xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 258531b7ac0d43fce84a008235c597f920a6af7e)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringSet.h"
34 #include "llvm/ADT/Triple.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
37 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
38 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
39 #include "llvm/Demangle/Demangle.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
43 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
44 #include "llvm/MC/MCInst.h"
45 #include "llvm/MC/MCInstPrinter.h"
46 #include "llvm/MC/MCInstrAnalysis.h"
47 #include "llvm/MC/MCInstrInfo.h"
48 #include "llvm/MC/MCObjectFileInfo.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/MC/MCSubtargetInfo.h"
51 #include "llvm/MC/MCTargetOptions.h"
52 #include "llvm/MC/TargetRegistry.h"
53 #include "llvm/Object/Archive.h"
54 #include "llvm/Object/COFF.h"
55 #include "llvm/Object/COFFImportFile.h"
56 #include "llvm/Object/ELFObjectFile.h"
57 #include "llvm/Object/ELFTypes.h"
58 #include "llvm/Object/FaultMapParser.h"
59 #include "llvm/Object/MachO.h"
60 #include "llvm/Object/MachOUniversal.h"
61 #include "llvm/Object/ObjectFile.h"
62 #include "llvm/Object/OffloadBinary.h"
63 #include "llvm/Object/Wasm.h"
64 #include "llvm/Option/Arg.h"
65 #include "llvm/Option/ArgList.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Errc.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Format.h"
72 #include "llvm/Support/FormatVariadic.h"
73 #include "llvm/Support/GraphWriter.h"
74 #include "llvm/Support/Host.h"
75 #include "llvm/Support/InitLLVM.h"
76 #include "llvm/Support/MemoryBuffer.h"
77 #include "llvm/Support/SourceMgr.h"
78 #include "llvm/Support/StringSaver.h"
79 #include "llvm/Support/TargetSelect.h"
80 #include "llvm/Support/WithColor.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include <algorithm>
83 #include <cctype>
84 #include <cstring>
85 #include <system_error>
86 #include <unordered_map>
87 #include <utility>
88 
89 using namespace llvm;
90 using namespace llvm::object;
91 using namespace llvm::objdump;
92 using namespace llvm::opt;
93 
94 namespace {
95 
96 class CommonOptTable : public opt::OptTable {
97 public:
98   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
99                  const char *Description)
100       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
101     setGroupedShortOptions(true);
102   }
103 
104   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
105     Argv0 = sys::path::filename(Argv0);
106     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
107                              ShowHidden, ShowHidden);
108     // TODO Replace this with OptTable API once it adds extrahelp support.
109     outs() << "\nPass @FILE as argument to read options from FILE.\n";
110   }
111 
112 private:
113   const char *Usage;
114   const char *Description;
115 };
116 
117 // ObjdumpOptID is in ObjdumpOptID.h
118 
119 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
120 #include "ObjdumpOpts.inc"
121 #undef PREFIX
122 
123 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
124 #define OBJDUMP_nullptr nullptr
125 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
126                HELPTEXT, METAVAR, VALUES)                                      \
127   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
128    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
129    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
130    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
131 #include "ObjdumpOpts.inc"
132 #undef OPTION
133 #undef OBJDUMP_nullptr
134 };
135 
136 class ObjdumpOptTable : public CommonOptTable {
137 public:
138   ObjdumpOptTable()
139       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
140                        "llvm object file dumper") {}
141 };
142 
143 enum OtoolOptID {
144   OTOOL_INVALID = 0, // This is not an option ID.
145 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
146                HELPTEXT, METAVAR, VALUES)                                      \
147   OTOOL_##ID,
148 #include "OtoolOpts.inc"
149 #undef OPTION
150 };
151 
152 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
153 #include "OtoolOpts.inc"
154 #undef PREFIX
155 
156 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
157 #define OTOOL_nullptr nullptr
158 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
159                HELPTEXT, METAVAR, VALUES)                                      \
160   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
161    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
162    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
163    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
164 #include "OtoolOpts.inc"
165 #undef OPTION
166 #undef OTOOL_nullptr
167 };
168 
169 class OtoolOptTable : public CommonOptTable {
170 public:
171   OtoolOptTable()
172       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
173                        "Mach-O object file displaying tool") {}
174 };
175 
176 } // namespace
177 
178 #define DEBUG_TYPE "objdump"
179 
180 static uint64_t AdjustVMA;
181 static bool AllHeaders;
182 static std::string ArchName;
183 bool objdump::ArchiveHeaders;
184 bool objdump::Demangle;
185 bool objdump::Disassemble;
186 bool objdump::DisassembleAll;
187 bool objdump::SymbolDescription;
188 static std::vector<std::string> DisassembleSymbols;
189 static bool DisassembleZeroes;
190 static std::vector<std::string> DisassemblerOptions;
191 DIDumpType objdump::DwarfDumpType;
192 static bool DynamicRelocations;
193 static bool FaultMapSection;
194 static bool FileHeaders;
195 bool objdump::SectionContents;
196 static std::vector<std::string> InputFilenames;
197 bool objdump::PrintLines;
198 static bool MachOOpt;
199 std::string objdump::MCPU;
200 std::vector<std::string> objdump::MAttrs;
201 bool objdump::ShowRawInsn;
202 bool objdump::LeadingAddr;
203 static bool Offloading;
204 static bool RawClangAST;
205 bool objdump::Relocations;
206 bool objdump::PrintImmHex;
207 bool objdump::PrivateHeaders;
208 std::vector<std::string> objdump::FilterSections;
209 bool objdump::SectionHeaders;
210 static bool ShowLMA;
211 bool objdump::PrintSource;
212 
213 static uint64_t StartAddress;
214 static bool HasStartAddressFlag;
215 static uint64_t StopAddress = UINT64_MAX;
216 static bool HasStopAddressFlag;
217 
218 bool objdump::SymbolTable;
219 static bool SymbolizeOperands;
220 static bool DynamicSymbolTable;
221 std::string objdump::TripleName;
222 bool objdump::UnwindInfo;
223 static bool Wide;
224 std::string objdump::Prefix;
225 uint32_t objdump::PrefixStrip;
226 
227 DebugVarsFormat objdump::DbgVariables = DVDisabled;
228 
229 int objdump::DbgIndent = 52;
230 
231 static StringSet<> DisasmSymbolSet;
232 StringSet<> objdump::FoundSectionSet;
233 static StringRef ToolName;
234 
235 namespace {
236 struct FilterResult {
237   // True if the section should not be skipped.
238   bool Keep;
239 
240   // True if the index counter should be incremented, even if the section should
241   // be skipped. For example, sections may be skipped if they are not included
242   // in the --section flag, but we still want those to count toward the section
243   // count.
244   bool IncrementIndex;
245 };
246 } // namespace
247 
248 static FilterResult checkSectionFilter(object::SectionRef S) {
249   if (FilterSections.empty())
250     return {/*Keep=*/true, /*IncrementIndex=*/true};
251 
252   Expected<StringRef> SecNameOrErr = S.getName();
253   if (!SecNameOrErr) {
254     consumeError(SecNameOrErr.takeError());
255     return {/*Keep=*/false, /*IncrementIndex=*/false};
256   }
257   StringRef SecName = *SecNameOrErr;
258 
259   // StringSet does not allow empty key so avoid adding sections with
260   // no name (such as the section with index 0) here.
261   if (!SecName.empty())
262     FoundSectionSet.insert(SecName);
263 
264   // Only show the section if it's in the FilterSections list, but always
265   // increment so the indexing is stable.
266   return {/*Keep=*/is_contained(FilterSections, SecName),
267           /*IncrementIndex=*/true};
268 }
269 
270 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
271                                          uint64_t *Idx) {
272   // Start at UINT64_MAX so that the first index returned after an increment is
273   // zero (after the unsigned wrap).
274   if (Idx)
275     *Idx = UINT64_MAX;
276   return SectionFilter(
277       [Idx](object::SectionRef S) {
278         FilterResult Result = checkSectionFilter(S);
279         if (Idx != nullptr && Result.IncrementIndex)
280           *Idx += 1;
281         return Result.Keep;
282       },
283       O);
284 }
285 
286 std::string objdump::getFileNameForError(const object::Archive::Child &C,
287                                          unsigned Index) {
288   Expected<StringRef> NameOrErr = C.getName();
289   if (NameOrErr)
290     return std::string(NameOrErr.get());
291   // If we have an error getting the name then we print the index of the archive
292   // member. Since we are already in an error state, we just ignore this error.
293   consumeError(NameOrErr.takeError());
294   return "<file index: " + std::to_string(Index) + ">";
295 }
296 
297 void objdump::reportWarning(const Twine &Message, StringRef File) {
298   // Output order between errs() and outs() matters especially for archive
299   // files where the output is per member object.
300   outs().flush();
301   WithColor::warning(errs(), ToolName)
302       << "'" << File << "': " << Message << "\n";
303 }
304 
305 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
306   outs().flush();
307   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
308   exit(1);
309 }
310 
311 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
312                                        StringRef ArchiveName,
313                                        StringRef ArchitectureName) {
314   assert(E);
315   outs().flush();
316   WithColor::error(errs(), ToolName);
317   if (ArchiveName != "")
318     errs() << ArchiveName << "(" << FileName << ")";
319   else
320     errs() << "'" << FileName << "'";
321   if (!ArchitectureName.empty())
322     errs() << " (for architecture " << ArchitectureName << ")";
323   errs() << ": ";
324   logAllUnhandledErrors(std::move(E), errs());
325   exit(1);
326 }
327 
328 static void reportCmdLineWarning(const Twine &Message) {
329   WithColor::warning(errs(), ToolName) << Message << "\n";
330 }
331 
332 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
333   WithColor::error(errs(), ToolName) << Message << "\n";
334   exit(1);
335 }
336 
337 static void warnOnNoMatchForSections() {
338   SetVector<StringRef> MissingSections;
339   for (StringRef S : FilterSections) {
340     if (FoundSectionSet.count(S))
341       return;
342     // User may specify a unnamed section. Don't warn for it.
343     if (!S.empty())
344       MissingSections.insert(S);
345   }
346 
347   // Warn only if no section in FilterSections is matched.
348   for (StringRef S : MissingSections)
349     reportCmdLineWarning("section '" + S +
350                          "' mentioned in a -j/--section option, but not "
351                          "found in any input file");
352 }
353 
354 static const Target *getTarget(const ObjectFile *Obj) {
355   // Figure out the target triple.
356   Triple TheTriple("unknown-unknown-unknown");
357   if (TripleName.empty()) {
358     TheTriple = Obj->makeTriple();
359   } else {
360     TheTriple.setTriple(Triple::normalize(TripleName));
361     auto Arch = Obj->getArch();
362     if (Arch == Triple::arm || Arch == Triple::armeb)
363       Obj->setARMSubArch(TheTriple);
364   }
365 
366   // Get the target specific parser.
367   std::string Error;
368   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
369                                                          Error);
370   if (!TheTarget)
371     reportError(Obj->getFileName(), "can't find target: " + Error);
372 
373   // Update the triple name and return the found target.
374   TripleName = TheTriple.getTriple();
375   return TheTarget;
376 }
377 
378 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
379   return A.getOffset() < B.getOffset();
380 }
381 
382 static Error getRelocationValueString(const RelocationRef &Rel,
383                                       SmallVectorImpl<char> &Result) {
384   const ObjectFile *Obj = Rel.getObject();
385   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
386     return getELFRelocationValueString(ELF, Rel, Result);
387   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
388     return getCOFFRelocationValueString(COFF, Rel, Result);
389   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
390     return getWasmRelocationValueString(Wasm, Rel, Result);
391   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
392     return getMachORelocationValueString(MachO, Rel, Result);
393   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
394     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
395   llvm_unreachable("unknown object file format");
396 }
397 
398 /// Indicates whether this relocation should hidden when listing
399 /// relocations, usually because it is the trailing part of a multipart
400 /// relocation that will be printed as part of the leading relocation.
