char *Description; 111 }; 112 113 // ObjdumpOptID is in ObjdumpOptID.h 114 115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE; 116 #include "ObjdumpOpts.inc" 117 #undef PREFIX 118 119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 120 #define OBJDUMP_nullptr nullptr 121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 122 HELPTEXT, METAVAR, VALUES) \ 123 {OBJDUMP_##PREFIX, NAME, HELPTEXT, \ 124 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 125 PARAM, FLAGS, OBJDUMP_##GROUP, \ 126 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 127 #include "ObjdumpOpts.inc" 128 #undef OPTION 129 #undef OBJDUMP_nullptr 130 }; 131 132 class ObjdumpOptTable : public CommonOptTable { 133 public: 134 ObjdumpOptTable() 135 : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>", 136 "llvm object file dumper") {} 137 }; 138 139 enum OtoolOptID { 140 OTOOL_INVALID = 0, // This is not an option ID. 141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 142 HELPTEXT, METAVAR, VALUES) \ 143 OTOOL_##ID, 144 #include "OtoolOpts.inc" 145 #undef OPTION 146 }; 147 148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE; 149 #include "OtoolOpts.inc" 150 #undef PREFIX 151 152 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 153 #define OTOOL_nullptr nullptr 154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 155 HELPTEXT, METAVAR, VALUES) \ 156 {OTOOL_##PREFIX, NAME, HELPTEXT, \ 157 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 158 PARAM, FLAGS, OTOOL_##GROUP, \ 159 OTOOL_##ALIAS, ALIASARGS, VALUES}, 160 #include "OtoolOpts.inc" 161 #undef OPTION 162 #undef OTOOL_nullptr 163 }; 164 165 class OtoolOptTable : public CommonOptTable { 166 public: 167 OtoolOptTable() 168 : CommonOptTable(OtoolInfoTable, " [option...] [file...]", 169 "Mach-O object file displaying tool") {} 170 }; 171 172 } // namespace 173 174 #define DEBUG_TYPE "objdump" 175 176 static uint64_t AdjustVMA; 177 static bool AllHeaders; 178 static std::string ArchName; 179 bool objdump::ArchiveHeaders; 180 bool objdump::Demangle; 181 bool objdump::Disassemble; 182 bool objdump::DisassembleAll; 183 bool objdump::SymbolDescription; 184 static std::vector<std::string> DisassembleSymbols; 185 static bool DisassembleZeroes; 186 static std::vector<std::string> DisassemblerOptions; 187 DIDumpType objdump::DwarfDumpType; 188 static bool DynamicRelocations; 189 static bool FaultMapSection; 190 static bool FileHeaders; 191 bool objdump::SectionContents; 192 static std::vector<std::string> InputFilenames; 193 bool objdump::PrintLines; 194 static bool MachOOpt; 195 std::string objdump::MCPU; 196 std::vector<std::string> objdump::MAttrs; 197 bool objdump::ShowRawInsn; 198 bool objdump::LeadingAddr; 199 static bool RawClangAST; 200 bool objdump::Relocations; 201 bool objdump::PrintImmHex; 202 bool objdump::PrivateHeaders; 203 std::vector<std::string> objdump::FilterSections; 204 bool objdump::SectionHeaders; 205 static bool ShowLMA; 206 bool objdump::PrintSource; 207 208 static uint64_t StartAddress; 209 static bool HasStartAddressFlag; 210 static uint64_t StopAddress = UINT64_MAX; 211 static bool HasStopAddressFlag; 212 213 bool objdump::SymbolTable; 214 static bool SymbolizeOperands; 215 static bool DynamicSymbolTable; 216 std::string objdump::TripleName; 217 bool objdump::UnwindInfo; 218 static bool Wide; 219 std::string objdump::Prefix; 220 uint32_t objdump::PrefixStrip; 221 222 DebugVarsFormat objdump::DbgVariables = DVDisabled; 223 224 int objdump::DbgIndent = 52; 225 226 static StringSet<> DisasmSymbolSet; 227 StringSet<> objdump::FoundSectionSet; 228 static StringRef ToolName; 229 230 namespace { 231 struct FilterResult { 232 // True if the section should not be skipped. 233 bool Keep; 234 235 // True if the index counter should be incremented, even if the section should 236 // be skipped. For example, sections may be skipped if they are not included 237 // in the --section flag, but we still want those to count toward the section 238 // count. 239 bool IncrementIndex; 240 }; 241 } // namespace 242 243 static FilterResult checkSectionFilter(object::SectionRef S) { 244 if (FilterSections.empty()) 245 return {/*Keep=*/true, /*IncrementIndex=*/true}; 246 247 Expected<StringRef> SecNameOrErr = S.getName(); 248 if (!SecNameOrErr) { 249 consumeError(SecNameOrErr.takeError()); 250 return {/*Keep=*/false, /*IncrementIndex=*/false}; 251 } 252 StringRef SecName = *SecNameOrErr; 253 254 // StringSet does not allow empty key so avoid adding sections with 255 // no name (such as the section with index 0) here. 256 if (!SecName.empty()) 257 FoundSectionSet.insert(SecName); 258 259 // Only show the section if it's in the FilterSections list, but always 260 // increment so the indexing is stable. 261 return {/*Keep=*/is_contained(FilterSections, SecName), 262 /*IncrementIndex=*/true}; 263 } 264 265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 266 uint64_t *Idx) { 267 // Start at UINT64_MAX so that the first index returned after an increment is 268 // zero (after the unsigned wrap). 269 if (Idx) 270 *Idx = UINT64_MAX; 271 return SectionFilter( 272 [Idx](object::SectionRef S) { 273 FilterResult Result = checkSectionFilter(S); 274 if (Idx != nullptr && Result.IncrementIndex) 275 *Idx += 1; 276 return Result.Keep; 277 }, 278 O); 279 } 280 281 std::string objdump::getFileNameForError(const object::Archive::Child &C, 282 unsigned Index) { 283 Expected<StringRef> NameOrErr = C.getName(); 284 if (NameOrErr) 285 return std::string(NameOrErr.get()); 286 // If we have an error getting the name then we print the index of the archive 287 // member. Since we are already in an error state, we just ignore this error. 288 consumeError(NameOrErr.takeError()); 289 return "<file index: " + std::to_string(Index) + ">"; 290 } 291 292 void objdump::reportWarning(const Twine &Message, StringRef File) { 293 // Output order between errs() and outs() matters especially for archive 294 // files where the output is per member object. 295 outs().flush(); 296 WithColor::warning(errs(), ToolName) 297 << "'" << File << "': " << Message << "\n"; 298 } 299 300 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 301 outs().flush(); 302 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 303 exit(1); 304 } 305 306 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 307 StringRef ArchiveName, 308 StringRef ArchitectureName) { 309 assert(E); 310 outs().flush(); 311 WithColor::error(errs(), ToolName); 312 if (ArchiveName != "") 313 errs() << ArchiveName << "(" << FileName << ")"; 314 else 315 errs() << "'" << FileName << "'"; 316 if (!ArchitectureName.empty()) 317 errs() << " (for architecture " << ArchitectureName << ")"; 318 errs() << ": "; 319 logAllUnhandledErrors(std::move(E), errs()); 320 exit(1); 321 } 322 323 static void reportCmdLineWarning(const Twine &Message) { 324 WithColor::warning(errs(), ToolName) << Message << "\n"; 325 } 326 327 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 328 WithColor::error(errs(), ToolName) << Message << "\n"; 329 exit(1); 330 } 331 332 static void warnOnNoMatchForSections() { 333 SetVector<StringRef> MissingSections; 334 for (StringRef S : FilterSections) { 335 if (FoundSectionSet.count(S)) 336 return; 337 // User may specify a unnamed section. Don't warn for it. 338 if (!S.empty()) 339 MissingSections.insert(S); 340 } 341 342 // Warn only if no section in FilterSections is matched. 343 for (StringRef S : MissingSections) 344 reportCmdLineWarning("section '" + S + 345 "' mentioned in a -j/--section option, but not " 346 "found in any input file"); 347 } 348 349 static const Target *getTarget(const ObjectFile *Obj) { 350 // Figure out the target triple. 351 Triple TheTriple("unknown-unknown-unknown"); 352 if (TripleName.empty()) { 353 TheTriple = Obj->makeTriple(); 354 } else { 355 TheTriple.setTriple(Triple::normalize(TripleName)); 356 auto Arch = Obj->getArch(); 357 if (Arch == Triple::arm || Arch == Triple::armeb) 358 Obj->setARMSubArch(TheTriple); 359 } 360 361 // Get the target specific parser. 362 std::string Error; 363 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 364 Error); 365 if (!TheTarget) 366 reportError(Obj->getFileName(), "can't find target: " + Error); 367 368 // Update the triple name and return the found target. 369 TripleName = TheTriple.getTriple(); 370 return TheTarget; 371 } 372 373 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 374 return A.getOffset() < B.getOffset(); 375 } 376 377 static Error getRelocationValueString(const RelocationRef &Rel, 378 SmallVectorImpl<char> &Result) { 379 const ObjectFile *Obj = Rel.getObject(); 380 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 381 return getELFRelocationValueString(ELF, Rel, Result); 382 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 383 return getCOFFRelocationValueString(COFF, Rel, Result); 384 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 385 return getWasmRelocationValueString(Wasm, Rel, Result); 386 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 387 return getMachORelocationValueString(MachO, Rel, Result); 388 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 389 return getXCOFFRelocationValueString(XCOFF, Rel, Result); 390 llvm_unreachable("unknown object file format"); 391 } 392 393 /// Indicates whether this relocation should hidden when listing 394 /// relocations, usually because it is the trailing part of a multipart 395 /// relocation that will be printed as part of the leading relocation. 396 static bool getHidden(RelocationRef RelRef) { 397 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 398 if (!MachO) 399 return false; 400 401 unsigned Arch = MachO->getArch(); 402 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 403 uint64_t Type = MachO->getRelocationType(Rel); 404 405 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 406 // is always hidden. 407 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 408 return Type == MachO::GENERIC_RELOC_PAIR; 409 410 if (Arch == Triple::x86_64) { 411 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 412 // an X86_64_RELOC_SUBTRACTOR. 413 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 414 DataRefImpl RelPrev = Rel; 415 RelPrev.d.a--; 416 uint64_t PrevType = MachO->getRelocationType(RelPrev); 417 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 418 return true; 419 } 420 } 421 422 return false; 423 } 424 425 namespace { 426 427 /// Get the column at which we want to start printing the instruction 428 /// disassembly, taking into account anything which appears to the left of it. 429 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 430 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 431 } 432 433 static bool isAArch64Elf(const ObjectFile *Obj) { 434 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 435 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 436 } 437 438 static bool isArmElf(const ObjectFile *Obj) { 439 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 440 return Elf && Elf->getEMachine() == ELF::EM_ARM; 441 } 442 443 static bool hasMappingSymbols(const ObjectFile *Obj) { 444 return isArmElf(Obj) || isAArch64Elf(Obj); 445 } 446 447 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 448 const RelocationRef &Rel, uint64_t Address, 449 bool Is64Bits) { 450 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 451 SmallString<16> Name; 452 SmallString<32> Val; 453 Rel.getTypeName(Name); 454 if (Error E = getRelocationValueString(Rel, Val)) 455 reportError(std::move(E), FileName); 456 OS << format(Fmt.data(), Address) << Name << "\t" << Val; 457 } 458 459 class PrettyPrinter { 460 public: 461 virtual ~PrettyPrinter() = default; 462 virtual void 463 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 464 object::SectionedAddress Address, formatted_raw_ostream &OS, 465 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 466 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 467 LiveVariablePrinter &LVP) { 468 if (SP && (PrintSource || PrintLines)) 469 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 470 LVP.printBetweenInsts(OS, false); 471 472 size_t Start = OS.tell(); 473 if (LeadingAddr) 474 OS << format("%8" PRIx64 ":", Address.Address); 475 if (ShowRawInsn) { 476 OS << ' '; 477 dumpBytes(Bytes, OS); 478 } 479 480 // The output of printInst starts with a tab. Print some spaces so that 481 // the tab has 1 column and advances to the target tab stop. 482 unsigned TabStop = getInstStartColumn(STI); 483 unsigned Column = OS.tell() - Start; 484 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 485 486 if (MI) { 487 // See MCInstPrinter::printInst. On targets where a PC relative immediate 488 // is relative to the next instruction and the length of a MCInst is 489 // difficult to measure (x86), this is the address of the next 490 // instruction. 