xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 16a0de2e555856444ff4037375bc8f9c024d36af)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm;
72 using namespace object;
73 
74 cl::opt<bool>
75     llvm::AllHeaders("all-headers",
76                      cl::desc("Display all available header information"));
77 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
78                                  cl::aliasopt(AllHeaders));
79 
80 static cl::list<std::string>
81 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
82 
83 cl::opt<bool>
84 llvm::Disassemble("disassemble",
85   cl::desc("Display assembler mnemonics for the machine instructions"));
86 static cl::alias
87 Disassembled("d", cl::desc("Alias for --disassemble"),
88              cl::aliasopt(Disassemble));
89 
90 cl::opt<bool>
91 llvm::DisassembleAll("disassemble-all",
92   cl::desc("Display assembler mnemonics for the machine instructions"));
93 static cl::alias
94 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
95              cl::aliasopt(DisassembleAll));
96 
97 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
98                              cl::init(false));
99 
100 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
101                                cl::aliasopt(llvm::Demangle));
102 
103 static cl::list<std::string>
104 DisassembleFunctions("df",
105                      cl::CommaSeparated,
106                      cl::desc("List of functions to disassemble"));
107 static StringSet<> DisasmFuncsSet;
108 
109 cl::opt<bool>
110 llvm::Relocations("reloc",
111                   cl::desc("Display the relocation entries in the file"));
112 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
113                                   cl::NotHidden,
114                                   cl::aliasopt(llvm::Relocations));
115 
116 cl::opt<bool>
117 llvm::DynamicRelocations("dynamic-reloc",
118   cl::desc("Display the dynamic relocation entries in the file"));
119 static cl::alias
120 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
121              cl::aliasopt(DynamicRelocations));
122 
123 cl::opt<bool>
124     llvm::SectionContents("full-contents",
125                           cl::desc("Display the content of each section"));
126 static cl::alias SectionContentsShort("s",
127                                       cl::desc("Alias for --full-contents"),
128                                       cl::aliasopt(SectionContents));
129 
130 cl::opt<bool> llvm::SymbolTable("syms", cl::desc("Display the symbol table"));
131 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
132                                   cl::NotHidden,
133                                   cl::aliasopt(llvm::SymbolTable));
134 
135 cl::opt<bool>
136 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
137 
138 cl::opt<bool>
139 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
140 
141 cl::opt<bool>
142 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
143 
144 cl::opt<bool>
145 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
146 
147 cl::opt<bool>
148 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
149 
150 cl::opt<bool>
151 llvm::RawClangAST("raw-clang-ast",
152     cl::desc("Dump the raw binary contents of the clang AST section"));
153 
154 static cl::opt<bool>
155 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
156 static cl::alias
157 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
158 
159 cl::opt<std::string>
160 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
161                                     "see -version for available targets"));
162 
163 cl::opt<std::string>
164 llvm::MCPU("mcpu",
165      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
166      cl::value_desc("cpu-name"),
167      cl::init(""));
168 
169 cl::opt<std::string>
170 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
171                                 "see -version for available targets"));
172 
173 cl::opt<bool>
174 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
175                                                  "headers for each section."));
176 static cl::alias
177 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
178                     cl::aliasopt(SectionHeaders));
179 static cl::alias
180 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
181                       cl::aliasopt(SectionHeaders));
182 
183 cl::list<std::string>
184 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
185                                          "With -macho dump segment,section"));
186 cl::alias
187 static FilterSectionsj("j", cl::desc("Alias for --section"),
188                  cl::aliasopt(llvm::FilterSections));
189 
190 cl::list<std::string>
191 llvm::MAttrs("mattr",
192   cl::CommaSeparated,
193   cl::desc("Target specific attributes"),
194   cl::value_desc("a1,+a2,-a3,..."));
195 
196 cl::opt<bool>
197 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
198                                                  "instructions, do not print "
199                                                  "the instruction bytes."));
200 cl::opt<bool>
201 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
202 
203 cl::opt<bool>
204 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
205 
206 static cl::alias
207 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
208                 cl::aliasopt(UnwindInfo));
209 
210 cl::opt<bool>
211 llvm::PrivateHeaders("private-headers",
212                      cl::desc("Display format specific file headers"));
213 
214 cl::opt<bool>
215 llvm::FirstPrivateHeader("private-header",
216                          cl::desc("Display only the first format specific file "
217                                   "header"));
218 
219 static cl::alias
220 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
221                     cl::aliasopt(PrivateHeaders));
222 
223 cl::opt<bool> llvm::FileHeaders(
224     "file-headers",
225     cl::desc("Display the contents of the overall file header"));
226 
227 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
228                                   cl::aliasopt(FileHeaders));
229 
230 cl::opt<bool>
231     llvm::ArchiveHeaders("archive-headers",
232                          cl::desc("Display archive header information"));
233 
234 cl::alias
235 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
236                     cl::aliasopt(ArchiveHeaders));
237 
238 cl::opt<bool>
239     llvm::PrintImmHex("print-imm-hex",
240                       cl::desc("Use hex format for immediate values"));
241 
242 cl::opt<bool> PrintFaultMaps("fault-map-section",
243                              cl::desc("Display contents of faultmap section"));
244 
245 cl::opt<DIDumpType> llvm::DwarfDumpType(
246     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
247     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
248 
249 cl::opt<bool> PrintSource(
250     "source",
251     cl::desc(
252         "Display source inlined with disassembly. Implies disassemble object"));
253 
254 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
255                            cl::aliasopt(PrintSource));
256 
257 cl::opt<bool> PrintLines("line-numbers",
258                          cl::desc("Display source line numbers with "
259                                   "disassembly. Implies disassemble object"));
260 
261 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
262                           cl::aliasopt(PrintLines));
263 
264 cl::opt<unsigned long long>
265     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
266                  cl::value_desc("address"), cl::init(0));
267 cl::opt<unsigned long long>
268     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
269                 cl::value_desc("address"), cl::init(UINT64_MAX));
270 static StringRef ToolName;
271 
272 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
273 
274 namespace {
275 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
276 
277 class SectionFilterIterator {
278 public:
279   SectionFilterIterator(FilterPredicate P,
280                         llvm::object::section_iterator const &I,
281                         llvm::object::section_iterator const &E)
282       : Predicate(std::move(P)), Iterator(I), End(E) {
283     ScanPredicate();
284   }
285   const llvm::object::SectionRef &operator*() const { return *Iterator; }
286   SectionFilterIterator &operator++() {
287     ++Iterator;
288     ScanPredicate();
289     return *this;
290   }
291   bool operator!=(SectionFilterIterator const &Other) const {
292     return Iterator != Other.Iterator;
293   }
294 
295 private:
296   void ScanPredicate() {
297     while (Iterator != End && !Predicate(*Iterator)) {
298       ++Iterator;
299     }
300   }
301   FilterPredicate Predicate;
302   llvm::object::section_iterator Iterator;
303   llvm::object::section_iterator End;
304 };
305 
306 class SectionFilter {
307 public:
308   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
309       : Predicate(std::move(P)), Object(O) {}
310   SectionFilterIterator begin() {
311     return SectionFilterIterator(Predicate, Object.section_begin(),
312                                  Object.section_end());
313   }
314   SectionFilterIterator end() {
315     return SectionFilterIterator(Predicate, Object.section_end(),
316                                  Object.section_end());
317   }
318 
319 private:
320   FilterPredicate Predicate;
321   llvm::object::ObjectFile const &Object;
322 };
323 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
324   return SectionFilter(
325       [](llvm::object::SectionRef const &S) {
326         if (FilterSections.empty())
327           return true;
328         llvm::StringRef String;
329         std::error_code error = S.getName(String);
330         if (error)
331           return false;
332         return is_contained(FilterSections, String);
333       },
334       O);
335 }
336 }
337 
338 void llvm::error(std::error_code EC) {
339   if (!EC)
340     return;
341   WithColor::error(errs(), ToolName)
342       << "reading file: " << EC.message() << ".\n";
343   errs().flush();
344   exit(1);
345 }
346 
347 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
348   WithColor::error(errs(), ToolName) << Message << ".\n";
349   errs().flush();
350   exit(1);
351 }
352 
353 void llvm::warn(StringRef Message) {
354   WithColor::warning(errs(), ToolName) << Message << ".\n";
355   errs().flush();
356 }
357 
358 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
359                                                 Twine Message) {
360   WithColor::error(errs(), ToolName)
361       << "'" << File << "': " << Message << ".\n";
362   exit(1);
363 }
364 
365 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
366                                                 std::error_code EC) {
367   assert(EC);
368   WithColor::error(errs(), ToolName)
369       << "'" << File << "': " << EC.message() << ".\n";
370   exit(1);
371 }
372 
373 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
374                                                 llvm::Error E) {
375   assert(E);
376   std::string Buf;
377   raw_string_ostream OS(Buf);
378   logAllUnhandledErrors(std::move(E), OS);
379   OS.flush();
380   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
381   exit(1);
382 }
383 
384 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
385                                                 StringRef FileName,
386                                                 llvm::Error E,
387                                                 StringRef ArchitectureName) {
388   assert(E);
389   WithColor::error(errs(), ToolName);
390   if (ArchiveName != "")
391     errs() << ArchiveName << "(" << FileName << ")";
392   else
393     errs() << "'" << FileName << "'";
394   if (!ArchitectureName.empty())
395     errs() << " (for architecture " << ArchitectureName << ")";
396   std::string Buf;
397   raw_string_ostream OS(Buf);
398   logAllUnhandledErrors(std::move(E), OS);
399   OS.flush();
400   errs() << ": " << Buf;
401   exit(1);
402 }
403 
404 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
405                                                 const object::Archive::Child &C,
406                                                 llvm::Error E,
407                                                 StringRef ArchitectureName) {
408   Expected<StringRef> NameOrErr = C.getName();
409   // TODO: if we have a error getting the name then it would be nice to print
410   // the index of which archive member this is and or its offset in the
411   // archive instead of "???" as the name.
