xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 16c7bdaf3245d23b9b441144f5efb610e2044927)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
30 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstPrinter.h"
33 #include "llvm/MC/MCInstrAnalysis.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCObjectFileInfo.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/MC/MCSubtargetInfo.h"
38 #include "llvm/Object/Archive.h"
39 #include "llvm/Object/COFF.h"
40 #include "llvm/Object/COFFImportFile.h"
41 #include "llvm/Object/ELFObjectFile.h"
42 #include "llvm/Object/MachO.h"
43 #include "llvm/Object/ObjectFile.h"
44 #include "llvm/Object/Wasm.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/Errc.h"
49 #include "llvm/Support/FileSystem.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/GraphWriter.h"
52 #include "llvm/Support/Host.h"
53 #include "llvm/Support/ManagedStatic.h"
54 #include "llvm/Support/MemoryBuffer.h"
55 #include "llvm/Support/PrettyStackTrace.h"
56 #include "llvm/Support/Signals.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/TargetRegistry.h"
59 #include "llvm/Support/TargetSelect.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include <algorithm>
62 #include <cctype>
63 #include <cstring>
64 #include <system_error>
65 #include <unordered_map>
66 #include <utility>
67 
68 using namespace llvm;
69 using namespace object;
70 
71 static cl::list<std::string>
72 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
73 
74 cl::opt<bool>
75 llvm::Disassemble("disassemble",
76   cl::desc("Display assembler mnemonics for the machine instructions"));
77 static cl::alias
78 Disassembled("d", cl::desc("Alias for --disassemble"),
79              cl::aliasopt(Disassemble));
80 
81 cl::opt<bool>
82 llvm::DisassembleAll("disassemble-all",
83   cl::desc("Display assembler mnemonics for the machine instructions"));
84 static cl::alias
85 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
86              cl::aliasopt(DisassembleAll));
87 
88 cl::opt<bool>
89 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
90 
91 cl::opt<bool>
92 llvm::SectionContents("s", cl::desc("Display the content of each section"));
93 
94 cl::opt<bool>
95 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
96 
97 cl::opt<bool>
98 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
99 
100 cl::opt<bool>
101 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
102 
103 cl::opt<bool>
104 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
105 
106 cl::opt<bool>
107 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
108 
109 cl::opt<bool>
110 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
111 
112 cl::opt<bool>
113 llvm::RawClangAST("raw-clang-ast",
114     cl::desc("Dump the raw binary contents of the clang AST section"));
115 
116 static cl::opt<bool>
117 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
118 static cl::alias
119 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
120 
121 cl::opt<std::string>
122 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
123                                     "see -version for available targets"));
124 
125 cl::opt<std::string>
126 llvm::MCPU("mcpu",
127      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
128      cl::value_desc("cpu-name"),
129      cl::init(""));
130 
131 cl::opt<std::string>
132 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
133                                 "see -version for available targets"));
134 
135 cl::opt<bool>
136 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
137                                                  "headers for each section."));
138 static cl::alias
139 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
140                     cl::aliasopt(SectionHeaders));
141 static cl::alias
142 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
143                       cl::aliasopt(SectionHeaders));
144 
145 cl::list<std::string>
146 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
147                                          "With -macho dump segment,section"));
148 cl::alias
149 static FilterSectionsj("j", cl::desc("Alias for --section"),
150                  cl::aliasopt(llvm::FilterSections));
151 
152 cl::list<std::string>
153 llvm::MAttrs("mattr",
154   cl::CommaSeparated,
155   cl::desc("Target specific attributes"),
156   cl::value_desc("a1,+a2,-a3,..."));
157 
158 cl::opt<bool>
159 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
160                                                  "instructions, do not print "
161                                                  "the instruction bytes."));
162 cl::opt<bool>
163 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
164 
165 cl::opt<bool>
166 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
167 
168 static cl::alias
169 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
170                 cl::aliasopt(UnwindInfo));
171 
172 cl::opt<bool>
173 llvm::PrivateHeaders("private-headers",
174                      cl::desc("Display format specific file headers"));
175 
176 cl::opt<bool>
177 llvm::FirstPrivateHeader("private-header",
178                          cl::desc("Display only the first format specific file "
179                                   "header"));
180 
181 static cl::alias
182 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
183                     cl::aliasopt(PrivateHeaders));
184 
185 cl::opt<bool>
186     llvm::PrintImmHex("print-imm-hex",
187                       cl::desc("Use hex format for immediate values"));
188 
189 cl::opt<bool> PrintFaultMaps("fault-map-section",
190                              cl::desc("Display contents of faultmap section"));
191 
192 cl::opt<DIDumpType> llvm::DwarfDumpType(
193     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
194     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
195 
196 cl::opt<bool> PrintSource(
197     "source",
198     cl::desc(
199         "Display source inlined with disassembly. Implies disassemble object"));
200 
201 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
202                            cl::aliasopt(PrintSource));
203 
204 cl::opt<bool> PrintLines("line-numbers",
205                          cl::desc("Display source line numbers with "
206                                   "disassembly. Implies disassemble object"));
207 
208 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
209                           cl::aliasopt(PrintLines));
210 
211 cl::opt<unsigned long long>
212     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
213                  cl::value_desc("address"), cl::init(0));
214 cl::opt<unsigned long long>
215     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
216                 cl::value_desc("address"), cl::init(UINT64_MAX));
217 static StringRef ToolName;
218 
219 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
220 
221 namespace {
222 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
223 
224 class SectionFilterIterator {
225 public:
226   SectionFilterIterator(FilterPredicate P,
227                         llvm::object::section_iterator const &I,
228                         llvm::object::section_iterator const &E)
229       : Predicate(std::move(P)), Iterator(I), End(E) {
230     ScanPredicate();
231   }
232   const llvm::object::SectionRef &operator*() const { return *Iterator; }
233   SectionFilterIterator &operator++() {
234     ++Iterator;
235     ScanPredicate();
236     return *this;
237   }
238   bool operator!=(SectionFilterIterator const &Other) const {
239     return Iterator != Other.Iterator;
240   }
241 
242 private:
243   void ScanPredicate() {
244     while (Iterator != End && !Predicate(*Iterator)) {
245       ++Iterator;
246     }
247   }
248   FilterPredicate Predicate;
249   llvm::object::section_iterator Iterator;
250   llvm::object::section_iterator End;
251 };
252 
253 class SectionFilter {
254 public:
255   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
256       : Predicate(std::move(P)), Object(O) {}
257   SectionFilterIterator begin() {
258     return SectionFilterIterator(Predicate, Object.section_begin(),
259                                  Object.section_end());
260   }
261   SectionFilterIterator end() {
262     return SectionFilterIterator(Predicate, Object.section_end(),
263                                  Object.section_end());
264   }
265 
266 private:
267   FilterPredicate Predicate;
268   llvm::object::ObjectFile const &Object;
269 };
270 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
271   return SectionFilter(
272       [](llvm::object::SectionRef const &S) {
273         if (FilterSections.empty())
274           return true;
275         llvm::StringRef String;
276         std::error_code error = S.getName(String);
277         if (error)
278           return false;
279         return is_contained(FilterSections, String);
280       },
281       O);
282 }
283 }
284 
285 void llvm::error(std::error_code EC) {
286   if (!EC)
287     return;
288 
289   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
290   errs().flush();
291   exit(1);
292 }
293 
294 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
295   errs() << ToolName << ": " << Message << ".\n";
296   errs().flush();
297   exit(1);
298 }
299 
300 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
301                                                 Twine Message) {
302   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
303   exit(1);
304 }
305 
306 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
307                                                 std::error_code EC) {
308   assert(EC);
309   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
310   exit(1);
311 }
312 
313 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
314                                                 llvm::Error E) {
315   assert(E);
316   std::string Buf;
317   raw_string_ostream OS(Buf);
318   logAllUnhandledErrors(std::move(E), OS, "");
319   OS.flush();
320   errs() << ToolName << ": '" << File << "': " << Buf;
321   exit(1);
322 }
323 
324 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
325                                                 StringRef FileName,
326                                                 llvm::Error E,
327                                                 StringRef ArchitectureName) {
328   assert(E);
329   errs() << ToolName << ": ";
330   if (ArchiveName != "")
331     errs() << ArchiveName << "(" << FileName << ")";
332   else
333     errs() << "'" << FileName << "'";
334   if (!ArchitectureName.empty())
335     errs() << " (for architecture " << ArchitectureName << ")";
336   std::string Buf;
337   raw_string_ostream OS(Buf);
338   logAllUnhandledErrors(std::move(E), OS, "");
339   OS.flush();
340   errs() << ": " << Buf;
341   exit(1);
342 }
343 
344 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
345                                                 const object::Archive::Child &C,
346                                                 llvm::Error E,
347                                                 StringRef ArchitectureName) {
348   Expected<StringRef> NameOrErr = C.getName();
349   // TODO: if we have a error getting the name then it would be nice to print
350   // the index of which archive member this is and or its offset in the
351   // archive instead of "???" as the name.