491 uint64_t Addr = 492 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 493 IP.printInst(MI, Addr, "", STI, OS); 494 } else 495 OS << "\t<unknown>"; 496 } 497 }; 498 PrettyPrinter PrettyPrinterInst; 499 500 class HexagonPrettyPrinter : public PrettyPrinter { 501 public: 502 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 503 formatted_raw_ostream &OS) { 504 uint32_t opcode = 505 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 506 if (LeadingAddr) 507 OS << format("%8" PRIx64 ":", Address); 508 if (ShowRawInsn) { 509 OS << "\t"; 510 dumpBytes(Bytes.slice(0, 4), OS); 511 OS << format("\t%08" PRIx32, opcode); 512 } 513 } 514 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 515 object::SectionedAddress Address, formatted_raw_ostream &OS, 516 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 517 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 518 LiveVariablePrinter &LVP) override { 519 if (SP && (PrintSource || PrintLines)) 520 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 521 if (!MI) { 522 printLead(Bytes, Address.Address, OS); 523 OS << " <unknown>"; 524 return; 525 } 526 std::string Buffer; 527 { 528 raw_string_ostream TempStream(Buffer); 529 IP.printInst(MI, Address.Address, "", STI, TempStream); 530 } 531 StringRef Contents(Buffer); 532 // Split off bundle attributes 533 auto PacketBundle = Contents.rsplit('\n'); 534 // Split off first instruction from the rest 535 auto HeadTail = PacketBundle.first.split('\n'); 536 auto Preamble = " { "; 537 auto Separator = ""; 538 539 // Hexagon's packets require relocations to be inline rather than 540 // clustered at the end of the packet. 541 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 542 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 543 auto PrintReloc = [&]() -> void { 544 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 545 if (RelCur->getOffset() == Address.Address) { 546 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 547 return; 548 } 549 ++RelCur; 550 } 551 }; 552 553 while (!HeadTail.first.empty()) { 554 OS << Separator; 555 Separator = "\n"; 556 if (SP && (PrintSource || PrintLines)) 557 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 558 printLead(Bytes, Address.Address, OS); 559 OS << Preamble; 560 Preamble = " "; 561 StringRef Inst; 562 auto Duplex = HeadTail.first.split('\v'); 563 if (!Duplex.second.empty()) { 564 OS << Duplex.first; 565 OS << "; "; 566 Inst = Duplex.second; 567 } 568 else 569 Inst = HeadTail.first; 570 OS << Inst; 571 HeadTail = HeadTail.second.split('\n'); 572 if (HeadTail.first.empty()) 573 OS << " } " << PacketBundle.second; 574 PrintReloc(); 575 Bytes = Bytes.slice(4); 576 Address.Address += 4; 577 } 578 } 579 }; 580 HexagonPrettyPrinter HexagonPrettyPrinterInst; 581 582 class AMDGCNPrettyPrinter : public PrettyPrinter { 583 public: 584 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 585 object::SectionedAddress Address, formatted_raw_ostream &OS, 586 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 587 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 588 LiveVariablePrinter &LVP) override { 589 if (SP && (PrintSource || PrintLines)) 590 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 591 592 if (MI) { 593 SmallString<40> InstStr; 594 raw_svector_ostream IS(InstStr); 595 596 IP.printInst(MI, Address.Address, "", STI, IS); 597 598 OS << left_justify(IS.str(), 60); 599 } else { 600 // an unrecognized encoding - this is probably data so represent it 601 // using the .long directive, or .byte directive if fewer than 4 bytes 602 // remaining 603 if (Bytes.size() >= 4) { 604 OS << format("\t.long 0x%08" PRIx32 " ", 605 support::endian::read32<support::little>(Bytes.data())); 606 OS.indent(42); 607 } else { 608 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 609 for (unsigned int i = 1; i < Bytes.size(); i++) 610 OS << format(", 0x%02" PRIx8, Bytes[i]); 611 OS.indent(55 - (6 * Bytes.size())); 612 } 613 } 614 615 OS << format("// %012" PRIX64 ":", Address.Address); 616 if (Bytes.size() >= 4) { 617 // D should be casted to uint32_t here as it is passed by format to 618 // snprintf as vararg. 619 for (uint32_t D : makeArrayRef( 620 reinterpret_cast<const support::little32_t *>(Bytes.data()), 621 Bytes.size() / 4)) 622 OS << format(" %08" PRIX32, D); 623 } else { 624 for (unsigned char B : Bytes) 625 OS << format(" %02" PRIX8, B); 626 } 627 628 if (!Annot.empty()) 629 OS << " // " << Annot; 630 } 631 }; 632 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 633 634 class BPFPrettyPrinter : public PrettyPrinter { 635 public: 636 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 637 object::SectionedAddress Address, formatted_raw_ostream &OS, 638 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 639 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 640 LiveVariablePrinter &LVP) override { 641 if (SP && (PrintSource || PrintLines)) 642 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 643 if (LeadingAddr) 644 OS << format("%8" PRId64 ":", Address.Address / 8); 645 if (ShowRawInsn) { 646 OS << "\t"; 647 dumpBytes(Bytes, OS); 648 } 649 if (MI) 650 IP.printInst(MI, Address.Address, "", STI, OS); 651 else 652 OS << "\t<unknown>"; 653 } 654 }; 655 BPFPrettyPrinter BPFPrettyPrinterInst; 656 657 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 658 switch(Triple.getArch()) { 659 default: 660 return PrettyPrinterInst; 661 case Triple::hexagon: 662 return HexagonPrettyPrinterInst; 663 case Triple::amdgcn: 664 return AMDGCNPrettyPrinterInst; 665 case Triple::bpfel: 666 case Triple::bpfeb: 667 return BPFPrettyPrinterInst; 668 } 669 } 670 } 671 672 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 673 assert(Obj->isELF()); 674 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 675 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 676 Obj->getFileName()) 677 ->getType(); 678 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 679 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 680 Obj->getFileName()) 681 ->getType(); 682 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 683 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 684 Obj->getFileName()) 685 ->getType(); 686 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 687 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 688 Obj->getFileName()) 689 ->getType(); 690 llvm_unreachable("Unsupported binary format"); 691 } 692 693 template <class ELFT> static void 694 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 695 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 696 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 697 uint8_t SymbolType = Symbol.getELFType(); 698 if (SymbolType == ELF::STT_SECTION) 699 continue; 700 701 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 702 // ELFSymbolRef::getAddress() returns size instead of value for common 703 // symbols which is not desirable for disassembly output. Overriding. 704 if (SymbolType == ELF::STT_COMMON) 705 Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()), 706 Obj->getFileName()) 707 ->st_value; 708 709 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 710 if (Name.empty()) 711 continue; 712 713 section_iterator SecI = 714 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 715 if (SecI == Obj->section_end()) 716 continue; 717 718 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 719 } 720 } 721 722 static void 723 addDynamicElfSymbols(const ObjectFile *Obj, 724 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 725 assert(Obj->isELF()); 726 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 727 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 728 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 729 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 730 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 731 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 732 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 733 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 734 else 735 llvm_unreachable("Unsupported binary format"); 736 } 737 738 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) { 739 for (auto SecI : Obj->sections()) { 740 const WasmSection &Section = Obj->getWasmSection(SecI); 741 if (Section.Type == wasm::WASM_SEC_CODE) 742 return SecI; 743 } 744 return None; 745 } 746 747 static void 748 addMissingWasmCodeSymbols(const WasmObjectFile *Obj, 749 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 750 Optional<SectionRef> Section = getWasmCodeSection(Obj); 751 if (!Section) 752 return; 753 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 754 755 std::set<uint64_t> SymbolAddresses; 756 for (const auto &Sym : Symbols) 757 SymbolAddresses.insert(Sym.Addr); 758 759 for (const wasm::WasmFunction &Function : Obj->functions()) { 760 uint64_t Address = Function.CodeSectionOffset; 761 // Only add fallback symbols for functions not already present in the symbol 762 // table. 763 if (SymbolAddresses.count(Address)) 764 continue; 765 // This function has no symbol, so it should have no SymbolName. 766 assert(Function.SymbolName.empty()); 767 // We use DebugName for the name, though it may be empty if there is no 768 // "name" custom section, or that section is missing a name for this 769 // function. 770 StringRef Name = Function.DebugName; 771 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 772 } 773 } 774 775 static void addPltEntries(const ObjectFile *Obj, 776 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 777 StringSaver &Saver) { 778 Optional<SectionRef> Plt = None; 779 for (const SectionRef &Section : Obj->sections()) { 780 Expected<StringRef> SecNameOrErr = Section.getName(); 781 if (!SecNameOrErr) { 782 consumeError(SecNameOrErr.takeError()); 783 continue; 784 } 785 if (*SecNameOrErr == ".plt") 786 Plt = Section; 787 } 788 if (!Plt) 789 return; 790 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 791 for (auto PltEntry : ElfObj->getPltAddresses()) { 792 if (PltEntry.first) { 793 SymbolRef Symbol(*PltEntry.first, ElfObj); 794 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 795 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 796 if (!NameOrErr->empty()) 797 AllSymbols[*Plt].emplace_back( 798 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 799 SymbolType); 800 continue; 801 } else { 802 // The warning has been reported in disassembleObject(). 