xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 1857edb2567b611d84787bddcd11616eabb9d3d1)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/Demangle/Demangle.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/MachOUniversal.h"
45 #include "llvm/Object/ObjectFile.h"
46 #include "llvm/Object/Wasm.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Errc.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/InitLLVM.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/StringSaver.h"
59 #include "llvm/Support/TargetRegistry.h"
60 #include "llvm/Support/TargetSelect.h"
61 #include "llvm/Support/WithColor.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm;
71 using namespace object;
72 
73 cl::opt<unsigned long long> AdjustVMA(
74     "adjust-vma",
75     cl::desc("Increase the displayed address by the specified offset"),
76     cl::value_desc("offset"), cl::init(0));
77 
78 cl::opt<bool>
79     llvm::AllHeaders("all-headers",
80                      cl::desc("Display all available header information"));
81 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
82                                  cl::NotHidden, cl::Grouping,
83                                  cl::aliasopt(AllHeaders));
84 
85 static cl::list<std::string>
86 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
87 
88 cl::opt<bool>
89 llvm::Disassemble("disassemble",
90   cl::desc("Display assembler mnemonics for the machine instructions"));
91 static cl::alias Disassembled("d", cl::desc("Alias for --disassemble"),
92                               cl::NotHidden, cl::Grouping,
93                               cl::aliasopt(Disassemble));
94 
95 cl::opt<bool>
96 llvm::DisassembleAll("disassemble-all",
97   cl::desc("Display assembler mnemonics for the machine instructions"));
98 static cl::alias DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
99                                  cl::NotHidden, cl::Grouping,
100                                  cl::aliasopt(DisassembleAll));
101 
102 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
103                              cl::init(false));
104 
105 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
106                                cl::NotHidden, cl::Grouping,
107                                cl::aliasopt(llvm::Demangle));
108 
109 static cl::list<std::string>
110 DisassembleFunctions("disassemble-functions",
111                      cl::CommaSeparated,
112                      cl::desc("List of functions to disassemble"));
113 static StringSet<> DisasmFuncsSet;
114 
115 cl::opt<bool>
116 llvm::Relocations("reloc",
117                   cl::desc("Display the relocation entries in the file"));
118 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
119                                   cl::NotHidden, cl::Grouping,
120                                   cl::aliasopt(llvm::Relocations));
121 
122 cl::opt<bool>
123 llvm::DynamicRelocations("dynamic-reloc",
124   cl::desc("Display the dynamic relocation entries in the file"));
125 static cl::alias DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
126                                      cl::NotHidden, cl::Grouping,
127                                      cl::aliasopt(DynamicRelocations));
128 
129 cl::opt<bool>
130     llvm::SectionContents("full-contents",
131                           cl::desc("Display the content of each section"));
132 static cl::alias SectionContentsShort("s",
133                                       cl::desc("Alias for --full-contents"),
134                                       cl::NotHidden, cl::Grouping,
135                                       cl::aliasopt(SectionContents));
136 
137 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
138 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
139                                   cl::NotHidden, cl::Grouping,
140                                   cl::aliasopt(llvm::SymbolTable));
141 
142 cl::opt<bool>
143 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
144 
145 cl::opt<bool>
146 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
147 
148 cl::opt<bool>
149 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
150 
151 cl::opt<bool>
152 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
153 
154 cl::opt<bool>
155 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
156 
157 cl::opt<bool>
158 llvm::RawClangAST("raw-clang-ast",
159     cl::desc("Dump the raw binary contents of the clang AST section"));
160 
161 static cl::opt<bool>
162 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
163 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
164                         cl::Grouping, cl::aliasopt(MachOOpt));
165 
166 cl::opt<std::string>
167 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
168                                     "see -version for available targets"));
169 
170 cl::opt<std::string>
171 llvm::MCPU("mcpu",
172      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
173      cl::value_desc("cpu-name"),
174      cl::init(""));
175 
176 cl::opt<std::string>
177 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
178                                 "see -version for available targets"));
179 
180 cl::opt<bool>
181 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
182                                                  "headers for each section."));
183 static cl::alias SectionHeadersShort("headers",
184                                      cl::desc("Alias for --section-headers"),
185                                      cl::NotHidden,
186                                      cl::aliasopt(SectionHeaders));
187 static cl::alias SectionHeadersShorter("h",
188                                        cl::desc("Alias for --section-headers"),
189                                        cl::NotHidden, cl::Grouping,
190                                        cl::aliasopt(SectionHeaders));
191 
192 static cl::opt<bool>
193     ShowLMA("show-lma",
194             cl::desc("Display LMA column when dumping ELF section headers"));
195 
196 cl::list<std::string>
197 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
198                                          "With -macho dump segment,section"));
199 cl::alias static FilterSectionsj("j", cl::desc("Alias for --section"),
200                                  cl::NotHidden, cl::Grouping, cl::Prefix,
201                                  cl::aliasopt(llvm::FilterSections));
202 
203 cl::list<std::string>
204 llvm::MAttrs("mattr",
205   cl::CommaSeparated,
206   cl::desc("Target specific attributes"),
207   cl::value_desc("a1,+a2,-a3,..."));
208 
209 cl::opt<bool>
210 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
211                                                  "instructions, do not print "
212                                                  "the instruction bytes."));
213 cl::opt<bool>
214 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
215 
216 cl::opt<bool>
217 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
218 
219 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
220                                  cl::NotHidden, cl::Grouping,
221                                  cl::aliasopt(UnwindInfo));
222 
223 cl::opt<bool>
224 llvm::PrivateHeaders("private-headers",
225                      cl::desc("Display format specific file headers"));
226 
227 cl::opt<bool>
228 llvm::FirstPrivateHeader("private-header",
229                          cl::desc("Display only the first format specific file "
230                                   "header"));
231 
232 static cl::alias PrivateHeadersShort("p",
233                                      cl::desc("Alias for --private-headers"),
234                                      cl::NotHidden, cl::Grouping,
235                                      cl::aliasopt(PrivateHeaders));
236 
237 cl::opt<bool> llvm::FileHeaders(
238     "file-headers",
239     cl::desc("Display the contents of the overall file header"));
240 
241 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
242                                   cl::NotHidden, cl::Grouping,
243                                   cl::aliasopt(FileHeaders));
244 
245 cl::opt<bool>
246     llvm::ArchiveHeaders("archive-headers",
247                          cl::desc("Display archive header information"));
248 
249 cl::alias ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
250                               cl::NotHidden, cl::Grouping,
251                               cl::aliasopt(ArchiveHeaders));
252 
253 cl::opt<bool>
254     llvm::PrintImmHex("print-imm-hex",
255                       cl::desc("Use hex format for immediate values"));
256 
257 cl::opt<bool> PrintFaultMaps("fault-map-section",
258                              cl::desc("Display contents of faultmap section"));
259 
260 cl::opt<DIDumpType> llvm::DwarfDumpType(
261     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
262     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
263 
264 cl::opt<bool> PrintSource(
265     "source",
266     cl::desc(
267         "Display source inlined with disassembly. Implies disassemble object"));
268 
269 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), cl::NotHidden,
270                            cl::Grouping, cl::aliasopt(PrintSource));
271 
272 cl::opt<bool> PrintLines("line-numbers",
273                          cl::desc("Display source line numbers with "
274                                   "disassembly. Implies disassemble object"));
275 
276 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
277                           cl::NotHidden, cl::Grouping,
278                           cl::aliasopt(PrintLines));
279 
280 cl::opt<unsigned long long>
281     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
282                  cl::value_desc("address"), cl::init(0));
283 cl::opt<unsigned long long>
284     StopAddress("stop-address",
285                 cl::desc("Stop disassembly at address"),
286                 cl::value_desc("address"), cl::init(UINT64_MAX));
287 
288 cl::opt<bool> DisassembleZeroes(
289                 "disassemble-zeroes",
290                 cl::desc("Do not skip blocks of zeroes when disassembling"));
291 cl::alias DisassembleZeroesShort("z",
292                                  cl::desc("Alias for --disassemble-zeroes"),
293                                  cl::NotHidden, cl::Grouping,
294                                  cl::aliasopt(DisassembleZeroes));
295 
296 static cl::list<std::string>
297     DisassemblerOptions("disassembler-options",
298                         cl::desc("Pass target specific disassembler options"),
299                         cl::value_desc("options"), cl::CommaSeparated);
300 static cl::alias
301     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
302                              cl::NotHidden, cl::Grouping, cl::Prefix,
303                              cl::CommaSeparated,
304                              cl::aliasopt(DisassemblerOptions));
305 
306 static StringRef ToolName;
307 
308 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
309 
310 SectionFilter llvm::ToolSectionFilter(llvm::object::ObjectFile const &O) {
311   return SectionFilter(
312       [](llvm::object::SectionRef const &S) {
313         if (FilterSections.empty())
314           return true;
315         llvm::StringRef String;
316         std::error_code error = S.getName(String);
317         if (error)
318           return false;
319         return is_contained(FilterSections, String);
320       },
321       O);
322 }
323 
324 void llvm::error(std::error_code EC) {
325   if (!EC)
326     return;
327   WithColor::error(errs(), ToolName)
328       << "reading file: " << EC.message() << ".\n";
329   errs().flush();
330   exit(1);
331 }
332 
333 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
334   WithColor::error(errs(), ToolName) << Message << ".\n";
335   errs().flush();
336   exit(1);
337 }
338 
339 void llvm::warn(StringRef Message) {
340   WithColor::warning(errs(), ToolName) << Message << ".\n";
341   errs().flush();
342 }
343 
344 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
345                                                 Twine Message) {
346   WithColor::error(errs(), ToolName)
347       << "'" << File << "': " << Message << ".\n";
348   exit(1);
349 }
350 
351 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
352                                                 std::error_code EC) {
353   assert(EC);
354   WithColor::error(errs(), ToolName)
355       << "'" << File << "': " << EC.message() << ".\n";
356   exit(1);
357 }
358 
359 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
360                                                 llvm::Error E) {
361   assert(E);
362   std::string Buf;
363   raw_string_ostream OS(Buf);
364   logAllUnhandledErrors(std::move(E), OS);
365   OS.flush();
366   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
367   exit(1);
368 }
369 
370 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
371                                                 StringRef FileName,
372                                                 llvm::Error E,
373                                                 StringRef ArchitectureName) {
374   assert(E);
375   WithColor::error(errs(), ToolName);
376   if (ArchiveName != "")
377     errs() << ArchiveName << "(" << FileName << ")";
378   else
379     errs() << "'" << FileName << "'";
380   if (!ArchitectureName.empty())
381     errs() << " (for architecture " << ArchitectureName << ")";
382   std::string Buf;
383   raw_string_ostream OS(Buf);
384   logAllUnhandledErrors(std::move(E), OS);
385   OS.flush();
386   errs() << ": " << Buf;
387   exit(1);
388 }
389 
390 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
391                                                 const object::Archive::Child &C,
392                                                 llvm::Error E,
393                                                 StringRef ArchitectureName) {
394   Expected<StringRef> NameOrErr = C.getName();
395   // TODO: if we have a error getting the name then it would be nice to print
396   // the index of which archive member this is and or its offset in the
397   // archive instead of "???" as the name.