401 static bool getHidden(RelocationRef RelRef) {
402   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
403   if (!MachO)
404     return false;
405 
406   unsigned Arch = MachO->getArch();
407   DataRefImpl Rel = RelRef.getRawDataRefImpl();
408   uint64_t Type = MachO->getRelocationType(Rel);
409 
410   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
411   // is always hidden.
412   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
413     return Type == MachO::GENERIC_RELOC_PAIR;
414 
415   if (Arch == Triple::x86_64) {
416     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
417     // an X86_64_RELOC_SUBTRACTOR.
418     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
419       DataRefImpl RelPrev = Rel;
420       RelPrev.d.a--;
421       uint64_t PrevType = MachO->getRelocationType(RelPrev);
422       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
423         return true;
424     }
425   }
426 
427   return false;
428 }
429 
430 namespace {
431 
432 /// Get the column at which we want to start printing the instruction
433 /// disassembly, taking into account anything which appears to the left of it.
434 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
435   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
436 }
437 
438 static bool isAArch64Elf(const ObjectFile &Obj) {
439   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
440   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
441 }
442 
443 static bool isArmElf(const ObjectFile &Obj) {
444   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
445   return Elf && Elf->getEMachine() == ELF::EM_ARM;
446 }
447 
448 static bool isCSKYElf(const ObjectFile &Obj) {
449   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
450   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
451 }
452 
453 static bool hasMappingSymbols(const ObjectFile &Obj) {
454   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
455 }
456 
457 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
458                             const RelocationRef &Rel, uint64_t Address,
459                             bool Is64Bits) {
460   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
461   SmallString<16> Name;
462   SmallString<32> Val;
463   Rel.getTypeName(Name);
464   if (Error E = getRelocationValueString(Rel, Val))
465     reportError(std::move(E), FileName);
466   OS << format(Fmt.data(), Address) << Name << "\t" << Val;
467 }
468 
469 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
470                                    raw_ostream &OS) {
471   // The output of printInst starts with a tab. Print some spaces so that
472   // the tab has 1 column and advances to the target tab stop.
473   unsigned TabStop = getInstStartColumn(STI);
474   unsigned Column = OS.tell() - Start;
475   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
476 }
477 
478 class PrettyPrinter {
479 public:
480   virtual ~PrettyPrinter() = default;
481   virtual void
482   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
483             object::SectionedAddress Address, formatted_raw_ostream &OS,
484             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
485             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
486             LiveVariablePrinter &LVP) {
487     if (SP && (PrintSource || PrintLines))
488       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
489     LVP.printBetweenInsts(OS, false);
490 
491     size_t Start = OS.tell();
492     if (LeadingAddr)
493       OS << format("%8" PRIx64 ":", Address.Address);
494     if (ShowRawInsn) {
495       OS << ' ';
496       dumpBytes(Bytes, OS);
497     }
498 
499     AlignToInstStartColumn(Start, STI, OS);
500 
501     if (MI) {
502       // See MCInstPrinter::printInst. On targets where a PC relative immediate
503       // is relative to the next instruction and the length of a MCInst is
504       // difficult to measure (x86), this is the address of the next
505       // instruction.
506       uint64_t Addr =
507           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
508       IP.printInst(MI, Addr, "", STI, OS);
509     } else
510       OS << "\t<unknown>";
511   }
512 };
513 PrettyPrinter PrettyPrinterInst;
514 
515 class HexagonPrettyPrinter : public PrettyPrinter {
516 public:
517   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
518                  formatted_raw_ostream &OS) {
519     uint32_t opcode =
520       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
521     if (LeadingAddr)
522       OS << format("%8" PRIx64 ":", Address);
523     if (ShowRawInsn) {
524       OS << "\t";
525       dumpBytes(Bytes.slice(0, 4), OS);
526       OS << format("\t%08" PRIx32, opcode);
527     }
528   }
529   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
530                  object::SectionedAddress Address, formatted_raw_ostream &OS,
531                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
532                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
533                  LiveVariablePrinter &LVP) override {
534     if (SP && (PrintSource || PrintLines))
535       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
536     if (!MI) {
537       printLead(Bytes, Address.Address, OS);
538       OS << " <unknown>";
539       return;
540     }
541     std::string Buffer;
542     {
543       raw_string_ostream TempStream(Buffer);
544       IP.printInst(MI, Address.Address, "", STI, TempStream);
545     }
546     StringRef Contents(Buffer);
547     // Split off bundle attributes
548     auto PacketBundle = Contents.rsplit('\n');
549     // Split off first instruction from the rest
550     auto HeadTail = PacketBundle.first.split('\n');
551     auto Preamble = " { ";
552     auto Separator = "";
553 
554     // Hexagon's packets require relocations to be inline rather than
555     // clustered at the end of the packet.
556     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
557     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
558     auto PrintReloc = [&]() -> void {
559       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
560         if (RelCur->getOffset() == Address.Address) {
561           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
562           return;
563         }
564         ++RelCur;
565       }
566     };
567 
568     while (!HeadTail.first.empty()) {
569       OS << Separator;
570       Separator = "\n";
571       if (SP && (PrintSource || PrintLines))
572         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
573       printLead(Bytes, Address.Address, OS);
574       OS << Preamble;
575       Preamble = "   ";
576       StringRef Inst;
577       auto Duplex = HeadTail.first.split('\v');
578       if (!Duplex.second.empty()) {
579         OS << Duplex.first;
580         OS << "; ";
581         Inst = Duplex.second;
582       }
583       else
584         Inst = HeadTail.first;
585       OS << Inst;
586       HeadTail = HeadTail.second.split('\n');
587       if (HeadTail.first.empty())
588         OS << " } " << PacketBundle.second;
589       PrintReloc();
590       Bytes = Bytes.slice(4);
591       Address.Address += 4;
592     }
593   }
594 };
595 HexagonPrettyPrinter HexagonPrettyPrinterInst;
596 
597 class AMDGCNPrettyPrinter : public PrettyPrinter {
598 public:
599   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
600                  object::SectionedAddress Address, formatted_raw_ostream &OS,
601                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
602                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
603                  LiveVariablePrinter &LVP) override {
604     if (SP && (PrintSource || PrintLines))
605       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
606 
607     if (MI) {
608       SmallString<40> InstStr;
609       raw_svector_ostream IS(InstStr);
610 
611       IP.printInst(MI, Address.Address, "", STI, IS);
612 
613       OS << left_justify(IS.str(), 60);
614     } else {
615       // an unrecognized encoding - this is probably data so represent it
616       // using the .long directive, or .byte directive if fewer than 4 bytes
617       // remaining
618       if (Bytes.size() >= 4) {
619         OS << format("\t.long 0x%08" PRIx32 " ",
620                      support::endian::read32<support::little>(Bytes.data()));
621         OS.indent(42);
622       } else {
623           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
624           for (unsigned int i = 1; i < Bytes.size(); i++)
625             OS << format(", 0x%02" PRIx8, Bytes[i]);
626           OS.indent(55 - (6 * Bytes.size()));
627       }
628     }
629 
630     OS << format("// %012" PRIX64 ":", Address.Address);
631     if (Bytes.size() >= 4) {
632       // D should be casted to uint32_t here as it is passed by format to
633       // snprintf as vararg.
634       for (uint32_t D : makeArrayRef(
635                reinterpret_cast<const support::little32_t *>(Bytes.data()),
636                Bytes.size() / 4))
637         OS << format(" %08" PRIX32, D);
638     } else {
639       for (unsigned char B : Bytes)
640         OS << format(" %02" PRIX8, B);
641     }
642 
643     if (!Annot.empty())
644       OS << " // " << Annot;
645   }
646 };
647 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
648 
649 class BPFPrettyPrinter : public PrettyPrinter {
650 public:
651   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
652                  object::SectionedAddress Address, formatted_raw_ostream &OS,
653                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
654                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
655                  LiveVariablePrinter &LVP) override {
656     if (SP && (PrintSource || PrintLines))
657       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
658     if (LeadingAddr)
659       OS << format("%8" PRId64 ":", Address.Address / 8);
660     if (ShowRawInsn) {
661       OS << "\t";
662       dumpBytes(Bytes, OS);
663     }
664     if (MI)
665       IP.printInst(MI, Address.Address, "", STI, OS);
666     else
667       OS << "\t<unknown>";
668   }
669 };
670 BPFPrettyPrinter BPFPrettyPrinterInst;
671 
672 class ARMPrettyPrinter : public PrettyPrinter {
673 public:
674   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
675                  object::SectionedAddress Address, formatted_raw_ostream &OS,
676                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
677                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
678                  LiveVariablePrinter &LVP) override {
679     if (SP && (PrintSource || PrintLines))
680       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
681     LVP.printBetweenInsts(OS, false);
682 
683     size_t Start = OS.tell();
684     if (LeadingAddr)
685       OS << format("%8" PRIx64 ":", Address.Address);
686     if (ShowRawInsn) {
687       size_t Pos = 0, End = Bytes.size();
688       if (STI.checkFeatures("+thumb-mode")) {
689         for (; Pos + 2 <= End; Pos += 2)
690           OS << ' '
691              << format_hex_no_prefix(
692                     llvm::support::endian::read<uint16_t>(
693                         Bytes.data() + Pos, InstructionEndianness),
694                     4);
695       } else {
696         for (; Pos + 4 <= End; Pos += 4)
697           OS << ' '
698              << format_hex_no_prefix(
699                     llvm::support::endian::read<uint32_t>(
700                         Bytes.data() + Pos, InstructionEndianness),
701                     8);
702       }
703       if (Pos < End) {
704         OS << ' ';
705         dumpBytes(Bytes.slice(Pos), OS);
706       }
707     }
708 
709     AlignToInstStartColumn(Start, STI, OS);
710 
711     if (MI) {
712       IP.printInst(MI, Address.Address, "", STI, OS);
713     } else
714       OS << "\t<unknown>";
715   }
716 
717   void setInstructionEndianness(llvm::support::endianness Endianness) {
718     InstructionEndianness = Endianness;
719   }
720 
721 private:
722   llvm::support::endianness InstructionEndianness = llvm::support::little;
723 };
724 ARMPrettyPrinter ARMPrettyPrinterInst;
725 
726 class AArch64PrettyPrinter : public PrettyPrinter {
727 public:
728   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
729                  object::SectionedAddress Address, formatted_raw_ostream &OS,
730                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
731                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
732                  LiveVariablePrinter &LVP) override {
733     if (SP && (PrintSource || PrintLines))
734       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
735     LVP.printBetweenInsts(OS, false);
736 
737     size_t Start = OS.tell();
738     if (LeadingAddr)
739       OS << format("%8" PRIx64 ":", Address.Address);
740     if (ShowRawInsn) {
741       size_t Pos = 0, End = Bytes.size();
742       for (; Pos + 4 <= End; Pos += 4)
743         OS << ' '
744            << format_hex_no_prefix(
745                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
746                                                         llvm::support::little),
747                   8);
748       if (Pos < End) {
749         OS << ' ';
750         dumpBytes(Bytes.slice(Pos), OS);
751       }
752     }
753 
754     AlignToInstStartColumn(Start, STI, OS);
755 
756     if (MI) {
757       IP.printInst(MI, Address.Address, "", STI, OS);
758     } else
759       OS << "\t<unknown>";
760   }
761 };
762 AArch64PrettyPrinter AArch64PrettyPrinterInst;
763 
764 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
765   switch(Triple.getArch()) {
766   default:
767     return PrettyPrinterInst;
768   case Triple::hexagon:
769     return HexagonPrettyPrinterInst;
770   case Triple::amdgcn:
771     return AMDGCNPrettyPrinterInst;
772   case Triple::bpfel:
773   case Triple::bpfeb:
774     return BPFPrettyPrinterInst;
775   case Triple::arm:
776   case Triple::armeb:
777   case Triple::thumb:
778   case Triple::thumbeb:
779     return ARMPrettyPrinterInst;
780   case Triple::aarch64:
781   case Triple::aarch64_be:
782   case Triple::aarch64_32:
783     return AArch64PrettyPrinterInst;
784   }
785 }
786 }
787 
788 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
789   assert(Obj.isELF());
790   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
791     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
792                          Obj.getFileName())
793         ->getType();
794   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
795     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
796                          Obj.getFileName())
797         ->getType();
798   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
799     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
800                          Obj.getFileName())
801         ->getType();
802   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
803     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
804                          Obj.getFileName())
805         ->getType();
806   llvm_unreachable("Unsupported binary format");
807 }
808 
809 template <class ELFT>
810 static void
811 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
812                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
813   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
814     uint8_t SymbolType = Symbol.getELFType();
815     if (SymbolType == ELF::STT_SECTION)
816       continue;
817 
818     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
819     // ELFSymbolRef::getAddress() returns size instead of value for common
820     // symbols which is not desirable for disassembly output. Overriding.