803 consumeError(NameOrErr.takeError()); 804 } 805 } 806 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 807 " references an invalid symbol", 808 Obj->getFileName()); 809 } 810 } 811 } 812 813 // Normally the disassembly output will skip blocks of zeroes. This function 814 // returns the number of zero bytes that can be skipped when dumping the 815 // disassembly of the instructions in Buf. 816 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 817 // Find the number of leading zeroes. 818 size_t N = 0; 819 while (N < Buf.size() && !Buf[N]) 820 ++N; 821 822 // We may want to skip blocks of zero bytes, but unless we see 823 // at least 8 of them in a row. 824 if (N < 8) 825 return 0; 826 827 // We skip zeroes in multiples of 4 because do not want to truncate an 828 // instruction if it starts with a zero byte. 829 return N & ~0x3; 830 } 831 832 // Returns a map from sections to their relocations. 833 static std::map<SectionRef, std::vector<RelocationRef>> 834 getRelocsMap(object::ObjectFile const &Obj) { 835 std::map<SectionRef, std::vector<RelocationRef>> Ret; 836 uint64_t I = (uint64_t)-1; 837 for (SectionRef Sec : Obj.sections()) { 838 ++I; 839 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 840 if (!RelocatedOrErr) 841 reportError(Obj.getFileName(), 842 "section (" + Twine(I) + 843 "): failed to get a relocated section: " + 844 toString(RelocatedOrErr.takeError())); 845 846 section_iterator Relocated = *RelocatedOrErr; 847 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 848 continue; 849 std::vector<RelocationRef> &V = Ret[*Relocated]; 850 append_range(V, Sec.relocations()); 851 // Sort relocations by address. 852 llvm::stable_sort(V, isRelocAddressLess); 853 } 854 return Ret; 855 } 856 857 // Used for --adjust-vma to check if address should be adjusted by the 858 // specified value for a given section. 859 // For ELF we do not adjust non-allocatable sections like debug ones, 860 // because they are not loadable. 861 // TODO: implement for other file formats. 862 static bool shouldAdjustVA(const SectionRef &Section) { 863 const ObjectFile *Obj = Section.getObject(); 864 if (Obj->isELF()) 865 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 866 return false; 867 } 868 869 870 typedef std::pair<uint64_t, char> MappingSymbolPair; 871 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 872 uint64_t Address) { 873 auto It = 874 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 875 return Val.first <= Address; 876 }); 877 // Return zero for any address before the first mapping symbol; this means 878 // we should use the default disassembly mode, depending on the target. 879 if (It == MappingSymbols.begin()) 880 return '\x00'; 881 return (It - 1)->second; 882 } 883 884 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 885 uint64_t End, const ObjectFile *Obj, 886 ArrayRef<uint8_t> Bytes, 887 ArrayRef<MappingSymbolPair> MappingSymbols, 888 raw_ostream &OS) { 889 support::endianness Endian = 890 Obj->isLittleEndian() ? support::little : support::big; 891 OS << format("%8" PRIx64 ":\t", SectionAddr + Index); 892 if (Index + 4 <= End) { 893 dumpBytes(Bytes.slice(Index, 4), OS); 894 OS << "\t.word\t" 895 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 896 10); 897 return 4; 898 } 899 if (Index + 2 <= End) { 900 dumpBytes(Bytes.slice(Index, 2), OS); 901 OS << "\t\t.short\t" 902 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 903 6); 904 return 2; 905 } 906 dumpBytes(Bytes.slice(Index, 1), OS); 907 OS << "\t\t.byte\t" << format_hex(Bytes[0], 4); 908 return 1; 909 } 910 911 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 912 ArrayRef<uint8_t> Bytes) { 913 // print out data up to 8 bytes at a time in hex and ascii 914 uint8_t AsciiData[9] = {'\0'}; 915 uint8_t Byte; 916 int NumBytes = 0; 917 918 for (; Index < End; ++Index) { 919 if (NumBytes == 0) 920 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 921 Byte = Bytes.slice(Index)[0]; 922 outs() << format(" %02x", Byte); 923 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 924 925 uint8_t IndentOffset = 0; 926 NumBytes++; 927 if (Index == End - 1 || NumBytes > 8) { 928 // Indent the space for less than 8 bytes data. 929 // 2 spaces for byte and one for space between bytes 930 IndentOffset = 3 * (8 - NumBytes); 931 for (int Excess = NumBytes; Excess < 8; Excess++) 932 AsciiData[Excess] = '\0'; 933 NumBytes = 8; 934 } 935 if (NumBytes == 8) { 936 AsciiData[8] = '\0'; 937 outs() << std::string(IndentOffset, ' ') << " "; 938 outs() << reinterpret_cast<char *>(AsciiData); 939 outs() << '\n'; 940 NumBytes = 0; 941 } 942 } 943 } 944 945 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj, 946 const SymbolRef &Symbol) { 947 const StringRef FileName = Obj->getFileName(); 948 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 949 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 950 951 if (Obj->isXCOFF() && SymbolDescription) { 952 const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj); 953 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 954 955 const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p); 956 Optional<XCOFF::StorageMappingClass> Smc = 957 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 958 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 959 isLabel(XCOFFObj, Symbol)); 960 } else if (Obj->isXCOFF()) { 961 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 962 return SymbolInfoTy(Addr, Name, SymType, true); 963 } else 964 return SymbolInfoTy(Addr, Name, 965 Obj->isELF() ? getElfSymbolType(Obj, Symbol) 966 : (uint8_t)ELF::STT_NOTYPE); 967 } 968 969 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj, 970 const uint64_t Addr, StringRef &Name, 971 uint8_t Type) { 972 if (Obj->isXCOFF() && SymbolDescription) 973 return SymbolInfoTy(Addr, Name, None, None, false); 974 else 975 return SymbolInfoTy(Addr, Name, Type); 976 } 977 978 static void 979 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, 980 MCDisassembler *DisAsm, MCInstPrinter *IP, 981 const MCSubtargetInfo *STI, uint64_t SectionAddr, 982 uint64_t Start, uint64_t End, 983 std::unordered_map<uint64_t, std::string> &Labels) { 984 // So far only supports PowerPC and X86. 985 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 986 return; 987 988 Labels.clear(); 989 unsigned LabelCount = 0; 990 Start += SectionAddr; 991 End += SectionAddr; 992 uint64_t Index = Start; 993 while (Index < End) { 994 // Disassemble a real instruction and record function-local branch labels. 995 MCInst Inst; 996 uint64_t Size; 997 bool Disassembled = DisAsm->getInstruction( 998 Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls()); 999 if (Size == 0) 1000 Size = 1; 1001 1002 if (Disassembled && MIA) { 1003 uint64_t Target; 1004 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1005 // On PowerPC, if the address of a branch is the same as the target, it 1006 // means that it's a function call. Do not mark the label for this case. 1007 if (TargetKnown && (Target >= Start && Target < End) && 1008 !Labels.count(Target) && 1009 !(STI->getTargetTriple().isPPC() && Target == Index)) 1010 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1011 } 1012 1013 Index += Size; 1014 } 1015 } 1016 1017 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1018 // This is currently only used on AMDGPU, and assumes the format of the 1019 // void * argument passed to AMDGPU's createMCSymbolizer. 1020 static void addSymbolizer( 1021 MCContext &Ctx, const Target *Target, StringRef TripleName, 1022 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1023 SectionSymbolsTy &Symbols, 1024 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1025 1026 std::unique_ptr<MCRelocationInfo> RelInfo( 1027 Target->createMCRelocationInfo(TripleName, Ctx)); 1028 if (!RelInfo) 1029 return; 1030 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1031 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1032 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1033 DisAsm->setSymbolizer(std::move(Symbolizer)); 1034 1035 if (!SymbolizeOperands) 1036 return; 1037 1038 // Synthesize labels referenced by branch instructions by 1039 // disassembling, discarding the output, and collecting the referenced 1040 // addresses from the symbolizer. 1041 for (size_t Index = 0; Index != Bytes.size();) { 1042 MCInst Inst; 1043 uint64_t Size; 1044 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, 1045 nulls()); 1046 if (Size == 0) 1047 Size = 1; 1048 Index += Size; 1049 } 1050 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1051 // Copy and sort to remove duplicates. 1052 std::vector<uint64_t> LabelAddrs; 1053 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1054 LabelAddrsRef.end()); 1055 llvm::sort(LabelAddrs); 1056 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1057 LabelAddrs.begin()); 1058 // Add the labels. 1059 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1060 auto Name = std::make_unique<std::string>(); 1061 *Name = (Twine("L") + Twine(LabelNum)).str(); 1062 SynthesizedLabelNames.push_back(std::move(Name)); 1063 Symbols.push_back(SymbolInfoTy( 1064 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1065 } 1066 llvm::stable_sort(Symbols); 1067 // Recreate the symbolizer with the new symbols list. 1068 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1069 Symbolizer.reset(Target->createMCSymbolizer( 1070 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1071 DisAsm->setSymbolizer(std::move(Symbolizer)); 1072 } 1073 1074 static StringRef getSegmentName(const MachOObjectFile *MachO, 1075 const SectionRef &Section) { 1076 if (MachO) { 1077 DataRefImpl DR = Section.getRawDataRefImpl(); 1078 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1079 return SegmentName; 1080 } 1081 return ""; 1082 } 1083 1084 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1085 const MCAsmInfo &MAI, 1086 const MCSubtargetInfo &STI, 1087 StringRef Comments, 1088 LiveVariablePrinter &LVP) { 1089 do { 1090 if (!Comments.empty()) { 1091 // Emit a line of comments. 1092 StringRef Comment; 1093 std::tie(Comment, Comments) = Comments.split('\n'); 1094 // MAI.getCommentColumn() assumes that instructions are printed at the 1095 // position of 8, while getInstStartColumn() returns the actual position. 1096 unsigned CommentColumn = 1097 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1098 FOS.PadToColumn(CommentColumn); 1099 FOS << MAI.getCommentString() << ' ' << Comment; 1100 } 1101 LVP.printAfterInst(FOS); 1102 FOS << '\n'; 1103 } while (!Comments.empty()); 1104 FOS.flush(); 1105 } 1106 1107 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1108 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1109 MCDisassembler *SecondaryDisAsm, 1110 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1111 const MCSubtargetInfo *PrimarySTI, 1112 const MCSubtargetInfo *SecondarySTI, 1113 PrettyPrinter &PIP, 1114 SourcePrinter &SP, bool InlineRelocs) { 1115 const MCSubtargetInfo *STI = PrimarySTI; 1116 MCDisassembler *DisAsm = PrimaryDisAsm; 1117 bool PrimaryIsThumb = false; 1118 if (isArmElf(Obj)) 1119 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1120 1121 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1122 if (InlineRelocs) 1123 RelocMap = getRelocsMap(*Obj); 1124 bool Is64Bits = Obj->getBytesInAddress() > 4; 1125 1126 // Create a mapping from virtual address to symbol name. This is used to 1127 // pretty print the symbols while disassembling. 