412   if (!NameOrErr) {
413     consumeError(NameOrErr.takeError());
414     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
415   } else
416     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
417                        ArchitectureName);
418 }
419 
420 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
421   // Figure out the target triple.
422   llvm::Triple TheTriple("unknown-unknown-unknown");
423   if (TripleName.empty()) {
424     if (Obj) {
425       TheTriple = Obj->makeTriple();
426     }
427   } else {
428     TheTriple.setTriple(Triple::normalize(TripleName));
429 
430     // Use the triple, but also try to combine with ARM build attributes.
431     if (Obj) {
432       auto Arch = Obj->getArch();
433       if (Arch == Triple::arm || Arch == Triple::armeb) {
434         Obj->setARMSubArch(TheTriple);
435       }
436     }
437   }
438 
439   // Get the target specific parser.
440   std::string Error;
441   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
442                                                          Error);
443   if (!TheTarget) {
444     if (Obj)
445       report_error(Obj->getFileName(), "can't find target: " + Error);
446     else
447       error("can't find target: " + Error);
448   }
449 
450   // Update the triple name and return the found target.
451   TripleName = TheTriple.getTriple();
452   return TheTarget;
453 }
454 
455 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
456   return a.getOffset() < b.getOffset();
457 }
458 
459 static std::string demangle(StringRef Name) {
460   char *Demangled = nullptr;
461   if (Name.startswith("_Z"))
462     Demangled = itaniumDemangle(Name.data(), Demangled, nullptr, nullptr);
463   else if (Name.startswith("?"))
464     Demangled = microsoftDemangle(Name.data(), Demangled, nullptr, nullptr);
465 
466   if (!Demangled)
467     return Name;
468 
469   std::string Ret = Demangled;
470   free(Demangled);
471   return Ret;
472 }
473 
474 template <class ELFT>
475 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
476                                                 const RelocationRef &RelRef,
477                                                 SmallVectorImpl<char> &Result) {
478   DataRefImpl Rel = RelRef.getRawDataRefImpl();
479 
480   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
481   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
482   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
483 
484   const ELFFile<ELFT> &EF = *Obj->getELFFile();
485 
486   auto SecOrErr = EF.getSection(Rel.d.a);
487   if (!SecOrErr)
488     return errorToErrorCode(SecOrErr.takeError());
489   const Elf_Shdr *Sec = *SecOrErr;
490   auto SymTabOrErr = EF.getSection(Sec->sh_link);
491   if (!SymTabOrErr)
492     return errorToErrorCode(SymTabOrErr.takeError());
493   const Elf_Shdr *SymTab = *SymTabOrErr;
494   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
495          SymTab->sh_type == ELF::SHT_DYNSYM);
496   auto StrTabSec = EF.getSection(SymTab->sh_link);
497   if (!StrTabSec)
498     return errorToErrorCode(StrTabSec.takeError());
499   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
500   if (!StrTabOrErr)
501     return errorToErrorCode(StrTabOrErr.takeError());
502   StringRef StrTab = *StrTabOrErr;
503   int64_t addend = 0;
504   // If there is no Symbol associated with the relocation, we set the undef
505   // boolean value to 'true'. This will prevent us from calling functions that
506   // requires the relocation to be associated with a symbol.
507   bool undef = false;
508   switch (Sec->sh_type) {
509   default:
510     return object_error::parse_failed;
511   case ELF::SHT_REL: {
512     // TODO: Read implicit addend from section data.
513     break;
514   }
515   case ELF::SHT_RELA: {
516     const Elf_Rela *ERela = Obj->getRela(Rel);
517     addend = ERela->r_addend;
518     undef = ERela->getSymbol(false) == 0;
519     break;
520   }
521   }
522   std::string Target;
523   if (!undef) {
524     symbol_iterator SI = RelRef.getSymbol();
525     const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
526     if (symb->getType() == ELF::STT_SECTION) {
527       Expected<section_iterator> SymSI = SI->getSection();
528       if (!SymSI)
529         return errorToErrorCode(SymSI.takeError());
530       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
531       auto SecName = EF.getSectionName(SymSec);
532       if (!SecName)
533         return errorToErrorCode(SecName.takeError());
534       Target = *SecName;
535     } else {
536       Expected<StringRef> SymName = symb->getName(StrTab);
537       if (!SymName)
538         return errorToErrorCode(SymName.takeError());
539       if (Demangle)
540         Target = demangle(*SymName);
541       else
542         Target = *SymName;
543     }
544   } else
545     Target = "*ABS*";
546 
547   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
548   // addend. Should be acceptable for all normal purposes.
549   std::string fmtbuf;
550   raw_string_ostream fmt(fmtbuf);
551   fmt << Target;
552   if (addend != 0)
553     fmt << (addend < 0 ? "" : "+") << addend;
554   fmt.flush();
555   Result.append(fmtbuf.begin(), fmtbuf.end());
556   return std::error_code();
557 }
558 
559 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
560                                                 const RelocationRef &Rel,
561                                                 SmallVectorImpl<char> &Result) {
562   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
563     return getRelocationValueString(ELF32LE, Rel, Result);
564   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
565     return getRelocationValueString(ELF64LE, Rel, Result);
566   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
567     return getRelocationValueString(ELF32BE, Rel, Result);
568   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
569   return getRelocationValueString(ELF64BE, Rel, Result);
570 }
571 
572 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
573                                                 const RelocationRef &Rel,
574                                                 SmallVectorImpl<char> &Result) {
575   symbol_iterator SymI = Rel.getSymbol();
576   Expected<StringRef> SymNameOrErr = SymI->getName();
577   if (!SymNameOrErr)
578     return errorToErrorCode(SymNameOrErr.takeError());
579   StringRef SymName = *SymNameOrErr;
580   Result.append(SymName.begin(), SymName.end());
581   return std::error_code();
582 }
583 
584 static void printRelocationTargetName(const MachOObjectFile *O,
585                                       const MachO::any_relocation_info &RE,
586                                       raw_string_ostream &fmt) {
587   bool IsScattered = O->isRelocationScattered(RE);
588 
589   // Target of a scattered relocation is an address.  In the interest of
590   // generating pretty output, scan through the symbol table looking for a
591   // symbol that aligns with that address.  If we find one, print it.
592   // Otherwise, we just print the hex address of the target.
593   if (IsScattered) {
594     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
595 
596     for (const SymbolRef &Symbol : O->symbols()) {
597       std::error_code ec;
598       Expected<uint64_t> Addr = Symbol.getAddress();
599       if (!Addr)
600         report_error(O->getFileName(), Addr.takeError());
601       if (*Addr != Val)
602         continue;
603       Expected<StringRef> Name = Symbol.getName();
604       if (!Name)
605         report_error(O->getFileName(), Name.takeError());
606       fmt << *Name;
607       return;
608     }
609 
610     // If we couldn't find a symbol that this relocation refers to, try
611     // to find a section beginning instead.
612     for (const SectionRef &Section : ToolSectionFilter(*O)) {
613       std::error_code ec;
614 
615       StringRef Name;
616       uint64_t Addr = Section.getAddress();
617       if (Addr != Val)
618         continue;
619       if ((ec = Section.getName(Name)))
620         report_error(O->getFileName(), ec);
621       fmt << Name;
622       return;
623     }
624 
625     fmt << format("0x%x", Val);
626     return;
627   }
628 
629   StringRef S;
630   bool isExtern = O->getPlainRelocationExternal(RE);
631   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
632 
633   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
634     fmt << format("0x%0" PRIx64, Val);
635     return;
636   } else if (isExtern) {
637     symbol_iterator SI = O->symbol_begin();
638     advance(SI, Val);
639     Expected<StringRef> SOrErr = SI->getName();
640     if (!SOrErr)
641       report_error(O->getFileName(), SOrErr.takeError());
642     S = *SOrErr;
643   } else {
644     section_iterator SI = O->section_begin();
645     // Adjust for the fact that sections are 1-indexed.
646     if (Val == 0) {
647       fmt << "0 (?,?)";
648       return;
649     }
650     uint32_t i = Val - 1;
651     while (i != 0 && SI != O->section_end()) {
652       i--;
653       advance(SI, 1);
654     }
655     if (SI == O->section_end())
656       fmt << Val << " (?,?)";
657     else
658       SI->getName(S);
659   }
660 
661   fmt << S;
662 }
663 
664 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
665                                                 const RelocationRef &RelRef,
666                                                 SmallVectorImpl<char> &Result) {
667   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
668   symbol_iterator SI = RelRef.getSymbol();
669   std::string fmtbuf;
670   raw_string_ostream fmt(fmtbuf);
671   if (SI == Obj->symbol_end()) {
672     // Not all wasm relocations have symbols associated with them.
673     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
674     fmt << Rel.Index;
675   } else {
676     Expected<StringRef> SymNameOrErr = SI->getName();
677     if (!SymNameOrErr)
678       return errorToErrorCode(SymNameOrErr.takeError());
679     StringRef SymName = *SymNameOrErr;
680     Result.append(SymName.begin(), SymName.end());
681   }
682   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
683   fmt.flush();
684   Result.append(fmtbuf.begin(), fmtbuf.end());
685   return std::error_code();
686 }
687 
688 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
689                                                 const RelocationRef &RelRef,
690                                                 SmallVectorImpl<char> &Result) {
691   DataRefImpl Rel = RelRef.getRawDataRefImpl();
692   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
693 
694   unsigned Arch = Obj->getArch();
695 
696   std::string fmtbuf;
697   raw_string_ostream fmt(fmtbuf);
698   unsigned Type = Obj->getAnyRelocationType(RE);
699   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
700 
701   // Determine any addends that should be displayed with the relocation.
702   // These require decoding the relocation type, which is triple-specific.
703 
704   // X86_64 has entirely custom relocation types.