398   if (!NameOrErr) {
399     consumeError(NameOrErr.takeError());
400     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
401   } else
402     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
403                        ArchitectureName);
404 }
405 
406 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
407   // Figure out the target triple.
408   llvm::Triple TheTriple("unknown-unknown-unknown");
409   if (TripleName.empty()) {
410     if (Obj)
411       TheTriple = Obj->makeTriple();
412   } else {
413     TheTriple.setTriple(Triple::normalize(TripleName));
414 
415     // Use the triple, but also try to combine with ARM build attributes.
416     if (Obj) {
417       auto Arch = Obj->getArch();
418       if (Arch == Triple::arm || Arch == Triple::armeb)
419         Obj->setARMSubArch(TheTriple);
420     }
421   }
422 
423   // Get the target specific parser.
424   std::string Error;
425   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
426                                                          Error);
427   if (!TheTarget) {
428     if (Obj)
429       report_error(Obj->getFileName(), "can't find target: " + Error);
430     else
431       error("can't find target: " + Error);
432   }
433 
434   // Update the triple name and return the found target.
435   TripleName = TheTriple.getTriple();
436   return TheTarget;
437 }
438 
439 bool llvm::isRelocAddressLess(RelocationRef A, RelocationRef B) {
440   return A.getOffset() < B.getOffset();
441 }
442 
443 static std::error_code getRelocationValueString(const RelocationRef &Rel,
444                                                 SmallVectorImpl<char> &Result) {
445   const ObjectFile *Obj = Rel.getObject();
446   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
447     return getELFRelocationValueString(ELF, Rel, Result);
448   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
449     return getCOFFRelocationValueString(COFF, Rel, Result);
450   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
451     return getWasmRelocationValueString(Wasm, Rel, Result);
452   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
453     return getMachORelocationValueString(MachO, Rel, Result);
454   llvm_unreachable("unknown object file format");
455 }
456 
457 /// Indicates whether this relocation should hidden when listing
458 /// relocations, usually because it is the trailing part of a multipart
459 /// relocation that will be printed as part of the leading relocation.
460 static bool getHidden(RelocationRef RelRef) {
461   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
462   if (!MachO)
463     return false;
464 
465   unsigned Arch = MachO->getArch();
466   DataRefImpl Rel = RelRef.getRawDataRefImpl();
467   uint64_t Type = MachO->getRelocationType(Rel);
468 
469   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
470   // is always hidden.
471   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
472     return Type == MachO::GENERIC_RELOC_PAIR;
473 
474   if (Arch == Triple::x86_64) {
475     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
476     // an X86_64_RELOC_SUBTRACTOR.
477     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
478       DataRefImpl RelPrev = Rel;
479       RelPrev.d.a--;
480       uint64_t PrevType = MachO->getRelocationType(RelPrev);
481       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
482         return true;
483     }
484   }
485 
486   return false;
487 }
488 
489 namespace {
490 class SourcePrinter {
491 protected:
492   DILineInfo OldLineInfo;
493   const ObjectFile *Obj = nullptr;
494   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
495   // File name to file contents of source
496   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
497   // Mark the line endings of the cached source
498   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
499 
500 private:
501   bool cacheSource(const DILineInfo& LineInfoFile);
502 
503 public:
504   SourcePrinter() = default;
505   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
506     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
507         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
508         DefaultArch);
509     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
510   }
511   virtual ~SourcePrinter() = default;
512   virtual void printSourceLine(raw_ostream &OS,
513                                object::SectionedAddress Address,
514                                StringRef Delimiter = "; ");
515 };
516 
517 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
518   std::unique_ptr<MemoryBuffer> Buffer;
519   if (LineInfo.Source) {
520     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
521   } else {
522     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
523     if (!BufferOrError)
524       return false;
525     Buffer = std::move(*BufferOrError);
526   }
527   // Chomp the file to get lines
528   size_t BufferSize = Buffer->getBufferSize();
529   const char *BufferStart = Buffer->getBufferStart();
530   for (const char *Start = BufferStart, *End = BufferStart;
531        End < BufferStart + BufferSize; End++)
532     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
533         (*End == '\r' && *(End + 1) == '\n')) {
534       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
535       if (*End == '\r')
536         End++;
537       Start = End + 1;
538     }
539   SourceCache[LineInfo.FileName] = std::move(Buffer);
540   return true;
541 }
542 
543 void SourcePrinter::printSourceLine(raw_ostream &OS,
544                                     object::SectionedAddress Address,
545                                     StringRef Delimiter) {
546   if (!Symbolizer)
547     return;
548   DILineInfo LineInfo = DILineInfo();
549   auto ExpectedLineInfo =
550       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
551   if (!ExpectedLineInfo)
552     consumeError(ExpectedLineInfo.takeError());
553   else
554     LineInfo = *ExpectedLineInfo;
555 
556   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
557       LineInfo.Line == 0)
558     return;
559 
560   if (PrintLines)
561     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
562   if (PrintSource) {
563     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
564       if (!cacheSource(LineInfo))
565         return;
566     auto FileBuffer = SourceCache.find(LineInfo.FileName);
567     if (FileBuffer != SourceCache.end()) {
568       auto LineBuffer = LineCache.find(LineInfo.FileName);
569       if (LineBuffer != LineCache.end()) {
570         if (LineInfo.Line > LineBuffer->second.size())
571           return;
572         // Vector begins at 0, line numbers are non-zero
573         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
574            << "\n";
575       }
576     }
577   }
578   OldLineInfo = LineInfo;
579 }
580 
581 static bool isArmElf(const ObjectFile *Obj) {
582   return (Obj->isELF() &&
583           (Obj->getArch() == Triple::aarch64 ||
584            Obj->getArch() == Triple::aarch64_be ||
585            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
586            Obj->getArch() == Triple::thumb ||
587            Obj->getArch() == Triple::thumbeb));
588 }
589 
590 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
591                             uint8_t AddrSize) {
592   StringRef Fmt =
593       AddrSize > 4 ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
594   SmallString<16> Name;
595   SmallString<32> Val;
596   Rel.getTypeName(Name);
597   error(getRelocationValueString(Rel, Val));
598   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
599 }
600 
601 class PrettyPrinter {
602 public:
603   virtual ~PrettyPrinter() = default;
604   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
605                          ArrayRef<uint8_t> Bytes,
606                          object::SectionedAddress Address, raw_ostream &OS,
607                          StringRef Annot, MCSubtargetInfo const &STI,
608                          SourcePrinter *SP,
609                          std::vector<RelocationRef> *Rels = nullptr) {
610     if (SP && (PrintSource || PrintLines))
611       SP->printSourceLine(OS, Address);
612     if (!NoLeadingAddr)
613       OS << format("%8" PRIx64 ":", Address.Address);
614     if (!NoShowRawInsn) {
615       OS << "\t";
616       dumpBytes(Bytes, OS);
617     }
618     if (MI)
619       IP.printInst(MI, OS, "", STI);
620     else
621       OS << " <unknown>";
622   }
623 };
624 PrettyPrinter PrettyPrinterInst;
625 class HexagonPrettyPrinter : public PrettyPrinter {
626 public:
627   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
628                  raw_ostream &OS) {
629     uint32_t opcode =
630       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
631     if (!NoLeadingAddr)
632       OS << format("%8" PRIx64 ":", Address);
633     if (!NoShowRawInsn) {
634       OS << "\t";
635       dumpBytes(Bytes.slice(0, 4), OS);
636       OS << format("%08" PRIx32, opcode);
637     }
638   }
639   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
640                  object::SectionedAddress Address, raw_ostream &OS,
641                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
642                  std::vector<RelocationRef> *Rels) override {
643     if (SP && (PrintSource || PrintLines))
644       SP->printSourceLine(OS, Address, "");
645     if (!MI) {
646       printLead(Bytes, Address.Address, OS);
647       OS << " <unknown>";
648       return;
649     }
650     std::string Buffer;
651     {
652       raw_string_ostream TempStream(Buffer);
653       IP.printInst(MI, TempStream, "", STI);
654     }
655     StringRef Contents(Buffer);
656     // Split off bundle attributes
657     auto PacketBundle = Contents.rsplit('\n');
658     // Split off first instruction from the rest
659     auto HeadTail = PacketBundle.first.split('\n');
660     auto Preamble = " { ";
661     auto Separator = "";
662 
663     // Hexagon's packets require relocations to be inline rather than
664     // clustered at the end of the packet.