1128 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1129 SectionSymbolsTy AbsoluteSymbols; 1130 const StringRef FileName = Obj->getFileName(); 1131 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1132 for (const SymbolRef &Symbol : Obj->symbols()) { 1133 Expected<StringRef> NameOrErr = Symbol.getName(); 1134 if (!NameOrErr) { 1135 reportWarning(toString(NameOrErr.takeError()), FileName); 1136 continue; 1137 } 1138 if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription)) 1139 continue; 1140 1141 if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1142 continue; 1143 1144 if (MachO) { 1145 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1146 // symbols that support MachO header introspection. They do not bind to 1147 // code locations and are irrelevant for disassembly. 1148 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1149 continue; 1150 // Don't ask a Mach-O STAB symbol for its section unless you know that 1151 // STAB symbol's section field refers to a valid section index. Otherwise 1152 // the symbol may error trying to load a section that does not exist. 1153 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1154 uint8_t NType = (MachO->is64Bit() ? 1155 MachO->getSymbol64TableEntry(SymDRI).n_type: 1156 MachO->getSymbolTableEntry(SymDRI).n_type); 1157 if (NType & MachO::N_STAB) 1158 continue; 1159 } 1160 1161 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1162 if (SecI != Obj->section_end()) 1163 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1164 else 1165 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1166 } 1167 1168 if (AllSymbols.empty() && Obj->isELF()) 1169 addDynamicElfSymbols(Obj, AllSymbols); 1170 1171 if (Obj->isWasm()) 1172 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1173 1174 BumpPtrAllocator A; 1175 StringSaver Saver(A); 1176 addPltEntries(Obj, AllSymbols, Saver); 1177 1178 // Create a mapping from virtual address to section. An empty section can 1179 // cause more than one section at the same address. Sort such sections to be 1180 // before same-addressed non-empty sections so that symbol lookups prefer the 1181 // non-empty section. 1182 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1183 for (SectionRef Sec : Obj->sections()) 1184 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1185 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1186 if (LHS.first != RHS.first) 1187 return LHS.first < RHS.first; 1188 return LHS.second.getSize() < RHS.second.getSize(); 1189 }); 1190 1191 // Linked executables (.exe and .dll files) typically don't include a real 1192 // symbol table but they might contain an export table. 1193 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1194 for (const auto &ExportEntry : COFFObj->export_directories()) { 1195 StringRef Name; 1196 if (Error E = ExportEntry.getSymbolName(Name)) 1197 reportError(std::move(E), Obj->getFileName()); 1198 if (Name.empty()) 1199 continue; 1200 1201 uint32_t RVA; 1202 if (Error E = ExportEntry.getExportRVA(RVA)) 1203 reportError(std::move(E), Obj->getFileName()); 1204 1205 uint64_t VA = COFFObj->getImageBase() + RVA; 1206 auto Sec = partition_point( 1207 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1208 return O.first <= VA; 1209 }); 1210 if (Sec != SectionAddresses.begin()) { 1211 --Sec; 1212 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1213 } else 1214 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1215 } 1216 } 1217 1218 // Sort all the symbols, this allows us to use a simple binary search to find 1219 // Multiple symbols can have the same address. Use a stable sort to stabilize 1220 // the output. 1221 StringSet<> FoundDisasmSymbolSet; 1222 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1223 llvm::stable_sort(SecSyms.second); 1224 llvm::stable_sort(AbsoluteSymbols); 1225 1226 std::unique_ptr<DWARFContext> DICtx; 1227 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1228 1229 if (DbgVariables != DVDisabled) { 1230 DICtx = DWARFContext::create(*Obj); 1231 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1232 LVP.addCompileUnit(CU->getUnitDIE(false)); 1233 } 1234 1235 LLVM_DEBUG(LVP.dump()); 1236 1237 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1238 if (FilterSections.empty() && !DisassembleAll && 1239 (!Section.isText() || Section.isVirtual())) 1240 continue; 1241 1242 uint64_t SectionAddr = Section.getAddress(); 1243 uint64_t SectSize = Section.getSize(); 1244 if (!SectSize) 1245 continue; 1246 1247 // Get the list of all the symbols in this section. 1248 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1249 std::vector<MappingSymbolPair> MappingSymbols; 1250 if (hasMappingSymbols(Obj)) { 1251 for (const auto &Symb : Symbols) { 1252 uint64_t Address = Symb.Addr; 1253 StringRef Name = Symb.Name; 1254 if (Name.startswith("$d")) 1255 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1256 if (Name.startswith("$x")) 1257 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1258 if (Name.startswith("$a")) 1259 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1260 if (Name.startswith("$t")) 1261 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1262 } 1263 } 1264 1265 llvm::sort(MappingSymbols); 1266 1267 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1268 unwrapOrError(Section.getContents(), Obj->getFileName())); 1269 1270 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1271 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1272 // AMDGPU disassembler uses symbolizer for printing labels 1273 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1274 Symbols, SynthesizedLabelNames); 1275 } 1276 1277 StringRef SegmentName = getSegmentName(MachO, Section); 1278 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1279 // If the section has no symbol at the start, just insert a dummy one. 1280 if (Symbols.empty() || Symbols[0].Addr != 0) { 1281 Symbols.insert(Symbols.begin(), 1282 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1283 Section.isText() ? ELF::STT_FUNC 1284 : ELF::STT_OBJECT)); 1285 } 1286 1287 SmallString<40> Comments; 1288 raw_svector_ostream CommentStream(Comments); 1289 1290 uint64_t VMAAdjustment = 0; 1291 if (shouldAdjustVA(Section)) 1292 VMAAdjustment = AdjustVMA; 1293 1294 // In executable and shared objects, r_offset holds a virtual address. 1295 // Subtract SectionAddr from the r_offset field of a relocation to get 1296 // the section offset. 1297 uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr; 1298 uint64_t Size; 1299 uint64_t Index; 1300 bool PrintedSection = false; 1301 std::vector<RelocationRef> Rels = RelocMap[Section]; 1302 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1303 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1304 // Disassemble symbol by symbol. 1305 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1306 std::string SymbolName = Symbols[SI].Name.str(); 1307 if (Demangle) 1308 SymbolName = demangle(SymbolName); 1309 1310 // Skip if --disassemble-symbols is not empty and the symbol is not in 1311 // the list. 1312 if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName)) 1313 continue; 1314 1315 uint64_t Start = Symbols[SI].Addr; 1316 if (Start < SectionAddr || StopAddress <= Start) 1317 continue; 1318 else 1319 FoundDisasmSymbolSet.insert(SymbolName); 1320 1321 // The end is the section end, the beginning of the next symbol, or 1322 // --stop-address. 1323 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1324 if (SI + 1 < SE) 1325 End = std::min(End, Symbols[SI + 1].Addr); 1326 if (Start >= End || End <= StartAddress) 1327 continue; 1328 Start -= SectionAddr; 1329 End -= SectionAddr; 1330 1331 if (!PrintedSection) { 1332 PrintedSection = true; 1333 outs() << "\nDisassembly of section "; 1334 if (!SegmentName.empty()) 1335 outs() << SegmentName << ","; 1336 outs() << SectionName << ":\n"; 1337 } 1338 1339 outs() << '\n'; 1340 if (LeadingAddr) 1341 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1342 SectionAddr + Start + VMAAdjustment); 1343 if (Obj->isXCOFF() && SymbolDescription) { 1344 outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n"; 1345 } else 1346 outs() << '<' << SymbolName << ">:\n"; 1347 1348 // Don't print raw contents of a virtual section. A virtual section 1349 // doesn't have any contents in the file. 1350 if (Section.isVirtual()) { 1351 outs() << "...\n"; 1352 continue; 1353 } 1354 1355 auto Status = DisAsm->onSymbolStart(Symbols[SI], Size, 1356 Bytes.slice(Start, End - Start), 1357 SectionAddr + Start, CommentStream); 1358 // To have round trippable disassembly, we fall back to decoding the 1359 // remaining bytes as instructions. 1360 // 1361 // If there is a failure, we disassemble the failed region as bytes before 1362 // falling back. The target is expected to print nothing in this case. 1363 // 1364 // If there is Success or SoftFail i.e no 'real' failure, we go ahead by 1365 // Size bytes before falling back. 1366 // So if the entire symbol is 'eaten' by the target: 1367 // Start += Size // Now Start = End and we will never decode as 1368 // // instructions 1369 // 1370 // Right now, most targets return None i.e ignore to treat a symbol 1371 // separately. But WebAssembly decodes preludes for some symbols. 1372 // 1373 if (Status.hasValue()) { 1374 if (Status.getValue() == MCDisassembler::Fail) { 1375 outs() << "// Error in decoding " << SymbolName 1376 << " : Decoding failed region as bytes.\n"; 1377 for (uint64_t I = 0; I < Size; ++I) { 1378 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1379 << "\n"; 1380 } 1381 } 1382 } else { 1383 Size = 0; 1384 } 1385 1386 Start += Size; 1387 1388 Index = Start; 1389 if (SectionAddr < StartAddress) 1390 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1391 1392 // If there is a data/common symbol inside an ELF text section and we are 1393 // only disassembling text (applicable all architectures), we are in a 1394 // situation where we must print the data and not disassemble it. 1395 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1396 uint8_t SymTy = Symbols[SI].Type; 1397 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1398 dumpELFData(SectionAddr, Index, End, Bytes); 1399 Index = End; 1400 } 1401 } 1402 1403 bool CheckARMELFData = hasMappingSymbols(Obj) && 1404 Symbols[SI].Type != ELF::STT_OBJECT && 1405 !DisassembleAll; 1406 bool DumpARMELFData = false; 1407 formatted_raw_ostream FOS(outs()); 1408 1409 std::unordered_map<uint64_t, std::string> AllLabels; 1410 if (SymbolizeOperands) 1411 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1412 SectionAddr, Index, End, AllLabels); 1413 1414 while (Index < End) { 1415 // ARM and AArch64 ELF binaries can interleave data and text in the 1416 // same section. We rely on the markers introduced to understand what 1417 // we need to dump. If the data marker is within a function, it is 1418 // denoted as a word/short etc. 1419 if (CheckARMELFData) { 1420 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1421 DumpARMELFData = Kind == 'd'; 1422 if (SecondarySTI) { 1423 if (Kind == 'a') { 1424 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1425 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1426 } else if (Kind == 't') { 1427 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1428 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1429 } 1430 } 1431 } 1432 1433 if (DumpARMELFData) { 1434 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1435 MappingSymbols, FOS); 1436 } else { 1437 // When -z or --disassemble-zeroes are given we always dissasemble 1438 // them. Otherwise we might want to skip zero bytes we see. 1439 if (!DisassembleZeroes) { 1440 uint64_t MaxOffset = End - Index; 1441 // For --reloc: print zero blocks patched by relocations, so that 1442 // relocations can be shown in the dump. 1443 if (RelCur != RelEnd) 1444 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1445 MaxOffset); 1446 1447 if (size_t N = 1448 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1449 FOS << "\t\t..." << '\n'; 1450 Index += N; 1451 continue; 1452 } 1453 } 1454 1455 // Print local label if there's any. 1456 auto Iter = AllLabels.find(SectionAddr + Index); 1457 if (Iter != AllLabels.end()) 1458 FOS << "<" << Iter->second << ">:\n"; 1459 1460 // Disassemble a real instruction or a data when disassemble all is 1461 // provided 1462 MCInst Inst; 1463 bool Disassembled = 1464 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1465 SectionAddr + Index, CommentStream); 1466 if (Size == 0) 1467 Size = 1; 1468 1469 LVP.update({Index, Section.getIndex()}, 1470 {Index + Size, Section.getIndex()}, Index + Size != End); 1471 1472 IP->setCommentStream(CommentStream); 1473 1474 PIP.printInst( 1475 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1476 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1477 "", *STI, &SP, Obj->getFileName(), &Rels, LVP); 1478 1479 IP->setCommentStream(llvm::nulls()); 1480 1481 // If disassembly has failed, avoid analysing invalid/incomplete 1482 // instruction information. Otherwise, try to resolve the target 1483 // address (jump target or memory operand address) and print it on the 1484 // right of the instruction. 