352   if (!NameOrErr) {
353     consumeError(NameOrErr.takeError());
354     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
355   } else
356     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
357                        ArchitectureName);
358 }
359 
360 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
361   // Figure out the target triple.
362   llvm::Triple TheTriple("unknown-unknown-unknown");
363   if (TripleName.empty()) {
364     if (Obj) {
365       TheTriple = Obj->makeTriple();
366     }
367   } else {
368     TheTriple.setTriple(Triple::normalize(TripleName));
369 
370     // Use the triple, but also try to combine with ARM build attributes.
371     if (Obj) {
372       auto Arch = Obj->getArch();
373       if (Arch == Triple::arm || Arch == Triple::armeb) {
374         Obj->setARMSubArch(TheTriple);
375       }
376     }
377   }
378 
379   // Get the target specific parser.
380   std::string Error;
381   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
382                                                          Error);
383   if (!TheTarget) {
384     if (Obj)
385       report_error(Obj->getFileName(), "can't find target: " + Error);
386     else
387       error("can't find target: " + Error);
388   }
389 
390   // Update the triple name and return the found target.
391   TripleName = TheTriple.getTriple();
392   return TheTarget;
393 }
394 
395 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
396   return a.getOffset() < b.getOffset();
397 }
398 
399 namespace {
400 class SourcePrinter {
401 protected:
402   DILineInfo OldLineInfo;
403   const ObjectFile *Obj = nullptr;
404   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
405   // File name to file contents of source
406   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
407   // Mark the line endings of the cached source
408   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
409 
410 private:
411   bool cacheSource(const DILineInfo& LineInfoFile);
412 
413 public:
414   SourcePrinter() = default;
415   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
416     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
417         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
418         DefaultArch);
419     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
420   }
421   virtual ~SourcePrinter() = default;
422   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
423                                StringRef Delimiter = "; ");
424 };
425 
426 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
427   std::unique_ptr<MemoryBuffer> Buffer;
428   if (LineInfo.Source) {
429     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
430   } else {
431     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
432     if (!BufferOrError)
433       return false;
434     Buffer = std::move(*BufferOrError);
435   }
436   // Chomp the file to get lines
437   size_t BufferSize = Buffer->getBufferSize();
438   const char *BufferStart = Buffer->getBufferStart();
439   for (const char *Start = BufferStart, *End = BufferStart;
440        End < BufferStart + BufferSize; End++)
441     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
442         (*End == '\r' && *(End + 1) == '\n')) {
443       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
444       if (*End == '\r')
445         End++;
446       Start = End + 1;
447     }
448   SourceCache[LineInfo.FileName] = std::move(Buffer);
449   return true;
450 }
451 
452 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
453                                     StringRef Delimiter) {
454   if (!Symbolizer)
455     return;
456   DILineInfo LineInfo = DILineInfo();
457   auto ExpectecLineInfo =
458       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
459   if (!ExpectecLineInfo)
460     consumeError(ExpectecLineInfo.takeError());
461   else
462     LineInfo = *ExpectecLineInfo;
463 
464   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
465       LineInfo.Line == 0)
466     return;
467 
468   if (PrintLines)
469     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
470   if (PrintSource) {
471     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
472       if (!cacheSource(LineInfo))
473         return;
474     auto FileBuffer = SourceCache.find(LineInfo.FileName);
475     if (FileBuffer != SourceCache.end()) {
476       auto LineBuffer = LineCache.find(LineInfo.FileName);
477       if (LineBuffer != LineCache.end()) {
478         if (LineInfo.Line > LineBuffer->second.size())
479           return;
480         // Vector begins at 0, line numbers are non-zero
481         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
482            << "\n";
483       }
484     }
485   }
486   OldLineInfo = LineInfo;
487 }
488 
489 static bool isArmElf(const ObjectFile *Obj) {
490   return (Obj->isELF() &&
491           (Obj->getArch() == Triple::aarch64 ||
492            Obj->getArch() == Triple::aarch64_be ||
493            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
494            Obj->getArch() == Triple::thumb ||
495            Obj->getArch() == Triple::thumbeb));
496 }
497 
498 class PrettyPrinter {
499 public:
500   virtual ~PrettyPrinter() = default;
501   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
502                          ArrayRef<uint8_t> Bytes, uint64_t Address,
503                          raw_ostream &OS, StringRef Annot,
504                          MCSubtargetInfo const &STI, SourcePrinter *SP) {
505     if (SP && (PrintSource || PrintLines))
506       SP->printSourceLine(OS, Address);
507     if (!NoLeadingAddr)
508       OS << format("%8" PRIx64 ":", Address);
509     if (!NoShowRawInsn) {
510       OS << "\t";
511       dumpBytes(Bytes, OS);
512     }
513     if (MI)
514       IP.printInst(MI, OS, "", STI);
515     else
516       OS << " <unknown>";
517   }
518 };
519 PrettyPrinter PrettyPrinterInst;
520 class HexagonPrettyPrinter : public PrettyPrinter {
521 public:
522   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
523                  raw_ostream &OS) {
524     uint32_t opcode =
525       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
526     if (!NoLeadingAddr)
527       OS << format("%8" PRIx64 ":", Address);
528     if (!NoShowRawInsn) {
529       OS << "\t";
530       dumpBytes(Bytes.slice(0, 4), OS);
531       OS << format("%08" PRIx32, opcode);
532     }
533   }
534   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
535                  uint64_t Address, raw_ostream &OS, StringRef Annot,
536                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
537     if (SP && (PrintSource || PrintLines))
538       SP->printSourceLine(OS, Address, "");
539     if (!MI) {
540       printLead(Bytes, Address, OS);
541       OS << " <unknown>";
542       return;
543     }
544     std::string Buffer;
545     {
546       raw_string_ostream TempStream(Buffer);
547       IP.printInst(MI, TempStream, "", STI);
548     }
549     StringRef Contents(Buffer);
550     // Split off bundle attributes
551     auto PacketBundle = Contents.rsplit('\n');
552     // Split off first instruction from the rest
553     auto HeadTail = PacketBundle.first.split('\n');
554     auto Preamble = " { ";
555     auto Separator = "";
556     while(!HeadTail.first.empty()) {
557       OS << Separator;
558       Separator = "\n";
559       if (SP && (PrintSource || PrintLines))
560         SP->printSourceLine(OS, Address, "");
561       printLead(Bytes, Address, OS);
562       OS << Preamble;
563       Preamble = "   ";
564       StringRef Inst;
565       auto Duplex = HeadTail.first.split('\v');
566       if(!Duplex.second.empty()){
567         OS << Duplex.first;
568         OS << "; ";
569         Inst = Duplex.second;
570       }
571       else
572         Inst = HeadTail.first;
573       OS << Inst;
574       Bytes = Bytes.slice(4);
575       Address += 4;
576       HeadTail = HeadTail.second.split('\n');
577     }
578     OS << " } " << PacketBundle.second;
579   }
580 };
581 HexagonPrettyPrinter HexagonPrettyPrinterInst;
582 
583 class AMDGCNPrettyPrinter : public PrettyPrinter {
584 public:
585   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
586                  uint64_t Address, raw_ostream &OS, StringRef Annot,
587                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
588     if (SP && (PrintSource || PrintLines))
589       SP->printSourceLine(OS, Address);
590 
591     if (!MI) {
592       OS << " <unknown>";
593       return;
594     }
595 
596     SmallString<40> InstStr;
597     raw_svector_ostream IS(InstStr);
598 
599     IP.printInst(MI, IS, "", STI);
600 
601     OS << left_justify(IS.str(), 60) << format("// %012" PRIX64 ": ", Address);
602     typedef support::ulittle32_t U32;
603     for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
604                                Bytes.size() / sizeof(U32)))
605       // D should be explicitly casted to uint32_t here as it is passed
606       // by format to snprintf as vararg.