665     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
666     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
667     auto PrintReloc = [&]() -> void {
668       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
669         if (RelCur->getOffset() == Address.Address) {
670           printRelocation(*RelCur, Address.Address, 4);
671           return;
672         }
673         ++RelCur;
674       }
675     };
676 
677     while (!HeadTail.first.empty()) {
678       OS << Separator;
679       Separator = "\n";
680       if (SP && (PrintSource || PrintLines))
681         SP->printSourceLine(OS, Address, "");
682       printLead(Bytes, Address.Address, OS);
683       OS << Preamble;
684       Preamble = "   ";
685       StringRef Inst;
686       auto Duplex = HeadTail.first.split('\v');
687       if (!Duplex.second.empty()) {
688         OS << Duplex.first;
689         OS << "; ";
690         Inst = Duplex.second;
691       }
692       else
693         Inst = HeadTail.first;
694       OS << Inst;
695       HeadTail = HeadTail.second.split('\n');
696       if (HeadTail.first.empty())
697         OS << " } " << PacketBundle.second;
698       PrintReloc();
699       Bytes = Bytes.slice(4);
700       Address.Address += 4;
701     }
702   }
703 };
704 HexagonPrettyPrinter HexagonPrettyPrinterInst;
705 
706 class AMDGCNPrettyPrinter : public PrettyPrinter {
707 public:
708   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
709                  object::SectionedAddress Address, raw_ostream &OS,
710                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
711                  std::vector<RelocationRef> *Rels) override {
712     if (SP && (PrintSource || PrintLines))
713       SP->printSourceLine(OS, Address);
714 
715     typedef support::ulittle32_t U32;
716 
717     if (MI) {
718       SmallString<40> InstStr;
719       raw_svector_ostream IS(InstStr);
720 
721       IP.printInst(MI, IS, "", STI);
722 
723       OS << left_justify(IS.str(), 60);
724     } else {
725       // an unrecognized encoding - this is probably data so represent it
726       // using the .long directive, or .byte directive if fewer than 4 bytes
727       // remaining
728       if (Bytes.size() >= 4) {
729         OS << format("\t.long 0x%08" PRIx32 " ",
730                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
731         OS.indent(42);
732       } else {
733           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
734           for (unsigned int i = 1; i < Bytes.size(); i++)
735             OS << format(", 0x%02" PRIx8, Bytes[i]);
736           OS.indent(55 - (6 * Bytes.size()));
737       }
738     }
739 
740     OS << format("// %012" PRIX64 ": ", Address.Address);
741     if (Bytes.size() >=4) {
742       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
743                                  Bytes.size() / sizeof(U32)))
744         // D should be explicitly casted to uint32_t here as it is passed
745         // by format to snprintf as vararg.
746         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
747     } else {
748       for (unsigned int i = 0; i < Bytes.size(); i++)
749         OS << format("%02" PRIX8 " ", Bytes[i]);
750     }
751 
752     if (!Annot.empty())
753       OS << "// " << Annot;
754   }
755 };
756 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
757 
758 class BPFPrettyPrinter : public PrettyPrinter {
759 public:
760   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
761                  object::SectionedAddress Address, raw_ostream &OS,
762                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
763                  std::vector<RelocationRef> *Rels) override {
764     if (SP && (PrintSource || PrintLines))
765       SP->printSourceLine(OS, Address);
766     if (!NoLeadingAddr)
767       OS << format("%8" PRId64 ":", Address.Address / 8);
768     if (!NoShowRawInsn) {
769       OS << "\t";
770       dumpBytes(Bytes, OS);
771     }
772     if (MI)
773       IP.printInst(MI, OS, "", STI);
774     else
775       OS << " <unknown>";
776   }
777 };
778 BPFPrettyPrinter BPFPrettyPrinterInst;
779 
780 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
781   switch(Triple.getArch()) {
782   default:
783     return PrettyPrinterInst;
784   case Triple::hexagon:
785     return HexagonPrettyPrinterInst;
786   case Triple::amdgcn:
787     return AMDGCNPrettyPrinterInst;
788   case Triple::bpfel:
789   case Triple::bpfeb:
790     return BPFPrettyPrinterInst;
791   }
792 }
793 }
794 
795 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
796   assert(Obj->isELF());
797   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
798     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
799   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
800     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
801   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
802     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
803   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
804     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
805   llvm_unreachable("Unsupported binary format");
806 }
807 
808 template <class ELFT> static void
809 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
810                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
811   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
812     uint8_t SymbolType = Symbol.getELFType();
813     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
814       continue;
815 
816     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
817     if (!AddressOrErr)
818       report_error(Obj->getFileName(), AddressOrErr.takeError());
819 
820     Expected<StringRef> Name = Symbol.getName();
821     if (!Name)
822       report_error(Obj->getFileName(), Name.takeError());
823     if (Name->empty())
824       continue;
825 
826     Expected<section_iterator> SectionOrErr = Symbol.getSection();
827     if (!SectionOrErr)
828       report_error(Obj->getFileName(), SectionOrErr.takeError());
829     section_iterator SecI = *SectionOrErr;
830     if (SecI == Obj->section_end())
831       continue;
832 
833     AllSymbols[*SecI].emplace_back(*AddressOrErr, *Name, SymbolType);
834   }
835 }
836 
837 static void
838 addDynamicElfSymbols(const ObjectFile *Obj,
839                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
840   assert(Obj->isELF());
841   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
842     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
843   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
844     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
845   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
846     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
847   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
848     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
849   else
850     llvm_unreachable("Unsupported binary format");
851 }
852 
853 static void addPltEntries(const ObjectFile *Obj,
854                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
855                           StringSaver &Saver) {
856   Optional<SectionRef> Plt = None;
857   for (const SectionRef &Section : Obj->sections()) {
858     StringRef Name;
859     if (Section.getName(Name))
860       continue;
861     if (Name == ".plt")
862       Plt = Section;
863   }
864   if (!Plt)
865     return;
866   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
867     for (auto PltEntry : ElfObj->getPltAddresses()) {
868       SymbolRef Symbol(PltEntry.first, ElfObj);
869       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
870 
871       Expected<StringRef> NameOrErr = Symbol.getName();
872       if (!NameOrErr)
873         report_error(Obj->getFileName(), NameOrErr.takeError());
874       if (NameOrErr->empty())
875         continue;
876       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
877 
878       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
879     }
880   }
881 }
882 
883 // Normally the disassembly output will skip blocks of zeroes. This function
884 // returns the number of zero bytes that can be skipped when dumping the
885 // disassembly of the instructions in Buf.
886 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
887   // Find the number of leading zeroes.
888   size_t N = 0;
889   while (N < Buf.size() && !Buf[N])
890     ++N;
891 
892   // We may want to skip blocks of zero bytes, but unless we see
893   // at least 8 of them in a row.
894   if (N < 8)
895     return 0;
896 
897   // We skip zeroes in multiples of 4 because do not want to truncate an
898   // instruction if it starts with a zero byte.
899   return N & ~0x3;
900 }
901 
902 // Returns a map from sections to their relocations.