821     if (SymbolType == ELF::STT_COMMON)
822       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
823                               Obj.getFileName())
824                     ->st_value;
825 
826     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
827     if (Name.empty())
828       continue;
829 
830     section_iterator SecI =
831         unwrapOrError(Symbol.getSection(), Obj.getFileName());
832     if (SecI == Obj.section_end())
833       continue;
834 
835     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
836   }
837 }
838 
839 static void
840 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
841                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
842   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
843     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
844   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
845     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
846   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
847     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
848   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
849     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
850   else
851     llvm_unreachable("Unsupported binary format");
852 }
853 
854 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
855   for (auto SecI : Obj.sections()) {
856     const WasmSection &Section = Obj.getWasmSection(SecI);
857     if (Section.Type == wasm::WASM_SEC_CODE)
858       return SecI;
859   }
860   return None;
861 }
862 
863 static void
864 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
865                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
866   Optional<SectionRef> Section = getWasmCodeSection(Obj);
867   if (!Section)
868     return;
869   SectionSymbolsTy &Symbols = AllSymbols[*Section];
870 
871   std::set<uint64_t> SymbolAddresses;
872   for (const auto &Sym : Symbols)
873     SymbolAddresses.insert(Sym.Addr);
874 
875   for (const wasm::WasmFunction &Function : Obj.functions()) {
876     uint64_t Address = Function.CodeSectionOffset;
877     // Only add fallback symbols for functions not already present in the symbol
878     // table.
879     if (SymbolAddresses.count(Address))
880       continue;
881     // This function has no symbol, so it should have no SymbolName.
882     assert(Function.SymbolName.empty());
883     // We use DebugName for the name, though it may be empty if there is no
884     // "name" custom section, or that section is missing a name for this
885     // function.
886     StringRef Name = Function.DebugName;
887     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
888   }
889 }
890 
891 static void addPltEntries(const ObjectFile &Obj,
892                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
893                           StringSaver &Saver) {
894   Optional<SectionRef> Plt;
895   for (const SectionRef &Section : Obj.sections()) {
896     Expected<StringRef> SecNameOrErr = Section.getName();
897     if (!SecNameOrErr) {
898       consumeError(SecNameOrErr.takeError());
899       continue;
900     }
901     if (*SecNameOrErr == ".plt")
902       Plt = Section;
903   }
904   if (!Plt)
905     return;
906   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
907     for (auto PltEntry : ElfObj->getPltAddresses()) {
908       if (PltEntry.first) {
909         SymbolRef Symbol(*PltEntry.first, ElfObj);
910         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
911         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
912           if (!NameOrErr->empty())
913             AllSymbols[*Plt].emplace_back(
914                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
915                 SymbolType);
916           continue;
917         } else {
918           // The warning has been reported in disassembleObject().
919           consumeError(NameOrErr.takeError());
920         }
921       }
922       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
923                         " references an invalid symbol",
924                     Obj.getFileName());
925     }
926   }
927 }
928 
929 // Normally the disassembly output will skip blocks of zeroes. This function
930 // returns the number of zero bytes that can be skipped when dumping the
931 // disassembly of the instructions in Buf.
932 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
933   // Find the number of leading zeroes.
934   size_t N = 0;
935   while (N < Buf.size() && !Buf[N])
936     ++N;
937 
938   // We may want to skip blocks of zero bytes, but unless we see
939   // at least 8 of them in a row.
940   if (N < 8)
941     return 0;
942 
943   // We skip zeroes in multiples of 4 because do not want to truncate an
944   // instruction if it starts with a zero byte.
945   return N & ~0x3;
946 }
947 
948 // Returns a map from sections to their relocations.
949 static std::map<SectionRef, std::vector<RelocationRef>>
950 getRelocsMap(object::ObjectFile const &Obj) {
951   std::map<SectionRef, std::vector<RelocationRef>> Ret;
952   uint64_t I = (uint64_t)-1;
953   for (SectionRef Sec : Obj.sections()) {
954     ++I;
955     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
956     if (!RelocatedOrErr)
957       reportError(Obj.getFileName(),
958                   "section (" + Twine(I) +
959                       "): failed to get a relocated section: " +
960                       toString(RelocatedOrErr.takeError()));
961 
962     section_iterator Relocated = *RelocatedOrErr;
963     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
964       continue;
965     std::vector<RelocationRef> &V = Ret[*Relocated];
966     append_range(V, Sec.relocations());
967     // Sort relocations by address.
968     llvm::stable_sort(V, isRelocAddressLess);
969   }
970   return Ret;
971 }
972 
973 // Used for --adjust-vma to check if address should be adjusted by the
974 // specified value for a given section.
975 // For ELF we do not adjust non-allocatable sections like debug ones,
976 // because they are not loadable.
977 // TODO: implement for other file formats.
978 static bool shouldAdjustVA(const SectionRef &Section) {
979   const ObjectFile *Obj = Section.getObject();
980   if (Obj->isELF())
981     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
982   return false;
983 }
984 
985 
986 typedef std::pair<uint64_t, char> MappingSymbolPair;
987 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
988                                  uint64_t Address) {
989   auto It =
990       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
991         return Val.first <= Address;
992       });
993   // Return zero for any address before the first mapping symbol; this means
994   // we should use the default disassembly mode, depending on the target.
995   if (It == MappingSymbols.begin())
996     return '\x00';
997   return (It - 1)->second;
998 }
999 
1000 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1001                                uint64_t End, const ObjectFile &Obj,
1002                                ArrayRef<uint8_t> Bytes,
1003                                ArrayRef<MappingSymbolPair> MappingSymbols,
1004                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1005   support::endianness Endian =
1006       Obj.isLittleEndian() ? support::little : support::big;
1007   size_t Start = OS.tell();
1008   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1009   if (Index + 4 <= End) {
1010     dumpBytes(Bytes.slice(Index, 4), OS);
1011     AlignToInstStartColumn(Start, STI, OS);
1012     OS << "\t.word\t"
1013            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1014                          10);
1015     return 4;
1016   }
1017   if (Index + 2 <= End) {
1018     dumpBytes(Bytes.slice(Index, 2), OS);
1019     AlignToInstStartColumn(Start, STI, OS);
1020     OS << "\t.short\t"
1021        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1022     return 2;
1023   }
1024   dumpBytes(Bytes.slice(Index, 1), OS);
1025   AlignToInstStartColumn(Start, STI, OS);
1026   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1027   return 1;
1028 }
1029 
1030 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1031                         ArrayRef<uint8_t> Bytes) {
1032   // print out data up to 8 bytes at a time in hex and ascii
1033   uint8_t AsciiData[9] = {'\0'};
1034   uint8_t Byte;
1035   int NumBytes = 0;
1036 
1037   for (; Index < End; ++Index) {
1038     if (NumBytes == 0)
1039       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1040     Byte = Bytes.slice(Index)[0];
1041     outs() << format(" %02x", Byte);
1042     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1043 
1044     uint8_t IndentOffset = 0;
1045     NumBytes++;
1046     if (Index == End - 1 || NumBytes > 8) {
1047       // Indent the space for less than 8 bytes data.
1048       // 2 spaces for byte and one for space between bytes
1049       IndentOffset = 3 * (8 - NumBytes);
1050       for (int Excess = NumBytes; Excess < 8; Excess++)
1051         AsciiData[Excess] = '\0';
1052       NumBytes = 8;
1053     }
1054     if (NumBytes == 8) {
1055       AsciiData[8] = '\0';
1056       outs() << std::string(IndentOffset, ' ') << "         ";
1057       outs() << reinterpret_cast<char *>(AsciiData);
1058       outs() << '\n';
1059       NumBytes = 0;
1060     }
1061   }
1062 }
1063 
1064 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1065                                        const SymbolRef &Symbol) {
1066   const StringRef FileName = Obj.getFileName();
1067   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1068   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1069 
1070   if (Obj.isXCOFF() && SymbolDescription) {
1071     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1072     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1073 
1074     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1075     Optional<XCOFF::StorageMappingClass> Smc =
1076         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1077     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1078                         isLabel(XCOFFObj, Symbol));
1079   } else if (Obj.isXCOFF()) {
1080     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1081     return SymbolInfoTy(Addr, Name, SymType, true);
1082   } else
1083     return SymbolInfoTy(Addr, Name,
1084                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1085                                     : (uint8_t)ELF::STT_NOTYPE);
1086 }
1087 
1088 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1089                                           const uint64_t Addr, StringRef &Name,
1090                                           uint8_t Type) {
1091   if (Obj.isXCOFF() && SymbolDescription)
1092     return SymbolInfoTy(Addr, Name, None, None, false);
1093   else
1094     return SymbolInfoTy(Addr, Name, Type);
1095 }
1096 
1097 static void
1098 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1099                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1100                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1101   if (AddrToBBAddrMap.empty())
1102     return;
1103   Labels.clear();
1104   uint64_t StartAddress = SectionAddr + Start;
1105   uint64_t EndAddress = SectionAddr + End;
1106   auto Iter = AddrToBBAddrMap.find(StartAddress);
1107   if (Iter == AddrToBBAddrMap.end())
1108     return;
1109   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1110     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1111     if (BBAddress >= EndAddress)
1112       continue;
1113     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1114   }
1115 }
1116 
1117 static void collectLocalBranchTargets(
1118     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1119     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1120     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1121   // So far only supports PowerPC and X86.
1122   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1123     return;
1124 
1125   Labels.clear();
1126   unsigned LabelCount = 0;
1127   Start += SectionAddr;
1128   End += SectionAddr;
1129   uint64_t Index = Start;
1130   while (Index < End) {
1131     // Disassemble a real instruction and record function-local branch labels.
1132     MCInst Inst;
1133     uint64_t Size;
1134     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1135     bool Disassembled =
1136         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1137     if (Size == 0)
1138       Size = std::min<uint64_t>(ThisBytes.size(),
1139                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1140 
1141     if (Disassembled && MIA) {
1142       uint64_t Target;
1143       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1144       // On PowerPC, if the address of a branch is the same as the target, it
1145       // means that it's a function call. Do not mark the label for this case.
1146       if (TargetKnown && (Target >= Start && Target < End) &&
1147           !Labels.count(Target) &&
1148           !(STI->getTargetTriple().isPPC() && Target == Index))
1149         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1150     }
1151     Index += Size;
1152   }
1153 }
1154 
1155 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1156 // This is currently only used on AMDGPU, and assumes the format of the
1157 // void * argument passed to AMDGPU's createMCSymbolizer.
1158 static void addSymbolizer(
1159     MCContext &Ctx, const Target *Target, StringRef TripleName,
1160     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1161     SectionSymbolsTy &Symbols,
1162     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1163 
1164   std::unique_ptr<MCRelocationInfo> RelInfo(
1165       Target->createMCRelocationInfo(TripleName, Ctx));
1166   if (!RelInfo)
1167     return;
1168   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1169       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1170   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1171   DisAsm->setSymbolizer(std::move(Symbolizer));
1172 
1173   if (!SymbolizeOperands)
1174     return;
1175 
1176   // Synthesize labels referenced by branch instructions by
1177   // disassembling, discarding the output, and collecting the referenced
1178   // addresses from the symbolizer.