705   if (Arch == Triple::x86_64) {
706     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
707 
708     switch (Type) {
709     case MachO::X86_64_RELOC_GOT_LOAD:
710     case MachO::X86_64_RELOC_GOT: {
711       printRelocationTargetName(Obj, RE, fmt);
712       fmt << "@GOT";
713       if (isPCRel)
714         fmt << "PCREL";
715       break;
716     }
717     case MachO::X86_64_RELOC_SUBTRACTOR: {
718       DataRefImpl RelNext = Rel;
719       Obj->moveRelocationNext(RelNext);
720       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
721 
722       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
723       // X86_64_RELOC_UNSIGNED.
724       // NOTE: Scattered relocations don't exist on x86_64.
725       unsigned RType = Obj->getAnyRelocationType(RENext);
726       if (RType != MachO::X86_64_RELOC_UNSIGNED)
727         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
728                      "X86_64_RELOC_SUBTRACTOR.");
729 
730       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
731       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
732       printRelocationTargetName(Obj, RENext, fmt);
733       fmt << "-";
734       printRelocationTargetName(Obj, RE, fmt);
735       break;
736     }
737     case MachO::X86_64_RELOC_TLV:
738       printRelocationTargetName(Obj, RE, fmt);
739       fmt << "@TLV";
740       if (isPCRel)
741         fmt << "P";
742       break;
743     case MachO::X86_64_RELOC_SIGNED_1:
744       printRelocationTargetName(Obj, RE, fmt);
745       fmt << "-1";
746       break;
747     case MachO::X86_64_RELOC_SIGNED_2:
748       printRelocationTargetName(Obj, RE, fmt);
749       fmt << "-2";
750       break;
751     case MachO::X86_64_RELOC_SIGNED_4:
752       printRelocationTargetName(Obj, RE, fmt);
753       fmt << "-4";
754       break;
755     default:
756       printRelocationTargetName(Obj, RE, fmt);
757       break;
758     }
759     // X86 and ARM share some relocation types in common.
760   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
761              Arch == Triple::ppc) {
762     // Generic relocation types...
763     switch (Type) {
764     case MachO::GENERIC_RELOC_PAIR: // prints no info
765       return std::error_code();
766     case MachO::GENERIC_RELOC_SECTDIFF: {
767       DataRefImpl RelNext = Rel;
768       Obj->moveRelocationNext(RelNext);
769       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
770 
771       // X86 sect diff's must be followed by a relocation of type
772       // GENERIC_RELOC_PAIR.
773       unsigned RType = Obj->getAnyRelocationType(RENext);
774 
775       if (RType != MachO::GENERIC_RELOC_PAIR)
776         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
777                      "GENERIC_RELOC_SECTDIFF.");
778 
779       printRelocationTargetName(Obj, RE, fmt);
780       fmt << "-";
781       printRelocationTargetName(Obj, RENext, fmt);
782       break;
783     }
784     }
785 
786     if (Arch == Triple::x86 || Arch == Triple::ppc) {
787       switch (Type) {
788       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
789         DataRefImpl RelNext = Rel;
790         Obj->moveRelocationNext(RelNext);
791         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
792 
793         // X86 sect diff's must be followed by a relocation of type
794         // GENERIC_RELOC_PAIR.
795         unsigned RType = Obj->getAnyRelocationType(RENext);
796         if (RType != MachO::GENERIC_RELOC_PAIR)
797           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
798                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
799 
800         printRelocationTargetName(Obj, RE, fmt);
801         fmt << "-";
802         printRelocationTargetName(Obj, RENext, fmt);
803         break;
804       }
805       case MachO::GENERIC_RELOC_TLV: {
806         printRelocationTargetName(Obj, RE, fmt);
807         fmt << "@TLV";
808         if (IsPCRel)
809           fmt << "P";
810         break;
811       }
812       default:
813         printRelocationTargetName(Obj, RE, fmt);
814       }
815     } else { // ARM-specific relocations
816       switch (Type) {
817       case MachO::ARM_RELOC_HALF:
818       case MachO::ARM_RELOC_HALF_SECTDIFF: {
819         // Half relocations steal a bit from the length field to encode
820         // whether this is an upper16 or a lower16 relocation.
821         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
822 
823         if (isUpper)
824           fmt << ":upper16:(";
825         else
826           fmt << ":lower16:(";
827         printRelocationTargetName(Obj, RE, fmt);
828 
829         DataRefImpl RelNext = Rel;
830         Obj->moveRelocationNext(RelNext);
831         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
832 
833         // ARM half relocs must be followed by a relocation of type
834         // ARM_RELOC_PAIR.
835         unsigned RType = Obj->getAnyRelocationType(RENext);
836         if (RType != MachO::ARM_RELOC_PAIR)
837           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
838                        "ARM_RELOC_HALF");
839 
840         // NOTE: The half of the target virtual address is stashed in the
841         // address field of the secondary relocation, but we can't reverse
842         // engineer the constant offset from it without decoding the movw/movt
843         // instruction to find the other half in its immediate field.
844 
845         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
846         // symbol/section pointer of the follow-on relocation.
847         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
848           fmt << "-";
849           printRelocationTargetName(Obj, RENext, fmt);
850         }
851 
852         fmt << ")";
853         break;
854       }
855       default: { printRelocationTargetName(Obj, RE, fmt); }
856       }
857     }
858   } else
859     printRelocationTargetName(Obj, RE, fmt);
860 
861   fmt.flush();
862   Result.append(fmtbuf.begin(), fmtbuf.end());
863   return std::error_code();
864 }
865 
866 static std::error_code getRelocationValueString(const RelocationRef &Rel,
867                                                 SmallVectorImpl<char> &Result) {
868   const ObjectFile *Obj = Rel.getObject();
869   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
870     return getRelocationValueString(ELF, Rel, Result);
871   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
872     return getRelocationValueString(COFF, Rel, Result);
873   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
874     return getRelocationValueString(Wasm, Rel, Result);
875   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
876     return getRelocationValueString(MachO, Rel, Result);
877   llvm_unreachable("unknown object file format");
878 }
879 
880 /// Indicates whether this relocation should hidden when listing
881 /// relocations, usually because it is the trailing part of a multipart
882 /// relocation that will be printed as part of the leading relocation.
883 static bool getHidden(RelocationRef RelRef) {
884   const ObjectFile *Obj = RelRef.getObject();
885   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
886   if (!MachO)
887     return false;
888 
889   unsigned Arch = MachO->getArch();
890   DataRefImpl Rel = RelRef.getRawDataRefImpl();
891   uint64_t Type = MachO->getRelocationType(Rel);
892 
893   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
894   // is always hidden.
895   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
896     if (Type == MachO::GENERIC_RELOC_PAIR)
897       return true;
898   } else if (Arch == Triple::x86_64) {
899     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
900     // an X86_64_RELOC_SUBTRACTOR.
901     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
902       DataRefImpl RelPrev = Rel;
903       RelPrev.d.a--;
904       uint64_t PrevType = MachO->getRelocationType(RelPrev);
905       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
906         return true;
907     }
908   }
909 
910   return false;
911 }
912 
913 namespace {
914 class SourcePrinter {
915 protected:
916   DILineInfo OldLineInfo;
917   const ObjectFile *Obj = nullptr;
918   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
919   // File name to file contents of source
920   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
921   // Mark the line endings of the cached source
922   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
923 
924 private:
925   bool cacheSource(const DILineInfo& LineInfoFile);
926 
927 public:
928   SourcePrinter() = default;
929   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
930     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
931         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
932         DefaultArch);
933     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
934   }
935   virtual ~SourcePrinter() = default;
936   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
937                                StringRef Delimiter = "; ");
938 };
939 
940 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
941   std::unique_ptr<MemoryBuffer> Buffer;
942   if (LineInfo.Source) {
943     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
944   } else {
945     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
946     if (!BufferOrError)
947       return false;
948     Buffer = std::move(*BufferOrError);
949   }
950   // Chomp the file to get lines
951   size_t BufferSize = Buffer->getBufferSize();
952   const char *BufferStart = Buffer->getBufferStart();
953   for (const char *Start = BufferStart, *End = BufferStart;
954        End < BufferStart + BufferSize; End++)
955     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
956         (*End == '\r' && *(End + 1) == '\n')) {
957       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
958       if (*End == '\r')
959         End++;
960       Start = End + 1;
961     }
962   SourceCache[LineInfo.FileName] = std::move(Buffer);
963   return true;
964 }
965 
966 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
967                                     StringRef Delimiter) {
968   if (!Symbolizer)
969     return;
970   DILineInfo LineInfo = DILineInfo();
971   auto ExpectecLineInfo =
972       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
973   if (!ExpectecLineInfo)
974     consumeError(ExpectecLineInfo.takeError());
975   else
976     LineInfo = *ExpectecLineInfo;
977 
978   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
979       LineInfo.Line == 0)
980     return;
981 
982   if (PrintLines)
983     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
984   if (PrintSource) {
985     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
986       if (!cacheSource(LineInfo))
987         return;
988     auto FileBuffer = SourceCache.find(LineInfo.FileName);
989     if (FileBuffer != SourceCache.end()) {
990       auto LineBuffer = LineCache.find(LineInfo.FileName);
991       if (LineBuffer != LineCache.end()) {
992         if (LineInfo.Line > LineBuffer->second.size())
993           return;
994         // Vector begins at 0, line numbers are non-zero
995         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
996            << "\n";
997       }
998     }
999   }
1000   OldLineInfo = LineInfo;
1001 }
1002 
1003 static bool isArmElf(const ObjectFile *Obj) {
1004   return (Obj->isELF() &&
1005           (Obj->getArch() == Triple::aarch64 ||
1006            Obj->getArch() == Triple::aarch64_be ||
1007            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
1008            Obj->getArch() == Triple::thumb ||
1009            Obj->getArch() == Triple::thumbeb));
1010 }
1011 
1012 class PrettyPrinter {
1013 public:
1014   virtual ~PrettyPrinter() = default;
1015   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
1016                          ArrayRef<uint8_t> Bytes, uint64_t Address,
1017                          raw_ostream &OS, StringRef Annot,
1018                          MCSubtargetInfo const &STI, SourcePrinter *SP,
1019                          std::vector<RelocationRef> *Rels = nullptr) {
1020     if (SP && (PrintSource || PrintLines))
1021       SP->printSourceLine(OS, Address);
1022     if (!NoLeadingAddr)
1023       OS << format("%8" PRIx64 ":", Address);
1024     if (!NoShowRawInsn) {
1025       OS << "\t";
1026       dumpBytes(Bytes, OS);
1027     }
1028     if (MI)
1029       IP.printInst(MI, OS, "", STI);
1030     else
1031       OS << " <unknown>";
1032   }
1033 };
1034 PrettyPrinter PrettyPrinterInst;
1035 class HexagonPrettyPrinter : public PrettyPrinter {
1036 public:
1037   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1038                  raw_ostream &OS) {
1039     uint32_t opcode =
1040       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1041     if (!NoLeadingAddr)
1042       OS << format("%8" PRIx64 ":", Address);
1043     if (!NoShowRawInsn) {
1044       OS << "\t";
1045       dumpBytes(Bytes.slice(0, 4), OS);
1046       OS << format("%08" PRIx32, opcode);
1047     }
1048   }
1049   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1050                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1051                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1052                  std::vector<RelocationRef> *Rels) override {
1053     if (SP && (PrintSource || PrintLines))
1054       SP->printSourceLine(OS, Address, "");
1055     if (!MI) {
1056       printLead(Bytes, Address, OS);
1057       OS << " <unknown>";
1058       return;
1059     }
1060     std::string Buffer;
1061     {
1062       raw_string_ostream TempStream(Buffer);
1063       IP.printInst(MI, TempStream, "", STI);
1064     }
1065     StringRef Contents(Buffer);
1066     // Split off bundle attributes
1067     auto PacketBundle = Contents.rsplit('\n');
1068     // Split off first instruction from the rest
1069     auto HeadTail = PacketBundle.first.split('\n');
1070     auto Preamble = " { ";
1071     auto Separator = "";
1072     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1073     std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
1074     std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
1075 
1076     // Hexagon's packets require relocations to be inline rather than
1077     // clustered at the end of the packet.