903 static std::map<SectionRef, std::vector<RelocationRef>>
904 getRelocsMap(llvm::object::ObjectFile const &Obj) {
905   std::map<SectionRef, std::vector<RelocationRef>> Ret;
906   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
907     section_iterator RelSec = Section.getRelocatedSection();
908     if (RelSec == Obj.section_end())
909       continue;
910     std::vector<RelocationRef> &V = Ret[*RelSec];
911     for (const RelocationRef &R : Section.relocations())
912       V.push_back(R);
913     // Sort relocations by address.
914     llvm::sort(V, isRelocAddressLess);
915   }
916   return Ret;
917 }
918 
919 // Used for --adjust-vma to check if address should be adjusted by the
920 // specified value for a given section.
921 // For ELF we do not adjust non-allocatable sections like debug ones,
922 // because they are not loadable.
923 // TODO: implement for other file formats.
924 static bool shouldAdjustVA(const SectionRef &Section) {
925   const ObjectFile *Obj = Section.getObject();
926   if (isa<object::ELFObjectFileBase>(Obj))
927     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
928   return false;
929 }
930 
931 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
932                               MCContext &Ctx, MCDisassembler *DisAsm,
933                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
934                               const MCSubtargetInfo *STI, PrettyPrinter &PIP,
935                               SourcePrinter &SP, bool InlineRelocs) {
936   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
937   if (InlineRelocs)
938     RelocMap = getRelocsMap(*Obj);
939 
940   // Create a mapping from virtual address to symbol name.  This is used to
941   // pretty print the symbols while disassembling.
942   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
943   SectionSymbolsTy AbsoluteSymbols;
944   for (const SymbolRef &Symbol : Obj->symbols()) {
945     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
946     if (!AddressOrErr)
947       report_error(Obj->getFileName(), AddressOrErr.takeError());
948     uint64_t Address = *AddressOrErr;
949 
950     Expected<StringRef> Name = Symbol.getName();
951     if (!Name)
952       report_error(Obj->getFileName(), Name.takeError());
953     if (Name->empty())
954       continue;
955 
956     Expected<section_iterator> SectionOrErr = Symbol.getSection();
957     if (!SectionOrErr)
958       report_error(Obj->getFileName(), SectionOrErr.takeError());
959 
960     uint8_t SymbolType = ELF::STT_NOTYPE;
961     if (Obj->isELF()) {
962       SymbolType = getElfSymbolType(Obj, Symbol);
963       if (SymbolType == ELF::STT_SECTION)
964         continue;
965     }
966 
967     section_iterator SecI = *SectionOrErr;
968     if (SecI != Obj->section_end())
969       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
970     else
971       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
972 
973 
974   }
975   if (AllSymbols.empty() && Obj->isELF())
976     addDynamicElfSymbols(Obj, AllSymbols);
977 
978   BumpPtrAllocator A;
979   StringSaver Saver(A);
980   addPltEntries(Obj, AllSymbols, Saver);
981 
982   // Create a mapping from virtual address to section.
983   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
984   for (SectionRef Sec : Obj->sections())
985     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
986   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
987 
988   // Linked executables (.exe and .dll files) typically don't include a real
989   // symbol table but they might contain an export table.
990   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
991     for (const auto &ExportEntry : COFFObj->export_directories()) {
992       StringRef Name;
993       error(ExportEntry.getSymbolName(Name));
994       if (Name.empty())
995         continue;
996       uint32_t RVA;
997       error(ExportEntry.getExportRVA(RVA));
998 
999       uint64_t VA = COFFObj->getImageBase() + RVA;
1000       auto Sec = std::upper_bound(
1001           SectionAddresses.begin(), SectionAddresses.end(), VA,
1002           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1003             return LHS < RHS.first;
1004           });
1005       if (Sec != SectionAddresses.begin())
1006         --Sec;
1007       else
1008         Sec = SectionAddresses.end();
1009 
1010       if (Sec != SectionAddresses.end())
1011         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1012       else
1013         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1014     }
1015   }
1016 
1017   // Sort all the symbols, this allows us to use a simple binary search to find
1018   // a symbol near an address.
1019   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1020     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1021   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1022 
1023   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1024     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1025       continue;
1026 
1027     uint64_t SectionAddr = Section.getAddress();
1028     uint64_t SectSize = Section.getSize();
1029     if (!SectSize)
1030       continue;
1031 
1032     // Get the list of all the symbols in this section.
1033     SectionSymbolsTy &Symbols = AllSymbols[Section];
1034     std::vector<uint64_t> DataMappingSymsAddr;
1035     std::vector<uint64_t> TextMappingSymsAddr;
1036     if (isArmElf(Obj)) {
1037       for (const auto &Symb : Symbols) {
1038         uint64_t Address = std::get<0>(Symb);
1039         StringRef Name = std::get<1>(Symb);
1040         if (Name.startswith("$d"))
1041           DataMappingSymsAddr.push_back(Address - SectionAddr);
1042         if (Name.startswith("$x"))
1043           TextMappingSymsAddr.push_back(Address - SectionAddr);
1044         if (Name.startswith("$a"))
1045           TextMappingSymsAddr.push_back(Address - SectionAddr);
1046         if (Name.startswith("$t"))
1047           TextMappingSymsAddr.push_back(Address - SectionAddr);
1048       }
1049     }
1050 
1051     llvm::sort(DataMappingSymsAddr);
1052     llvm::sort(TextMappingSymsAddr);
1053 
1054     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1055       // AMDGPU disassembler uses symbolizer for printing labels
1056       std::unique_ptr<MCRelocationInfo> RelInfo(
1057         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1058       if (RelInfo) {
1059         std::unique_ptr<MCSymbolizer> Symbolizer(
1060           TheTarget->createMCSymbolizer(
1061             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1062         DisAsm->setSymbolizer(std::move(Symbolizer));
1063       }
1064     }
1065 
1066     StringRef SegmentName = "";
1067     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1068       DataRefImpl DR = Section.getRawDataRefImpl();
1069       SegmentName = MachO->getSectionFinalSegmentName(DR);
1070     }
1071     StringRef SectionName;
1072     error(Section.getName(SectionName));
1073 
1074     // If the section has no symbol at the start, just insert a dummy one.
1075     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1076       Symbols.insert(
1077           Symbols.begin(),
1078           std::make_tuple(SectionAddr, SectionName,
1079                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1080     }
1081 
1082     SmallString<40> Comments;
1083     raw_svector_ostream CommentStream(Comments);
1084 
1085     StringRef BytesStr;
1086     error(Section.getContents(BytesStr));
1087     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1088                             BytesStr.size());
1089 
1090     uint64_t VMAAdjustment = 0;
1091     if (shouldAdjustVA(Section))
1092       VMAAdjustment = AdjustVMA;
1093 
1094     uint64_t Size;
1095     uint64_t Index;
1096     bool PrintedSection = false;
1097     std::vector<RelocationRef> Rels = RelocMap[Section];
1098     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1099     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1100     // Disassemble symbol by symbol.
1101     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1102       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1103       // The end is either the section end or the beginning of the next
1104       // symbol.
1105       uint64_t End = (SI == SE - 1)
1106                          ? SectSize
1107                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1108       // Don't try to disassemble beyond the end of section contents.
1109       if (End > SectSize)
1110         End = SectSize;
1111       // If this symbol has the same address as the next symbol, then skip it.
1112       if (Start >= End)
1113         continue;
1114 
1115       // Check if we need to skip symbol
1116       // Skip if the symbol's data is not between StartAddress and StopAddress
1117       if (End + SectionAddr < StartAddress ||
1118           Start + SectionAddr > StopAddress) {
1119         continue;
1120       }
1121 
1122       /// Skip if user requested specific symbols and this is not in the list
1123       if (!DisasmFuncsSet.empty() &&
1124           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1125         continue;
1126 
1127       if (!PrintedSection) {
1128         PrintedSection = true;
1129         outs() << "Disassembly of section ";
1130         if (!SegmentName.empty())
1131           outs() << SegmentName << ",";
1132         outs() << SectionName << ':';
1133       }
1134 
1135       // Stop disassembly at the stop address specified
1136       if (End + SectionAddr > StopAddress)
1137         End = StopAddress - SectionAddr;
1138 
1139       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1140         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1141           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1142           Start += 256;
1143         }
1144         if (SI == SE - 1 ||
1145             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1146           // cut trailing zeroes at the end of kernel
1147           // cut up to 256 bytes
1148           const uint64_t EndAlign = 256;
1149           const auto Limit = End - (std::min)(EndAlign, End - Start);
1150           while (End > Limit &&
1151             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1152             End -= 4;
1153         }
1154       }
1155 
1156       outs() << '\n';
1157       if (!NoLeadingAddr)
1158         outs() << format("%016" PRIx64 " ",
1159                          SectionAddr + Start + VMAAdjustment);
1160 
1161       StringRef SymbolName = std::get<1>(Symbols[SI]);
1162       if (Demangle)
1163         outs() << demangle(SymbolName) << ":\n";
1164       else
1165         outs() << SymbolName << ":\n";
1166 
1167       // Don't print raw contents of a virtual section. A virtual section
1168       // doesn't have any contents in the file.