1179   for (size_t Index = 0; Index != Bytes.size();) {
1180     MCInst Inst;
1181     uint64_t Size;
1182     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1183     DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1184     if (Size == 0)
1185       Size = std::min<uint64_t>(ThisBytes.size(),
1186                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1187     Index += Size;
1188   }
1189   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1190   // Copy and sort to remove duplicates.
1191   std::vector<uint64_t> LabelAddrs;
1192   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1193                     LabelAddrsRef.end());
1194   llvm::sort(LabelAddrs);
1195   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1196                     LabelAddrs.begin());
1197   // Add the labels.
1198   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1199     auto Name = std::make_unique<std::string>();
1200     *Name = (Twine("L") + Twine(LabelNum)).str();
1201     SynthesizedLabelNames.push_back(std::move(Name));
1202     Symbols.push_back(SymbolInfoTy(
1203         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1204   }
1205   llvm::stable_sort(Symbols);
1206   // Recreate the symbolizer with the new symbols list.
1207   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1208   Symbolizer.reset(Target->createMCSymbolizer(
1209       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1210   DisAsm->setSymbolizer(std::move(Symbolizer));
1211 }
1212 
1213 static StringRef getSegmentName(const MachOObjectFile *MachO,
1214                                 const SectionRef &Section) {
1215   if (MachO) {
1216     DataRefImpl DR = Section.getRawDataRefImpl();
1217     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1218     return SegmentName;
1219   }
1220   return "";
1221 }
1222 
1223 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1224                                     const MCAsmInfo &MAI,
1225                                     const MCSubtargetInfo &STI,
1226                                     StringRef Comments,
1227                                     LiveVariablePrinter &LVP) {
1228   do {
1229     if (!Comments.empty()) {
1230       // Emit a line of comments.
1231       StringRef Comment;
1232       std::tie(Comment, Comments) = Comments.split('\n');
1233       // MAI.getCommentColumn() assumes that instructions are printed at the
1234       // position of 8, while getInstStartColumn() returns the actual position.
1235       unsigned CommentColumn =
1236           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1237       FOS.PadToColumn(CommentColumn);
1238       FOS << MAI.getCommentString() << ' ' << Comment;
1239     }
1240     LVP.printAfterInst(FOS);
1241     FOS << '\n';
1242   } while (!Comments.empty());
1243   FOS.flush();
1244 }
1245 
1246 static void createFakeELFSections(ObjectFile &Obj) {
1247   assert(Obj.isELF());
1248   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1249     Elf32LEObj->createFakeSections();
1250   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1251     Elf64LEObj->createFakeSections();
1252   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1253     Elf32BEObj->createFakeSections();
1254   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1255     Elf64BEObj->createFakeSections();
1256   else
1257     llvm_unreachable("Unsupported binary format");
1258 }
1259 
1260 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1261                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1262                               MCDisassembler *SecondaryDisAsm,
1263                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1264                               const MCSubtargetInfo *PrimarySTI,
1265                               const MCSubtargetInfo *SecondarySTI,
1266                               PrettyPrinter &PIP, SourcePrinter &SP,
1267                               bool InlineRelocs) {
1268   const MCSubtargetInfo *STI = PrimarySTI;
1269   MCDisassembler *DisAsm = PrimaryDisAsm;
1270   bool PrimaryIsThumb = false;
1271   if (isArmElf(Obj))
1272     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1273 
1274   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1275   if (InlineRelocs)
1276     RelocMap = getRelocsMap(Obj);
1277   bool Is64Bits = Obj.getBytesInAddress() > 4;
1278 
1279   // Create a mapping from virtual address to symbol name.  This is used to
1280   // pretty print the symbols while disassembling.
1281   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1282   SectionSymbolsTy AbsoluteSymbols;
1283   const StringRef FileName = Obj.getFileName();
1284   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1285   for (const SymbolRef &Symbol : Obj.symbols()) {
1286     Expected<StringRef> NameOrErr = Symbol.getName();
1287     if (!NameOrErr) {
1288       reportWarning(toString(NameOrErr.takeError()), FileName);
1289       continue;
1290     }
1291     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1292       continue;
1293 
1294     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1295       continue;
1296 
1297     if (MachO) {
1298       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1299       // symbols that support MachO header introspection. They do not bind to
1300       // code locations and are irrelevant for disassembly.
1301       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1302         continue;
1303       // Don't ask a Mach-O STAB symbol for its section unless you know that
1304       // STAB symbol's section field refers to a valid section index. Otherwise
1305       // the symbol may error trying to load a section that does not exist.
1306       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1307       uint8_t NType = (MachO->is64Bit() ?
1308                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1309                        MachO->getSymbolTableEntry(SymDRI).n_type);
1310       if (NType & MachO::N_STAB)
1311         continue;
1312     }
1313 
1314     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1315     if (SecI != Obj.section_end())
1316       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1317     else
1318       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1319   }
1320 
1321   if (AllSymbols.empty() && Obj.isELF())
1322     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1323 
1324   if (Obj.isWasm())
1325     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1326 
1327   if (Obj.isELF() && Obj.sections().empty())
1328     createFakeELFSections(Obj);
1329 
1330   BumpPtrAllocator A;
1331   StringSaver Saver(A);
1332   addPltEntries(Obj, AllSymbols, Saver);
1333 
1334   // Create a mapping from virtual address to section. An empty section can
1335   // cause more than one section at the same address. Sort such sections to be
1336   // before same-addressed non-empty sections so that symbol lookups prefer the
1337   // non-empty section.
1338   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1339   for (SectionRef Sec : Obj.sections())
1340     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1341   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1342     if (LHS.first != RHS.first)
1343       return LHS.first < RHS.first;
1344     return LHS.second.getSize() < RHS.second.getSize();
1345   });
1346 
1347   // Linked executables (.exe and .dll files) typically don't include a real
1348   // symbol table but they might contain an export table.
1349   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1350     for (const auto &ExportEntry : COFFObj->export_directories()) {
1351       StringRef Name;
1352       if (Error E = ExportEntry.getSymbolName(Name))
1353         reportError(std::move(E), Obj.getFileName());
1354       if (Name.empty())
1355         continue;
1356 
1357       uint32_t RVA;
1358       if (Error E = ExportEntry.getExportRVA(RVA))
1359         reportError(std::move(E), Obj.getFileName());
1360 
1361       uint64_t VA = COFFObj->getImageBase() + RVA;
1362       auto Sec = partition_point(
1363           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1364             return O.first <= VA;
1365           });
1366       if (Sec != SectionAddresses.begin()) {
1367         --Sec;
1368         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1369       } else
1370         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1371     }
1372   }
1373 
1374   // Sort all the symbols, this allows us to use a simple binary search to find
1375   // Multiple symbols can have the same address. Use a stable sort to stabilize
1376   // the output.
1377   StringSet<> FoundDisasmSymbolSet;
1378   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1379     llvm::stable_sort(SecSyms.second);
1380   llvm::stable_sort(AbsoluteSymbols);
1381 
1382   std::unique_ptr<DWARFContext> DICtx;
1383   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1384 
1385   if (DbgVariables != DVDisabled) {
1386     DICtx = DWARFContext::create(Obj);
1387     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1388       LVP.addCompileUnit(CU->getUnitDIE(false));
1389   }
1390 
1391   LLVM_DEBUG(LVP.dump());
1392 
1393   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1394   auto ReadBBAddrMap = [&](Optional<unsigned> SectionIndex = None) {
1395     AddrToBBAddrMap.clear();
1396     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1397       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1398       if (!BBAddrMapsOrErr)
1399           reportWarning(toString(BBAddrMapsOrErr.takeError()),
1400                         Obj.getFileName());
1401       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1402         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1403                                 std::move(FunctionBBAddrMap));
1404     }
1405   };
1406 
1407   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1408   // single mapping, since they don't have any conflicts.
1409   if (SymbolizeOperands && !Obj.isRelocatableObject())
1410     ReadBBAddrMap();
1411 
1412   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1413     if (FilterSections.empty() && !DisassembleAll &&
1414         (!Section.isText() || Section.isVirtual()))
1415       continue;
1416 
1417     uint64_t SectionAddr = Section.getAddress();
1418     uint64_t SectSize = Section.getSize();
1419     if (!SectSize)
1420       continue;
1421 
1422     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1423     // corresponding to this section, if present.
1424     if (SymbolizeOperands && Obj.isRelocatableObject())
1425       ReadBBAddrMap(Section.getIndex());
1426 
1427     // Get the list of all the symbols in this section.
1428     SectionSymbolsTy &Symbols = AllSymbols[Section];
1429     std::vector<MappingSymbolPair> MappingSymbols;
1430     if (hasMappingSymbols(Obj)) {
1431       for (const auto &Symb : Symbols) {
1432         uint64_t Address = Symb.Addr;
1433         StringRef Name = Symb.Name;
1434         if (Name.startswith("$d"))
1435           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1436         if (Name.startswith("$x"))
1437           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1438         if (Name.startswith("$a"))
1439           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1440         if (Name.startswith("$t"))
1441           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1442       }
1443     }
1444 
1445     llvm::sort(MappingSymbols);
1446 
1447     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1448         unwrapOrError(Section.getContents(), Obj.getFileName()));
1449 
1450     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1451     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1452       // AMDGPU disassembler uses symbolizer for printing labels
1453       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1454                     Symbols, SynthesizedLabelNames);
1455     }
1456 
1457     StringRef SegmentName = getSegmentName(MachO, Section);
1458     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1459     // If the section has no symbol at the start, just insert a dummy one.
1460     if (Symbols.empty() || Symbols[0].Addr != 0) {
1461       Symbols.insert(Symbols.begin(),
1462                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1463                                            Section.isText() ? ELF::STT_FUNC
1464                                                             : ELF::STT_OBJECT));
1465     }
1466 
1467     SmallString<40> Comments;
1468     raw_svector_ostream CommentStream(Comments);
1469 
1470     uint64_t VMAAdjustment = 0;
1471     if (shouldAdjustVA(Section))
1472       VMAAdjustment = AdjustVMA;
1473 
1474     // In executable and shared objects, r_offset holds a virtual address.
1475     // Subtract SectionAddr from the r_offset field of a relocation to get
1476     // the section offset.
1477     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1478     uint64_t Size;
1479     uint64_t Index;
1480     bool PrintedSection = false;
1481     std::vector<RelocationRef> Rels = RelocMap[Section];
1482     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1483     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1484     // Disassemble symbol by symbol.
1485     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1486       std::string SymbolName = Symbols[SI].Name.str();
1487       if (Demangle)
1488         SymbolName = demangle(SymbolName);
1489 
1490       // Skip if --disassemble-symbols is not empty and the symbol is not in
1491       // the list.
1492       if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
1493         continue;
1494 
1495       uint64_t Start = Symbols[SI].Addr;
1496       if (Start < SectionAddr || StopAddress <= Start)
1497         continue;
1498       else
1499         FoundDisasmSymbolSet.insert(SymbolName);
1500 
1501       // The end is the section end, the beginning of the next symbol, or
1502       // --stop-address.
1503       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1504       if (SI + 1 < SE)
1505         End = std::min(End, Symbols[SI + 1].Addr);
1506       if (Start >= End || End <= StartAddress)
1507         continue;
1508       Start -= SectionAddr;
1509       End -= SectionAddr;
1510 
1511       if (!PrintedSection) {
1512         PrintedSection = true;
1513         outs() << "\nDisassembly of section ";
1514         if (!SegmentName.empty())
1515           outs() << SegmentName << ",";
1516         outs() << SectionName << ":\n";
1517       }
1518 
1519       outs() << '\n';
1520       if (LeadingAddr)
1521         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1522                          SectionAddr + Start + VMAAdjustment);
1523       if (Obj.isXCOFF() && SymbolDescription) {
1524         outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
1525       } else
1526         outs() << '<' << SymbolName << ">:\n";
1527 
1528       // Don't print raw contents of a virtual section. A virtual section
1529       // doesn't have any contents in the file.