1078     auto PrintReloc = [&]() -> void {
1079       while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
1080         if (rel_cur->getOffset() == Address) {
1081           SmallString<16> name;
1082           SmallString<32> val;
1083           rel_cur->getTypeName(name);
1084           error(getRelocationValueString(*rel_cur, val));
1085           OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1086                 << "\n";
1087           return;
1088         }
1089         rel_cur++;
1090       }
1091     };
1092 
1093     while(!HeadTail.first.empty()) {
1094       OS << Separator;
1095       Separator = "\n";
1096       if (SP && (PrintSource || PrintLines))
1097         SP->printSourceLine(OS, Address, "");
1098       printLead(Bytes, Address, OS);
1099       OS << Preamble;
1100       Preamble = "   ";
1101       StringRef Inst;
1102       auto Duplex = HeadTail.first.split('\v');
1103       if(!Duplex.second.empty()){
1104         OS << Duplex.first;
1105         OS << "; ";
1106         Inst = Duplex.second;
1107       }
1108       else
1109         Inst = HeadTail.first;
1110       OS << Inst;
1111       HeadTail = HeadTail.second.split('\n');
1112       if (HeadTail.first.empty())
1113         OS << " } " << PacketBundle.second;
1114       PrintReloc();
1115       Bytes = Bytes.slice(4);
1116       Address += 4;
1117     }
1118   }
1119 };
1120 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1121 
1122 class AMDGCNPrettyPrinter : public PrettyPrinter {
1123 public:
1124   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1125                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1126                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1127                  std::vector<RelocationRef> *Rels) override {
1128     if (SP && (PrintSource || PrintLines))
1129       SP->printSourceLine(OS, Address);
1130 
1131     typedef support::ulittle32_t U32;
1132 
1133     if (MI) {
1134       SmallString<40> InstStr;
1135       raw_svector_ostream IS(InstStr);
1136 
1137       IP.printInst(MI, IS, "", STI);
1138 
1139       OS << left_justify(IS.str(), 60);
1140     } else {
1141       // an unrecognized encoding - this is probably data so represent it
1142       // using the .long directive, or .byte directive if fewer than 4 bytes
1143       // remaining
1144       if (Bytes.size() >= 4) {
1145         OS << format("\t.long 0x%08" PRIx32 " ",
1146                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1147         OS.indent(42);
1148       } else {
1149           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1150           for (unsigned int i = 1; i < Bytes.size(); i++)
1151             OS << format(", 0x%02" PRIx8, Bytes[i]);
1152           OS.indent(55 - (6 * Bytes.size()));
1153       }
1154     }
1155 
1156     OS << format("// %012" PRIX64 ": ", Address);
1157     if (Bytes.size() >=4) {
1158       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1159                                  Bytes.size() / sizeof(U32)))
1160         // D should be explicitly casted to uint32_t here as it is passed
1161         // by format to snprintf as vararg.
1162         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1163     } else {
1164       for (unsigned int i = 0; i < Bytes.size(); i++)
1165         OS << format("%02" PRIX8 " ", Bytes[i]);
1166     }
1167 
1168     if (!Annot.empty())
1169       OS << "// " << Annot;
1170   }
1171 };
1172 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1173 
1174 class BPFPrettyPrinter : public PrettyPrinter {
1175 public:
1176   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1177                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1178                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1179                  std::vector<RelocationRef> *Rels) override {
1180     if (SP && (PrintSource || PrintLines))
1181       SP->printSourceLine(OS, Address);
1182     if (!NoLeadingAddr)
1183       OS << format("%8" PRId64 ":", Address / 8);
1184     if (!NoShowRawInsn) {
1185       OS << "\t";
1186       dumpBytes(Bytes, OS);
1187     }
1188     if (MI)
1189       IP.printInst(MI, OS, "", STI);
1190     else
1191       OS << " <unknown>";
1192   }
1193 };
1194 BPFPrettyPrinter BPFPrettyPrinterInst;
1195 
1196 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1197   switch(Triple.getArch()) {
1198   default:
1199     return PrettyPrinterInst;
1200   case Triple::hexagon:
1201     return HexagonPrettyPrinterInst;
1202   case Triple::amdgcn:
1203     return AMDGCNPrettyPrinterInst;
1204   case Triple::bpfel:
1205   case Triple::bpfeb:
1206     return BPFPrettyPrinterInst;
1207   }
1208 }
1209 }
1210 
1211 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1212   assert(Obj->isELF());
1213   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1214     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1215   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1216     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1217   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1218     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1219   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1220     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1221   llvm_unreachable("Unsupported binary format");
1222 }
1223 
1224 template <class ELFT> static void
1225 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1226                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1227   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1228     uint8_t SymbolType = Symbol.getELFType();
1229     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1230       continue;
1231 
1232     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1233     if (!AddressOrErr)
1234       report_error(Obj->getFileName(), AddressOrErr.takeError());
1235     uint64_t Address = *AddressOrErr;
1236 
1237     Expected<StringRef> Name = Symbol.getName();
1238     if (!Name)
1239       report_error(Obj->getFileName(), Name.takeError());
1240     if (Name->empty())
1241       continue;
1242 
1243     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1244     if (!SectionOrErr)
1245       report_error(Obj->getFileName(), SectionOrErr.takeError());
1246     section_iterator SecI = *SectionOrErr;
1247     if (SecI == Obj->section_end())
1248       continue;
1249 
1250     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1251   }
1252 }
1253 
1254 static void
1255 addDynamicElfSymbols(const ObjectFile *Obj,
1256                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1257   assert(Obj->isELF());
1258   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1259     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1260   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1261     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1262   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1263     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1264   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1265     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1266   else
1267     llvm_unreachable("Unsupported binary format");
1268 }
1269 
1270 static void addPltEntries(const ObjectFile *Obj,
1271                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1272                           StringSaver &Saver) {
1273   Optional<SectionRef> Plt = None;
1274   for (const SectionRef &Section : Obj->sections()) {
1275     StringRef Name;
1276     if (Section.getName(Name))
1277       continue;
1278     if (Name == ".plt")
1279       Plt = Section;
1280   }
1281   if (!Plt)
1282     return;
1283   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1284     for (auto PltEntry : ElfObj->getPltAddresses()) {
1285       SymbolRef Symbol(PltEntry.first, ElfObj);
1286 
1287       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1288 
1289       Expected<StringRef> NameOrErr = Symbol.getName();
1290       if (!NameOrErr)
1291         report_error(Obj->getFileName(), NameOrErr.takeError());
1292       if (NameOrErr->empty())
1293         continue;
1294       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1295 
1296       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1297     }
1298   }
1299 }
1300 
1301 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1302   if (StartAddress > StopAddress)
1303     error("Start address should be less than stop address");
1304 
1305   const Target *TheTarget = getTarget(Obj);
1306 
1307   // Package up features to be passed to target/subtarget
1308   SubtargetFeatures Features = Obj->getFeatures();
1309   if (!MAttrs.empty()) {
1310     for (unsigned i = 0; i != MAttrs.size(); ++i)
1311       Features.AddFeature(MAttrs[i]);
1312   }
1313 
1314   std::unique_ptr<const MCRegisterInfo> MRI(
1315       TheTarget->createMCRegInfo(TripleName));
1316   if (!MRI)
1317     report_error(Obj->getFileName(), "no register info for target " +
1318                  TripleName);
1319 
1320   // Set up disassembler.