1485 if (Disassembled && MIA) { 1486 // Branch targets are printed just after the instructions. 1487 llvm::raw_ostream *TargetOS = &FOS; 1488 uint64_t Target; 1489 bool PrintTarget = 1490 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1491 if (!PrintTarget) 1492 if (Optional<uint64_t> MaybeTarget = 1493 MIA->evaluateMemoryOperandAddress( 1494 Inst, STI, SectionAddr + Index, Size)) { 1495 Target = *MaybeTarget; 1496 PrintTarget = true; 1497 // Do not print real address when symbolizing. 1498 if (!SymbolizeOperands) { 1499 // Memory operand addresses are printed as comments. 1500 TargetOS = &CommentStream; 1501 *TargetOS << "0x" << Twine::utohexstr(Target); 1502 } 1503 } 1504 if (PrintTarget) { 1505 // In a relocatable object, the target's section must reside in 1506 // the same section as the call instruction or it is accessed 1507 // through a relocation. 1508 // 1509 // In a non-relocatable object, the target may be in any section. 1510 // In that case, locate the section(s) containing the target 1511 // address and find the symbol in one of those, if possible. 1512 // 1513 // N.B. We don't walk the relocations in the relocatable case yet. 1514 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1515 if (!Obj->isRelocatableObject()) { 1516 auto It = llvm::partition_point( 1517 SectionAddresses, 1518 [=](const std::pair<uint64_t, SectionRef> &O) { 1519 return O.first <= Target; 1520 }); 1521 uint64_t TargetSecAddr = 0; 1522 while (It != SectionAddresses.begin()) { 1523 --It; 1524 if (TargetSecAddr == 0) 1525 TargetSecAddr = It->first; 1526 if (It->first != TargetSecAddr) 1527 break; 1528 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1529 } 1530 } else { 1531 TargetSectionSymbols.push_back(&Symbols); 1532 } 1533 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1534 1535 // Find the last symbol in the first candidate section whose 1536 // offset is less than or equal to the target. If there are no 1537 // such symbols, try in the next section and so on, before finally 1538 // using the nearest preceding absolute symbol (if any), if there 1539 // are no other valid symbols. 1540 const SymbolInfoTy *TargetSym = nullptr; 1541 for (const SectionSymbolsTy *TargetSymbols : 1542 TargetSectionSymbols) { 1543 auto It = llvm::partition_point( 1544 *TargetSymbols, 1545 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1546 if (It != TargetSymbols->begin()) { 1547 TargetSym = &*(It - 1); 1548 break; 1549 } 1550 } 1551 1552 // Print the labels corresponding to the target if there's any. 1553 bool LabelAvailable = AllLabels.count(Target); 1554 if (TargetSym != nullptr) { 1555 uint64_t TargetAddress = TargetSym->Addr; 1556 uint64_t Disp = Target - TargetAddress; 1557 std::string TargetName = TargetSym->Name.str(); 1558 if (Demangle) 1559 TargetName = demangle(TargetName); 1560 1561 *TargetOS << " <"; 1562 if (!Disp) { 1563 // Always Print the binary symbol precisely corresponding to 1564 // the target address. 1565 *TargetOS << TargetName; 1566 } else if (!LabelAvailable) { 1567 // Always Print the binary symbol plus an offset if there's no 1568 // local label corresponding to the target address. 1569 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1570 } else { 1571 *TargetOS << AllLabels[Target]; 1572 } 1573 *TargetOS << ">"; 1574 } else if (LabelAvailable) { 1575 *TargetOS << " <" << AllLabels[Target] << ">"; 1576 } 1577 // By convention, each record in the comment stream should be 1578 // terminated. 1579 if (TargetOS == &CommentStream) 1580 *TargetOS << "\n"; 1581 } 1582 } 1583 } 1584 1585 assert(Ctx.getAsmInfo()); 1586 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1587 CommentStream.str(), LVP); 1588 Comments.clear(); 1589 1590 // Hexagon does this in pretty printer 1591 if (Obj->getArch() != Triple::hexagon) { 1592 // Print relocation for instruction and data. 1593 while (RelCur != RelEnd) { 1594 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1595 // If this relocation is hidden, skip it. 1596 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1597 ++RelCur; 1598 continue; 1599 } 1600 1601 // Stop when RelCur's offset is past the disassembled 1602 // instruction/data. Note that it's possible the disassembled data 1603 // is not the complete data: we might see the relocation printed in 1604 // the middle of the data, but this matches the binutils objdump 1605 // output. 1606 if (Offset >= Index + Size) 1607 break; 1608 1609 // When --adjust-vma is used, update the address printed. 1610 if (RelCur->getSymbol() != Obj->symbol_end()) { 1611 Expected<section_iterator> SymSI = 1612 RelCur->getSymbol()->getSection(); 1613 if (SymSI && *SymSI != Obj->section_end() && 1614 shouldAdjustVA(**SymSI)) 1615 Offset += AdjustVMA; 1616 } 1617 1618 printRelocation(FOS, Obj->getFileName(), *RelCur, 1619 SectionAddr + Offset, Is64Bits); 1620 LVP.printAfterOtherLine(FOS, true); 1621 ++RelCur; 1622 } 1623 } 1624 1625 Index += Size; 1626 } 1627 } 1628 } 1629 StringSet<> MissingDisasmSymbolSet = 1630 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1631 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1632 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1633 } 1634 1635 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1636 const Target *TheTarget = getTarget(Obj); 1637 1638 // Package up features to be passed to target/subtarget 1639 SubtargetFeatures Features = Obj->getFeatures(); 1640 if (!MAttrs.empty()) 1641 for (unsigned I = 0; I != MAttrs.size(); ++I) 1642 Features.AddFeature(MAttrs[I]); 1643 1644 std::unique_ptr<const MCRegisterInfo> MRI( 1645 TheTarget->createMCRegInfo(TripleName)); 1646 if (!MRI) 1647 reportError(Obj->getFileName(), 1648 "no register info for target " + TripleName); 1649 1650 // Set up disassembler. 1651 MCTargetOptions MCOptions; 1652 std::unique_ptr<const MCAsmInfo> AsmInfo( 1653 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 1654 if (!AsmInfo) 1655 reportError(Obj->getFileName(), 1656 "no assembly info for target " + TripleName); 1657 1658 if (MCPU.empty()) 1659 MCPU = Obj->tryGetCPUName().getValueOr("").str(); 1660 1661 std::unique_ptr<const MCSubtargetInfo> STI( 1662 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1663 if (!STI) 1664 reportError(Obj->getFileName(), 1665 "no subtarget info for target " + TripleName); 1666 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1667 if (!MII) 1668 reportError(Obj->getFileName(), 1669 "no instruction info for target " + TripleName); 1670 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 1671 // FIXME: for now initialize MCObjectFileInfo with default values 1672 std::unique_ptr<MCObjectFileInfo> MOFI( 1673 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 1674 Ctx.setObjectFileInfo(MOFI.get()); 1675 1676 std::unique_ptr<MCDisassembler> DisAsm( 1677 TheTarget->createMCDisassembler(*STI, Ctx)); 1678 if (!DisAsm) 1679 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1680 1681 // If we have an ARM object file, we need a second disassembler, because 1682 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1683 // We use mapping symbols to switch between the two assemblers, where 1684 // appropriate. 1685 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1686 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1687 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1688 if (STI->checkFeatures("+thumb-mode")) 1689 Features.AddFeature("-thumb-mode"); 1690 else 1691 Features.AddFeature("+thumb-mode"); 1692 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1693 Features.getString())); 1694 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1695 } 1696 1697 std::unique_ptr<const MCInstrAnalysis> MIA( 1698 TheTarget->createMCInstrAnalysis(MII.get())); 1699 1700 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1701 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1702 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1703 if (!IP) 1704 reportError(Obj->getFileName(), 1705 "no instruction printer for target " + TripleName); 1706 IP->setPrintImmHex(PrintImmHex); 1707 IP->setPrintBranchImmAsAddress(true); 1708 IP->setSymbolizeOperands(SymbolizeOperands); 1709 IP->setMCInstrAnalysis(MIA.get()); 1710 1711 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1712 SourcePrinter SP(Obj, TheTarget->getName()); 1713 1714 for (StringRef Opt : DisassemblerOptions) 1715 if (!IP->applyTargetSpecificCLOption(Opt)) 1716 reportError(Obj->getFileName(), 1717 "Unrecognized disassembler option: " + Opt); 1718 1719 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1720 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1721 SP, InlineRelocs); 1722 } 1723 1724 void objdump::printRelocations(const ObjectFile *Obj) { 1725 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1726 "%08" PRIx64; 1727 // Regular objdump doesn't print relocations in non-relocatable object 1728 // files. 1729 if (!Obj->isRelocatableObject()) 1730 return; 1731 1732 // Build a mapping from relocation target to a vector of relocation 1733 // sections. Usually, there is an only one relocation section for 1734 // each relocated section. 