607       OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
608 
609     if (!Annot.empty())
610       OS << "// " << Annot;
611   }
612 };
613 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
614 
615 class BPFPrettyPrinter : public PrettyPrinter {
616 public:
617   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
618                  uint64_t Address, raw_ostream &OS, StringRef Annot,
619                  MCSubtargetInfo const &STI, SourcePrinter *SP) override {
620     if (SP && (PrintSource || PrintLines))
621       SP->printSourceLine(OS, Address);
622     if (!NoLeadingAddr)
623       OS << format("%8" PRId64 ":", Address / 8);
624     if (!NoShowRawInsn) {
625       OS << "\t";
626       dumpBytes(Bytes, OS);
627     }
628     if (MI)
629       IP.printInst(MI, OS, "", STI);
630     else
631       OS << " <unknown>";
632   }
633 };
634 BPFPrettyPrinter BPFPrettyPrinterInst;
635 
636 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
637   switch(Triple.getArch()) {
638   default:
639     return PrettyPrinterInst;
640   case Triple::hexagon:
641     return HexagonPrettyPrinterInst;
642   case Triple::amdgcn:
643     return AMDGCNPrettyPrinterInst;
644   case Triple::bpfel:
645   case Triple::bpfeb:
646     return BPFPrettyPrinterInst;
647   }
648 }
649 }
650 
651 template <class ELFT>
652 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
653                                                 const RelocationRef &RelRef,
654                                                 SmallVectorImpl<char> &Result) {
655   DataRefImpl Rel = RelRef.getRawDataRefImpl();
656 
657   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
658   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
659   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
660 
661   const ELFFile<ELFT> &EF = *Obj->getELFFile();
662 
663   auto SecOrErr = EF.getSection(Rel.d.a);
664   if (!SecOrErr)
665     return errorToErrorCode(SecOrErr.takeError());
666   const Elf_Shdr *Sec = *SecOrErr;
667   auto SymTabOrErr = EF.getSection(Sec->sh_link);
668   if (!SymTabOrErr)
669     return errorToErrorCode(SymTabOrErr.takeError());
670   const Elf_Shdr *SymTab = *SymTabOrErr;
671   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
672          SymTab->sh_type == ELF::SHT_DYNSYM);
673   auto StrTabSec = EF.getSection(SymTab->sh_link);
674   if (!StrTabSec)
675     return errorToErrorCode(StrTabSec.takeError());
676   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
677   if (!StrTabOrErr)
678     return errorToErrorCode(StrTabOrErr.takeError());
679   StringRef StrTab = *StrTabOrErr;
680   uint8_t type = RelRef.getType();
681   StringRef res;
682   int64_t addend = 0;
683   switch (Sec->sh_type) {
684   default:
685     return object_error::parse_failed;
686   case ELF::SHT_REL: {
687     // TODO: Read implicit addend from section data.
688     break;
689   }
690   case ELF::SHT_RELA: {
691     const Elf_Rela *ERela = Obj->getRela(Rel);
692     addend = ERela->r_addend;
693     break;
694   }
695   }
696   symbol_iterator SI = RelRef.getSymbol();
697   const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
698   StringRef Target;
699   if (symb->getType() == ELF::STT_SECTION) {
700     Expected<section_iterator> SymSI = SI->getSection();
701     if (!SymSI)
702       return errorToErrorCode(SymSI.takeError());
703     const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
704     auto SecName = EF.getSectionName(SymSec);
705     if (!SecName)
706       return errorToErrorCode(SecName.takeError());
707     Target = *SecName;
708   } else {
709     Expected<StringRef> SymName = symb->getName(StrTab);
710     if (!SymName)
711       return errorToErrorCode(SymName.takeError());
712     Target = *SymName;
713   }
714   switch (EF.getHeader()->e_machine) {
715   case ELF::EM_X86_64:
716     switch (type) {
717     case ELF::R_X86_64_PC8:
718     case ELF::R_X86_64_PC16:
719     case ELF::R_X86_64_PC32: {
720       std::string fmtbuf;
721       raw_string_ostream fmt(fmtbuf);
722       fmt << Target << (addend < 0 ? "" : "+") << addend << "-P";
723       fmt.flush();
724       Result.append(fmtbuf.begin(), fmtbuf.end());
725     } break;
726     case ELF::R_X86_64_8:
727     case ELF::R_X86_64_16:
728     case ELF::R_X86_64_32:
729     case ELF::R_X86_64_32S:
730     case ELF::R_X86_64_64: {
731       std::string fmtbuf;
732       raw_string_ostream fmt(fmtbuf);
733       fmt << Target << (addend < 0 ? "" : "+") << addend;
734       fmt.flush();
735       Result.append(fmtbuf.begin(), fmtbuf.end());
736     } break;
737     default:
738       res = "Unknown";
739     }
740     break;
741   case ELF::EM_LANAI:
742   case ELF::EM_AVR:
743   case ELF::EM_AARCH64: {
744     std::string fmtbuf;
745     raw_string_ostream fmt(fmtbuf);
746     fmt << Target;
747     if (addend != 0)
748       fmt << (addend < 0 ? "" : "+") << addend;
749     fmt.flush();
750     Result.append(fmtbuf.begin(), fmtbuf.end());
751     break;
752   }
753   case ELF::EM_386:
754   case ELF::EM_IAMCU:
755   case ELF::EM_ARM:
756   case ELF::EM_HEXAGON:
757   case ELF::EM_MIPS:
758   case ELF::EM_BPF:
759   case ELF::EM_RISCV:
760     res = Target;
761     break;
762   case ELF::EM_WEBASSEMBLY:
763     switch (type) {
764     case ELF::R_WEBASSEMBLY_DATA: {
765       std::string fmtbuf;
766       raw_string_ostream fmt(fmtbuf);
767       fmt << Target << (addend < 0 ? "" : "+") << addend;
768       fmt.flush();
769       Result.append(fmtbuf.begin(), fmtbuf.end());
770       break;
771     }
772     case ELF::R_WEBASSEMBLY_FUNCTION:
773       res = Target;
774       break;
775     default:
776       res = "Unknown";
777     }
778     break;
779   default:
780     res = "Unknown";
781   }
782   if (Result.empty())
783     Result.append(res.begin(), res.end());
784   return std::error_code();
785 }
786 
787 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
788                                                 const RelocationRef &Rel,
789                                                 SmallVectorImpl<char> &Result) {
790   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
791     return getRelocationValueString(ELF32LE, Rel, Result);
792   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
793     return getRelocationValueString(ELF64LE, Rel, Result);
794   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
795     return getRelocationValueString(ELF32BE, Rel, Result);
796   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
797   return getRelocationValueString(ELF64BE, Rel, Result);
798 }
799 
800 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
801                                                 const RelocationRef &Rel,
802                                                 SmallVectorImpl<char> &Result) {
803   symbol_iterator SymI = Rel.getSymbol();
804   Expected<StringRef> SymNameOrErr = SymI->getName();
805   if (!SymNameOrErr)
806     return errorToErrorCode(SymNameOrErr.takeError());
807   StringRef SymName = *SymNameOrErr;
808   Result.append(SymName.begin(), SymName.end());
809   return std::error_code();
810 }
811 
812 static void printRelocationTargetName(const MachOObjectFile *O,
813                                       const MachO::any_relocation_info &RE,
814                                       raw_string_ostream &fmt) {
815   bool IsScattered = O->isRelocationScattered(RE);
816 
817   // Target of a scattered relocation is an address.  In the interest of
818   // generating pretty output, scan through the symbol table looking for a
819   // symbol that aligns with that address.  If we find one, print it.
820   // Otherwise, we just print the hex address of the target.
821   if (IsScattered) {
822     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
823 
824     for (const SymbolRef &Symbol : O->symbols()) {
825       std::error_code ec;
826       Expected<uint64_t> Addr = Symbol.getAddress();
827       if (!Addr)
828         report_error(O->getFileName(), Addr.takeError());
829       if (*Addr != Val)
830         continue;
831       Expected<StringRef> Name = Symbol.getName();
832       if (!Name)
833         report_error(O->getFileName(), Name.takeError());
834       fmt << *Name;
835       return;
836     }
837 
838     // If we couldn't find a symbol that this relocation refers to, try
839     // to find a section beginning instead.
840     for (const SectionRef &Section : ToolSectionFilter(*O)) {
841       std::error_code ec;
842 
843       StringRef Name;
844       uint64_t Addr = Section.getAddress();
845       if (Addr != Val)
846         continue;
847       if ((ec = Section.getName(Name)))
848         report_error(O->getFileName(), ec);
849       fmt << Name;
850       return;
851     }
852 
853     fmt << format("0x%x", Val);
854     return;
855   }
856 
857   StringRef S;
858   bool isExtern = O->getPlainRelocationExternal(RE);
859   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
860 
861   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
862     fmt << format("0x%0" PRIx64, Val);
863     return;
864   } else if (isExtern) {
865     symbol_iterator SI = O->symbol_begin();
866     advance(SI, Val);
867     Expected<StringRef> SOrErr = SI->getName();
868     if (!SOrErr)
869       report_error(O->getFileName(), SOrErr.takeError());
870     S = *SOrErr;
871   } else {
872     section_iterator SI = O->section_begin();
873     // Adjust for the fact that sections are 1-indexed.