1530       if (Section.isVirtual()) {
1531         outs() << "...\n";
1532         continue;
1533       }
1534 
1535       auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
1536                                           Bytes.slice(Start, End - Start),
1537                                           SectionAddr + Start, CommentStream);
1538       // To have round trippable disassembly, we fall back to decoding the
1539       // remaining bytes as instructions.
1540       //
1541       // If there is a failure, we disassemble the failed region as bytes before
1542       // falling back. The target is expected to print nothing in this case.
1543       //
1544       // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
1545       // Size bytes before falling back.
1546       // So if the entire symbol is 'eaten' by the target:
1547       //   Start += Size  // Now Start = End and we will never decode as
1548       //                  // instructions
1549       //
1550       // Right now, most targets return None i.e ignore to treat a symbol
1551       // separately. But WebAssembly decodes preludes for some symbols.
1552       //
1553       if (Status) {
1554         if (Status.value() == MCDisassembler::Fail) {
1555           outs() << "// Error in decoding " << SymbolName
1556                  << " : Decoding failed region as bytes.\n";
1557           for (uint64_t I = 0; I < Size; ++I) {
1558             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1559                    << "\n";
1560           }
1561         }
1562       } else {
1563         Size = 0;
1564       }
1565 
1566       Start += Size;
1567 
1568       Index = Start;
1569       if (SectionAddr < StartAddress)
1570         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1571 
1572       // If there is a data/common symbol inside an ELF text section and we are
1573       // only disassembling text (applicable all architectures), we are in a
1574       // situation where we must print the data and not disassemble it.
1575       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1576         uint8_t SymTy = Symbols[SI].Type;
1577         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1578           dumpELFData(SectionAddr, Index, End, Bytes);
1579           Index = End;
1580         }
1581       }
1582 
1583       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1584                              Symbols[SI].Type != ELF::STT_OBJECT &&
1585                              !DisassembleAll;
1586       bool DumpARMELFData = false;
1587       formatted_raw_ostream FOS(outs());
1588 
1589       std::unordered_map<uint64_t, std::string> AllLabels;
1590       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1591       if (SymbolizeOperands) {
1592         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1593                                   SectionAddr, Index, End, AllLabels);
1594         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1595                                BBAddrMapLabels);
1596       }
1597 
1598       while (Index < End) {
1599         // ARM and AArch64 ELF binaries can interleave data and text in the
1600         // same section. We rely on the markers introduced to understand what
1601         // we need to dump. If the data marker is within a function, it is
1602         // denoted as a word/short etc.
1603         if (CheckARMELFData) {
1604           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1605           DumpARMELFData = Kind == 'd';
1606           if (SecondarySTI) {
1607             if (Kind == 'a') {
1608               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1609               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1610             } else if (Kind == 't') {
1611               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1612               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1613             }
1614           }
1615         }
1616 
1617         if (DumpARMELFData) {
1618           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1619                                 MappingSymbols, *STI, FOS);
1620         } else {
1621           // When -z or --disassemble-zeroes are given we always dissasemble
1622           // them. Otherwise we might want to skip zero bytes we see.
1623           if (!DisassembleZeroes) {
1624             uint64_t MaxOffset = End - Index;
1625             // For --reloc: print zero blocks patched by relocations, so that
1626             // relocations can be shown in the dump.
1627             if (RelCur != RelEnd)
1628               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1629                                    MaxOffset);
1630 
1631             if (size_t N =
1632                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1633               FOS << "\t\t..." << '\n';
1634               Index += N;
1635               continue;
1636             }
1637           }
1638 
1639           // Print local label if there's any.
1640           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1641           if (Iter1 != BBAddrMapLabels.end()) {
1642             for (StringRef Label : Iter1->second)
1643               FOS << "<" << Label << ">:\n";
1644           } else {
1645             auto Iter2 = AllLabels.find(SectionAddr + Index);
1646             if (Iter2 != AllLabels.end())
1647               FOS << "<" << Iter2->second << ">:\n";
1648           }
1649 
1650           // Disassemble a real instruction or a data when disassemble all is
1651           // provided
1652           MCInst Inst;
1653           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1654           uint64_t ThisAddr = SectionAddr + Index;
1655           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1656                                                      ThisAddr, CommentStream);
1657           if (Size == 0)
1658             Size = std::min<uint64_t>(
1659                 ThisBytes.size(),
1660                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1661 
1662           LVP.update({Index, Section.getIndex()},
1663                      {Index + Size, Section.getIndex()}, Index + Size != End);
1664 
1665           IP->setCommentStream(CommentStream);
1666 
1667           PIP.printInst(
1668               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1669               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1670               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1671 
1672           IP->setCommentStream(llvm::nulls());
1673 
1674           // If disassembly has failed, avoid analysing invalid/incomplete
1675           // instruction information. Otherwise, try to resolve the target
1676           // address (jump target or memory operand address) and print it on the
1677           // right of the instruction.
1678           if (Disassembled && MIA) {
1679             // Branch targets are printed just after the instructions.
1680             llvm::raw_ostream *TargetOS = &FOS;
1681             uint64_t Target;
1682             bool PrintTarget =
1683                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1684             if (!PrintTarget)
1685               if (Optional<uint64_t> MaybeTarget =
1686                       MIA->evaluateMemoryOperandAddress(
1687                           Inst, STI, SectionAddr + Index, Size)) {
1688                 Target = *MaybeTarget;
1689                 PrintTarget = true;
1690                 // Do not print real address when symbolizing.
1691                 if (!SymbolizeOperands) {
1692                   // Memory operand addresses are printed as comments.
1693                   TargetOS = &CommentStream;
1694                   *TargetOS << "0x" << Twine::utohexstr(Target);
1695                 }
1696               }
1697             if (PrintTarget) {
1698               // In a relocatable object, the target's section must reside in
1699               // the same section as the call instruction or it is accessed
1700               // through a relocation.
1701               //
1702               // In a non-relocatable object, the target may be in any section.
1703               // In that case, locate the section(s) containing the target
1704               // address and find the symbol in one of those, if possible.
1705               //
1706               // N.B. We don't walk the relocations in the relocatable case yet.
1707               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1708               if (!Obj.isRelocatableObject()) {
1709                 auto It = llvm::partition_point(
1710                     SectionAddresses,
1711                     [=](const std::pair<uint64_t, SectionRef> &O) {
1712                       return O.first <= Target;
1713                     });
1714                 uint64_t TargetSecAddr = 0;
1715                 while (It != SectionAddresses.begin()) {
1716                   --It;
1717                   if (TargetSecAddr == 0)
1718                     TargetSecAddr = It->first;
1719                   if (It->first != TargetSecAddr)
1720                     break;
1721                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1722                 }
1723               } else {
1724                 TargetSectionSymbols.push_back(&Symbols);
1725               }
1726               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1727 
1728               // Find the last symbol in the first candidate section whose
1729               // offset is less than or equal to the target. If there are no
1730               // such symbols, try in the next section and so on, before finally
1731               // using the nearest preceding absolute symbol (if any), if there
1732               // are no other valid symbols.
1733               const SymbolInfoTy *TargetSym = nullptr;
1734               for (const SectionSymbolsTy *TargetSymbols :
1735                    TargetSectionSymbols) {
1736                 auto It = llvm::partition_point(
1737                     *TargetSymbols,
1738                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1739                 if (It != TargetSymbols->begin()) {
1740                   TargetSym = &*(It - 1);
1741                   break;
1742                 }
1743               }
1744 
1745               // Print the labels corresponding to the target if there's any.
1746               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1747               bool LabelAvailable = AllLabels.count(Target);
1748               if (TargetSym != nullptr) {
1749                 uint64_t TargetAddress = TargetSym->Addr;
1750                 uint64_t Disp = Target - TargetAddress;
1751                 std::string TargetName = TargetSym->Name.str();
1752                 if (Demangle)
1753                   TargetName = demangle(TargetName);
1754 
1755                 *TargetOS << " <";
1756                 if (!Disp) {
1757                   // Always Print the binary symbol precisely corresponding to
1758                   // the target address.
1759                   *TargetOS << TargetName;
1760                 } else if (BBAddrMapLabelAvailable) {
1761                   *TargetOS << BBAddrMapLabels[Target].front();
1762                 } else if (LabelAvailable) {
1763                   *TargetOS << AllLabels[Target];
1764                 } else {
1765                   // Always Print the binary symbol plus an offset if there's no
1766                   // local label corresponding to the target address.
1767                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1768                 }
1769                 *TargetOS << ">";
1770               } else if (BBAddrMapLabelAvailable) {
1771                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1772               } else if (LabelAvailable) {
1773                 *TargetOS << " <" << AllLabels[Target] << ">";
1774               }
1775               // By convention, each record in the comment stream should be
1776               // terminated.
1777               if (TargetOS == &CommentStream)
1778                 *TargetOS << "\n";
1779             }
1780           }
1781         }
1782 
1783         assert(Ctx.getAsmInfo());
1784         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1785                                 CommentStream.str(), LVP);
1786         Comments.clear();
1787 
1788         // Hexagon does this in pretty printer
1789         if (Obj.getArch() != Triple::hexagon) {
1790           // Print relocation for instruction and data.
1791           while (RelCur != RelEnd) {
1792             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1793             // If this relocation is hidden, skip it.
1794             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1795               ++RelCur;
1796               continue;
1797             }
1798 
1799             // Stop when RelCur's offset is past the disassembled
1800             // instruction/data. Note that it's possible the disassembled data
1801             // is not the complete data: we might see the relocation printed in
1802             // the middle of the data, but this matches the binutils objdump
1803             // output.
1804             if (Offset >= Index + Size)
1805               break;
1806 
1807             // When --adjust-vma is used, update the address printed.
1808             if (RelCur->getSymbol() != Obj.symbol_end()) {
1809               Expected<section_iterator> SymSI =
1810                   RelCur->getSymbol()->getSection();
1811               if (SymSI && *SymSI != Obj.section_end() &&
1812                   shouldAdjustVA(**SymSI))
1813                 Offset += AdjustVMA;
1814             }
1815 
1816             printRelocation(FOS, Obj.getFileName(), *RelCur,
1817                             SectionAddr + Offset, Is64Bits);
1818             LVP.printAfterOtherLine(FOS, true);
1819             ++RelCur;
1820           }
1821         }
1822 
1823         Index += Size;
1824       }
1825     }
1826   }
1827   StringSet<> MissingDisasmSymbolSet =
1828       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1829   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1830     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1831 }
1832 
1833 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1834   const Target *TheTarget = getTarget(Obj);
1835 
1836   // Package up features to be passed to target/subtarget
1837   SubtargetFeatures Features = Obj->getFeatures();
1838   if (!MAttrs.empty()) {
1839     for (unsigned I = 0; I != MAttrs.size(); ++I)
1840       Features.AddFeature(MAttrs[I]);
1841   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
1842     Features.AddFeature("+all");
1843   }
1844 
1845   std::unique_ptr<const MCRegisterInfo> MRI(
1846       TheTarget->createMCRegInfo(TripleName));
1847   if (!MRI)
1848     reportError(Obj->getFileName(),
1849                 "no register info for target " + TripleName);
1850 
1851   // Set up disassembler.
1852   MCTargetOptions MCOptions;
1853   std::unique_ptr<const MCAsmInfo> AsmInfo(
1854       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
1855   if (!AsmInfo)
1856     reportError(Obj->getFileName(),
1857                 "no assembly info for target " + TripleName);
1858 
1859   if (MCPU.empty())
1860     MCPU = Obj->tryGetCPUName().value_or("").str();
1861 
1862   if (isArmElf(*Obj)) {
1863     // When disassembling big-endian Arm ELF, the instruction endianness is
1864     // determined in a complex way. In relocatable objects, AAELF32 mandates
1865     // that instruction endianness matches the ELF file endianness; in
1866     // executable images, that's true unless the file header has the EF_ARM_BE8
1867     // flag, in which case instructions are little-endian regardless of data
1868     // endianness.
1869     //
1870     // We must set the big-endian-instructions SubtargetFeature to make the
1871     // disassembler read the instructions the right way round, and also tell
1872     // our own prettyprinter to retrieve the encodings the same way to print in
1873     // hex.