1169       if (Section.isVirtual()) {
1170         outs() << "...\n";
1171         continue;
1172       }
1173 
1174 #ifndef NDEBUG
1175       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1176 #else
1177       raw_ostream &DebugOut = nulls();
1178 #endif
1179 
1180       // Some targets (like WebAssembly) have a special prelude at the start
1181       // of each symbol.
1182       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1183                             SectionAddr + Start, DebugOut, CommentStream);
1184       Start += Size;
1185 
1186       for (Index = Start; Index < End; Index += Size) {
1187         MCInst Inst;
1188 
1189         if (Index + SectionAddr < StartAddress ||
1190             Index + SectionAddr > StopAddress) {
1191           // skip byte by byte till StartAddress is reached
1192           Size = 1;
1193           continue;
1194         }
1195         // AArch64 ELF binaries can interleave data and text in the
1196         // same section. We rely on the markers introduced to
1197         // understand what we need to dump. If the data marker is within a
1198         // function, it is denoted as a word/short etc
1199         if (isArmElf(Obj) && std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1200             !DisassembleAll) {
1201           uint64_t Stride = 0;
1202 
1203           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1204                                       DataMappingSymsAddr.end(), Index);
1205           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1206             // Switch to data.
1207             while (Index < End) {
1208               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1209               outs() << "\t";
1210               if (Index + 4 <= End) {
1211                 Stride = 4;
1212                 dumpBytes(Bytes.slice(Index, 4), outs());
1213                 outs() << "\t.word\t";
1214                 uint32_t Data = 0;
1215                 if (Obj->isLittleEndian()) {
1216                   const auto Word =
1217                       reinterpret_cast<const support::ulittle32_t *>(
1218                           Bytes.data() + Index);
1219                   Data = *Word;
1220                 } else {
1221                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1222                       Bytes.data() + Index);
1223                   Data = *Word;
1224                 }
1225                 outs() << "0x" << format("%08" PRIx32, Data);
1226               } else if (Index + 2 <= End) {
1227                 Stride = 2;
1228                 dumpBytes(Bytes.slice(Index, 2), outs());
1229                 outs() << "\t\t.short\t";
1230                 uint16_t Data = 0;
1231                 if (Obj->isLittleEndian()) {
1232                   const auto Short =
1233                       reinterpret_cast<const support::ulittle16_t *>(
1234                           Bytes.data() + Index);
1235                   Data = *Short;
1236                 } else {
1237                   const auto Short =
1238                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1239                                                                   Index);
1240                   Data = *Short;
1241                 }
1242                 outs() << "0x" << format("%04" PRIx16, Data);
1243               } else {
1244                 Stride = 1;
1245                 dumpBytes(Bytes.slice(Index, 1), outs());
1246                 outs() << "\t\t.byte\t";
1247                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1248               }
1249               Index += Stride;
1250               outs() << "\n";
1251               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1252                                           TextMappingSymsAddr.end(), Index);
1253               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1254                 break;
1255             }
1256           }
1257         }
1258 
1259         // If there is a data symbol inside an ELF text section and we are only
1260         // disassembling text (applicable all architectures),
1261         // we are in a situation where we must print the data and not
1262         // disassemble it.
1263         if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1264             !DisassembleAll && Section.isText()) {
1265           // print out data up to 8 bytes at a time in hex and ascii
1266           uint8_t AsciiData[9] = {'\0'};
1267           uint8_t Byte;
1268           int NumBytes = 0;
1269 
1270           for (Index = Start; Index < End; Index += 1) {
1271             if (((SectionAddr + Index) < StartAddress) ||
1272                 ((SectionAddr + Index) > StopAddress))
1273               continue;
1274             if (NumBytes == 0) {
1275               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1276               outs() << "\t";
1277             }
1278             Byte = Bytes.slice(Index)[0];
1279             outs() << format(" %02x", Byte);
1280             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1281 
1282             uint8_t IndentOffset = 0;
1283             NumBytes++;
1284             if (Index == End - 1 || NumBytes > 8) {
1285               // Indent the space for less than 8 bytes data.
1286               // 2 spaces for byte and one for space between bytes
1287               IndentOffset = 3 * (8 - NumBytes);
1288               for (int Excess = NumBytes; Excess < 8; Excess++)
1289                 AsciiData[Excess] = '\0';
1290               NumBytes = 8;
1291             }
1292             if (NumBytes == 8) {
1293               AsciiData[8] = '\0';
1294               outs() << std::string(IndentOffset, ' ') << "         ";
1295               outs() << reinterpret_cast<char *>(AsciiData);
1296               outs() << '\n';
1297               NumBytes = 0;
1298             }
1299           }
1300         }
1301         if (Index >= End)
1302           break;
1303 
1304         // When -z or --disassemble-zeroes are given we always dissasemble them.
1305         // Otherwise we might want to skip zero bytes we see.
1306         if (!DisassembleZeroes) {
1307           uint64_t MaxOffset = End - Index;
1308           // For -reloc: print zero blocks patched by relocations, so that
1309           // relocations can be shown in the dump.
1310           if (RelCur != RelEnd)
1311             MaxOffset = RelCur->getOffset() - Index;
1312 
1313           if (size_t N =
1314                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1315             outs() << "\t\t..." << '\n';
1316             Index += N;
1317             if (Index >= End)
1318               break;
1319           }
1320         }
1321 
1322         // Disassemble a real instruction or a data when disassemble all is
1323         // provided
1324         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1325                                                    SectionAddr + Index, DebugOut,
1326                                                    CommentStream);
1327         if (Size == 0)
1328           Size = 1;
1329 
1330         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1331                       Bytes.slice(Index, Size),
1332                       {SectionAddr + Index + VMAAdjustment, Section.getIndex()},
1333                       outs(), "", *STI, &SP, &Rels);
1334         outs() << CommentStream.str();
1335         Comments.clear();
1336 
1337         // Try to resolve the target of a call, tail call, etc. to a specific
1338         // symbol.
1339         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1340                     MIA->isConditionalBranch(Inst))) {
1341           uint64_t Target;
1342           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1343             // In a relocatable object, the target's section must reside in
1344             // the same section as the call instruction or it is accessed
1345             // through a relocation.
1346             //
1347             // In a non-relocatable object, the target may be in any section.
1348             //
1349             // N.B. We don't walk the relocations in the relocatable case yet.
1350             auto *TargetSectionSymbols = &Symbols;
1351             if (!Obj->isRelocatableObject()) {
1352               auto SectionAddress = std::upper_bound(
1353                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1354                   [](uint64_t LHS,
1355                       const std::pair<uint64_t, SectionRef> &RHS) {
1356                     return LHS < RHS.first;
1357                   });
1358               if (SectionAddress != SectionAddresses.begin()) {
1359                 --SectionAddress;
1360                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1361               } else {
1362                 TargetSectionSymbols = &AbsoluteSymbols;
1363               }
1364             }
1365 
1366             // Find the first symbol in the section whose offset is less than
1367             // or equal to the target. If there isn't a section that contains
1368             // the target, find the nearest preceding absolute symbol.
1369             auto TargetSym = std::upper_bound(
1370                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1371                 Target, [](uint64_t LHS,
1372                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1373                   return LHS < std::get<0>(RHS);
1374                 });
1375             if (TargetSym == TargetSectionSymbols->begin()) {
1376               TargetSectionSymbols = &AbsoluteSymbols;
1377               TargetSym = std::upper_bound(
1378                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1379                   Target, [](uint64_t LHS,
1380                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1381                             return LHS < std::get<0>(RHS);
1382                           });
1383             }
1384             if (TargetSym != TargetSectionSymbols->begin()) {
1385               --TargetSym;
1386               uint64_t TargetAddress = std::get<0>(*TargetSym);
1387               StringRef TargetName = std::get<1>(*TargetSym);
1388               outs() << " <" << TargetName;
1389               uint64_t Disp = Target - TargetAddress;
1390               if (Disp)
1391                 outs() << "+0x" << Twine::utohexstr(Disp);
1392               outs() << '>';
1393             }
1394           }
1395         }
1396         outs() << "\n";
1397 
1398         // Hexagon does this in pretty printer
1399         if (Obj->getArch() != Triple::hexagon) {
1400           // Print relocation for instruction.
1401           while (RelCur != RelEnd) {
1402             uint64_t Offset = RelCur->getOffset();
1403             // If this relocation is hidden, skip it.
1404             if (getHidden(*RelCur) || ((SectionAddr + Offset) < StartAddress)) {
1405               ++RelCur;
1406               continue;
1407             }
1408 
1409             // Stop when RelCur's offset is past the current instruction.
1410             if (Offset >= Index + Size)
1411               break;
1412 
1413             // When --adjust-vma is used, update the address printed.