874     if (Val == 0) {
875       fmt << "0 (?,?)";
876       return;
877     }
878     uint32_t i = Val - 1;
879     while (i != 0 && SI != O->section_end()) {
880       i--;
881       advance(SI, 1);
882     }
883     if (SI == O->section_end())
884       fmt << Val << " (?,?)";
885     else
886       SI->getName(S);
887   }
888 
889   fmt << S;
890 }
891 
892 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
893                                                 const RelocationRef &RelRef,
894                                                 SmallVectorImpl<char> &Result) {
895   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
896   std::string fmtbuf;
897   raw_string_ostream fmt(fmtbuf);
898   fmt << Rel.Index << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
899   fmt.flush();
900   Result.append(fmtbuf.begin(), fmtbuf.end());
901   return std::error_code();
902 }
903 
904 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
905                                                 const RelocationRef &RelRef,
906                                                 SmallVectorImpl<char> &Result) {
907   DataRefImpl Rel = RelRef.getRawDataRefImpl();
908   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
909 
910   unsigned Arch = Obj->getArch();
911 
912   std::string fmtbuf;
913   raw_string_ostream fmt(fmtbuf);
914   unsigned Type = Obj->getAnyRelocationType(RE);
915   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
916 
917   // Determine any addends that should be displayed with the relocation.
918   // These require decoding the relocation type, which is triple-specific.
919 
920   // X86_64 has entirely custom relocation types.
921   if (Arch == Triple::x86_64) {
922     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
923 
924     switch (Type) {
925     case MachO::X86_64_RELOC_GOT_LOAD:
926     case MachO::X86_64_RELOC_GOT: {
927       printRelocationTargetName(Obj, RE, fmt);
928       fmt << "@GOT";
929       if (isPCRel)
930         fmt << "PCREL";
931       break;
932     }
933     case MachO::X86_64_RELOC_SUBTRACTOR: {
934       DataRefImpl RelNext = Rel;
935       Obj->moveRelocationNext(RelNext);
936       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
937 
938       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
939       // X86_64_RELOC_UNSIGNED.
940       // NOTE: Scattered relocations don't exist on x86_64.
941       unsigned RType = Obj->getAnyRelocationType(RENext);
942       if (RType != MachO::X86_64_RELOC_UNSIGNED)
943         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
944                      "X86_64_RELOC_SUBTRACTOR.");
945 
946       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
947       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
948       printRelocationTargetName(Obj, RENext, fmt);
949       fmt << "-";
950       printRelocationTargetName(Obj, RE, fmt);
951       break;
952     }
953     case MachO::X86_64_RELOC_TLV:
954       printRelocationTargetName(Obj, RE, fmt);
955       fmt << "@TLV";
956       if (isPCRel)
957         fmt << "P";
958       break;
959     case MachO::X86_64_RELOC_SIGNED_1:
960       printRelocationTargetName(Obj, RE, fmt);
961       fmt << "-1";
962       break;
963     case MachO::X86_64_RELOC_SIGNED_2:
964       printRelocationTargetName(Obj, RE, fmt);
965       fmt << "-2";
966       break;
967     case MachO::X86_64_RELOC_SIGNED_4:
968       printRelocationTargetName(Obj, RE, fmt);
969       fmt << "-4";
970       break;
971     default:
972       printRelocationTargetName(Obj, RE, fmt);
973       break;
974     }
975     // X86 and ARM share some relocation types in common.
976   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
977              Arch == Triple::ppc) {
978     // Generic relocation types...
979     switch (Type) {
980     case MachO::GENERIC_RELOC_PAIR: // prints no info
981       return std::error_code();
982     case MachO::GENERIC_RELOC_SECTDIFF: {
983       DataRefImpl RelNext = Rel;
984       Obj->moveRelocationNext(RelNext);
985       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
986 
987       // X86 sect diff's must be followed by a relocation of type
988       // GENERIC_RELOC_PAIR.
989       unsigned RType = Obj->getAnyRelocationType(RENext);
990 
991       if (RType != MachO::GENERIC_RELOC_PAIR)
992         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
993                      "GENERIC_RELOC_SECTDIFF.");
994 
995       printRelocationTargetName(Obj, RE, fmt);
996       fmt << "-";
997       printRelocationTargetName(Obj, RENext, fmt);
998       break;
999     }
1000     }
1001 
1002     if (Arch == Triple::x86 || Arch == Triple::ppc) {
1003       switch (Type) {
1004       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
1005         DataRefImpl RelNext = Rel;
1006         Obj->moveRelocationNext(RelNext);
1007         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1008 
1009         // X86 sect diff's must be followed by a relocation of type
1010         // GENERIC_RELOC_PAIR.
1011         unsigned RType = Obj->getAnyRelocationType(RENext);
1012         if (RType != MachO::GENERIC_RELOC_PAIR)
1013           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
1014                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
1015 
1016         printRelocationTargetName(Obj, RE, fmt);
1017         fmt << "-";
1018         printRelocationTargetName(Obj, RENext, fmt);
1019         break;
1020       }
1021       case MachO::GENERIC_RELOC_TLV: {
1022         printRelocationTargetName(Obj, RE, fmt);
1023         fmt << "@TLV";
1024         if (IsPCRel)
1025           fmt << "P";
1026         break;
1027       }
1028       default:
1029         printRelocationTargetName(Obj, RE, fmt);
1030       }
1031     } else { // ARM-specific relocations
1032       switch (Type) {
1033       case MachO::ARM_RELOC_HALF:
1034       case MachO::ARM_RELOC_HALF_SECTDIFF: {
1035         // Half relocations steal a bit from the length field to encode
1036         // whether this is an upper16 or a lower16 relocation.
1037         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
1038 
1039         if (isUpper)
1040           fmt << ":upper16:(";
1041         else
1042           fmt << ":lower16:(";
1043         printRelocationTargetName(Obj, RE, fmt);
1044 
1045         DataRefImpl RelNext = Rel;
1046         Obj->moveRelocationNext(RelNext);
1047         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
1048 
1049         // ARM half relocs must be followed by a relocation of type
1050         // ARM_RELOC_PAIR.
1051         unsigned RType = Obj->getAnyRelocationType(RENext);
1052         if (RType != MachO::ARM_RELOC_PAIR)
1053           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
1054                        "ARM_RELOC_HALF");
1055 
1056         // NOTE: The half of the target virtual address is stashed in the
1057         // address field of the secondary relocation, but we can't reverse
1058         // engineer the constant offset from it without decoding the movw/movt
1059         // instruction to find the other half in its immediate field.
1060 
1061         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
1062         // symbol/section pointer of the follow-on relocation.
1063         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
1064           fmt << "-";
1065           printRelocationTargetName(Obj, RENext, fmt);
1066         }
1067 
1068         fmt << ")";
1069         break;
1070       }
1071       default: { printRelocationTargetName(Obj, RE, fmt); }
1072       }
1073     }
1074   } else
1075     printRelocationTargetName(Obj, RE, fmt);
1076 
1077   fmt.flush();
1078   Result.append(fmtbuf.begin(), fmtbuf.end());
1079   return std::error_code();
1080 }
1081 
1082 static std::error_code getRelocationValueString(const RelocationRef &Rel,
1083                                                 SmallVectorImpl<char> &Result) {
1084   const ObjectFile *Obj = Rel.getObject();
1085   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
1086     return getRelocationValueString(ELF, Rel, Result);
1087   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
1088     return getRelocationValueString(COFF, Rel, Result);
1089   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
1090     return getRelocationValueString(Wasm, Rel, Result);
1091   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
1092     return getRelocationValueString(MachO, Rel, Result);
1093   llvm_unreachable("unknown object file format");
1094 }
1095 
1096 /// @brief Indicates whether this relocation should hidden when listing
1097 /// relocations, usually because it is the trailing part of a multipart
1098 /// relocation that will be printed as part of the leading relocation.
1099 static bool getHidden(RelocationRef RelRef) {
1100   const ObjectFile *Obj = RelRef.getObject();
1101   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
1102   if (!MachO)
1103     return false;
1104 
1105   unsigned Arch = MachO->getArch();
1106   DataRefImpl Rel = RelRef.getRawDataRefImpl();
1107   uint64_t Type = MachO->getRelocationType(Rel);
1108 
1109   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
1110   // is always hidden.
1111   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
1112     if (Type == MachO::GENERIC_RELOC_PAIR)
1113       return true;
1114   } else if (Arch == Triple::x86_64) {
1115     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
1116     // an X86_64_RELOC_SUBTRACTOR.