1874     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
1875 
1876     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
1877                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
1878       Features.AddFeature("+big-endian-instructions");
1879       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
1880     } else {
1881       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
1882     }
1883   }
1884 
1885   std::unique_ptr<const MCSubtargetInfo> STI(
1886       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1887   if (!STI)
1888     reportError(Obj->getFileName(),
1889                 "no subtarget info for target " + TripleName);
1890   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1891   if (!MII)
1892     reportError(Obj->getFileName(),
1893                 "no instruction info for target " + TripleName);
1894   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
1895   // FIXME: for now initialize MCObjectFileInfo with default values
1896   std::unique_ptr<MCObjectFileInfo> MOFI(
1897       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
1898   Ctx.setObjectFileInfo(MOFI.get());
1899 
1900   std::unique_ptr<MCDisassembler> DisAsm(
1901       TheTarget->createMCDisassembler(*STI, Ctx));
1902   if (!DisAsm)
1903     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
1904 
1905   // If we have an ARM object file, we need a second disassembler, because
1906   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1907   // We use mapping symbols to switch between the two assemblers, where
1908   // appropriate.
1909   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1910   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1911   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
1912     if (STI->checkFeatures("+thumb-mode"))
1913       Features.AddFeature("-thumb-mode");
1914     else
1915       Features.AddFeature("+thumb-mode");
1916     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1917                                                         Features.getString()));
1918     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1919   }
1920 
1921   std::unique_ptr<const MCInstrAnalysis> MIA(
1922       TheTarget->createMCInstrAnalysis(MII.get()));
1923 
1924   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1925   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1926       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1927   if (!IP)
1928     reportError(Obj->getFileName(),
1929                 "no instruction printer for target " + TripleName);
1930   IP->setPrintImmHex(PrintImmHex);
1931   IP->setPrintBranchImmAsAddress(true);
1932   IP->setSymbolizeOperands(SymbolizeOperands);
1933   IP->setMCInstrAnalysis(MIA.get());
1934 
1935   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1936   SourcePrinter SP(Obj, TheTarget->getName());
1937 
1938   for (StringRef Opt : DisassemblerOptions)
1939     if (!IP->applyTargetSpecificCLOption(Opt))
1940       reportError(Obj->getFileName(),
1941                   "Unrecognized disassembler option: " + Opt);
1942 
1943   disassembleObject(TheTarget, *Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1944                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, SP,
1945                     InlineRelocs);
1946 }
1947 
1948 void objdump::printRelocations(const ObjectFile *Obj) {
1949   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1950                                                  "%08" PRIx64;
1951 
1952   // Build a mapping from relocation target to a vector of relocation
1953   // sections. Usually, there is an only one relocation section for
1954   // each relocated section.
1955   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1956   uint64_t Ndx;
1957   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
1958     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
1959       continue;
1960     if (Section.relocation_begin() == Section.relocation_end())
1961       continue;
1962     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
1963     if (!SecOrErr)
1964       reportError(Obj->getFileName(),
1965                   "section (" + Twine(Ndx) +
1966                       "): unable to get a relocation target: " +
1967                       toString(SecOrErr.takeError()));
1968     SecToRelSec[**SecOrErr].push_back(Section);
1969   }
1970 
1971   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1972     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
1973     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
1974     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
1975     uint32_t TypePadding = 24;
1976     outs() << left_justify("OFFSET", OffsetPadding) << " "
1977            << left_justify("TYPE", TypePadding) << " "
1978            << "VALUE\n";
1979 
1980     for (SectionRef Section : P.second) {
1981       for (const RelocationRef &Reloc : Section.relocations()) {
1982         uint64_t Address = Reloc.getOffset();
1983         SmallString<32> RelocName;
1984         SmallString<32> ValueStr;
1985         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1986           continue;
1987         Reloc.getTypeName(RelocName);
1988         if (Error E = getRelocationValueString(Reloc, ValueStr))
1989           reportError(std::move(E), Obj->getFileName());
1990 
1991         outs() << format(Fmt.data(), Address) << " "
1992                << left_justify(RelocName, TypePadding) << " " << ValueStr
1993                << "\n";
1994       }
1995     }
1996   }
1997 }
1998 
1999 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2000   // For the moment, this option is for ELF only
2001   if (!Obj->isELF())
2002     return;
2003 
2004   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2005   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2006         return Sec.getType() == ELF::SHT_DYNAMIC;
2007       })) {
2008     reportError(Obj->getFileName(), "not a dynamic object");
2009     return;
2010   }
2011 
2012   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2013   if (DynRelSec.empty())
2014     return;
2015 
2016   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2017   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2018   const uint32_t TypePadding = 24;
2019   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2020          << left_justify("TYPE", TypePadding) << " VALUE\n";
2021 
2022   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2023   for (const SectionRef &Section : DynRelSec)
2024     for (const RelocationRef &Reloc : Section.relocations()) {
2025       uint64_t Address = Reloc.getOffset();
2026       SmallString<32> RelocName;
2027       SmallString<32> ValueStr;
2028       Reloc.getTypeName(RelocName);
2029       if (Error E = getRelocationValueString(Reloc, ValueStr))
2030         reportError(std::move(E), Obj->getFileName());
2031       outs() << format(Fmt.data(), Address) << ' '
2032              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2033     }
2034 }
2035 
2036 // Returns true if we need to show LMA column when dumping section headers. We
2037 // show it only when the platform is ELF and either we have at least one section
2038 // whose VMA and LMA are different and/or when --show-lma flag is used.
2039 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2040   if (!Obj.isELF())
2041     return false;
2042   for (const SectionRef &S : ToolSectionFilter(Obj))
2043     if (S.getAddress() != getELFSectionLMA(S))
2044       return true;
2045   return ShowLMA;
2046 }
2047 
2048 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2049   // Default column width for names is 13 even if no names are that long.
2050   size_t MaxWidth = 13;
2051   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2052     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2053     MaxWidth = std::max(MaxWidth, Name.size());
2054   }
2055   return MaxWidth;
2056 }
2057 
2058 void objdump::printSectionHeaders(ObjectFile &Obj) {
2059   size_t NameWidth = getMaxSectionNameWidth(Obj);
2060   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2061   bool HasLMAColumn = shouldDisplayLMA(Obj);
2062   outs() << "\nSections:\n";
2063   if (HasLMAColumn)
2064     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2065            << left_justify("VMA", AddressWidth) << " "
2066            << left_justify("LMA", AddressWidth) << " Type\n";
2067   else
2068     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2069            << left_justify("VMA", AddressWidth) << " Type\n";
2070 
2071   if (Obj.isELF() && Obj.sections().empty())
2072     createFakeELFSections(Obj);
2073 
2074   uint64_t Idx;
2075   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2076     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2077     uint64_t VMA = Section.getAddress();
2078     if (shouldAdjustVA(Section))
2079       VMA += AdjustVMA;
2080 
2081     uint64_t Size = Section.getSize();
2082 
2083     std::string Type = Section.isText() ? "TEXT" : "";
2084     if (Section.isData())
2085       Type += Type.empty() ? "DATA" : ", DATA";
2086     if (Section.isBSS())
2087       Type += Type.empty() ? "BSS" : ", BSS";
2088     if (Section.isDebugSection())
2089       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2090 
2091     if (HasLMAColumn)
2092       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2093                        Name.str().c_str(), Size)
2094              << format_hex_no_prefix(VMA, AddressWidth) << " "
2095              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2096              << " " << Type << "\n";
2097     else
2098       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2099                        Name.str().c_str(), Size)
2100              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2101   }
2102 }
2103 
2104 void objdump::printSectionContents(const ObjectFile *Obj) {
2105   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2106 
2107   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2108     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2109     uint64_t BaseAddr = Section.getAddress();
2110     uint64_t Size = Section.getSize();
2111     if (!Size)
2112       continue;
2113 
2114     outs() << "Contents of section ";
2115     StringRef SegmentName = getSegmentName(MachO, Section);
2116     if (!SegmentName.empty())
2117       outs() << SegmentName << ",";
2118     outs() << Name << ":\n";
2119     if (Section.isBSS()) {
2120       outs() << format("<skipping contents of bss section at [%04" PRIx64
2121                        ", %04" PRIx64 ")>\n",
2122                        BaseAddr, BaseAddr + Size);
2123       continue;
2124     }
2125 
2126     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2127 
2128     // Dump out the content as hex and printable ascii characters.
2129     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2130       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2131       // Dump line of hex.
2132       for (std::size_t I = 0; I < 16; ++I) {
2133         if (I != 0 && I % 4 == 0)
2134           outs() << ' ';
2135         if (Addr + I < End)
2136           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2137                  << hexdigit(Contents[Addr + I] & 0xF, true);
2138         else
2139           outs() << "  ";
2140       }
2141       // Print ascii.
2142       outs() << "  ";
2143       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2144         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2145           outs() << Contents[Addr + I];
2146         else
2147           outs() << ".";
2148       }
2149       outs() << "\n";
2150     }
2151   }
2152 }
2153 
2154 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2155                                StringRef ArchitectureName, bool DumpDynamic) {
2156   if (O.isCOFF() && !DumpDynamic) {
2157     outs() << "\nSYMBOL TABLE:\n";
2158     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2159     return;
2160   }
2161 
2162   const StringRef FileName = O.getFileName();
2163 
2164   if (!DumpDynamic) {
2165     outs() << "\nSYMBOL TABLE:\n";
2166     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2167       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2168                   DumpDynamic);
2169     return;
2170   }
2171 
2172   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2173   if (!O.isELF()) {
2174     reportWarning(
2175         "this operation is not currently supported for this file format",
2176         FileName);
2177     return;
2178   }
2179 
2180   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2181   auto Symbols = ELF->getDynamicSymbolIterators();
2182   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2183       ELF->readDynsymVersions();
2184   if (!SymbolVersionsOrErr) {
2185     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2186     SymbolVersionsOrErr = std::vector<VersionEntry>();
2187     (void)!SymbolVersionsOrErr;
2188   }
2189   for (auto &Sym : Symbols)
2190     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2191                 ArchitectureName, DumpDynamic);
2192 }
2193 
2194 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2195                           ArrayRef<VersionEntry> SymbolVersions,
2196                           StringRef FileName, StringRef ArchiveName,
2197                           StringRef ArchitectureName, bool DumpDynamic) {
2198   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2199   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2200                                    ArchitectureName);
2201   if ((Address < StartAddress) || (Address > StopAddress))
2202     return;
2203   SymbolRef::Type Type =
2204       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2205   uint32_t Flags =
2206       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2207 
2208   // Don't ask a Mach-O STAB symbol for its section unless you know that
2209   // STAB symbol's section field refers to a valid section index. Otherwise
2210   // the symbol may error trying to load a section that does not exist.
2211   bool IsSTAB = false;
2212   if (MachO) {
2213     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2214     uint8_t NType =
2215         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2216                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2217     if (NType & MachO::N_STAB)
2218       IsSTAB = true;
2219   }
2220   section_iterator Section = IsSTAB
2221                                  ? O.section_end()
2222                                  : unwrapOrError(Symbol.getSection(), FileName,
2223                                                  ArchiveName, ArchitectureName);
2224 
2225   StringRef Name;
2226   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2227     if (Expected<StringRef> NameOrErr = Section->getName())
2228       Name = *NameOrErr;
2229     else
2230       consumeError(NameOrErr.takeError());
2231 
2232   } else {
2233     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2234                          ArchitectureName);
2235   }
2236 
2237   bool Global = Flags & SymbolRef::SF_Global;
2238   bool Weak = Flags & SymbolRef::SF_Weak;
2239   bool Absolute = Flags & SymbolRef::SF_Absolute;
2240   bool Common = Flags & SymbolRef::SF_Common;
2241   bool Hidden = Flags & SymbolRef::SF_Hidden;
2242 
2243   char GlobLoc = ' ';
2244   if ((Section != O.section_end() || Absolute) && !Weak)
2245     GlobLoc = Global ? 'g' : 'l';
2246   char IFunc = ' ';
2247   if (O.isELF()) {
2248     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2249       IFunc = 'i';
2250     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2251       GlobLoc = 'u';
2252   }
2253 
2254   char Debug = ' ';
2255   if (DumpDynamic)
2256     Debug = 'D';
2257   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2258     Debug = 'd';
2259 
2260   char FileFunc = ' ';
2261   if (Type == SymbolRef::ST_File)
2262     FileFunc = 'f';
2263   else if (Type == SymbolRef::ST_Function)
2264     FileFunc = 'F';
2265   else if (Type == SymbolRef::ST_Data)
2266     FileFunc = 'O';
2267 
2268   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2269 
2270   outs() << format(Fmt, Address) << " "
2271          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2272          << (Weak ? 'w' : ' ') // Weak?