1414             if (RelCur->getSymbol() != Obj->symbol_end()) {
1415               Expected<section_iterator> SymSI =
1416                   RelCur->getSymbol()->getSection();
1417               if (SymSI && *SymSI != Obj->section_end() &&
1418                   (shouldAdjustVA(**SymSI)))
1419                 Offset += AdjustVMA;
1420             }
1421 
1422             printRelocation(*RelCur, SectionAddr + Offset,
1423                             Obj->getBytesInAddress());
1424             ++RelCur;
1425           }
1426         }
1427       }
1428     }
1429   }
1430 }
1431 
1432 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1433   if (StartAddress > StopAddress)
1434     error("Start address should be less than stop address");
1435 
1436   const Target *TheTarget = getTarget(Obj);
1437 
1438   // Package up features to be passed to target/subtarget
1439   SubtargetFeatures Features = Obj->getFeatures();
1440   if (!MAttrs.empty())
1441     for (unsigned I = 0; I != MAttrs.size(); ++I)
1442       Features.AddFeature(MAttrs[I]);
1443 
1444   std::unique_ptr<const MCRegisterInfo> MRI(
1445       TheTarget->createMCRegInfo(TripleName));
1446   if (!MRI)
1447     report_error(Obj->getFileName(),
1448                  "no register info for target " + TripleName);
1449 
1450   // Set up disassembler.
1451   std::unique_ptr<const MCAsmInfo> AsmInfo(
1452       TheTarget->createMCAsmInfo(*MRI, TripleName));
1453   if (!AsmInfo)
1454     report_error(Obj->getFileName(),
1455                  "no assembly info for target " + TripleName);
1456   std::unique_ptr<const MCSubtargetInfo> STI(
1457       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1458   if (!STI)
1459     report_error(Obj->getFileName(),
1460                  "no subtarget info for target " + TripleName);
1461   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1462   if (!MII)
1463     report_error(Obj->getFileName(),
1464                  "no instruction info for target " + TripleName);
1465   MCObjectFileInfo MOFI;
1466   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1467   // FIXME: for now initialize MCObjectFileInfo with default values
1468   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1469 
1470   std::unique_ptr<MCDisassembler> DisAsm(
1471       TheTarget->createMCDisassembler(*STI, Ctx));
1472   if (!DisAsm)
1473     report_error(Obj->getFileName(),
1474                  "no disassembler for target " + TripleName);
1475 
1476   std::unique_ptr<const MCInstrAnalysis> MIA(
1477       TheTarget->createMCInstrAnalysis(MII.get()));
1478 
1479   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1480   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1481       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1482   if (!IP)
1483     report_error(Obj->getFileName(),
1484                  "no instruction printer for target " + TripleName);
1485   IP->setPrintImmHex(PrintImmHex);
1486 
1487   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1488   SourcePrinter SP(Obj, TheTarget->getName());
1489 
1490   for (StringRef Opt : DisassemblerOptions)
1491     if (!IP->applyTargetSpecificCLOption(Opt))
1492       error("Unrecognized disassembler option: " + Opt);
1493 
1494   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(),
1495                     STI.get(), PIP, SP, InlineRelocs);
1496 }
1497 
1498 void llvm::printRelocations(const ObjectFile *Obj) {
1499   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1500                                                  "%08" PRIx64;
1501   // Regular objdump doesn't print relocations in non-relocatable object
1502   // files.
1503   if (!Obj->isRelocatableObject())
1504     return;
1505 
1506   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1507     if (Section.relocation_begin() == Section.relocation_end())
1508       continue;
1509     StringRef SecName;
1510     error(Section.getName(SecName));
1511     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1512     for (const RelocationRef &Reloc : Section.relocations()) {
1513       uint64_t Address = Reloc.getOffset();
1514       SmallString<32> RelocName;
1515       SmallString<32> ValueStr;
1516       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1517         continue;
1518       Reloc.getTypeName(RelocName);
1519       error(getRelocationValueString(Reloc, ValueStr));
1520       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1521              << ValueStr << "\n";
1522     }
1523     outs() << "\n";
1524   }
1525 }
1526 
1527 void llvm::printDynamicRelocations(const ObjectFile *Obj) {
1528   // For the moment, this option is for ELF only
1529   if (!Obj->isELF())
1530     return;
1531 
1532   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1533   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1534     error("not a dynamic object");
1535     return;
1536   }
1537 
1538   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1539   if (DynRelSec.empty())
1540     return;
1541 
1542   outs() << "DYNAMIC RELOCATION RECORDS\n";
1543   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1544   for (const SectionRef &Section : DynRelSec) {
1545     if (Section.relocation_begin() == Section.relocation_end())
1546       continue;
1547     for (const RelocationRef &Reloc : Section.relocations()) {
1548       uint64_t Address = Reloc.getOffset();
1549       SmallString<32> RelocName;
1550       SmallString<32> ValueStr;
1551       Reloc.getTypeName(RelocName);
1552       error(getRelocationValueString(Reloc, ValueStr));
1553       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1554              << ValueStr << "\n";
1555     }
1556   }
1557 }
1558 
1559 // Returns true if we need to show LMA column when dumping section headers. We
1560 // show it only when the platform is ELF and either we have at least one section
1561 // whose VMA and LMA are different and/or when --show-lma flag is used.
1562 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1563   if (!Obj->isELF())
1564     return false;
1565   for (const SectionRef &S : ToolSectionFilter(*Obj))
1566     if (S.getAddress() != getELFSectionLMA(S))
1567       return true;
1568   return ShowLMA;
1569 }
1570 
1571 void llvm::printSectionHeaders(const ObjectFile *Obj) {
1572   bool HasLMAColumn = shouldDisplayLMA(Obj);
1573   if (HasLMAColumn)
1574     outs() << "Sections:\n"
1575               "Idx Name          Size     VMA              LMA              "
1576               "Type\n";
1577   else
1578     outs() << "Sections:\n"
1579               "Idx Name          Size     VMA          Type\n";
1580 
1581   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1582     StringRef Name;
1583     error(Section.getName(Name));
1584     uint64_t VMA = Section.getAddress();
1585     if (shouldAdjustVA(Section))
1586       VMA += AdjustVMA;
1587 
1588     uint64_t Size = Section.getSize();
1589     bool Text = Section.isText();
1590     bool Data = Section.isData();
1591     bool BSS = Section.isBSS();
1592     std::string Type = (std::string(Text ? "TEXT " : "") +
1593                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1594 
1595     if (HasLMAColumn)
1596       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1597                        " %s\n",
1598                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1599                        VMA, getELFSectionLMA(Section), Type.c_str());
1600     else
1601       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1602                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1603                        VMA, Type.c_str());
1604   }
1605   outs() << "\n";
1606 }
1607 
1608 void llvm::printSectionContents(const ObjectFile *Obj) {
1609   std::error_code EC;
1610   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1611     StringRef Name;
1612     StringRef Contents;
1613     error(Section.getName(Name));
1614     uint64_t BaseAddr = Section.getAddress();
1615     uint64_t Size = Section.getSize();
1616     if (!Size)
1617       continue;
1618 
1619     outs() << "Contents of section " << Name << ":\n";
1620     if (Section.isBSS()) {
1621       outs() << format("<skipping contents of bss section at [%04" PRIx64
1622                        ", %04" PRIx64 ")>\n",
1623                        BaseAddr, BaseAddr + Size);
1624       continue;
1625     }
1626 
1627     error(Section.getContents(Contents));
1628 
1629     // Dump out the content as hex and printable ascii characters.
1630     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1631       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1632       // Dump line of hex.
1633       for (std::size_t I = 0; I < 16; ++I) {
1634         if (I != 0 && I % 4 == 0)
1635           outs() << ' ';
1636         if (Addr + I < End)
1637           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1638                  << hexdigit(Contents[Addr + I] & 0xF, true);
1639         else
1640           outs() << "  ";
1641       }
1642       // Print ascii.
1643       outs() << "  ";
1644       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1645         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1646           outs() << Contents[Addr + I];
1647         else
1648           outs() << ".";
1649       }
1650       outs() << "\n";
1651     }
1652   }
1653 }
1654 
1655 void llvm::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1656                             StringRef ArchitectureName) {
1657   outs() << "SYMBOL TABLE:\n";
1658 
1659   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1660     printCOFFSymbolTable(Coff);
1661     return;
1662   }
1663 
1664   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1665     // Skip printing the special zero symbol when dumping an ELF file.
1666     // This makes the output consistent with the GNU objdump.