1321   std::unique_ptr<const MCAsmInfo> AsmInfo(
1322       TheTarget->createMCAsmInfo(*MRI, TripleName));
1323   if (!AsmInfo)
1324     report_error(Obj->getFileName(), "no assembly info for target " +
1325                  TripleName);
1326   std::unique_ptr<const MCSubtargetInfo> STI(
1327       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1328   if (!STI)
1329     report_error(Obj->getFileName(), "no subtarget info for target " +
1330                  TripleName);
1331   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1332   if (!MII)
1333     report_error(Obj->getFileName(), "no instruction info for target " +
1334                  TripleName);
1335   MCObjectFileInfo MOFI;
1336   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1337   // FIXME: for now initialize MCObjectFileInfo with default values
1338   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1339 
1340   std::unique_ptr<MCDisassembler> DisAsm(
1341     TheTarget->createMCDisassembler(*STI, Ctx));
1342   if (!DisAsm)
1343     report_error(Obj->getFileName(), "no disassembler for target " +
1344                  TripleName);
1345 
1346   std::unique_ptr<const MCInstrAnalysis> MIA(
1347       TheTarget->createMCInstrAnalysis(MII.get()));
1348 
1349   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1350   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1351       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1352   if (!IP)
1353     report_error(Obj->getFileName(), "no instruction printer for target " +
1354                  TripleName);
1355   IP->setPrintImmHex(PrintImmHex);
1356   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1357 
1358   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1359                                                  "\t\t\t%08" PRIx64 ":  ";
1360 
1361   SourcePrinter SP(Obj, TheTarget->getName());
1362 
1363   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1364   // in RelocSecs contain the relocations for section S.
1365   std::error_code EC;
1366   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1367   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1368     section_iterator Sec2 = Section.getRelocatedSection();
1369     if (Sec2 != Obj->section_end())
1370       SectionRelocMap[*Sec2].push_back(Section);
1371   }
1372 
1373   // Create a mapping from virtual address to symbol name.  This is used to
1374   // pretty print the symbols while disassembling.
1375   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1376   SectionSymbolsTy AbsoluteSymbols;
1377   for (const SymbolRef &Symbol : Obj->symbols()) {
1378     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1379     if (!AddressOrErr)
1380       report_error(Obj->getFileName(), AddressOrErr.takeError());
1381     uint64_t Address = *AddressOrErr;
1382 
1383     Expected<StringRef> Name = Symbol.getName();
1384     if (!Name)
1385       report_error(Obj->getFileName(), Name.takeError());
1386     if (Name->empty())
1387       continue;
1388 
1389     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1390     if (!SectionOrErr)
1391       report_error(Obj->getFileName(), SectionOrErr.takeError());
1392 
1393     uint8_t SymbolType = ELF::STT_NOTYPE;
1394     if (Obj->isELF())
1395       SymbolType = getElfSymbolType(Obj, Symbol);
1396 
1397     section_iterator SecI = *SectionOrErr;
1398     if (SecI != Obj->section_end())
1399       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1400     else
1401       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1402 
1403 
1404   }
1405   if (AllSymbols.empty() && Obj->isELF())
1406     addDynamicElfSymbols(Obj, AllSymbols);
1407 
1408   BumpPtrAllocator A;
1409   StringSaver Saver(A);
1410   addPltEntries(Obj, AllSymbols, Saver);
1411 
1412   // Create a mapping from virtual address to section.
1413   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1414   for (SectionRef Sec : Obj->sections())
1415     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1416   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1417 
1418   // Linked executables (.exe and .dll files) typically don't include a real
1419   // symbol table but they might contain an export table.
1420   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1421     for (const auto &ExportEntry : COFFObj->export_directories()) {
1422       StringRef Name;
1423       error(ExportEntry.getSymbolName(Name));
1424       if (Name.empty())
1425         continue;
1426       uint32_t RVA;
1427       error(ExportEntry.getExportRVA(RVA));
1428 
1429       uint64_t VA = COFFObj->getImageBase() + RVA;
1430       auto Sec = std::upper_bound(
1431           SectionAddresses.begin(), SectionAddresses.end(), VA,
1432           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1433             return LHS < RHS.first;
1434           });
1435       if (Sec != SectionAddresses.begin())
1436         --Sec;
1437       else
1438         Sec = SectionAddresses.end();
1439 
1440       if (Sec != SectionAddresses.end())
1441         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1442       else
1443         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1444     }
1445   }
1446 
1447   // Sort all the symbols, this allows us to use a simple binary search to find
1448   // a symbol near an address.
1449   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1450     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1451   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1452 
1453   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1454     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1455       continue;
1456 
1457     uint64_t SectionAddr = Section.getAddress();
1458     uint64_t SectSize = Section.getSize();
1459     if (!SectSize)
1460       continue;
1461 
1462     // Get the list of all the symbols in this section.
1463     SectionSymbolsTy &Symbols = AllSymbols[Section];
1464     std::vector<uint64_t> DataMappingSymsAddr;
1465     std::vector<uint64_t> TextMappingSymsAddr;
1466     if (isArmElf(Obj)) {
1467       for (const auto &Symb : Symbols) {
1468         uint64_t Address = std::get<0>(Symb);
1469         StringRef Name = std::get<1>(Symb);
1470         if (Name.startswith("$d"))
1471           DataMappingSymsAddr.push_back(Address - SectionAddr);
1472         if (Name.startswith("$x"))
1473           TextMappingSymsAddr.push_back(Address - SectionAddr);
1474         if (Name.startswith("$a"))
1475           TextMappingSymsAddr.push_back(Address - SectionAddr);
1476         if (Name.startswith("$t"))
1477           TextMappingSymsAddr.push_back(Address - SectionAddr);
1478       }
1479     }
1480 
1481     llvm::sort(DataMappingSymsAddr);
1482     llvm::sort(TextMappingSymsAddr);
1483 
1484     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1485       // AMDGPU disassembler uses symbolizer for printing labels
1486       std::unique_ptr<MCRelocationInfo> RelInfo(
1487         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1488       if (RelInfo) {
1489         std::unique_ptr<MCSymbolizer> Symbolizer(
1490           TheTarget->createMCSymbolizer(
1491             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1492         DisAsm->setSymbolizer(std::move(Symbolizer));
1493       }
1494     }
1495 
1496     // Make a list of all the relocations for this section.
1497     std::vector<RelocationRef> Rels;
1498     if (InlineRelocs) {
1499       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1500         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1501           Rels.push_back(Reloc);
1502         }
1503       }
1504     }
1505 
1506     // Sort relocations by address.
1507     llvm::sort(Rels, RelocAddressLess);
1508 
1509     StringRef SegmentName = "";
1510     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1511       DataRefImpl DR = Section.getRawDataRefImpl();
1512       SegmentName = MachO->getSectionFinalSegmentName(DR);
1513     }
1514     StringRef SectionName;
1515     error(Section.getName(SectionName));
1516 
1517     // If the section has no symbol at the start, just insert a dummy one.
1518     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1519       Symbols.insert(
1520           Symbols.begin(),
1521           std::make_tuple(SectionAddr, SectionName,
1522                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1523     }
1524 
1525     SmallString<40> Comments;
1526     raw_svector_ostream CommentStream(Comments);
1527 
1528     StringRef BytesStr;
1529     error(Section.getContents(BytesStr));
1530     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1531                             BytesStr.size());
1532 
1533     uint64_t Size;
1534     uint64_t Index;
1535     bool PrintedSection = false;
1536 
1537     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1538     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1539     // Disassemble symbol by symbol.
1540     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1541       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1542       // The end is either the section end or the beginning of the next
1543       // symbol.
1544       uint64_t End =
1545           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1546       // Don't try to disassemble beyond the end of section contents.
1547       if (End > SectSize)
1548         End = SectSize;
1549       // If this symbol has the same address as the next symbol, then skip it.
1550       if (Start >= End)
1551         continue;
1552 
1553       // Check if we need to skip symbol
1554       // Skip if the symbol's data is not between StartAddress and StopAddress
1555       if (End + SectionAddr < StartAddress ||
1556           Start + SectionAddr > StopAddress) {
1557         continue;
1558       }
1559 
1560       /// Skip if user requested specific symbols and this is not in the list
1561       if (!DisasmFuncsSet.empty() &&
1562           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1563         continue;
1564 
1565       if (!PrintedSection) {
1566         PrintedSection = true;
1567         outs() << "Disassembly of section ";
1568         if (!SegmentName.empty())
1569           outs() << SegmentName << ",";
1570         outs() << SectionName << ':';
1571       }
1572 
1573       // Stop disassembly at the stop address specified
1574       if (End + SectionAddr > StopAddress)
1575         End = StopAddress - SectionAddr;
1576 
1577       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1578         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1579           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1580           Start += 256;
1581         }
1582         if (si == se - 1 ||
1583             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1584           // cut trailing zeroes at the end of kernel
1585           // cut up to 256 bytes
1586           const uint64_t EndAlign = 256;
1587           const auto Limit = End - (std::min)(EndAlign, End - Start);
1588           while (End > Limit &&
1589             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1590             End -= 4;
1591         }
1592       }
1593 
1594       outs() << '\n';
1595       StringRef SymbolName = std::get<1>(Symbols[si]);
1596       if (Demangle)
1597         outs() << demangle(SymbolName) << ":\n";
1598       else
1599         outs() << SymbolName << ":\n";
1600 
1601       // Don't print raw contents of a virtual section. A virtual section
1602       // doesn't have any contents in the file.
1603       if (Section.isVirtual()) {
1604         outs() << "...\n";
1605         continue;
1606       }
1607 
1608 #ifndef NDEBUG
1609       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1610 #else
1611       raw_ostream &DebugOut = nulls();
1612 #endif
1613 
1614       for (Index = Start; Index < End; Index += Size) {
1615         MCInst Inst;
1616 
1617         if (Index + SectionAddr < StartAddress ||
1618             Index + SectionAddr > StopAddress) {
1619           // skip byte by byte till StartAddress is reached
1620           Size = 1;
1621           continue;
1622         }
1623         // AArch64 ELF binaries can interleave data and text in the
1624         // same section. We rely on the markers introduced to
1625         // understand what we need to dump. If the data marker is within a
1626         // function, it is denoted as a word/short etc
1627         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1628             !DisassembleAll) {
1629           uint64_t Stride = 0;
1630 
1631           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1632                                       DataMappingSymsAddr.end(), Index);
1633           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1634             // Switch to data.