2273          << ' '                // Constructor. Not supported yet.
2274          << ' '                // Warning. Not supported yet.
2275          << IFunc              // Indirect reference to another symbol.
2276          << Debug              // Debugging (d) or dynamic (D) symbol.
2277          << FileFunc           // Name of function (F), file (f) or object (O).
2278          << ' ';
2279   if (Absolute) {
2280     outs() << "*ABS*";
2281   } else if (Common) {
2282     outs() << "*COM*";
2283   } else if (Section == O.section_end()) {
2284     if (O.isXCOFF()) {
2285       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2286           Symbol.getRawDataRefImpl());
2287       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2288         outs() << "*DEBUG*";
2289       else
2290         outs() << "*UND*";
2291     } else
2292       outs() << "*UND*";
2293   } else {
2294     StringRef SegmentName = getSegmentName(MachO, *Section);
2295     if (!SegmentName.empty())
2296       outs() << SegmentName << ",";
2297     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2298     outs() << SectionName;
2299     if (O.isXCOFF()) {
2300       Optional<SymbolRef> SymRef =
2301           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2302       if (SymRef) {
2303 
2304         Expected<StringRef> NameOrErr = SymRef->getName();
2305 
2306         if (NameOrErr) {
2307           outs() << " (csect:";
2308           std::string SymName(NameOrErr.get());
2309 
2310           if (Demangle)
2311             SymName = demangle(SymName);
2312 
2313           if (SymbolDescription)
2314             SymName = getXCOFFSymbolDescription(
2315                 createSymbolInfo(O, SymRef.value()), SymName);
2316 
2317           outs() << ' ' << SymName;
2318           outs() << ") ";
2319         } else
2320           reportWarning(toString(NameOrErr.takeError()), FileName);
2321       }
2322     }
2323   }
2324 
2325   if (Common)
2326     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2327   else if (O.isXCOFF())
2328     outs() << '\t'
2329            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2330                               Symbol.getRawDataRefImpl()));
2331   else if (O.isELF())
2332     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2333 
2334   if (O.isELF()) {
2335     if (!SymbolVersions.empty()) {
2336       const VersionEntry &Ver =
2337           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2338       std::string Str;
2339       if (!Ver.Name.empty())
2340         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2341       outs() << ' ' << left_justify(Str, 12);
2342     }
2343 
2344     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2345     switch (Other) {
2346     case ELF::STV_DEFAULT:
2347       break;
2348     case ELF::STV_INTERNAL:
2349       outs() << " .internal";
2350       break;
2351     case ELF::STV_HIDDEN:
2352       outs() << " .hidden";
2353       break;
2354     case ELF::STV_PROTECTED:
2355       outs() << " .protected";
2356       break;
2357     default:
2358       outs() << format(" 0x%02x", Other);
2359       break;
2360     }
2361   } else if (Hidden) {
2362     outs() << " .hidden";
2363   }
2364 
2365   std::string SymName(Name);
2366   if (Demangle)
2367     SymName = demangle(SymName);
2368 
2369   if (O.isXCOFF() && SymbolDescription)
2370     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2371 
2372   outs() << ' ' << SymName << '\n';
2373 }
2374 
2375 static void printUnwindInfo(const ObjectFile *O) {
2376   outs() << "Unwind info:\n\n";
2377 
2378   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2379     printCOFFUnwindInfo(Coff);
2380   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2381     printMachOUnwindInfo(MachO);
2382   else
2383     // TODO: Extract DWARF dump tool to objdump.
2384     WithColor::error(errs(), ToolName)
2385         << "This operation is only currently supported "
2386            "for COFF and MachO object files.\n";
2387 }
2388 
2389 /// Dump the raw contents of the __clangast section so the output can be piped
2390 /// into llvm-bcanalyzer.
2391 static void printRawClangAST(const ObjectFile *Obj) {
2392   if (outs().is_displayed()) {
2393     WithColor::error(errs(), ToolName)
2394         << "The -raw-clang-ast option will dump the raw binary contents of "
2395            "the clang ast section.\n"
2396            "Please redirect the output to a file or another program such as "
2397            "llvm-bcanalyzer.\n";
2398     return;
2399   }
2400 
2401   StringRef ClangASTSectionName("__clangast");
2402   if (Obj->isCOFF()) {
2403     ClangASTSectionName = "clangast";
2404   }
2405 
2406   Optional<object::SectionRef> ClangASTSection;
2407   for (auto Sec : ToolSectionFilter(*Obj)) {
2408     StringRef Name;
2409     if (Expected<StringRef> NameOrErr = Sec.getName())
2410       Name = *NameOrErr;
2411     else
2412       consumeError(NameOrErr.takeError());
2413 
2414     if (Name == ClangASTSectionName) {
2415       ClangASTSection = Sec;
2416       break;
2417     }
2418   }
2419   if (!ClangASTSection)
2420     return;
2421 
2422   StringRef ClangASTContents =
2423       unwrapOrError(ClangASTSection.value().getContents(), Obj->getFileName());
2424   outs().write(ClangASTContents.data(), ClangASTContents.size());
2425 }
2426 
2427 static void printFaultMaps(const ObjectFile *Obj) {
2428   StringRef FaultMapSectionName;
2429 
2430   if (Obj->isELF()) {
2431     FaultMapSectionName = ".llvm_faultmaps";
2432   } else if (Obj->isMachO()) {
2433     FaultMapSectionName = "__llvm_faultmaps";
2434   } else {
2435     WithColor::error(errs(), ToolName)
2436         << "This operation is only currently supported "
2437            "for ELF and Mach-O executable files.\n";
2438     return;
2439   }
2440 
2441   Optional<object::SectionRef> FaultMapSection;
2442 
2443   for (auto Sec : ToolSectionFilter(*Obj)) {
2444     StringRef Name;
2445     if (Expected<StringRef> NameOrErr = Sec.getName())
2446       Name = *NameOrErr;
2447     else
2448       consumeError(NameOrErr.takeError());
2449 
2450     if (Name == FaultMapSectionName) {
2451       FaultMapSection = Sec;
2452       break;
2453     }
2454   }
2455 
2456   outs() << "FaultMap table:\n";
2457 
2458   if (!FaultMapSection) {
2459     outs() << "<not found>\n";
2460     return;
2461   }
2462 
2463   StringRef FaultMapContents =
2464       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2465   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2466                      FaultMapContents.bytes_end());
2467 
2468   outs() << FMP;
2469 }
2470 
2471 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2472   if (O->isELF()) {
2473     printELFFileHeader(O);
2474     printELFDynamicSection(O);
2475     printELFSymbolVersionInfo(O);
2476     return;
2477   }
2478   if (O->isCOFF())
2479     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2480   if (O->isWasm())
2481     return printWasmFileHeader(O);
2482   if (O->isMachO()) {
2483     printMachOFileHeader(O);
2484     if (!OnlyFirst)
2485       printMachOLoadCommands(O);
2486     return;
2487   }
2488   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2489 }
2490 
2491 static void printFileHeaders(const ObjectFile *O) {
2492   if (!O->isELF() && !O->isCOFF())
2493     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2494 
2495   Triple::ArchType AT = O->getArch();
2496   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2497   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2498 
2499   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2500   outs() << "start address: "
2501          << "0x" << format(Fmt.data(), Address) << "\n";
2502 }
2503 
2504 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2505   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2506   if (!ModeOrErr) {
2507     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2508     consumeError(ModeOrErr.takeError());
2509     return;
2510   }
2511   sys::fs::perms Mode = ModeOrErr.get();
2512   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2513   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2514   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2515   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2516   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2517   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2518   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2519   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2520   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2521 
2522   outs() << " ";
2523 
2524   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2525                    unwrapOrError(C.getGID(), Filename),
2526                    unwrapOrError(C.getRawSize(), Filename));
2527 
2528   StringRef RawLastModified = C.getRawLastModified();
2529   unsigned Seconds;
2530   if (RawLastModified.getAsInteger(10, Seconds))
2531     outs() << "(date: \"" << RawLastModified
2532            << "\" contains non-decimal chars) ";
2533   else {
2534     // Since ctime(3) returns a 26 character string of the form:
2535     // "Sun Sep 16 01:03:52 1973\n\0"
2536     // just print 24 characters.
2537     time_t t = Seconds;
2538     outs() << format("%.24s ", ctime(&t));
2539   }
2540 
2541   StringRef Name = "";
2542   Expected<StringRef> NameOrErr = C.getName();
2543   if (!NameOrErr) {
2544     consumeError(NameOrErr.takeError());
2545     Name = unwrapOrError(C.getRawName(), Filename);
2546   } else {
2547     Name = NameOrErr.get();
2548   }
2549   outs() << Name << "\n";
2550 }
2551 
2552 // For ELF only now.
2553 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2554   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2555     if (Elf->getEType() != ELF::ET_REL)
2556       return true;
2557   }
2558   return false;
2559 }
2560 
2561 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2562                                             uint64_t Start, uint64_t Stop) {
2563   if (!shouldWarnForInvalidStartStopAddress(Obj))
2564     return;
2565 
2566   for (const SectionRef &Section : Obj->sections())
2567     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2568       uint64_t BaseAddr = Section.getAddress();
2569       uint64_t Size = Section.getSize();
2570       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2571         return;
2572     }
2573 
2574   if (!HasStartAddressFlag)
2575     reportWarning("no section has address less than 0x" +
2576                       Twine::utohexstr(Stop) + " specified by --stop-address",
2577                   Obj->getFileName());
2578   else if (!HasStopAddressFlag)
2579     reportWarning("no section has address greater than or equal to 0x" +
2580                       Twine::utohexstr(Start) + " specified by --start-address",
2581                   Obj->getFileName());
2582   else
2583     reportWarning("no section overlaps the range [0x" +
2584                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2585                       ") specified by --start-address/--stop-address",
2586                   Obj->getFileName());
2587 }
2588 
2589 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2590                        const Archive::Child *C = nullptr) {
2591   // Avoid other output when using a raw option.
2592   if (!RawClangAST) {
2593     outs() << '\n';
2594     if (A)
2595       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2596     else
2597       outs() << O->getFileName();
2598     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2599   }
2600 
2601   if (HasStartAddressFlag || HasStopAddressFlag)
2602     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2603 
2604   // Note: the order here matches GNU objdump for compatability.
2605   StringRef ArchiveName = A ? A->getFileName() : "";
2606   if (ArchiveHeaders && !MachOOpt && C)
2607     printArchiveChild(ArchiveName, *C);
2608   if (FileHeaders)
2609     printFileHeaders(O);
2610   if (PrivateHeaders || FirstPrivateHeader)
2611     printPrivateFileHeaders(O, FirstPrivateHeader);
2612   if (SectionHeaders)
2613     printSectionHeaders(*O);
2614   if (SymbolTable)
2615     printSymbolTable(*O, ArchiveName);
2616   if (DynamicSymbolTable)
2617     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2618                      /*DumpDynamic=*/true);
2619   if (DwarfDumpType != DIDT_Null) {
2620     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2621     // Dump the complete DWARF structure.