1667     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1668       continue;
1669 
1670     const SymbolRef &Symbol = *I;
1671     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1672     if (!AddressOrError)
1673       report_error(ArchiveName, O->getFileName(), AddressOrError.takeError(),
1674                    ArchitectureName);
1675     uint64_t Address = *AddressOrError;
1676     if ((Address < StartAddress) || (Address > StopAddress))
1677       continue;
1678     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1679     if (!TypeOrError)
1680       report_error(ArchiveName, O->getFileName(), TypeOrError.takeError(),
1681                    ArchitectureName);
1682     SymbolRef::Type Type = *TypeOrError;
1683     uint32_t Flags = Symbol.getFlags();
1684     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1685     if (!SectionOrErr)
1686       report_error(ArchiveName, O->getFileName(), SectionOrErr.takeError(),
1687                    ArchitectureName);
1688     section_iterator Section = *SectionOrErr;
1689     StringRef Name;
1690     if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
1691       Section->getName(Name);
1692     } else {
1693       Expected<StringRef> NameOrErr = Symbol.getName();
1694       if (!NameOrErr)
1695         report_error(ArchiveName, O->getFileName(), NameOrErr.takeError(),
1696                      ArchitectureName);
1697       Name = *NameOrErr;
1698     }
1699 
1700     bool Global = Flags & SymbolRef::SF_Global;
1701     bool Weak = Flags & SymbolRef::SF_Weak;
1702     bool Absolute = Flags & SymbolRef::SF_Absolute;
1703     bool Common = Flags & SymbolRef::SF_Common;
1704     bool Hidden = Flags & SymbolRef::SF_Hidden;
1705 
1706     char GlobLoc = ' ';
1707     if (Type != SymbolRef::ST_Unknown)
1708       GlobLoc = Global ? 'g' : 'l';
1709     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1710                  ? 'd' : ' ';
1711     char FileFunc = ' ';
1712     if (Type == SymbolRef::ST_File)
1713       FileFunc = 'f';
1714     else if (Type == SymbolRef::ST_Function)
1715       FileFunc = 'F';
1716     else if (Type == SymbolRef::ST_Data)
1717       FileFunc = 'O';
1718 
1719     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1720                                                    "%08" PRIx64;
1721 
1722     outs() << format(Fmt, Address) << " "
1723            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1724            << (Weak ? 'w' : ' ') // Weak?
1725            << ' ' // Constructor. Not supported yet.
1726            << ' ' // Warning. Not supported yet.
1727            << ' ' // Indirect reference to another symbol.
1728            << Debug // Debugging (d) or dynamic (D) symbol.
1729            << FileFunc // Name of function (F), file (f) or object (O).
1730            << ' ';
1731     if (Absolute) {
1732       outs() << "*ABS*";
1733     } else if (Common) {
1734       outs() << "*COM*";
1735     } else if (Section == O->section_end()) {
1736       outs() << "*UND*";
1737     } else {
1738       if (const MachOObjectFile *MachO =
1739           dyn_cast<const MachOObjectFile>(O)) {
1740         DataRefImpl DR = Section->getRawDataRefImpl();
1741         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1742         outs() << SegmentName << ",";
1743       }
1744       StringRef SectionName;
1745       error(Section->getName(SectionName));
1746       outs() << SectionName;
1747     }
1748 
1749     outs() << '\t';
1750     if (Common || isa<ELFObjectFileBase>(O)) {
1751       uint64_t Val =
1752           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1753       outs() << format("\t %08" PRIx64 " ", Val);
1754     }
1755 
1756     if (Hidden)
1757       outs() << ".hidden ";
1758 
1759     if (Demangle)
1760       outs() << demangle(Name) << '\n';
1761     else
1762       outs() << Name << '\n';
1763   }
1764 }
1765 
1766 static void printUnwindInfo(const ObjectFile *O) {
1767   outs() << "Unwind info:\n\n";
1768 
1769   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1770     printCOFFUnwindInfo(Coff);
1771   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1772     printMachOUnwindInfo(MachO);
1773   else
1774     // TODO: Extract DWARF dump tool to objdump.
1775     WithColor::error(errs(), ToolName)
1776         << "This operation is only currently supported "
1777            "for COFF and MachO object files.\n";
1778 }
1779 
1780 void llvm::printExportsTrie(const ObjectFile *o) {
1781   outs() << "Exports trie:\n";
1782   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1783     printMachOExportsTrie(MachO);
1784   else
1785     WithColor::error(errs(), ToolName)
1786         << "This operation is only currently supported "
1787            "for Mach-O executable files.\n";
1788 }
1789 
1790 void llvm::printRebaseTable(ObjectFile *o) {
1791   outs() << "Rebase table:\n";
1792   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1793     printMachORebaseTable(MachO);
1794   else
1795     WithColor::error(errs(), ToolName)
1796         << "This operation is only currently supported "
1797            "for Mach-O executable files.\n";
1798 }
1799 
1800 void llvm::printBindTable(ObjectFile *o) {
1801   outs() << "Bind table:\n";
1802   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1803     printMachOBindTable(MachO);
1804   else
1805     WithColor::error(errs(), ToolName)
1806         << "This operation is only currently supported "
1807            "for Mach-O executable files.\n";
1808 }
1809 
1810 void llvm::printLazyBindTable(ObjectFile *o) {
1811   outs() << "Lazy bind table:\n";
1812   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1813     printMachOLazyBindTable(MachO);
1814   else
1815     WithColor::error(errs(), ToolName)
1816         << "This operation is only currently supported "
1817            "for Mach-O executable files.\n";
1818 }
1819 
1820 void llvm::printWeakBindTable(ObjectFile *o) {
1821   outs() << "Weak bind table:\n";
1822   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1823     printMachOWeakBindTable(MachO);
1824   else
1825     WithColor::error(errs(), ToolName)
1826         << "This operation is only currently supported "
1827            "for Mach-O executable files.\n";
1828 }
1829 
1830 /// Dump the raw contents of the __clangast section so the output can be piped
1831 /// into llvm-bcanalyzer.
1832 void llvm::printRawClangAST(const ObjectFile *Obj) {
1833   if (outs().is_displayed()) {
1834     WithColor::error(errs(), ToolName)
1835         << "The -raw-clang-ast option will dump the raw binary contents of "
1836            "the clang ast section.\n"
1837            "Please redirect the output to a file or another program such as "
1838            "llvm-bcanalyzer.\n";
1839     return;
1840   }
1841 
1842   StringRef ClangASTSectionName("__clangast");
1843   if (isa<COFFObjectFile>(Obj)) {
1844     ClangASTSectionName = "clangast";
1845   }
1846 
1847   Optional<object::SectionRef> ClangASTSection;
1848   for (auto Sec : ToolSectionFilter(*Obj)) {
1849     StringRef Name;
1850     Sec.getName(Name);
1851     if (Name == ClangASTSectionName) {
1852       ClangASTSection = Sec;
1853       break;
1854     }
1855   }
1856   if (!ClangASTSection)
1857     return;
1858 
1859   StringRef ClangASTContents;
1860   error(ClangASTSection.getValue().getContents(ClangASTContents));
1861   outs().write(ClangASTContents.data(), ClangASTContents.size());
1862 }
1863 
1864 static void printFaultMaps(const ObjectFile *Obj) {
1865   StringRef FaultMapSectionName;
1866 
1867   if (isa<ELFObjectFileBase>(Obj)) {
1868     FaultMapSectionName = ".llvm_faultmaps";
1869   } else if (isa<MachOObjectFile>(Obj)) {
1870     FaultMapSectionName = "__llvm_faultmaps";
1871   } else {
1872     WithColor::error(errs(), ToolName)
1873         << "This operation is only currently supported "
1874            "for ELF and Mach-O executable files.\n";
1875     return;
1876   }
1877 
1878   Optional<object::SectionRef> FaultMapSection;
1879 
1880   for (auto Sec : ToolSectionFilter(*Obj)) {
1881     StringRef Name;
1882     Sec.getName(Name);
1883     if (Name == FaultMapSectionName) {
1884       FaultMapSection = Sec;
1885       break;
1886     }
1887   }
1888 
1889   outs() << "FaultMap table:\n";
1890 
1891   if (!FaultMapSection.hasValue()) {
1892     outs() << "<not found>\n";
1893     return;
1894   }
1895 
1896   StringRef FaultMapContents;
1897   error(FaultMapSection.getValue().getContents(FaultMapContents));
1898 
1899   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1900                      FaultMapContents.bytes_end());
1901 
1902   outs() << FMP;
1903 }
1904 
1905 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1906   if (O->isELF()) {
1907     printELFFileHeader(O);
1908     printELFDynamicSection(O);
1909     printELFSymbolVersionInfo(O);
1910     return;
1911   }
1912   if (O->isCOFF())
1913     return printCOFFFileHeader(O);
1914   if (O->isWasm())
1915     return printWasmFileHeader(O);
1916   if (O->isMachO()) {
1917     printMachOFileHeader(O);
1918     if (!OnlyFirst)
1919       printMachOLoadCommands(O);
1920     return;
1921   }
1922   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1923 }
1924 
1925 static void printFileHeaders(const ObjectFile *O) {
1926   if (!O->isELF() && !O->isCOFF())
1927     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1928 
1929   Triple::ArchType AT = O->getArch();
1930   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1931   Expected<uint64_t> StartAddrOrErr = O->getStartAddress();
1932   if (!StartAddrOrErr)
1933     report_error(O->getFileName(), StartAddrOrErr.takeError());
1934 
1935   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1936   uint64_t Address = StartAddrOrErr.get();
1937   outs() << "start address: "
1938          << "0x" << format(Fmt.data(), Address) << "\n\n";
1939 }
1940 
1941 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1942   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1943   if (!ModeOrErr) {
1944     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1945     consumeError(ModeOrErr.takeError());
1946     return;
1947   }
1948   sys::fs::perms Mode = ModeOrErr.get();
1949   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1950   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1951   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1952   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1953   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1954   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1955   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1956   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1957   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1958 
1959   outs() << " ";
1960 
1961   Expected<unsigned> UIDOrErr = C.getUID();
1962   if (!UIDOrErr)
1963     report_error(Filename, UIDOrErr.takeError());
1964   unsigned UID = UIDOrErr.get();
1965   outs() << format("%d/", UID);
1966 
1967   Expected<unsigned> GIDOrErr = C.getGID();
1968   if (!GIDOrErr)
1969     report_error(Filename, GIDOrErr.takeError());
1970   unsigned GID = GIDOrErr.get();
1971   outs() << format("%-d ", GID);
1972 
1973   Expected<uint64_t> Size = C.getRawSize();
1974   if (!Size)
1975     report_error(Filename, Size.takeError());
1976   outs() << format("%6" PRId64, Size.get()) << " ";
1977 
1978   StringRef RawLastModified = C.getRawLastModified();
1979   unsigned Seconds;
1980   if (RawLastModified.getAsInteger(10, Seconds))
1981     outs() << "(date: \"" << RawLastModified
1982            << "\" contains non-decimal chars) ";
1983   else {
1984     // Since ctime(3) returns a 26 character string of the form:
1985     // "Sun Sep 16 01:03:52 1973\n\0"
1986     // just print 24 characters.