1635             while (Index < End) {
1636               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1637               outs() << "\t";
1638               if (Index + 4 <= End) {
1639                 Stride = 4;
1640                 dumpBytes(Bytes.slice(Index, 4), outs());
1641                 outs() << "\t.word\t";
1642                 uint32_t Data = 0;
1643                 if (Obj->isLittleEndian()) {
1644                   const auto Word =
1645                       reinterpret_cast<const support::ulittle32_t *>(
1646                           Bytes.data() + Index);
1647                   Data = *Word;
1648                 } else {
1649                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1650                       Bytes.data() + Index);
1651                   Data = *Word;
1652                 }
1653                 outs() << "0x" << format("%08" PRIx32, Data);
1654               } else if (Index + 2 <= End) {
1655                 Stride = 2;
1656                 dumpBytes(Bytes.slice(Index, 2), outs());
1657                 outs() << "\t\t.short\t";
1658                 uint16_t Data = 0;
1659                 if (Obj->isLittleEndian()) {
1660                   const auto Short =
1661                       reinterpret_cast<const support::ulittle16_t *>(
1662                           Bytes.data() + Index);
1663                   Data = *Short;
1664                 } else {
1665                   const auto Short =
1666                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1667                                                                   Index);
1668                   Data = *Short;
1669                 }
1670                 outs() << "0x" << format("%04" PRIx16, Data);
1671               } else {
1672                 Stride = 1;
1673                 dumpBytes(Bytes.slice(Index, 1), outs());
1674                 outs() << "\t\t.byte\t";
1675                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1676               }
1677               Index += Stride;
1678               outs() << "\n";
1679               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1680                                           TextMappingSymsAddr.end(), Index);
1681               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1682                 break;
1683             }
1684           }
1685         }
1686 
1687         // If there is a data symbol inside an ELF text section and we are only
1688         // disassembling text (applicable all architectures),
1689         // we are in a situation where we must print the data and not
1690         // disassemble it.
1691         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1692             !DisassembleAll && Section.isText()) {
1693           // print out data up to 8 bytes at a time in hex and ascii
1694           uint8_t AsciiData[9] = {'\0'};
1695           uint8_t Byte;
1696           int NumBytes = 0;
1697 
1698           for (Index = Start; Index < End; Index += 1) {
1699             if (((SectionAddr + Index) < StartAddress) ||
1700                 ((SectionAddr + Index) > StopAddress))
1701               continue;
1702             if (NumBytes == 0) {
1703               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1704               outs() << "\t";
1705             }
1706             Byte = Bytes.slice(Index)[0];
1707             outs() << format(" %02x", Byte);
1708             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1709 
1710             uint8_t IndentOffset = 0;
1711             NumBytes++;
1712             if (Index == End - 1 || NumBytes > 8) {
1713               // Indent the space for less than 8 bytes data.
1714               // 2 spaces for byte and one for space between bytes
1715               IndentOffset = 3 * (8 - NumBytes);
1716               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1717                 AsciiData[Excess] = '\0';
1718               NumBytes = 8;
1719             }
1720             if (NumBytes == 8) {
1721               AsciiData[8] = '\0';
1722               outs() << std::string(IndentOffset, ' ') << "         ";
1723               outs() << reinterpret_cast<char *>(AsciiData);
1724               outs() << '\n';
1725               NumBytes = 0;
1726             }
1727           }
1728         }
1729         if (Index >= End)
1730           break;
1731 
1732         // Disassemble a real instruction or a data when disassemble all is
1733         // provided
1734         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1735                                                    SectionAddr + Index, DebugOut,
1736                                                    CommentStream);
1737         if (Size == 0)
1738           Size = 1;
1739 
1740         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1741                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1742                       *STI, &SP, &Rels);
1743         outs() << CommentStream.str();
1744         Comments.clear();
1745 
1746         // Try to resolve the target of a call, tail call, etc. to a specific
1747         // symbol.
1748         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1749                     MIA->isConditionalBranch(Inst))) {
1750           uint64_t Target;
1751           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1752             // In a relocatable object, the target's section must reside in
1753             // the same section as the call instruction or it is accessed
1754             // through a relocation.
1755             //
1756             // In a non-relocatable object, the target may be in any section.
1757             //
1758             // N.B. We don't walk the relocations in the relocatable case yet.
1759             auto *TargetSectionSymbols = &Symbols;
1760             if (!Obj->isRelocatableObject()) {
1761               auto SectionAddress = std::upper_bound(
1762                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1763                   [](uint64_t LHS,
1764                       const std::pair<uint64_t, SectionRef> &RHS) {
1765                     return LHS < RHS.first;
1766                   });
1767               if (SectionAddress != SectionAddresses.begin()) {
1768                 --SectionAddress;
1769                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1770               } else {
1771                 TargetSectionSymbols = &AbsoluteSymbols;
1772               }
1773             }
1774 
1775             // Find the first symbol in the section whose offset is less than
1776             // or equal to the target. If there isn't a section that contains
1777             // the target, find the nearest preceding absolute symbol.
1778             auto TargetSym = std::upper_bound(
1779                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1780                 Target, [](uint64_t LHS,
1781                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1782                   return LHS < std::get<0>(RHS);
1783                 });
1784             if (TargetSym == TargetSectionSymbols->begin()) {
1785               TargetSectionSymbols = &AbsoluteSymbols;
1786               TargetSym = std::upper_bound(
1787                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1788                   Target, [](uint64_t LHS,
1789                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1790                             return LHS < std::get<0>(RHS);
1791                           });
1792             }
1793             if (TargetSym != TargetSectionSymbols->begin()) {
1794               --TargetSym;
1795               uint64_t TargetAddress = std::get<0>(*TargetSym);
1796               StringRef TargetName = std::get<1>(*TargetSym);
1797               outs() << " <" << TargetName;
1798               uint64_t Disp = Target - TargetAddress;
1799               if (Disp)
1800                 outs() << "+0x" << Twine::utohexstr(Disp);
1801               outs() << '>';
1802             }
1803           }
1804         }
1805         outs() << "\n";
1806 
1807         // Hexagon does this in pretty printer
1808         if (Obj->getArch() != Triple::hexagon)
1809           // Print relocation for instruction.
1810           while (rel_cur != rel_end) {
1811             bool hidden = getHidden(*rel_cur);
1812             uint64_t addr = rel_cur->getOffset();
1813             SmallString<16> name;
1814             SmallString<32> val;
1815 
1816             // If this relocation is hidden, skip it.
1817             if (hidden || ((SectionAddr + addr) < StartAddress)) {
1818               ++rel_cur;
1819               continue;
1820             }
1821 
1822             // Stop when rel_cur's address is past the current instruction.
1823             if (addr >= Index + Size) break;
1824             rel_cur->getTypeName(name);
1825             error(getRelocationValueString(*rel_cur, val));
1826             outs() << format(Fmt.data(), SectionAddr + addr) << name
1827                    << "\t" << val << "\n";
1828             ++rel_cur;
1829           }
1830       }
1831     }
1832   }
1833 }
1834 
1835 void llvm::PrintRelocations(const ObjectFile *Obj) {
1836   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1837                                                  "%08" PRIx64;
1838   // Regular objdump doesn't print relocations in non-relocatable object
1839   // files.
1840   if (!Obj->isRelocatableObject())
1841     return;
1842 
1843   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1844     if (Section.relocation_begin() == Section.relocation_end())
1845       continue;
1846     StringRef secname;
1847     error(Section.getName(secname));
1848     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1849     for (const RelocationRef &Reloc : Section.relocations()) {
1850       bool hidden = getHidden(Reloc);
1851       uint64_t address = Reloc.getOffset();
1852       SmallString<32> relocname;
1853       SmallString<32> valuestr;
1854       if (address < StartAddress || address > StopAddress || hidden)
1855         continue;
1856       Reloc.getTypeName(relocname);
1857       error(getRelocationValueString(Reloc, valuestr));
1858       outs() << format(Fmt.data(), address) << " " << relocname << " "
1859              << valuestr << "\n";
1860     }
1861     outs() << "\n";
1862   }
1863 }
1864 
1865 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) {
1866 
1867   // For the moment, this option is for ELF only
1868   if (!Obj->isELF())
1869     return;
1870 
1871   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1872 
1873   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1874     error("not a dynamic object");
1875     return;
1876   }
1877 
1878   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1879 
1880   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1881   if (DynRelSec.empty())
1882     return;
1883 
1884   outs() << "DYNAMIC RELOCATION RECORDS\n";
1885   for (const SectionRef &Section : DynRelSec) {
1886     if (Section.relocation_begin() == Section.relocation_end())
1887       continue;
1888     for (const RelocationRef &Reloc : Section.relocations()) {
1889       uint64_t address = Reloc.getOffset();
1890       SmallString<32> relocname;
1891       SmallString<32> valuestr;
1892       Reloc.getTypeName(relocname);
1893       error(getRelocationValueString(Reloc, valuestr));
1894       outs() << format(Fmt.data(), address) << " " << relocname << " "
1895              << valuestr << "\n";
1896     }
1897   }
1898 }
1899 
1900 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1901   outs() << "Sections:\n"
1902             "Idx Name          Size      Address          Type\n";
1903   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1904     StringRef Name;
1905     error(Section.getName(Name));
1906     uint64_t Address = Section.getAddress();
1907     uint64_t Size = Section.getSize();
1908     bool Text = Section.isText();
1909     bool Data = Section.isData();
1910     bool BSS = Section.isBSS();
1911     std::string Type = (std::string(Text ? "TEXT " : "") +
1912                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1913     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1914                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1915                      Address, Type.c_str());
1916   }
1917   outs() << "\n";
1918 }
1919 
1920 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1921   std::error_code EC;
1922   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1923     StringRef Name;
1924     StringRef Contents;
1925     error(Section.getName(Name));
1926     uint64_t BaseAddr = Section.getAddress();
1927     uint64_t Size = Section.getSize();
1928     if (!Size)
1929       continue;
1930 
1931     outs() << "Contents of section " << Name << ":\n";
1932     if (Section.isBSS()) {
1933       outs() << format("<skipping contents of bss section at [%04" PRIx64
1934                        ", %04" PRIx64 ")>\n",
1935                        BaseAddr, BaseAddr + Size);
1936       continue;
1937     }
1938 
1939     error(Section.getContents(Contents));
1940 
1941     // Dump out the content as hex and printable ascii characters.