1117     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
1118       DataRefImpl RelPrev = Rel;
1119       RelPrev.d.a--;
1120       uint64_t PrevType = MachO->getRelocationType(RelPrev);
1121       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
1122         return true;
1123     }
1124   }
1125 
1126   return false;
1127 }
1128 
1129 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1130   assert(Obj->isELF());
1131   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1132     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1133   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1134     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1135   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1136     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1137   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1138     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1139   llvm_unreachable("Unsupported binary format");
1140 }
1141 
1142 template <class ELFT> static void
1143 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1144                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1145   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1146     uint8_t SymbolType = Symbol.getELFType();
1147     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1148       continue;
1149 
1150     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1151     if (!AddressOrErr)
1152       report_error(Obj->getFileName(), AddressOrErr.takeError());
1153     uint64_t Address = *AddressOrErr;
1154 
1155     Expected<StringRef> Name = Symbol.getName();
1156     if (!Name)
1157       report_error(Obj->getFileName(), Name.takeError());
1158     if (Name->empty())
1159       continue;
1160 
1161     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1162     if (!SectionOrErr)
1163       report_error(Obj->getFileName(), SectionOrErr.takeError());
1164     section_iterator SecI = *SectionOrErr;
1165     if (SecI == Obj->section_end())
1166       continue;
1167 
1168     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1169   }
1170 }
1171 
1172 static void
1173 addDynamicElfSymbols(const ObjectFile *Obj,
1174                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1175   assert(Obj->isELF());
1176   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1177     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1178   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1179     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1180   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1181     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1182   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1183     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1184   else
1185     llvm_unreachable("Unsupported binary format");
1186 }
1187 
1188 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1189   if (StartAddress > StopAddress)
1190     error("Start address should be less than stop address");
1191 
1192   const Target *TheTarget = getTarget(Obj);
1193 
1194   // Package up features to be passed to target/subtarget
1195   SubtargetFeatures Features = Obj->getFeatures();
1196   if (MAttrs.size()) {
1197     for (unsigned i = 0; i != MAttrs.size(); ++i)
1198       Features.AddFeature(MAttrs[i]);
1199   }
1200 
1201   std::unique_ptr<const MCRegisterInfo> MRI(
1202       TheTarget->createMCRegInfo(TripleName));
1203   if (!MRI)
1204     report_error(Obj->getFileName(), "no register info for target " +
1205                  TripleName);
1206 
1207   // Set up disassembler.
1208   std::unique_ptr<const MCAsmInfo> AsmInfo(
1209       TheTarget->createMCAsmInfo(*MRI, TripleName));
1210   if (!AsmInfo)
1211     report_error(Obj->getFileName(), "no assembly info for target " +
1212                  TripleName);
1213   std::unique_ptr<const MCSubtargetInfo> STI(
1214       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1215   if (!STI)
1216     report_error(Obj->getFileName(), "no subtarget info for target " +
1217                  TripleName);
1218   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1219   if (!MII)
1220     report_error(Obj->getFileName(), "no instruction info for target " +
1221                  TripleName);
1222   MCObjectFileInfo MOFI;
1223   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1224   // FIXME: for now initialize MCObjectFileInfo with default values
1225   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1226 
1227   std::unique_ptr<MCDisassembler> DisAsm(
1228     TheTarget->createMCDisassembler(*STI, Ctx));
1229   if (!DisAsm)
1230     report_error(Obj->getFileName(), "no disassembler for target " +
1231                  TripleName);
1232 
1233   std::unique_ptr<const MCInstrAnalysis> MIA(
1234       TheTarget->createMCInstrAnalysis(MII.get()));
1235 
1236   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1237   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1238       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1239   if (!IP)
1240     report_error(Obj->getFileName(), "no instruction printer for target " +
1241                  TripleName);
1242   IP->setPrintImmHex(PrintImmHex);
1243   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1244 
1245   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1246                                                  "\t\t\t%08" PRIx64 ":  ";
1247 
1248   SourcePrinter SP(Obj, TheTarget->getName());
1249 
1250   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1251   // in RelocSecs contain the relocations for section S.
1252   std::error_code EC;
1253   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1254   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1255     section_iterator Sec2 = Section.getRelocatedSection();
1256     if (Sec2 != Obj->section_end())
1257       SectionRelocMap[*Sec2].push_back(Section);
1258   }
1259 
1260   // Create a mapping from virtual address to symbol name.  This is used to
1261   // pretty print the symbols while disassembling.
1262   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1263   for (const SymbolRef &Symbol : Obj->symbols()) {
1264     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1265     if (!AddressOrErr)
1266       report_error(Obj->getFileName(), AddressOrErr.takeError());
1267     uint64_t Address = *AddressOrErr;
1268 
1269     Expected<StringRef> Name = Symbol.getName();
1270     if (!Name)
1271       report_error(Obj->getFileName(), Name.takeError());
1272     if (Name->empty())
1273       continue;
1274 
1275     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1276     if (!SectionOrErr)
1277       report_error(Obj->getFileName(), SectionOrErr.takeError());
1278     section_iterator SecI = *SectionOrErr;
1279     if (SecI == Obj->section_end())
1280       continue;
1281 
1282     uint8_t SymbolType = ELF::STT_NOTYPE;
1283     if (Obj->isELF())
1284       SymbolType = getElfSymbolType(Obj, Symbol);
1285 
1286     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1287 
1288   }
1289   if (AllSymbols.empty() && Obj->isELF())
1290     addDynamicElfSymbols(Obj, AllSymbols);
1291 
1292   // Create a mapping from virtual address to section.
1293   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1294   for (SectionRef Sec : Obj->sections())
1295     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1296   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1297 
1298   // Linked executables (.exe and .dll files) typically don't include a real
1299   // symbol table but they might contain an export table.
1300   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1301     for (const auto &ExportEntry : COFFObj->export_directories()) {
1302       StringRef Name;
1303       error(ExportEntry.getSymbolName(Name));
1304       if (Name.empty())
1305         continue;
1306       uint32_t RVA;
1307       error(ExportEntry.getExportRVA(RVA));
1308 
1309       uint64_t VA = COFFObj->getImageBase() + RVA;
1310       auto Sec = std::upper_bound(
1311           SectionAddresses.begin(), SectionAddresses.end(), VA,
1312           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1313             return LHS < RHS.first;
1314           });
1315       if (Sec != SectionAddresses.begin())
1316         --Sec;
1317       else
1318         Sec = SectionAddresses.end();
1319 
1320       if (Sec != SectionAddresses.end())
1321         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1322     }
1323   }
1324 
1325   // Sort all the symbols, this allows us to use a simple binary search to find
1326   // a symbol near an address.
1327   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1328     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1329 
1330   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1331     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1332       continue;
1333 
1334     uint64_t SectionAddr = Section.getAddress();
1335     uint64_t SectSize = Section.getSize();
1336     if (!SectSize)
1337       continue;
1338 
1339     // Get the list of all the symbols in this section.
1340     SectionSymbolsTy &Symbols = AllSymbols[Section];
1341     std::vector<uint64_t> DataMappingSymsAddr;
1342     std::vector<uint64_t> TextMappingSymsAddr;
1343     if (isArmElf(Obj)) {
1344       for (const auto &Symb : Symbols) {
1345         uint64_t Address = std::get<0>(Symb);
1346         StringRef Name = std::get<1>(Symb);
1347         if (Name.startswith("$d"))
1348           DataMappingSymsAddr.push_back(Address - SectionAddr);
1349         if (Name.startswith("$x"))
1350           TextMappingSymsAddr.push_back(Address - SectionAddr);
1351         if (Name.startswith("$a"))
1352           TextMappingSymsAddr.push_back(Address - SectionAddr);
1353         if (Name.startswith("$t"))
1354           TextMappingSymsAddr.push_back(Address - SectionAddr);
1355       }
1356     }
1357 
1358     std::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1359     std::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1360 
1361     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1362       // AMDGPU disassembler uses symbolizer for printing labels
1363       std::unique_ptr<MCRelocationInfo> RelInfo(
1364         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1365       if (RelInfo) {
1366         std::unique_ptr<MCSymbolizer> Symbolizer(
1367           TheTarget->createMCSymbolizer(
1368             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1369         DisAsm->setSymbolizer(std::move(Symbolizer));
1370       }
1371     }
1372 
1373     // Make a list of all the relocations for this section.
1374     std::vector<RelocationRef> Rels;
1375     if (InlineRelocs) {
1376       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1377         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1378           Rels.push_back(Reloc);
1379         }
1380       }
1381     }
1382 
1383     // Sort relocations by address.
1384     std::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1385 
1386     StringRef SegmentName = "";
1387     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1388       DataRefImpl DR = Section.getRawDataRefImpl();
1389       SegmentName = MachO->getSectionFinalSegmentName(DR);
1390     }
1391     StringRef name;
1392     error(Section.getName(name));
1393 
1394     if ((SectionAddr <= StopAddress) &&
1395         (SectionAddr + SectSize) >= StartAddress) {
1396     outs() << "Disassembly of section ";
1397     if (!SegmentName.empty())
1398       outs() << SegmentName << ",";
1399     outs() << name << ':';
1400     }
1401 
1402     // If the section has no symbol at the start, just insert a dummy one.
1403     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1404       Symbols.insert(Symbols.begin(),
1405                      std::make_tuple(SectionAddr, name, Section.isText()
1406                                                             ? ELF::STT_FUNC
1407                                                             : ELF::STT_OBJECT));
1408     }
1409 
1410     SmallString<40> Comments;
1411     raw_svector_ostream CommentStream(Comments);
1412 
1413     StringRef BytesStr;
1414     error(Section.getContents(BytesStr));
1415     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1416                             BytesStr.size());
1417 
1418     uint64_t Size;
1419     uint64_t Index;
1420 
1421     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1422     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1423     // Disassemble symbol by symbol.