1987     time_t t = Seconds;
1988     outs() << format("%.24s ", ctime(&t));
1989   }
1990 
1991   StringRef Name = "";
1992   Expected<StringRef> NameOrErr = C.getName();
1993   if (!NameOrErr) {
1994     consumeError(NameOrErr.takeError());
1995     Expected<StringRef> RawNameOrErr = C.getRawName();
1996     if (!RawNameOrErr)
1997       report_error(Filename, NameOrErr.takeError());
1998     Name = RawNameOrErr.get();
1999   } else {
2000     Name = NameOrErr.get();
2001   }
2002   outs() << Name << "\n";
2003 }
2004 
2005 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2006                        const Archive::Child *C = nullptr) {
2007   // Avoid other output when using a raw option.
2008   if (!RawClangAST) {
2009     outs() << '\n';
2010     if (A)
2011       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2012     else
2013       outs() << O->getFileName();
2014     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2015   }
2016 
2017   StringRef ArchiveName = A ? A->getFileName() : "";
2018   if (FileHeaders)
2019     printFileHeaders(O);
2020   if (ArchiveHeaders && !MachOOpt && C)
2021     printArchiveChild(ArchiveName, *C);
2022   if (Disassemble)
2023     disassembleObject(O, Relocations);
2024   if (Relocations && !Disassemble)
2025     printRelocations(O);
2026   if (DynamicRelocations)
2027     printDynamicRelocations(O);
2028   if (SectionHeaders)
2029     printSectionHeaders(O);
2030   if (SectionContents)
2031     printSectionContents(O);
2032   if (SymbolTable)
2033     printSymbolTable(O, ArchiveName);
2034   if (UnwindInfo)
2035     printUnwindInfo(O);
2036   if (PrivateHeaders || FirstPrivateHeader)
2037     printPrivateFileHeaders(O, FirstPrivateHeader);
2038   if (ExportsTrie)
2039     printExportsTrie(O);
2040   if (Rebase)
2041     printRebaseTable(O);
2042   if (Bind)
2043     printBindTable(O);
2044   if (LazyBind)
2045     printLazyBindTable(O);
2046   if (WeakBind)
2047     printWeakBindTable(O);
2048   if (RawClangAST)
2049     printRawClangAST(O);
2050   if (PrintFaultMaps)
2051     printFaultMaps(O);
2052   if (DwarfDumpType != DIDT_Null) {
2053     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2054     // Dump the complete DWARF structure.
2055     DIDumpOptions DumpOpts;
2056     DumpOpts.DumpType = DwarfDumpType;
2057     DICtx->dump(outs(), DumpOpts);
2058   }
2059 }
2060 
2061 static void dumpObject(const COFFImportFile *I, const Archive *A,
2062                        const Archive::Child *C = nullptr) {
2063   StringRef ArchiveName = A ? A->getFileName() : "";
2064 
2065   // Avoid other output when using a raw option.
2066   if (!RawClangAST)
2067     outs() << '\n'
2068            << ArchiveName << "(" << I->getFileName() << ")"
2069            << ":\tfile format COFF-import-file"
2070            << "\n\n";
2071 
2072   if (ArchiveHeaders && !MachOOpt && C)
2073     printArchiveChild(ArchiveName, *C);
2074   if (SymbolTable)
2075     printCOFFSymbolTable(I);
2076 }
2077 
2078 /// Dump each object file in \a a;
2079 static void dumpArchive(const Archive *A) {
2080   Error Err = Error::success();
2081   for (auto &C : A->children(Err)) {
2082     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2083     if (!ChildOrErr) {
2084       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2085         report_error(A->getFileName(), C, std::move(E));
2086       continue;
2087     }
2088     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2089       dumpObject(O, A, &C);
2090     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2091       dumpObject(I, A, &C);
2092     else
2093       report_error(A->getFileName(), object_error::invalid_file_type);
2094   }
2095   if (Err)
2096     report_error(A->getFileName(), std::move(Err));
2097 }
2098 
2099 /// Open file and figure out how to dump it.
2100 static void dumpInput(StringRef file) {
2101   // If we are using the Mach-O specific object file parser, then let it parse
2102   // the file and process the command line options.  So the -arch flags can
2103   // be used to select specific slices, etc.
2104   if (MachOOpt) {
2105     parseInputMachO(file);
2106     return;
2107   }
2108 
2109   // Attempt to open the binary.
2110   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2111   if (!BinaryOrErr)
2112     report_error(file, BinaryOrErr.takeError());
2113   Binary &Binary = *BinaryOrErr.get().getBinary();
2114 
2115   if (Archive *A = dyn_cast<Archive>(&Binary))
2116     dumpArchive(A);
2117   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2118     dumpObject(O);
2119   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2120     parseInputMachO(UB);
2121   else
2122     report_error(file, object_error::invalid_file_type);
2123 }
2124 
2125 int main(int argc, char **argv) {
2126   InitLLVM X(argc, argv);
2127 
2128   // Initialize targets and assembly printers/parsers.
2129   llvm::InitializeAllTargetInfos();
2130   llvm::InitializeAllTargetMCs();
2131   llvm::InitializeAllDisassemblers();
2132 
2133   // Register the target printer for --version.
2134   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2135 
2136   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2137 
2138   ToolName = argv[0];
2139 
2140   // Defaults to a.out if no filenames specified.
2141   if (InputFilenames.empty())
2142     InputFilenames.push_back("a.out");
2143 
2144   if (AllHeaders)
2145     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2146         SectionHeaders = SymbolTable = true;
2147 
2148   if (DisassembleAll || PrintSource || PrintLines)
2149     Disassemble = true;
2150 
2151   if (!Disassemble
2152       && !Relocations
2153       && !DynamicRelocations
2154       && !SectionHeaders
2155       && !SectionContents
2156       && !SymbolTable
2157       && !UnwindInfo
2158       && !PrivateHeaders
2159       && !FileHeaders
2160       && !FirstPrivateHeader
2161       && !ExportsTrie
2162       && !Rebase
2163       && !Bind
2164       && !LazyBind
2165       && !WeakBind
2166       && !RawClangAST
2167       && !(UniversalHeaders && MachOOpt)
2168       && !ArchiveHeaders
2169       && !(IndirectSymbols && MachOOpt)
2170       && !(DataInCode && MachOOpt)
2171       && !(LinkOptHints && MachOOpt)
2172       && !(InfoPlist && MachOOpt)
2173       && !(DylibsUsed && MachOOpt)
2174       && !(DylibId && MachOOpt)
2175       && !(ObjcMetaData && MachOOpt)
2176       && !(!FilterSections.empty() && MachOOpt)
2177       && !PrintFaultMaps
2178       && DwarfDumpType == DIDT_Null) {
2179     cl::PrintHelpMessage();
2180     return 2;
2181   }
2182 
2183   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2184                         DisassembleFunctions.end());
2185 
2186   llvm::for_each(InputFilenames, dumpInput);
2187 
2188   return EXIT_SUCCESS;
2189 }
2190