1942     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1943       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1944       // Dump line of hex.
1945       for (std::size_t i = 0; i < 16; ++i) {
1946         if (i != 0 && i % 4 == 0)
1947           outs() << ' ';
1948         if (addr + i < end)
1949           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1950                  << hexdigit(Contents[addr + i] & 0xF, true);
1951         else
1952           outs() << "  ";
1953       }
1954       // Print ascii.
1955       outs() << "  ";
1956       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1957         if (isPrint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1958           outs() << Contents[addr + i];
1959         else
1960           outs() << ".";
1961       }
1962       outs() << "\n";
1963     }
1964   }
1965 }
1966 
1967 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1968                             StringRef ArchitectureName) {
1969   outs() << "SYMBOL TABLE:\n";
1970 
1971   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1972     printCOFFSymbolTable(coff);
1973     return;
1974   }
1975   for (const SymbolRef &Symbol : o->symbols()) {
1976     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1977     if (!AddressOrError)
1978       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1979                    ArchitectureName);
1980     uint64_t Address = *AddressOrError;
1981     if ((Address < StartAddress) || (Address > StopAddress))
1982       continue;
1983     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1984     if (!TypeOrError)
1985       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1986                    ArchitectureName);
1987     SymbolRef::Type Type = *TypeOrError;
1988     uint32_t Flags = Symbol.getFlags();
1989     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1990     if (!SectionOrErr)
1991       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1992                    ArchitectureName);
1993     section_iterator Section = *SectionOrErr;
1994     StringRef Name;
1995     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1996       Section->getName(Name);
1997     } else {
1998       Expected<StringRef> NameOrErr = Symbol.getName();
1999       if (!NameOrErr)
2000         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
2001                      ArchitectureName);
2002       Name = *NameOrErr;
2003     }
2004 
2005     bool Global = Flags & SymbolRef::SF_Global;
2006     bool Weak = Flags & SymbolRef::SF_Weak;
2007     bool Absolute = Flags & SymbolRef::SF_Absolute;
2008     bool Common = Flags & SymbolRef::SF_Common;
2009     bool Hidden = Flags & SymbolRef::SF_Hidden;
2010 
2011     char GlobLoc = ' ';
2012     if (Type != SymbolRef::ST_Unknown)
2013       GlobLoc = Global ? 'g' : 'l';
2014     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2015                  ? 'd' : ' ';
2016     char FileFunc = ' ';
2017     if (Type == SymbolRef::ST_File)
2018       FileFunc = 'f';
2019     else if (Type == SymbolRef::ST_Function)
2020       FileFunc = 'F';
2021     else if (Type == SymbolRef::ST_Data)
2022       FileFunc = 'O';
2023 
2024     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
2025                                                    "%08" PRIx64;
2026 
2027     outs() << format(Fmt, Address) << " "
2028            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2029            << (Weak ? 'w' : ' ') // Weak?
2030            << ' ' // Constructor. Not supported yet.
2031            << ' ' // Warning. Not supported yet.
2032            << ' ' // Indirect reference to another symbol.
2033            << Debug // Debugging (d) or dynamic (D) symbol.
2034            << FileFunc // Name of function (F), file (f) or object (O).
2035            << ' ';
2036     if (Absolute) {
2037       outs() << "*ABS*";
2038     } else if (Common) {
2039       outs() << "*COM*";
2040     } else if (Section == o->section_end()) {
2041       outs() << "*UND*";
2042     } else {
2043       if (const MachOObjectFile *MachO =
2044           dyn_cast<const MachOObjectFile>(o)) {
2045         DataRefImpl DR = Section->getRawDataRefImpl();
2046         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2047         outs() << SegmentName << ",";
2048       }
2049       StringRef SectionName;
2050       error(Section->getName(SectionName));
2051       outs() << SectionName;
2052     }
2053 
2054     outs() << '\t';
2055     if (Common || isa<ELFObjectFileBase>(o)) {
2056       uint64_t Val =
2057           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2058       outs() << format("\t %08" PRIx64 " ", Val);
2059     }
2060 
2061     if (Hidden) {
2062       outs() << ".hidden ";
2063     }
2064 
2065     if (Demangle)
2066       outs() << demangle(Name) << '\n';
2067     else
2068       outs() << Name << '\n';
2069   }
2070 }
2071 
2072 static void PrintUnwindInfo(const ObjectFile *o) {
2073   outs() << "Unwind info:\n\n";
2074 
2075   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
2076     printCOFFUnwindInfo(coff);
2077   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2078     printMachOUnwindInfo(MachO);
2079   else {
2080     // TODO: Extract DWARF dump tool to objdump.
2081     WithColor::error(errs(), ToolName)
2082         << "This operation is only currently supported "
2083            "for COFF and MachO object files.\n";
2084     return;
2085   }
2086 }
2087 
2088 void llvm::printExportsTrie(const ObjectFile *o) {
2089   outs() << "Exports trie:\n";
2090   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2091     printMachOExportsTrie(MachO);
2092   else {
2093     WithColor::error(errs(), ToolName)
2094         << "This operation is only currently supported "
2095            "for Mach-O executable files.\n";
2096     return;
2097   }
2098 }
2099 
2100 void llvm::printRebaseTable(ObjectFile *o) {
2101   outs() << "Rebase table:\n";
2102   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2103     printMachORebaseTable(MachO);
2104   else {
2105     WithColor::error(errs(), ToolName)
2106         << "This operation is only currently supported "
2107            "for Mach-O executable files.\n";
2108     return;
2109   }
2110 }
2111 
2112 void llvm::printBindTable(ObjectFile *o) {
2113   outs() << "Bind table:\n";
2114   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2115     printMachOBindTable(MachO);
2116   else {
2117     WithColor::error(errs(), ToolName)
2118         << "This operation is only currently supported "
2119            "for Mach-O executable files.\n";
2120     return;
2121   }
2122 }
2123 
2124 void llvm::printLazyBindTable(ObjectFile *o) {
2125   outs() << "Lazy bind table:\n";
2126   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2127     printMachOLazyBindTable(MachO);
2128   else {
2129     WithColor::error(errs(), ToolName)
2130         << "This operation is only currently supported "
2131            "for Mach-O executable files.\n";
2132     return;
2133   }
2134 }
2135 
2136 void llvm::printWeakBindTable(ObjectFile *o) {
2137   outs() << "Weak bind table:\n";
2138   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2139     printMachOWeakBindTable(MachO);
2140   else {
2141     WithColor::error(errs(), ToolName)
2142         << "This operation is only currently supported "
2143            "for Mach-O executable files.\n";
2144     return;
2145   }
2146 }
2147 
2148 /// Dump the raw contents of the __clangast section so the output can be piped
2149 /// into llvm-bcanalyzer.