1424     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1425       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1426       // The end is either the section end or the beginning of the next
1427       // symbol.
1428       uint64_t End =
1429           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1430       // Don't try to disassemble beyond the end of section contents.
1431       if (End > SectSize)
1432         End = SectSize;
1433       // If this symbol has the same address as the next symbol, then skip it.
1434       if (Start >= End)
1435         continue;
1436 
1437       // Check if we need to skip symbol
1438       // Skip if the symbol's data is not between StartAddress and StopAddress
1439       if (End + SectionAddr < StartAddress ||
1440           Start + SectionAddr > StopAddress) {
1441         continue;
1442       }
1443 
1444       // Stop disassembly at the stop address specified
1445       if (End + SectionAddr > StopAddress)
1446         End = StopAddress - SectionAddr;
1447 
1448       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1449         // make size 4 bytes folded
1450         End = Start + ((End - Start) & ~0x3ull);
1451         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1452           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1453           Start += 256;
1454         }
1455         if (si == se - 1 ||
1456             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1457           // cut trailing zeroes at the end of kernel
1458           // cut up to 256 bytes
1459           const uint64_t EndAlign = 256;
1460           const auto Limit = End - (std::min)(EndAlign, End - Start);
1461           while (End > Limit &&
1462             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1463             End -= 4;
1464         }
1465       }
1466 
1467       outs() << '\n' << std::get<1>(Symbols[si]) << ":\n";
1468 
1469 #ifndef NDEBUG
1470       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1471 #else
1472       raw_ostream &DebugOut = nulls();
1473 #endif
1474 
1475       for (Index = Start; Index < End; Index += Size) {
1476         MCInst Inst;
1477 
1478         if (Index + SectionAddr < StartAddress ||
1479             Index + SectionAddr > StopAddress) {
1480           // skip byte by byte till StartAddress is reached
1481           Size = 1;
1482           continue;
1483         }
1484         // AArch64 ELF binaries can interleave data and text in the
1485         // same section. We rely on the markers introduced to
1486         // understand what we need to dump. If the data marker is within a
1487         // function, it is denoted as a word/short etc
1488         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1489             !DisassembleAll) {
1490           uint64_t Stride = 0;
1491 
1492           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1493                                       DataMappingSymsAddr.end(), Index);
1494           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1495             // Switch to data.
1496             while (Index < End) {
1497               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1498               outs() << "\t";
1499               if (Index + 4 <= End) {
1500                 Stride = 4;
1501                 dumpBytes(Bytes.slice(Index, 4), outs());
1502                 outs() << "\t.word\t";
1503                 uint32_t Data = 0;
1504                 if (Obj->isLittleEndian()) {
1505                   const auto Word =
1506                       reinterpret_cast<const support::ulittle32_t *>(
1507                           Bytes.data() + Index);
1508                   Data = *Word;
1509                 } else {
1510                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1511                       Bytes.data() + Index);
1512                   Data = *Word;
1513                 }
1514                 outs() << "0x" << format("%08" PRIx32, Data);
1515               } else if (Index + 2 <= End) {
1516                 Stride = 2;
1517                 dumpBytes(Bytes.slice(Index, 2), outs());
1518                 outs() << "\t\t.short\t";
1519                 uint16_t Data = 0;
1520                 if (Obj->isLittleEndian()) {
1521                   const auto Short =
1522                       reinterpret_cast<const support::ulittle16_t *>(
1523                           Bytes.data() + Index);
1524                   Data = *Short;
1525                 } else {
1526                   const auto Short =
1527                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1528                                                                   Index);
1529                   Data = *Short;
1530                 }
1531                 outs() << "0x" << format("%04" PRIx16, Data);
1532               } else {
1533                 Stride = 1;
1534                 dumpBytes(Bytes.slice(Index, 1), outs());
1535                 outs() << "\t\t.byte\t";
1536                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1537               }
1538               Index += Stride;
1539               outs() << "\n";
1540               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1541                                           TextMappingSymsAddr.end(), Index);
1542               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1543                 break;
1544             }
1545           }
1546         }
1547 
1548         // If there is a data symbol inside an ELF text section and we are only
1549         // disassembling text (applicable all architectures),
1550         // we are in a situation where we must print the data and not
1551         // disassemble it.
1552         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1553             !DisassembleAll && Section.isText()) {
1554           // print out data up to 8 bytes at a time in hex and ascii
1555           uint8_t AsciiData[9] = {'\0'};
1556           uint8_t Byte;
1557           int NumBytes = 0;
1558 
1559           for (Index = Start; Index < End; Index += 1) {
1560             if (((SectionAddr + Index) < StartAddress) ||
1561                 ((SectionAddr + Index) > StopAddress))
1562               continue;
1563             if (NumBytes == 0) {
1564               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1565               outs() << "\t";
1566             }
1567             Byte = Bytes.slice(Index)[0];
1568             outs() << format(" %02x", Byte);
1569             AsciiData[NumBytes] = isprint(Byte) ? Byte : '.';
1570 
1571             uint8_t IndentOffset = 0;
1572             NumBytes++;
1573             if (Index == End - 1 || NumBytes > 8) {
1574               // Indent the space for less than 8 bytes data.
1575               // 2 spaces for byte and one for space between bytes
1576               IndentOffset = 3 * (8 - NumBytes);
1577               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1578                 AsciiData[Excess] = '\0';
1579               NumBytes = 8;
1580             }
1581             if (NumBytes == 8) {
1582               AsciiData[8] = '\0';
1583               outs() << std::string(IndentOffset, ' ') << "         ";
1584               outs() << reinterpret_cast<char *>(AsciiData);
1585               outs() << '\n';
1586               NumBytes = 0;
1587             }
1588           }
1589         }
1590         if (Index >= End)
1591           break;
1592 
1593         // Disassemble a real instruction or a data when disassemble all is
1594         // provided
1595         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1596                                                    SectionAddr + Index, DebugOut,
1597                                                    CommentStream);
1598         if (Size == 0)
1599           Size = 1;
1600 
1601         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1602                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1603                       *STI, &SP);
1604         outs() << CommentStream.str();
1605         Comments.clear();
1606 
1607         // Try to resolve the target of a call, tail call, etc. to a specific
1608         // symbol.
1609         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1610                     MIA->isConditionalBranch(Inst))) {
1611           uint64_t Target;
1612           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1613             // In a relocatable object, the target's section must reside in
1614             // the same section as the call instruction or it is accessed
1615             // through a relocation.
1616             //
1617             // In a non-relocatable object, the target may be in any section.
1618             //
1619             // N.B. We don't walk the relocations in the relocatable case yet.
1620             auto *TargetSectionSymbols = &Symbols;
1621             if (!Obj->isRelocatableObject()) {
1622               auto SectionAddress = std::upper_bound(
1623                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1624                   [](uint64_t LHS,
1625                       const std::pair<uint64_t, SectionRef> &RHS) {
1626                     return LHS < RHS.first;
1627                   });
1628               if (SectionAddress != SectionAddresses.begin()) {
1629                 --SectionAddress;
1630                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1631               } else {
1632                 TargetSectionSymbols = nullptr;
1633               }
1634             }
1635 
1636             // Find the first symbol in the section whose offset is less than
1637             // or equal to the target.
1638             if (TargetSectionSymbols) {
1639               auto TargetSym = std::upper_bound(
1640                   TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1641                   Target, [](uint64_t LHS,
1642                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1643                     return LHS < std::get<0>(RHS);
1644                   });
1645               if (TargetSym != TargetSectionSymbols->begin()) {
1646                 --TargetSym;
1647                 uint64_t TargetAddress = std::get<0>(*TargetSym);
1648                 StringRef TargetName = std::get<1>(*TargetSym);
1649                 outs() << " <" << TargetName;
1650                 uint64_t Disp = Target - TargetAddress;
1651                 if (Disp)
1652                   outs() << "+0x" << Twine::utohexstr(Disp);
1653                 outs() << '>';
1654               }
1655             }
1656           }
1657         }
1658         outs() << "\n";
1659 
1660         // Print relocation for instruction.
1661         while (rel_cur != rel_end) {
1662           bool hidden = getHidden(*rel_cur);
1663           uint64_t addr = rel_cur->getOffset();
1664           SmallString<16> name;
1665           SmallString<32> val;
1666 
1667           // If this relocation is hidden, skip it.
1668           if (hidden || ((SectionAddr + addr) < StartAddress)) {
1669             ++rel_cur;
1670             continue;
1671           }
1672 
1673           // Stop when rel_cur's address is past the current instruction.