1735 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1736 uint64_t Ndx; 1737 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 1738 if (Section.relocation_begin() == Section.relocation_end()) 1739 continue; 1740 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 1741 if (!SecOrErr) 1742 reportError(Obj->getFileName(), 1743 "section (" + Twine(Ndx) + 1744 "): unable to get a relocation target: " + 1745 toString(SecOrErr.takeError())); 1746 SecToRelSec[**SecOrErr].push_back(Section); 1747 } 1748 1749 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1750 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1751 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 1752 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1753 uint32_t TypePadding = 24; 1754 outs() << left_justify("OFFSET", OffsetPadding) << " " 1755 << left_justify("TYPE", TypePadding) << " " 1756 << "VALUE\n"; 1757 1758 for (SectionRef Section : P.second) { 1759 for (const RelocationRef &Reloc : Section.relocations()) { 1760 uint64_t Address = Reloc.getOffset(); 1761 SmallString<32> RelocName; 1762 SmallString<32> ValueStr; 1763 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1764 continue; 1765 Reloc.getTypeName(RelocName); 1766 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1767 reportError(std::move(E), Obj->getFileName()); 1768 1769 outs() << format(Fmt.data(), Address) << " " 1770 << left_justify(RelocName, TypePadding) << " " << ValueStr 1771 << "\n"; 1772 } 1773 } 1774 } 1775 } 1776 1777 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 1778 // For the moment, this option is for ELF only 1779 if (!Obj->isELF()) 1780 return; 1781 1782 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1783 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 1784 return Sec.getType() == ELF::SHT_DYNAMIC; 1785 })) { 1786 reportError(Obj->getFileName(), "not a dynamic object"); 1787 return; 1788 } 1789 1790 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1791 if (DynRelSec.empty()) 1792 return; 1793 1794 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 1795 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1796 const uint32_t TypePadding = 24; 1797 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 1798 << left_justify("TYPE", TypePadding) << " VALUE\n"; 1799 1800 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1801 for (const SectionRef &Section : DynRelSec) 1802 for (const RelocationRef &Reloc : Section.relocations()) { 1803 uint64_t Address = Reloc.getOffset(); 1804 SmallString<32> RelocName; 1805 SmallString<32> ValueStr; 1806 Reloc.getTypeName(RelocName); 1807 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1808 reportError(std::move(E), Obj->getFileName()); 1809 outs() << format(Fmt.data(), Address) << ' ' 1810 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 1811 } 1812 } 1813 1814 // Returns true if we need to show LMA column when dumping section headers. We 1815 // show it only when the platform is ELF and either we have at least one section 1816 // whose VMA and LMA are different and/or when --show-lma flag is used. 1817 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1818 if (!Obj->isELF()) 1819 return false; 1820 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1821 if (S.getAddress() != getELFSectionLMA(S)) 1822 return true; 1823 return ShowLMA; 1824 } 1825 1826 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1827 // Default column width for names is 13 even if no names are that long. 1828 size_t MaxWidth = 13; 1829 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1830 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1831 MaxWidth = std::max(MaxWidth, Name.size()); 1832 } 1833 return MaxWidth; 1834 } 1835 1836 void objdump::printSectionHeaders(const ObjectFile *Obj) { 1837 size_t NameWidth = getMaxSectionNameWidth(Obj); 1838 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1839 bool HasLMAColumn = shouldDisplayLMA(Obj); 1840 outs() << "\nSections:\n"; 1841 if (HasLMAColumn) 1842 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1843 << left_justify("VMA", AddressWidth) << " " 1844 << left_justify("LMA", AddressWidth) << " Type\n"; 1845 else 1846 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1847 << left_justify("VMA", AddressWidth) << " Type\n"; 1848 1849 uint64_t Idx; 1850 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 1851 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1852 uint64_t VMA = Section.getAddress(); 1853 if (shouldAdjustVA(Section)) 1854 VMA += AdjustVMA; 1855 1856 uint64_t Size = Section.getSize(); 1857 1858 std::string Type = Section.isText() ? "TEXT" : ""; 1859 if (Section.isData()) 1860 Type += Type.empty() ? "DATA" : ", DATA"; 1861 if (Section.isBSS()) 1862 Type += Type.empty() ? "BSS" : ", BSS"; 1863 if (Section.isDebugSection()) 1864 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 1865 1866 if (HasLMAColumn) 1867 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1868 Name.str().c_str(), Size) 1869 << format_hex_no_prefix(VMA, AddressWidth) << " " 1870 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1871 << " " << Type << "\n"; 1872 else 1873 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1874 Name.str().c_str(), Size) 1875 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1876 } 1877 } 1878 1879 void objdump::printSectionContents(const ObjectFile *Obj) { 1880 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1881 1882 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1883 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1884 uint64_t BaseAddr = Section.getAddress(); 1885 uint64_t Size = Section.getSize(); 1886 if (!Size) 1887 continue; 1888 1889 outs() << "Contents of section "; 1890 StringRef SegmentName = getSegmentName(MachO, Section); 1891 if (!SegmentName.empty()) 1892 outs() << SegmentName << ","; 1893 outs() << Name << ":\n"; 1894 if (Section.isBSS()) { 1895 outs() << format("<skipping contents of bss section at [%04" PRIx64 1896 ", %04" PRIx64 ")>\n", 1897 BaseAddr, BaseAddr + Size); 1898 continue; 1899 } 1900 1901 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1902 1903 // Dump out the content as hex and printable ascii characters. 1904 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1905 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1906 // Dump line of hex. 1907 for (std::size_t I = 0; I < 16; ++I) { 1908 if (I != 0 && I % 4 == 0) 1909 outs() << ' '; 1910 if (Addr + I < End) 1911 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1912 << hexdigit(Contents[Addr + I] & 0xF, true); 1913 else 1914 outs() << " "; 1915 } 1916 // Print ascii. 1917 outs() << " "; 1918 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1919 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1920 outs() << Contents[Addr + I]; 1921 else 1922 outs() << "."; 1923 } 1924 outs() << "\n"; 1925 } 1926 } 1927 } 1928 1929 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1930 StringRef ArchitectureName, bool DumpDynamic) { 1931 if (O->isCOFF() && !DumpDynamic) { 1932 outs() << "\nSYMBOL TABLE:\n"; 1933 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 1934 return; 1935 } 1936 1937 const StringRef FileName = O->getFileName(); 1938 1939 if (!DumpDynamic) { 1940 outs() << "\nSYMBOL TABLE:\n"; 1941 for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I) 1942 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 1943 DumpDynamic); 1944 return; 1945 } 1946 1947 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 1948 if (!O->isELF()) { 1949 reportWarning( 1950 "this operation is not currently supported for this file format", 1951 FileName); 1952 return; 1953 } 1954 1955 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O); 1956 auto Symbols = ELF->getDynamicSymbolIterators(); 1957 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 1958 ELF->readDynsymVersions(); 1959 if (!SymbolVersionsOrErr) { 1960 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 1961 SymbolVersionsOrErr = std::vector<VersionEntry>(); 1962 (void)!SymbolVersionsOrErr; 1963 } 1964 for (auto &Sym : Symbols) 1965 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 1966 ArchitectureName, DumpDynamic); 1967 } 1968 1969 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol, 1970 ArrayRef<VersionEntry> SymbolVersions, 1971 StringRef FileName, StringRef ArchiveName, 1972 StringRef ArchitectureName, bool DumpDynamic) { 1973 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O); 1974 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1975 ArchitectureName); 1976 if ((Address < StartAddress) || (Address > StopAddress)) 1977 return; 1978 SymbolRef::Type Type = 1979 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 1980 uint32_t Flags = 1981 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 1982 1983 // Don't ask a Mach-O STAB symbol for its section unless you know that 1984 // STAB symbol's section field refers to a valid section index. Otherwise 1985 // the symbol may error trying to load a section that does not exist. 1986 bool IsSTAB = false; 1987 if (MachO) { 1988 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1989 uint8_t NType = 1990 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 1991 : MachO->getSymbolTableEntry(SymDRI).n_type); 1992 if (NType & MachO::N_STAB) 1993 IsSTAB = true; 1994 } 1995 section_iterator Section = IsSTAB 1996 ? O->section_end() 1997 : unwrapOrError(Symbol.getSection(), FileName, 1998 ArchiveName, ArchitectureName); 1999 2000 StringRef Name; 2001 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 2002 if (Expected<StringRef> NameOrErr = Section->getName()) 2003 Name = *NameOrErr; 2004 else 2005 consumeError(NameOrErr.takeError()); 2006 2007 } else { 2008 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2009 ArchitectureName); 2010 } 2011 2012 bool Global = Flags & SymbolRef::SF_Global; 2013 bool Weak = Flags & SymbolRef::SF_Weak; 2014 bool Absolute = Flags & SymbolRef::SF_Absolute; 2015 bool Common = Flags & SymbolRef::SF_Common; 2016 bool Hidden = Flags & SymbolRef::SF_Hidden; 2017 2018 char GlobLoc = ' '; 2019 if ((Section != O->section_end() || Absolute) && !Weak) 2020 GlobLoc = Global ? 'g' : 'l'; 2021 char IFunc = ' '; 2022 if (O->isELF()) { 2023 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2024 IFunc = 'i'; 2025 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2026 GlobLoc = 'u'; 2027 } 2028 2029 char Debug = ' '; 2030 if (DumpDynamic) 2031 Debug = 'D'; 2032 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2033 Debug = 'd'; 2034 2035 char FileFunc = ' '; 2036 if (Type == SymbolRef::ST_File) 2037 FileFunc = 'f'; 2038 else if (Type == SymbolRef::ST_Function) 2039 FileFunc = 'F'; 2040 else if (Type == SymbolRef::ST_Data) 2041 FileFunc = 'O'; 2042 2043 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2044 2045 outs() << format(Fmt, Address) << " " 2046 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2047 << (Weak ? 'w' : ' ') // Weak? 2048 << ' ' // Constructor. Not supported yet. 2049 << ' ' // Warning. Not supported yet. 2050 << IFunc // Indirect reference to another symbol. 2051 << Debug // Debugging (d) or dynamic (D) symbol. 2052 << FileFunc // Name of function (F), file (f) or object (O). 