2150 void llvm::printRawClangAST(const ObjectFile *Obj) {
2151   if (outs().is_displayed()) {
2152     WithColor::error(errs(), ToolName)
2153         << "The -raw-clang-ast option will dump the raw binary contents of "
2154            "the clang ast section.\n"
2155            "Please redirect the output to a file or another program such as "
2156            "llvm-bcanalyzer.\n";
2157     return;
2158   }
2159 
2160   StringRef ClangASTSectionName("__clangast");
2161   if (isa<COFFObjectFile>(Obj)) {
2162     ClangASTSectionName = "clangast";
2163   }
2164 
2165   Optional<object::SectionRef> ClangASTSection;
2166   for (auto Sec : ToolSectionFilter(*Obj)) {
2167     StringRef Name;
2168     Sec.getName(Name);
2169     if (Name == ClangASTSectionName) {
2170       ClangASTSection = Sec;
2171       break;
2172     }
2173   }
2174   if (!ClangASTSection)
2175     return;
2176 
2177   StringRef ClangASTContents;
2178   error(ClangASTSection.getValue().getContents(ClangASTContents));
2179   outs().write(ClangASTContents.data(), ClangASTContents.size());
2180 }
2181 
2182 static void printFaultMaps(const ObjectFile *Obj) {
2183   const char *FaultMapSectionName = nullptr;
2184 
2185   if (isa<ELFObjectFileBase>(Obj)) {
2186     FaultMapSectionName = ".llvm_faultmaps";
2187   } else if (isa<MachOObjectFile>(Obj)) {
2188     FaultMapSectionName = "__llvm_faultmaps";
2189   } else {
2190     WithColor::error(errs(), ToolName)
2191         << "This operation is only currently supported "
2192            "for ELF and Mach-O executable files.\n";
2193     return;
2194   }
2195 
2196   Optional<object::SectionRef> FaultMapSection;
2197 
2198   for (auto Sec : ToolSectionFilter(*Obj)) {
2199     StringRef Name;
2200     Sec.getName(Name);
2201     if (Name == FaultMapSectionName) {
2202       FaultMapSection = Sec;
2203       break;
2204     }
2205   }
2206 
2207   outs() << "FaultMap table:\n";
2208 
2209   if (!FaultMapSection.hasValue()) {
2210     outs() << "<not found>\n";
2211     return;
2212   }
2213 
2214   StringRef FaultMapContents;
2215   error(FaultMapSection.getValue().getContents(FaultMapContents));
2216 
2217   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2218                      FaultMapContents.bytes_end());
2219 
2220   outs() << FMP;
2221 }
2222 
2223 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2224   if (o->isELF()) {
2225     printELFFileHeader(o);
2226     return printELFDynamicSection(o);
2227   }
2228   if (o->isCOFF())
2229     return printCOFFFileHeader(o);
2230   if (o->isWasm())
2231     return printWasmFileHeader(o);
2232   if (o->isMachO()) {
2233     printMachOFileHeader(o);
2234     if (!onlyFirst)
2235       printMachOLoadCommands(o);
2236     return;
2237   }
2238   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2239 }
2240 
2241 static void printFileHeaders(const ObjectFile *o) {
2242   if (!o->isELF() && !o->isCOFF())
2243     report_error(o->getFileName(), "Invalid/Unsupported object file format");
2244 
2245   Triple::ArchType AT = o->getArch();
2246   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2247   Expected<uint64_t> StartAddrOrErr = o->getStartAddress();
2248   if (!StartAddrOrErr)
2249     report_error(o->getFileName(), StartAddrOrErr.takeError());
2250 
2251   StringRef Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2252   uint64_t Address = StartAddrOrErr.get();
2253   outs() << "start address: "
2254          << "0x" << format(Fmt.data(), Address)
2255          << "\n";
2256 }
2257 
2258 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2259   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2260   if (!ModeOrErr) {
2261     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2262     consumeError(ModeOrErr.takeError());
2263     return;
2264   }
2265   sys::fs::perms Mode = ModeOrErr.get();
2266   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2267   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2268   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2269   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2270   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2271   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2272   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2273   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2274   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2275 
2276   outs() << " ";
2277 
2278   Expected<unsigned> UIDOrErr = C.getUID();
2279   if (!UIDOrErr)
2280     report_error(Filename, UIDOrErr.takeError());
2281   unsigned UID = UIDOrErr.get();
2282   outs() << format("%d/", UID);
2283 
2284   Expected<unsigned> GIDOrErr = C.getGID();
2285   if (!GIDOrErr)
2286     report_error(Filename, GIDOrErr.takeError());
2287   unsigned GID = GIDOrErr.get();
2288   outs() << format("%-d ", GID);
2289 
2290   Expected<uint64_t> Size = C.getRawSize();
2291   if (!Size)
2292     report_error(Filename, Size.takeError());
2293   outs() << format("%6" PRId64, Size.get()) << " ";
2294 
2295   StringRef RawLastModified = C.getRawLastModified();
2296   unsigned Seconds;
2297   if (RawLastModified.getAsInteger(10, Seconds))
2298     outs() << "(date: \"" << RawLastModified
2299            << "\" contains non-decimal chars) ";
2300   else {
2301     // Since ctime(3) returns a 26 character string of the form:
2302     // "Sun Sep 16 01:03:52 1973\n\0"
2303     // just print 24 characters.
2304     time_t t = Seconds;
2305     outs() << format("%.24s ", ctime(&t));
2306   }
2307 
2308   StringRef Name = "";
2309   Expected<StringRef> NameOrErr = C.getName();
2310   if (!NameOrErr) {
2311     consumeError(NameOrErr.takeError());
2312     Expected<StringRef> RawNameOrErr = C.getRawName();
2313     if (!RawNameOrErr)
2314       report_error(Filename, NameOrErr.takeError());
2315     Name = RawNameOrErr.get();
2316   } else {
2317     Name = NameOrErr.get();
2318   }
2319   outs() << Name << "\n";
2320 }
2321 
2322 static void DumpObject(ObjectFile *o, const Archive *a = nullptr,
2323                        const Archive::Child *c = nullptr) {
2324   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2325   // Avoid other output when using a raw option.
2326   if (!RawClangAST) {
2327     outs() << '\n';
2328     if (a)
2329       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2330     else
2331       outs() << o->getFileName();
2332     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2333   }
2334 
2335   if (ArchiveHeaders && !MachOOpt && c)
2336     printArchiveChild(ArchiveName, *c);
2337   if (Disassemble)
2338     DisassembleObject(o, Relocations);
2339   if (Relocations && !Disassemble)
2340     PrintRelocations(o);
2341   if (DynamicRelocations)
2342     PrintDynamicRelocations(o);
2343   if (SectionHeaders)
2344     PrintSectionHeaders(o);
2345   if (SectionContents)
2346     PrintSectionContents(o);
2347   if (SymbolTable)
2348     PrintSymbolTable(o, ArchiveName);
2349   if (UnwindInfo)
2350     PrintUnwindInfo(o);
2351   if (PrivateHeaders || FirstPrivateHeader)
2352     printPrivateFileHeaders(o, FirstPrivateHeader);
2353   if (FileHeaders)
2354     printFileHeaders(o);
2355   if (ExportsTrie)
2356     printExportsTrie(o);
2357   if (Rebase)
2358     printRebaseTable(o);
2359   if (Bind)
2360     printBindTable(o);
2361   if (LazyBind)
2362     printLazyBindTable(o);
2363   if (WeakBind)
2364     printWeakBindTable(o);
2365   if (RawClangAST)
2366     printRawClangAST(o);
2367   if (PrintFaultMaps)
2368     printFaultMaps(o);
2369   if (DwarfDumpType != DIDT_Null) {
2370     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2371     // Dump the complete DWARF structure.
2372     DIDumpOptions DumpOpts;
2373     DumpOpts.DumpType = DwarfDumpType;
2374     DICtx->dump(outs(), DumpOpts);
2375   }
2376 }
2377 
2378 static void DumpObject(const COFFImportFile *I, const Archive *A,
2379                        const Archive::Child *C = nullptr) {
2380   StringRef ArchiveName = A ? A->getFileName() : "";
2381 
2382   // Avoid other output when using a raw option.
2383   if (!RawClangAST)
2384     outs() << '\n'
2385            << ArchiveName << "(" << I->getFileName() << ")"
2386            << ":\tfile format COFF-import-file"
2387            << "\n\n";
2388 
2389   if (ArchiveHeaders && !MachOOpt && C)
2390     printArchiveChild(ArchiveName, *C);
2391   if (SymbolTable)
2392     printCOFFSymbolTable(I);
2393 }
2394 
2395 /// Dump each object file in \a a;
2396 static void DumpArchive(const Archive *a) {
2397   Error Err = Error::success();
2398   for (auto &C : a->children(Err)) {
2399     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2400     if (!ChildOrErr) {
2401       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2402         report_error(a->getFileName(), C, std::move(E));
2403       continue;
2404     }
2405     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2406       DumpObject(o, a, &C);
2407     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2408       DumpObject(I, a, &C);
2409     else
2410       report_error(a->getFileName(), object_error::invalid_file_type);
2411   }
2412   if (Err)
2413     report_error(a->getFileName(), std::move(Err));
2414 }
2415 
2416 /// Open file and figure out how to dump it.
2417 static void DumpInput(StringRef file) {
2418 
2419   // If we are using the Mach-O specific object file parser, then let it parse
2420   // the file and process the command line options.  So the -arch flags can
2421   // be used to select specific slices, etc.
2422   if (MachOOpt) {
2423     ParseInputMachO(file);
2424     return;
2425   }
2426 
2427   // Attempt to open the binary.
2428   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2429   if (!BinaryOrErr)
2430     report_error(file, BinaryOrErr.takeError());
2431   Binary &Binary = *BinaryOrErr.get().getBinary();
2432 
2433   if (Archive *a = dyn_cast<Archive>(&Binary))
2434     DumpArchive(a);
2435   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2436     DumpObject(o);
2437   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2438     ParseInputMachO(UB);
2439   else
2440     report_error(file, object_error::invalid_file_type);
2441 }
2442 
2443 int main(int argc, char **argv) {
2444   InitLLVM X(argc, argv);
2445 
2446   // Initialize targets and assembly printers/parsers.
2447   llvm::InitializeAllTargetInfos();
2448   llvm::InitializeAllTargetMCs();
2449   llvm::InitializeAllDisassemblers();
2450 
2451   // Register the target printer for --version.
2452   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2453 
2454   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2455 
2456   ToolName = argv[0];
2457 
2458   // Defaults to a.out if no filenames specified.
2459   if (InputFilenames.empty())
2460     InputFilenames.push_back("a.out");
2461 
2462   if (AllHeaders)
2463     PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true;
2464 
2465   if (DisassembleAll || PrintSource || PrintLines)
2466     Disassemble = true;
2467 
2468   if (!Disassemble
2469       && !Relocations
2470       && !DynamicRelocations
2471       && !SectionHeaders
2472       && !SectionContents
2473       && !SymbolTable
2474       && !UnwindInfo
2475       && !PrivateHeaders
2476       && !FileHeaders
2477       && !FirstPrivateHeader
2478       && !ExportsTrie
2479       && !Rebase
2480       && !Bind
2481       && !LazyBind
2482       && !WeakBind
2483       && !RawClangAST
2484       && !(UniversalHeaders && MachOOpt)
2485       && !ArchiveHeaders
2486       && !(IndirectSymbols && MachOOpt)
2487       && !(DataInCode && MachOOpt)
2488       && !(LinkOptHints && MachOOpt)
2489       && !(InfoPlist && MachOOpt)
2490       && !(DylibsUsed && MachOOpt)
2491       && !(DylibId && MachOOpt)
2492       && !(ObjcMetaData && MachOOpt)
2493       && !(!FilterSections.empty() && MachOOpt)
2494       && !PrintFaultMaps
2495       && DwarfDumpType == DIDT_Null) {
2496     cl::PrintHelpMessage();
2497     return 2;
2498   }
2499 
2500   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2501                         DisassembleFunctions.end());
2502 
2503   llvm::for_each(InputFilenames, DumpInput);
2504 
2505   return EXIT_SUCCESS;
2506 }
2507