1674           if (addr >= Index + Size) break;
1675           rel_cur->getTypeName(name);
1676           error(getRelocationValueString(*rel_cur, val));
1677           outs() << format(Fmt.data(), SectionAddr + addr) << name
1678                  << "\t" << val << "\n";
1679           ++rel_cur;
1680         }
1681       }
1682     }
1683   }
1684 }
1685 
1686 void llvm::PrintRelocations(const ObjectFile *Obj) {
1687   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1688                                                  "%08" PRIx64;
1689   // Regular objdump doesn't print relocations in non-relocatable object
1690   // files.
1691   if (!Obj->isRelocatableObject())
1692     return;
1693 
1694   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1695     if (Section.relocation_begin() == Section.relocation_end())
1696       continue;
1697     StringRef secname;
1698     error(Section.getName(secname));
1699     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1700     for (const RelocationRef &Reloc : Section.relocations()) {
1701       bool hidden = getHidden(Reloc);
1702       uint64_t address = Reloc.getOffset();
1703       SmallString<32> relocname;
1704       SmallString<32> valuestr;
1705       if (address < StartAddress || address > StopAddress || hidden)
1706         continue;
1707       Reloc.getTypeName(relocname);
1708       error(getRelocationValueString(Reloc, valuestr));
1709       outs() << format(Fmt.data(), address) << " " << relocname << " "
1710              << valuestr << "\n";
1711     }
1712     outs() << "\n";
1713   }
1714 }
1715 
1716 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1717   outs() << "Sections:\n"
1718             "Idx Name          Size      Address          Type\n";
1719   unsigned i = 0;
1720   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1721     StringRef Name;
1722     error(Section.getName(Name));
1723     uint64_t Address = Section.getAddress();
1724     uint64_t Size = Section.getSize();
1725     bool Text = Section.isText();
1726     bool Data = Section.isData();
1727     bool BSS = Section.isBSS();
1728     std::string Type = (std::string(Text ? "TEXT " : "") +
1729                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1730     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n", i,
1731                      Name.str().c_str(), Size, Address, Type.c_str());
1732     ++i;
1733   }
1734 }
1735 
1736 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1737   std::error_code EC;
1738   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1739     StringRef Name;
1740     StringRef Contents;
1741     error(Section.getName(Name));
1742     uint64_t BaseAddr = Section.getAddress();
1743     uint64_t Size = Section.getSize();
1744     if (!Size)
1745       continue;
1746 
1747     outs() << "Contents of section " << Name << ":\n";
1748     if (Section.isBSS()) {
1749       outs() << format("<skipping contents of bss section at [%04" PRIx64
1750                        ", %04" PRIx64 ")>\n",
1751                        BaseAddr, BaseAddr + Size);
1752       continue;
1753     }
1754 
1755     error(Section.getContents(Contents));
1756 
1757     // Dump out the content as hex and printable ascii characters.
1758     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1759       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1760       // Dump line of hex.
1761       for (std::size_t i = 0; i < 16; ++i) {
1762         if (i != 0 && i % 4 == 0)
1763           outs() << ' ';
1764         if (addr + i < end)
1765           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1766                  << hexdigit(Contents[addr + i] & 0xF, true);
1767         else
1768           outs() << "  ";
1769       }
1770       // Print ascii.
1771       outs() << "  ";
1772       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1773         if (std::isprint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1774           outs() << Contents[addr + i];
1775         else
1776           outs() << ".";
1777       }
1778       outs() << "\n";
1779     }
1780   }
1781 }
1782 
1783 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1784                             StringRef ArchitectureName) {
1785   outs() << "SYMBOL TABLE:\n";
1786 
1787   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1788     printCOFFSymbolTable(coff);
1789     return;
1790   }
1791   for (const SymbolRef &Symbol : o->symbols()) {
1792     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1793     if (!AddressOrError)
1794       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1795                    ArchitectureName);
1796     uint64_t Address = *AddressOrError;
1797     if ((Address < StartAddress) || (Address > StopAddress))
1798       continue;
1799     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1800     if (!TypeOrError)
1801       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1802                    ArchitectureName);
1803     SymbolRef::Type Type = *TypeOrError;
1804     uint32_t Flags = Symbol.getFlags();
1805     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1806     if (!SectionOrErr)
1807       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1808                    ArchitectureName);
1809     section_iterator Section = *SectionOrErr;
1810     StringRef Name;
1811     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1812       Section->getName(Name);
1813     } else {
1814       Expected<StringRef> NameOrErr = Symbol.getName();
1815       if (!NameOrErr)
1816         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1817                      ArchitectureName);
1818       Name = *NameOrErr;
1819     }
1820 
1821     bool Global = Flags & SymbolRef::SF_Global;
1822     bool Weak = Flags & SymbolRef::SF_Weak;
1823     bool Absolute = Flags & SymbolRef::SF_Absolute;
1824     bool Common = Flags & SymbolRef::SF_Common;
1825     bool Hidden = Flags & SymbolRef::SF_Hidden;
1826 
1827     char GlobLoc = ' ';
1828     if (Type != SymbolRef::ST_Unknown)
1829       GlobLoc = Global ? 'g' : 'l';
1830     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1831                  ? 'd' : ' ';
1832     char FileFunc = ' ';
1833     if (Type == SymbolRef::ST_File)
1834       FileFunc = 'f';
1835     else if (Type == SymbolRef::ST_Function)
1836       FileFunc = 'F';
1837 
1838     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
1839                                                    "%08" PRIx64;
1840 
1841     outs() << format(Fmt, Address) << " "
1842            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1843            << (Weak ? 'w' : ' ') // Weak?
1844            << ' ' // Constructor. Not supported yet.
1845            << ' ' // Warning. Not supported yet.
1846            << ' ' // Indirect reference to another symbol.
1847            << Debug // Debugging (d) or dynamic (D) symbol.
1848            << FileFunc // Name of function (F), file (f) or object (O).
1849            << ' ';
1850     if (Absolute) {
1851       outs() << "*ABS*";
1852     } else if (Common) {
1853       outs() << "*COM*";
1854     } else if (Section == o->section_end()) {
1855       outs() << "*UND*";
1856     } else {
1857       if (const MachOObjectFile *MachO =
1858           dyn_cast<const MachOObjectFile>(o)) {
1859         DataRefImpl DR = Section->getRawDataRefImpl();
1860         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1861         outs() << SegmentName << ",";
1862       }
1863       StringRef SectionName;
1864       error(Section->getName(SectionName));
1865       outs() << SectionName;
1866     }
1867 
1868     outs() << '\t';
1869     if (Common || isa<ELFObjectFileBase>(o)) {
1870       uint64_t Val =
1871           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1872       outs() << format("\t %08" PRIx64 " ", Val);
1873     }
1874 
1875     if (Hidden) {
1876       outs() << ".hidden ";
1877     }
1878     outs() << Name
1879            << '\n';
1880   }
1881 }
1882 
1883 static void PrintUnwindInfo(const ObjectFile *o) {
1884   outs() << "Unwind info:\n\n";
1885 
1886   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
1887     printCOFFUnwindInfo(coff);
1888   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1889     printMachOUnwindInfo(MachO);
1890   else {
1891     // TODO: Extract DWARF dump tool to objdump.
1892     errs() << "This operation is only currently supported "
1893               "for COFF and MachO object files.\n";
1894     return;
1895   }
1896 }
1897 
1898 void llvm::printExportsTrie(const ObjectFile *o) {
1899   outs() << "Exports trie:\n";
1900   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1901     printMachOExportsTrie(MachO);
1902   else {
1903     errs() << "This operation is only currently supported "
1904               "for Mach-O executable files.\n";
1905     return;
1906   }
1907 }
1908 
1909 void llvm::printRebaseTable(ObjectFile *o) {
1910   outs() << "Rebase table:\n";
1911   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1912     printMachORebaseTable(MachO);
1913   else {
1914     errs() << "This operation is only currently supported "
1915               "for Mach-O executable files.\n";
1916     return;
1917   }
1918 }
1919 
1920 void llvm::printBindTable(ObjectFile *o) {
1921   outs() << "Bind table:\n";
1922   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1923     printMachOBindTable(MachO);
1924   else {
1925     errs() << "This operation is only currently supported "
1926               "for Mach-O executable files.\n";
1927     return;
1928   }
1929 }
1930 
1931 void llvm::printLazyBindTable(ObjectFile *o) {
1932   outs() << "Lazy bind table:\n";
1933   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1934     printMachOLazyBindTable(MachO);
1935   else {
1936     errs() << "This operation is only currently supported "
1937               "for Mach-O executable files.\n";
1938     return;
1939   }
1940 }
1941 
1942 void llvm::printWeakBindTable(ObjectFile *o) {
1943   outs() << "Weak bind table:\n";
1944   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
1945     printMachOWeakBindTable(MachO);
1946   else {
1947     errs() << "This operation is only currently supported "
1948               "for Mach-O executable files.\n";
1949     return;
1950   }
1951 }
1952 
1953 /// Dump the raw contents of the __clangast section so the output can be piped
1954 /// into llvm-bcanalyzer.