2053 << ' '; 2054 if (Absolute) { 2055 outs() << "*ABS*"; 2056 } else if (Common) { 2057 outs() << "*COM*"; 2058 } else if (Section == O->section_end()) { 2059 if (O->isXCOFF()) { 2060 XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef( 2061 Symbol.getRawDataRefImpl()); 2062 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2063 outs() << "*DEBUG*"; 2064 else 2065 outs() << "*UND*"; 2066 } else 2067 outs() << "*UND*"; 2068 } else { 2069 StringRef SegmentName = getSegmentName(MachO, *Section); 2070 if (!SegmentName.empty()) 2071 outs() << SegmentName << ","; 2072 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2073 outs() << SectionName; 2074 if (O->isXCOFF()) { 2075 Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef( 2076 dyn_cast<const XCOFFObjectFile>(O), Symbol); 2077 if (SymRef) { 2078 2079 Expected<StringRef> NameOrErr = SymRef.getValue().getName(); 2080 2081 if (NameOrErr) { 2082 outs() << " (csect:"; 2083 std::string SymName(NameOrErr.get()); 2084 2085 if (Demangle) 2086 SymName = demangle(SymName); 2087 2088 if (SymbolDescription) 2089 SymName = getXCOFFSymbolDescription( 2090 createSymbolInfo(O, SymRef.getValue()), SymName); 2091 2092 outs() << ' ' << SymName; 2093 outs() << ") "; 2094 } else 2095 reportWarning(toString(NameOrErr.takeError()), FileName); 2096 } 2097 } 2098 } 2099 2100 if (Common) 2101 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2102 else if (O->isXCOFF()) 2103 outs() << '\t' 2104 << format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize( 2105 Symbol.getRawDataRefImpl())); 2106 else if (O->isELF()) 2107 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2108 2109 if (O->isELF()) { 2110 if (!SymbolVersions.empty()) { 2111 const VersionEntry &Ver = 2112 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2113 std::string Str; 2114 if (!Ver.Name.empty()) 2115 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2116 outs() << ' ' << left_justify(Str, 12); 2117 } 2118 2119 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2120 switch (Other) { 2121 case ELF::STV_DEFAULT: 2122 break; 2123 case ELF::STV_INTERNAL: 2124 outs() << " .internal"; 2125 break; 2126 case ELF::STV_HIDDEN: 2127 outs() << " .hidden"; 2128 break; 2129 case ELF::STV_PROTECTED: 2130 outs() << " .protected"; 2131 break; 2132 default: 2133 outs() << format(" 0x%02x", Other); 2134 break; 2135 } 2136 } else if (Hidden) { 2137 outs() << " .hidden"; 2138 } 2139 2140 std::string SymName(Name); 2141 if (Demangle) 2142 SymName = demangle(SymName); 2143 2144 if (O->isXCOFF() && SymbolDescription) 2145 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2146 2147 outs() << ' ' << SymName << '\n'; 2148 } 2149 2150 static void printUnwindInfo(const ObjectFile *O) { 2151 outs() << "Unwind info:\n\n"; 2152 2153 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2154 printCOFFUnwindInfo(Coff); 2155 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2156 printMachOUnwindInfo(MachO); 2157 else 2158 // TODO: Extract DWARF dump tool to objdump. 2159 WithColor::error(errs(), ToolName) 2160 << "This operation is only currently supported " 2161 "for COFF and MachO object files.\n"; 2162 } 2163 2164 /// Dump the raw contents of the __clangast section so the output can be piped 2165 /// into llvm-bcanalyzer. 2166 static void printRawClangAST(const ObjectFile *Obj) { 2167 if (outs().is_displayed()) { 2168 WithColor::error(errs(), ToolName) 2169 << "The -raw-clang-ast option will dump the raw binary contents of " 2170 "the clang ast section.\n" 2171 "Please redirect the output to a file or another program such as " 2172 "llvm-bcanalyzer.\n"; 2173 return; 2174 } 2175 2176 StringRef ClangASTSectionName("__clangast"); 2177 if (Obj->isCOFF()) { 2178 ClangASTSectionName = "clangast"; 2179 } 2180 2181 Optional<object::SectionRef> ClangASTSection; 2182 for (auto Sec : ToolSectionFilter(*Obj)) { 2183 StringRef Name; 2184 if (Expected<StringRef> NameOrErr = Sec.getName()) 2185 Name = *NameOrErr; 2186 else 2187 consumeError(NameOrErr.takeError()); 2188 2189 if (Name == ClangASTSectionName) { 2190 ClangASTSection = Sec; 2191 break; 2192 } 2193 } 2194 if (!ClangASTSection) 2195 return; 2196 2197 StringRef ClangASTContents = unwrapOrError( 2198 ClangASTSection.getValue().getContents(), Obj->getFileName()); 2199 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2200 } 2201 2202 static void printFaultMaps(const ObjectFile *Obj) { 2203 StringRef FaultMapSectionName; 2204 2205 if (Obj->isELF()) { 2206 FaultMapSectionName = ".llvm_faultmaps"; 2207 } else if (Obj->isMachO()) { 2208 FaultMapSectionName = "__llvm_faultmaps"; 2209 } else { 2210 WithColor::error(errs(), ToolName) 2211 << "This operation is only currently supported " 2212 "for ELF and Mach-O executable files.\n"; 2213 return; 2214 } 2215 2216 Optional<object::SectionRef> FaultMapSection; 2217 2218 for (auto Sec : ToolSectionFilter(*Obj)) { 2219 StringRef Name; 2220 if (Expected<StringRef> NameOrErr = Sec.getName()) 2221 Name = *NameOrErr; 2222 else 2223 consumeError(NameOrErr.takeError()); 2224 2225 if (Name == FaultMapSectionName) { 2226 FaultMapSection = Sec; 2227 break; 2228 } 2229 } 2230 2231 outs() << "FaultMap table:\n"; 2232 2233 if (!FaultMapSection.hasValue()) { 2234 outs() << "<not found>\n"; 2235 return; 2236 } 2237 2238 StringRef FaultMapContents = 2239 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2240 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2241 FaultMapContents.bytes_end()); 2242 2243 outs() << FMP; 2244 } 2245 2246 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2247 if (O->isELF()) { 2248 printELFFileHeader(O); 2249 printELFDynamicSection(O); 2250 printELFSymbolVersionInfo(O); 2251 return; 2252 } 2253 if (O->isCOFF()) 2254 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2255 if (O->isWasm()) 2256 return printWasmFileHeader(O); 2257 if (O->isMachO()) { 2258 printMachOFileHeader(O); 2259 if (!OnlyFirst) 2260 printMachOLoadCommands(O); 2261 return; 2262 } 2263 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2264 } 2265 2266 static void printFileHeaders(const ObjectFile *O) { 2267 if (!O->isELF() && !O->isCOFF()) 2268 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2269 2270 Triple::ArchType AT = O->getArch(); 2271 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2272 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2273 2274 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2275 outs() << "start address: " 2276 << "0x" << format(Fmt.data(), Address) << "\n"; 2277 } 2278 2279 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2280 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2281 if (!ModeOrErr) { 2282 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2283 consumeError(ModeOrErr.takeError()); 2284 return; 2285 } 2286 sys::fs::perms Mode = ModeOrErr.get(); 2287 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2288 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2289 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2290 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2291 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2292 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2293 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2294 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2295 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2296 2297 outs() << " "; 2298 2299 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2300 unwrapOrError(C.getGID(), Filename), 2301 unwrapOrError(C.getRawSize(), Filename)); 2302 2303 StringRef RawLastModified = C.getRawLastModified(); 2304 unsigned Seconds; 2305 if (RawLastModified.getAsInteger(10, Seconds)) 2306 outs() << "(date: \"" << RawLastModified 2307 << "\" contains non-decimal chars) "; 2308 else { 2309 // Since ctime(3) returns a 26 character string of the form: 2310 // "Sun Sep 16 01:03:52 1973\n\0" 2311 // just print 24 characters. 2312 time_t t = Seconds; 2313 outs() << format("%.24s ", ctime(&t)); 2314 } 2315 2316 StringRef Name = ""; 2317 Expected<StringRef> NameOrErr = C.getName(); 2318 if (!NameOrErr) { 2319 consumeError(NameOrErr.takeError()); 2320 Name = unwrapOrError(C.getRawName(), Filename); 2321 } else { 2322 Name = NameOrErr.get(); 2323 } 2324 outs() << Name << "\n"; 2325 } 2326 2327 // For ELF only now. 2328 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2329 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2330 if (Elf->getEType() != ELF::ET_REL) 2331 return true; 2332 } 2333 return false; 2334 } 2335 2336 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2337 uint64_t Start, uint64_t Stop) { 2338 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2339 return; 2340 2341 for (const SectionRef &Section : Obj->sections()) 2342 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2343 uint64_t BaseAddr = Section.getAddress(); 2344 uint64_t Size = Section.getSize(); 2345 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2346 return; 2347 } 2348 2349 if (!HasStartAddressFlag) 2350 reportWarning("no section has address less than 0x" + 2351 Twine::utohexstr(Stop) + " specified by --stop-address", 2352 Obj->getFileName()); 2353 else if (!HasStopAddressFlag) 2354 reportWarning("no section has address greater than or equal to 0x" + 2355 Twine::utohexstr(Start) + " specified by --start-address", 2356 Obj->getFileName()); 2357 else 2358 reportWarning("no section overlaps the range [0x" + 2359 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2360 ") specified by --start-address/--stop-address", 2361 Obj->getFileName()); 2362 } 2363 2364 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2365 const Archive::Child *C = nullptr) { 2366 // Avoid other output when using a raw option. 2367 if (!RawClangAST) { 2368 outs() << '\n'; 2369 if (A) 2370 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2371 else 2372 outs() << O->getFileName(); 2373 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2374 } 2375 2376 if (HasStartAddressFlag || HasStopAddressFlag) 2377 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2378 2379 // Note: the order here matches GNU objdump for compatability. 2380 StringRef ArchiveName = A ? A->getFileName() : ""; 2381 if (ArchiveHeaders && !MachOOpt && C) 2382 printArchiveChild(ArchiveName, *C); 2383 if (FileHeaders) 2384 printFileHeaders(O); 2385 if (PrivateHeaders || FirstPrivateHeader) 2386 printPrivateFileHeaders(O, FirstPrivateHeader); 2387 if (SectionHeaders) 2388 printSectionHeaders(O); 2389 if (SymbolTable) 2390 printSymbolTable(O, ArchiveName); 2391 if (DynamicSymbolTable) 2392 printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"", 2393 /*DumpDynamic=*/true); 2394 if (DwarfDumpType != DIDT_Null) { 2395 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2396 // Dump the complete DWARF structure. 2397 DIDumpOptions DumpOpts; 2398 DumpOpts.DumpType = DwarfDumpType; 2399 DICtx->dump(outs(), DumpOpts); 2400 } 2401 if (Relocations && !Disassemble) 2402 printRelocations(O); 2403 if (DynamicRelocations) 2404 printDynamicRelocations(O); 2405 if (SectionContents) 2406 printSectionContents(O); 2407 if (Disassemble) 2408 disassembleObject(O, Relocations); 2409 if (UnwindInfo) 2410 printUnwindInfo(O); 2411 2412 // Mach-O specific options: 2413 if (ExportsTrie) 2414 printExportsTrie(O); 2415 if (Rebase) 2416 printRebaseTable(O); 2417 if (Bind) 2418 printBindTable(O); 2419 if (LazyBind) 2420 printLazyBindTable(O); 2421 if (WeakBind) 2422 printWeakBindTable(O); 2423 2424 // Other special sections: 2425 if (RawClangAST) 2426 printRawClangAST(O); 2427 if (FaultMapSection) 2428 printFaultMaps(O); 2429 } 2430 2431 static void dumpObject(const COFFImportFile *I, const Archive *A, 2432 const Archive::Child *C = nullptr) { 2433 StringRef ArchiveName = A ? A->getFileName() : ""; 2434 2435 // Avoid other output when using a raw option. 2436 if (!RawClangAST) 2437 outs() << '\n' 2438 << ArchiveName << "(" << I->getFileName() << ")" 2439 << ":\tfile format COFF-import-file" 2440 << "\n\n"; 2441 2442 if (ArchiveHeaders && !MachOOpt && C) 2443 printArchiveChild(ArchiveName, *C); 2444 if (SymbolTable) 2445 printCOFFSymbolTable(I); 2446 } 2447 2448 /// Dump each object file in \a a; 2449 static void dumpArchive(const Archive *A) { 2450 Error Err = Error::success(); 2451 unsigned I = -1; 2452 for (auto &C : A->children(Err)) { 2453 ++I; 2454 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2455 if (!ChildOrErr) { 2456 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2457 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2458 continue; 2459 } 2460 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2461 dumpObject(O, A, &C); 2462 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2463 dumpObject(I, A, &C); 2464 else 2465 reportError(errorCodeToError(object_error::invalid_file_type), 2466 A->getFileName()); 2467 } 2468 if (Err) 2469 reportError(std::move(Err), A->getFileName()); 2470 } 2471 2472 /// Open file and figure out how to dump it. 2473 static void dumpInput(StringRef file) { 2474 // If we are using the Mach-O specific object file parser, then let it parse 2475 // the file and process the command line options. So the -arch flags can 2476 // be used to select specific slices, etc. 2477 if (MachOOpt) { 2478 parseInputMachO(file); 2479 return; 2480 } 2481 2482 // Attempt to open the binary. 