2622     DIDumpOptions DumpOpts;
2623     DumpOpts.DumpType = DwarfDumpType;
2624     DICtx->dump(outs(), DumpOpts);
2625   }
2626   if (Relocations && !Disassemble)
2627     printRelocations(O);
2628   if (DynamicRelocations)
2629     printDynamicRelocations(O);
2630   if (SectionContents)
2631     printSectionContents(O);
2632   if (Disassemble)
2633     disassembleObject(O, Relocations);
2634   if (UnwindInfo)
2635     printUnwindInfo(O);
2636 
2637   // Mach-O specific options:
2638   if (ExportsTrie)
2639     printExportsTrie(O);
2640   if (Rebase)
2641     printRebaseTable(O);
2642   if (Bind)
2643     printBindTable(O);
2644   if (LazyBind)
2645     printLazyBindTable(O);
2646   if (WeakBind)
2647     printWeakBindTable(O);
2648 
2649   // Other special sections:
2650   if (RawClangAST)
2651     printRawClangAST(O);
2652   if (FaultMapSection)
2653     printFaultMaps(O);
2654   if (Offloading)
2655     dumpOffloadBinary(*O);
2656 }
2657 
2658 static void dumpObject(const COFFImportFile *I, const Archive *A,
2659                        const Archive::Child *C = nullptr) {
2660   StringRef ArchiveName = A ? A->getFileName() : "";
2661 
2662   // Avoid other output when using a raw option.
2663   if (!RawClangAST)
2664     outs() << '\n'
2665            << ArchiveName << "(" << I->getFileName() << ")"
2666            << ":\tfile format COFF-import-file"
2667            << "\n\n";
2668 
2669   if (ArchiveHeaders && !MachOOpt && C)
2670     printArchiveChild(ArchiveName, *C);
2671   if (SymbolTable)
2672     printCOFFSymbolTable(*I);
2673 }
2674 
2675 /// Dump each object file in \a a;
2676 static void dumpArchive(const Archive *A) {
2677   Error Err = Error::success();
2678   unsigned I = -1;
2679   for (auto &C : A->children(Err)) {
2680     ++I;
2681     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2682     if (!ChildOrErr) {
2683       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2684         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2685       continue;
2686     }
2687     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2688       dumpObject(O, A, &C);
2689     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2690       dumpObject(I, A, &C);
2691     else
2692       reportError(errorCodeToError(object_error::invalid_file_type),
2693                   A->getFileName());
2694   }
2695   if (Err)
2696     reportError(std::move(Err), A->getFileName());
2697 }
2698 
2699 /// Open file and figure out how to dump it.
2700 static void dumpInput(StringRef file) {
2701   // If we are using the Mach-O specific object file parser, then let it parse
2702   // the file and process the command line options.  So the -arch flags can
2703   // be used to select specific slices, etc.
2704   if (MachOOpt) {
2705     parseInputMachO(file);
2706     return;
2707   }
2708 
2709   // Attempt to open the binary.
2710   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2711   Binary &Binary = *OBinary.getBinary();
2712 
2713   if (Archive *A = dyn_cast<Archive>(&Binary))
2714     dumpArchive(A);
2715   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2716     dumpObject(O);
2717   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2718     parseInputMachO(UB);
2719   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2720     dumpOffloadSections(*OB);
2721   else
2722     reportError(errorCodeToError(object_error::invalid_file_type), file);
2723 }
2724 
2725 template <typename T>
2726 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2727                         T &Value) {
2728   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2729     StringRef V(A->getValue());
2730     if (!llvm::to_integer(V, Value, 0)) {
2731       reportCmdLineError(A->getSpelling() +
2732                          ": expected a non-negative integer, but got '" + V +
2733                          "'");
2734     }
2735   }
2736 }
2737 
2738 static void invalidArgValue(const opt::Arg *A) {
2739   reportCmdLineError("'" + StringRef(A->getValue()) +
2740                      "' is not a valid value for '" + A->getSpelling() + "'");
2741 }
2742 
2743 static std::vector<std::string>
2744 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2745   std::vector<std::string> Values;
2746   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2747     llvm::SmallVector<StringRef, 2> SplitValues;
2748     llvm::SplitString(Value, SplitValues, ",");
2749     for (StringRef SplitValue : SplitValues)
2750       Values.push_back(SplitValue.str());
2751   }
2752   return Values;
2753 }
2754 
2755 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2756   MachOOpt = true;
2757   FullLeadingAddr = true;
2758   PrintImmHex = true;
2759 
2760   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2761   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2762   if (InputArgs.hasArg(OTOOL_d))
2763     FilterSections.push_back("__DATA,__data");
2764   DylibId = InputArgs.hasArg(OTOOL_D);
2765   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2766   DataInCode = InputArgs.hasArg(OTOOL_G);
2767   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2768   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2769   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2770   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2771   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2772   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2773   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2774   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2775   InfoPlist = InputArgs.hasArg(OTOOL_P);
2776   Relocations = InputArgs.hasArg(OTOOL_r);
2777   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2778     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2779     FilterSections.push_back(Filter);
2780   }
2781   if (InputArgs.hasArg(OTOOL_t))
2782     FilterSections.push_back("__TEXT,__text");
2783   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2784             InputArgs.hasArg(OTOOL_o);
2785   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2786   if (InputArgs.hasArg(OTOOL_x))
2787     FilterSections.push_back(",__text");
2788   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2789 
2790   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
2791   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
2792 
2793   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2794   if (InputFilenames.empty())
2795     reportCmdLineError("no input file");
2796 
2797   for (const Arg *A : InputArgs) {
2798     const Option &O = A->getOption();
2799     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
2800       reportCmdLineWarning(O.getPrefixedName() +
2801                            " is obsolete and not implemented");
2802     }
2803   }
2804 }
2805 
2806 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
2807   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
2808   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
2809   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
2810   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
2811   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
2812   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
2813   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
2814   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
2815   DisassembleSymbols =
2816       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
2817   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
2818   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
2819     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
2820                         .Case("frames", DIDT_DebugFrame)
2821                         .Default(DIDT_Null);
2822     if (DwarfDumpType == DIDT_Null)
2823       invalidArgValue(A);
2824   }
2825   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
2826   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
2827   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
2828   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
2829   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
2830   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
2831   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
2832   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
2833   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
2834   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
2835   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
2836   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
2837   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
2838   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
2839   PrintImmHex =
2840       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false);
2841   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
2842   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
2843   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
2844   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
2845   PrintSource = InputArgs.hasArg(OBJDUMP_source);
2846   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
2847   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
2848   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
2849   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
2850   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
2851   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
2852   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
2853   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
2854   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
2855   Wide = InputArgs.hasArg(OBJDUMP_wide);
2856   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
2857   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
2858   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
2859     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
2860                        .Case("ascii", DVASCII)
2861                        .Case("unicode", DVUnicode)
2862                        .Default(DVInvalid);
2863     if (DbgVariables == DVInvalid)
2864       invalidArgValue(A);
2865   }
2866   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
2867 
2868   parseMachOOptions(InputArgs);
2869 
2870   // Parse -M (--disassembler-options) and deprecated
2871   // --x86-asm-syntax={att,intel}.
2872   //
2873   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
2874   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
2875   // called too late. For now we have to use the internal cl::opt option.
2876   const char *AsmSyntax = nullptr;
2877   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
2878                                           OBJDUMP_x86_asm_syntax_att,
2879                                           OBJDUMP_x86_asm_syntax_intel)) {
2880     switch (A->getOption().getID()) {
2881     case OBJDUMP_x86_asm_syntax_att:
2882       AsmSyntax = "--x86-asm-syntax=att";
2883       continue;
2884     case OBJDUMP_x86_asm_syntax_intel:
2885       AsmSyntax = "--x86-asm-syntax=intel";
2886       continue;
2887     }
2888 
2889     SmallVector<StringRef, 2> Values;
2890     llvm::SplitString(A->getValue(), Values, ",");
2891     for (StringRef V : Values) {
2892       if (V == "att")
2893         AsmSyntax = "--x86-asm-syntax=att";
2894       else if (V == "intel")
2895         AsmSyntax = "--x86-asm-syntax=intel";
2896       else
2897         DisassemblerOptions.push_back(V.str());
2898     }
2899   }
2900   if (AsmSyntax) {
2901     const char *Argv[] = {"llvm-objdump", AsmSyntax};
2902     llvm::cl::ParseCommandLineOptions(2, Argv);
2903   }
2904 
2905   // objdump defaults to a.out if no filenames specified.
2906   if (InputFilenames.empty())
2907     InputFilenames.push_back("a.out");
2908 }
2909 
2910 int main(int argc, char **argv) {
2911   using namespace llvm;
2912   InitLLVM X(argc, argv);
2913 
2914   ToolName = argv[0];
2915   std::unique_ptr<CommonOptTable> T;
2916   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
2917 
2918   StringRef Stem = sys::path::stem(ToolName);
2919   auto Is = [=](StringRef Tool) {
2920     // We need to recognize the following filenames:
2921     //
2922     // llvm-objdump -> objdump
2923     // llvm-otool-10.exe -> otool
2924     // powerpc64-unknown-freebsd13-objdump -> objdump
2925     auto I = Stem.rfind_insensitive(Tool);
2926     return I != StringRef::npos &&
2927            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
2928   };
2929   if (Is("otool")) {
2930     T = std::make_unique<OtoolOptTable>();
2931     Unknown = OTOOL_UNKNOWN;
2932     HelpFlag = OTOOL_help;
2933     HelpHiddenFlag = OTOOL_help_hidden;
2934     VersionFlag = OTOOL_version;
2935   } else {
2936     T = std::make_unique<ObjdumpOptTable>();
2937     Unknown = OBJDUMP_UNKNOWN;
2938     HelpFlag = OBJDUMP_help;
2939     HelpHiddenFlag = OBJDUMP_help_hidden;
2940     VersionFlag = OBJDUMP_version;
2941   }
2942 
2943   BumpPtrAllocator A;
2944   StringSaver Saver(A);
2945   opt::InputArgList InputArgs =
2946       T->parseArgs(argc, argv, Unknown, Saver,
2947                    [&](StringRef Msg) { reportCmdLineError(Msg); });
2948 
2949   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
2950     T->printHelp(ToolName);
2951     return 0;
2952   }
2953   if (InputArgs.hasArg(HelpHiddenFlag)) {
2954     T->printHelp(ToolName, /*ShowHidden=*/true);
2955     return 0;
2956   }
2957 
2958   // Initialize targets and assembly printers/parsers.
2959   InitializeAllTargetInfos();
2960   InitializeAllTargetMCs();
2961   InitializeAllDisassemblers();
2962 
2963   if (InputArgs.hasArg(VersionFlag)) {
2964     cl::PrintVersionMessage();
2965     if (!Is("otool")) {
2966       outs() << '\n';
2967       TargetRegistry::printRegisteredTargetsForVersion(outs());
2968     }
2969     return 0;
2970   }
2971 
2972   if (Is("otool"))
2973     parseOtoolOptions(InputArgs);
2974   else
2975     parseObjdumpOptions(InputArgs);
2976 
2977   if (StartAddress >= StopAddress)
2978     reportCmdLineError("start address should be less than stop address");
2979 
2980   // Removes trailing separators from prefix.
2981   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
2982     Prefix.pop_back();
2983 
2984   if (AllHeaders)
2985     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2986         SectionHeaders = SymbolTable = true;
2987 
2988   if (DisassembleAll || PrintSource || PrintLines ||
2989       !DisassembleSymbols.empty())
2990     Disassemble = true;
2991 
2992   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2993       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2994       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2995       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
2996       !(MachOOpt &&
2997         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
2998          DylibsUsed || ExportsTrie || FirstPrivateHeader || FunctionStarts ||
2999          IndirectSymbols || InfoPlist || LazyBind || LinkOptHints ||
3000          ObjcMetaData || Rebase || Rpaths || UniversalHeaders || WeakBind ||
3001          !FilterSections.empty()))) {
3002     T->printHelp(ToolName);
3003     return 2;
3004   }
3005 
3006   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3007 
3008   llvm::for_each(InputFilenames, dumpInput);
3009 
3010   warnOnNoMatchForSections();
3011 
3012   return EXIT_SUCCESS;
3013 }
3014