1955 void llvm::printRawClangAST(const ObjectFile *Obj) {
1956   if (outs().is_displayed()) {
1957     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
1958               "the clang ast section.\n"
1959               "Please redirect the output to a file or another program such as "
1960               "llvm-bcanalyzer.\n";
1961     return;
1962   }
1963 
1964   StringRef ClangASTSectionName("__clangast");
1965   if (isa<COFFObjectFile>(Obj)) {
1966     ClangASTSectionName = "clangast";
1967   }
1968 
1969   Optional<object::SectionRef> ClangASTSection;
1970   for (auto Sec : ToolSectionFilter(*Obj)) {
1971     StringRef Name;
1972     Sec.getName(Name);
1973     if (Name == ClangASTSectionName) {
1974       ClangASTSection = Sec;
1975       break;
1976     }
1977   }
1978   if (!ClangASTSection)
1979     return;
1980 
1981   StringRef ClangASTContents;
1982   error(ClangASTSection.getValue().getContents(ClangASTContents));
1983   outs().write(ClangASTContents.data(), ClangASTContents.size());
1984 }
1985 
1986 static void printFaultMaps(const ObjectFile *Obj) {
1987   const char *FaultMapSectionName = nullptr;
1988 
1989   if (isa<ELFObjectFileBase>(Obj)) {
1990     FaultMapSectionName = ".llvm_faultmaps";
1991   } else if (isa<MachOObjectFile>(Obj)) {
1992     FaultMapSectionName = "__llvm_faultmaps";
1993   } else {
1994     errs() << "This operation is only currently supported "
1995               "for ELF and Mach-O executable files.\n";
1996     return;
1997   }
1998 
1999   Optional<object::SectionRef> FaultMapSection;
2000 
2001   for (auto Sec : ToolSectionFilter(*Obj)) {
2002     StringRef Name;
2003     Sec.getName(Name);
2004     if (Name == FaultMapSectionName) {
2005       FaultMapSection = Sec;
2006       break;
2007     }
2008   }
2009 
2010   outs() << "FaultMap table:\n";
2011 
2012   if (!FaultMapSection.hasValue()) {
2013     outs() << "<not found>\n";
2014     return;
2015   }
2016 
2017   StringRef FaultMapContents;
2018   error(FaultMapSection.getValue().getContents(FaultMapContents));
2019 
2020   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2021                      FaultMapContents.bytes_end());
2022 
2023   outs() << FMP;
2024 }
2025 
2026 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2027   if (o->isELF())
2028     return printELFFileHeader(o);
2029   if (o->isCOFF())
2030     return printCOFFFileHeader(o);
2031   if (o->isWasm())
2032     return printWasmFileHeader(o);
2033   if (o->isMachO()) {
2034     printMachOFileHeader(o);
2035     if (!onlyFirst)
2036       printMachOLoadCommands(o);
2037     return;
2038   }
2039   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2040 }
2041 
2042 static void DumpObject(ObjectFile *o, const Archive *a = nullptr) {
2043   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2044   // Avoid other output when using a raw option.
2045   if (!RawClangAST) {
2046     outs() << '\n';
2047     if (a)
2048       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2049     else
2050       outs() << o->getFileName();
2051     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2052   }
2053 
2054   if (Disassemble)
2055     DisassembleObject(o, Relocations);
2056   if (Relocations && !Disassemble)
2057     PrintRelocations(o);
2058   if (SectionHeaders)
2059     PrintSectionHeaders(o);
2060   if (SectionContents)
2061     PrintSectionContents(o);
2062   if (SymbolTable)
2063     PrintSymbolTable(o, ArchiveName);
2064   if (UnwindInfo)
2065     PrintUnwindInfo(o);
2066   if (PrivateHeaders || FirstPrivateHeader)
2067     printPrivateFileHeaders(o, FirstPrivateHeader);
2068   if (ExportsTrie)
2069     printExportsTrie(o);
2070   if (Rebase)
2071     printRebaseTable(o);
2072   if (Bind)
2073     printBindTable(o);
2074   if (LazyBind)
2075     printLazyBindTable(o);
2076   if (WeakBind)
2077     printWeakBindTable(o);
2078   if (RawClangAST)
2079     printRawClangAST(o);
2080   if (PrintFaultMaps)
2081     printFaultMaps(o);
2082   if (DwarfDumpType != DIDT_Null) {
2083     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2084     // Dump the complete DWARF structure.
2085     DIDumpOptions DumpOpts;
2086     DumpOpts.DumpType = DwarfDumpType;
2087     DICtx->dump(outs(), DumpOpts);
2088   }
2089 }
2090 
2091 static void DumpObject(const COFFImportFile *I, const Archive *A) {
2092   StringRef ArchiveName = A ? A->getFileName() : "";
2093 
2094   // Avoid other output when using a raw option.
2095   if (!RawClangAST)
2096     outs() << '\n'
2097            << ArchiveName << "(" << I->getFileName() << ")"
2098            << ":\tfile format COFF-import-file"
2099            << "\n\n";
2100 
2101   if (SymbolTable)
2102     printCOFFSymbolTable(I);
2103 }
2104 
2105 /// @brief Dump each object file in \a a;
2106 static void DumpArchive(const Archive *a) {
2107   Error Err = Error::success();
2108   for (auto &C : a->children(Err)) {
2109     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2110     if (!ChildOrErr) {
2111       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2112         report_error(a->getFileName(), C, std::move(E));
2113       continue;
2114     }
2115     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2116       DumpObject(o, a);
2117     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2118       DumpObject(I, a);
2119     else
2120       report_error(a->getFileName(), object_error::invalid_file_type);
2121   }
2122   if (Err)
2123     report_error(a->getFileName(), std::move(Err));
2124 }
2125 
2126 /// @brief Open file and figure out how to dump it.
2127 static void DumpInput(StringRef file) {
2128 
2129   // If we are using the Mach-O specific object file parser, then let it parse
2130   // the file and process the command line options.  So the -arch flags can
2131   // be used to select specific slices, etc.
2132   if (MachOOpt) {
2133     ParseInputMachO(file);
2134     return;
2135   }
2136 
2137   // Attempt to open the binary.
2138   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2139   if (!BinaryOrErr)
2140     report_error(file, BinaryOrErr.takeError());
2141   Binary &Binary = *BinaryOrErr.get().getBinary();
2142 
2143   if (Archive *a = dyn_cast<Archive>(&Binary))
2144     DumpArchive(a);
2145   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2146     DumpObject(o);
2147   else
2148     report_error(file, object_error::invalid_file_type);
2149 }
2150 
2151 int main(int argc, char **argv) {
2152   // Print a stack trace if we signal out.
2153   sys::PrintStackTraceOnErrorSignal(argv[0]);
2154   PrettyStackTraceProgram X(argc, argv);
2155   llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
2156 
2157   // Initialize targets and assembly printers/parsers.
2158   llvm::InitializeAllTargetInfos();
2159   llvm::InitializeAllTargetMCs();
2160   llvm::InitializeAllDisassemblers();
2161 
2162   // Register the target printer for --version.
2163   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2164 
2165   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2166   TripleName = Triple::normalize(TripleName);
2167 
2168   ToolName = argv[0];
2169 
2170   // Defaults to a.out if no filenames specified.
2171   if (InputFilenames.size() == 0)
2172     InputFilenames.push_back("a.out");
2173 
2174   if (DisassembleAll || PrintSource || PrintLines)
2175     Disassemble = true;
2176   if (!Disassemble
2177       && !Relocations
2178       && !SectionHeaders
2179       && !SectionContents
2180       && !SymbolTable
2181       && !UnwindInfo
2182       && !PrivateHeaders
2183       && !FirstPrivateHeader
2184       && !ExportsTrie
2185       && !Rebase
2186       && !Bind
2187       && !LazyBind
2188       && !WeakBind
2189       && !RawClangAST
2190       && !(UniversalHeaders && MachOOpt)
2191       && !(ArchiveHeaders && MachOOpt)
2192       && !(IndirectSymbols && MachOOpt)
2193       && !(DataInCode && MachOOpt)
2194       && !(LinkOptHints && MachOOpt)
2195       && !(InfoPlist && MachOOpt)
2196       && !(DylibsUsed && MachOOpt)
2197       && !(DylibId && MachOOpt)
2198       && !(ObjcMetaData && MachOOpt)
2199       && !(FilterSections.size() != 0 && MachOOpt)
2200       && !PrintFaultMaps
2201       && DwarfDumpType == DIDT_Null) {
2202     cl::PrintHelpMessage();
2203     return 2;
2204   }
2205 
2206   llvm::for_each(InputFilenames, DumpInput);
2207 
2208   return EXIT_SUCCESS;
2209 }
2210