2483 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2484 Binary &Binary = *OBinary.getBinary(); 2485 2486 if (Archive *A = dyn_cast<Archive>(&Binary)) 2487 dumpArchive(A); 2488 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2489 dumpObject(O); 2490 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2491 parseInputMachO(UB); 2492 else 2493 reportError(errorCodeToError(object_error::invalid_file_type), file); 2494 } 2495 2496 template <typename T> 2497 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2498 T &Value) { 2499 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2500 StringRef V(A->getValue()); 2501 if (!llvm::to_integer(V, Value, 0)) { 2502 reportCmdLineError(A->getSpelling() + 2503 ": expected a non-negative integer, but got '" + V + 2504 "'"); 2505 } 2506 } 2507 } 2508 2509 static void invalidArgValue(const opt::Arg *A) { 2510 reportCmdLineError("'" + StringRef(A->getValue()) + 2511 "' is not a valid value for '" + A->getSpelling() + "'"); 2512 } 2513 2514 static std::vector<std::string> 2515 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2516 std::vector<std::string> Values; 2517 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2518 llvm::SmallVector<StringRef, 2> SplitValues; 2519 llvm::SplitString(Value, SplitValues, ","); 2520 for (StringRef SplitValue : SplitValues) 2521 Values.push_back(SplitValue.str()); 2522 } 2523 return Values; 2524 } 2525 2526 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2527 MachOOpt = true; 2528 FullLeadingAddr = true; 2529 PrintImmHex = true; 2530 2531 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2532 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2533 if (InputArgs.hasArg(OTOOL_d)) 2534 FilterSections.push_back("__DATA,__data"); 2535 DylibId = InputArgs.hasArg(OTOOL_D); 2536 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2537 DataInCode = InputArgs.hasArg(OTOOL_G); 2538 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2539 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2540 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2541 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2542 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2543 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2544 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2545 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2546 InfoPlist = InputArgs.hasArg(OTOOL_P); 2547 Relocations = InputArgs.hasArg(OTOOL_r); 2548 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2549 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2550 FilterSections.push_back(Filter); 2551 } 2552 if (InputArgs.hasArg(OTOOL_t)) 2553 FilterSections.push_back("__TEXT,__text"); 2554 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2555 InputArgs.hasArg(OTOOL_o); 2556 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 2557 if (InputArgs.hasArg(OTOOL_x)) 2558 FilterSections.push_back(",__text"); 2559 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 2560 2561 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 2562 if (InputFilenames.empty()) 2563 reportCmdLineError("no input file"); 2564 2565 for (const Arg *A : InputArgs) { 2566 const Option &O = A->getOption(); 2567 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 2568 reportCmdLineWarning(O.getPrefixedName() + 2569 " is obsolete and not implemented"); 2570 } 2571 } 2572 } 2573 2574 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 2575 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 2576 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 2577 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 2578 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 2579 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 2580 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 2581 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 2582 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 2583 DisassembleSymbols = 2584 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 2585 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 2586 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 2587 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 2588 .Case("frames", DIDT_DebugFrame) 2589 .Default(DIDT_Null); 2590 if (DwarfDumpType == DIDT_Null) 2591 invalidArgValue(A); 2592 } 2593 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 2594 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 2595 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 2596 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 2597 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 2598 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 2599 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 2600 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 2601 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 2602 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 2603 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 2604 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 2605 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 2606 PrintImmHex = 2607 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false); 2608 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 2609 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 2610 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 2611 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 2612 PrintSource = InputArgs.hasArg(OBJDUMP_source); 2613 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 2614 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 2615 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 2616 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 2617 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 2618 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 2619 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 2620 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 2621 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 2622 Wide = InputArgs.hasArg(OBJDUMP_wide); 2623 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 2624 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 2625 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 2626 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 2627 .Case("ascii", DVASCII) 2628 .Case("unicode", DVUnicode) 2629 .Default(DVInvalid); 2630 if (DbgVariables == DVInvalid) 2631 invalidArgValue(A); 2632 } 2633 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 2634 2635 parseMachOOptions(InputArgs); 2636 2637 // Parse -M (--disassembler-options) and deprecated 2638 // --x86-asm-syntax={att,intel}. 2639 // 2640 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 2641 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 2642 // called too late. For now we have to use the internal cl::opt option. 2643 const char *AsmSyntax = nullptr; 2644 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 2645 OBJDUMP_x86_asm_syntax_att, 2646 OBJDUMP_x86_asm_syntax_intel)) { 2647 switch (A->getOption().getID()) { 2648 case OBJDUMP_x86_asm_syntax_att: 2649 AsmSyntax = "--x86-asm-syntax=att"; 2650 continue; 2651 case OBJDUMP_x86_asm_syntax_intel: 2652 AsmSyntax = "--x86-asm-syntax=intel"; 2653 continue; 2654 } 2655 2656 SmallVector<StringRef, 2> Values; 2657 llvm::SplitString(A->getValue(), Values, ","); 2658 for (StringRef V : Values) { 2659 if (V == "att") 2660 AsmSyntax = "--x86-asm-syntax=att"; 2661 else if (V == "intel") 2662 AsmSyntax = "--x86-asm-syntax=intel"; 2663 else 2664 DisassemblerOptions.push_back(V.str()); 2665 } 2666 } 2667 if (AsmSyntax) { 2668 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 2669 llvm::cl::ParseCommandLineOptions(2, Argv); 2670 } 2671 2672 // objdump defaults to a.out if no filenames specified. 2673 if (InputFilenames.empty()) 2674 InputFilenames.push_back("a.out"); 2675 } 2676 2677 int main(int argc, char **argv) { 2678 using namespace llvm; 2679 InitLLVM X(argc, argv); 2680 2681 ToolName = argv[0]; 2682 std::unique_ptr<CommonOptTable> T; 2683 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 2684 2685 StringRef Stem = sys::path::stem(ToolName); 2686 auto Is = [=](StringRef Tool) { 2687 // We need to recognize the following filenames: 2688 // 2689 // llvm-objdump -> objdump 2690 // llvm-otool-10.exe -> otool 2691 // powerpc64-unknown-freebsd13-objdump -> objdump 2692 auto I = Stem.rfind_insensitive(Tool); 2693 return I != StringRef::npos && 2694 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 2695 }; 2696 if (Is("otool")) { 2697 T = std::make_unique<OtoolOptTable>(); 2698 Unknown = OTOOL_UNKNOWN; 2699 HelpFlag = OTOOL_help; 2700 HelpHiddenFlag = OTOOL_help_hidden; 2701 VersionFlag = OTOOL_version; 2702 } else { 2703 T = std::make_unique<ObjdumpOptTable>(); 2704 Unknown = OBJDUMP_UNKNOWN; 2705 HelpFlag = OBJDUMP_help; 2706 HelpHiddenFlag = OBJDUMP_help_hidden; 2707 VersionFlag = OBJDUMP_version; 2708 } 2709 2710 BumpPtrAllocator A; 2711 StringSaver Saver(A); 2712 opt::InputArgList InputArgs = 2713 T->parseArgs(argc, argv, Unknown, Saver, 2714 [&](StringRef Msg) { reportCmdLineError(Msg); }); 2715 2716 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 2717 T->printHelp(ToolName); 2718 return 0; 2719 } 2720 if (InputArgs.hasArg(HelpHiddenFlag)) { 2721 T->printHelp(ToolName, /*ShowHidden=*/true); 2722 return 0; 2723 } 2724 2725 // Initialize targets and assembly printers/parsers. 2726 InitializeAllTargetInfos(); 2727 InitializeAllTargetMCs(); 2728 InitializeAllDisassemblers(); 2729 2730 if (InputArgs.hasArg(VersionFlag)) { 2731 cl::PrintVersionMessage(); 2732 if (!Is("otool")) { 2733 outs() << '\n'; 2734 TargetRegistry::printRegisteredTargetsForVersion(outs()); 2735 } 2736 return 0; 2737 } 2738 2739 if (Is("otool")) 2740 parseOtoolOptions(InputArgs); 2741 else 2742 parseObjdumpOptions(InputArgs); 2743 2744 if (StartAddress >= StopAddress) 2745 reportCmdLineError("start address should be less than stop address"); 2746 2747 // Removes trailing separators from prefix. 2748 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 2749 Prefix.pop_back(); 2750 2751 if (AllHeaders) 2752 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2753 SectionHeaders = SymbolTable = true; 2754 2755 if (DisassembleAll || PrintSource || PrintLines || 2756 !DisassembleSymbols.empty()) 2757 Disassemble = true; 2758 2759 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2760 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2761 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2762 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && 2763 !(MachOOpt && 2764 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2765 FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist || 2766 LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths || 2767 UniversalHeaders || WeakBind || !FilterSections.empty()))) { 2768 T->printHelp(ToolName); 2769 return 2; 2770 } 2771 2772 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 2773 2774 llvm::for_each(InputFilenames, dumpInput); 2775 2776 warnOnNoMatchForSections(); 2777 2778 return EXIT_SUCCESS; 2779 } 2780