xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 16256123d006069edacf7ee4b65e5b82d723a3cd)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringSet.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/FaultMaps.h"
25 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
26 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
27 #include "llvm/Demangle/Demangle.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
31 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstPrinter.h"
34 #include "llvm/MC/MCInstrAnalysis.h"
35 #include "llvm/MC/MCInstrInfo.h"
36 #include "llvm/MC/MCObjectFileInfo.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/MC/MCSubtargetInfo.h"
39 #include "llvm/Object/Archive.h"
40 #include "llvm/Object/COFF.h"
41 #include "llvm/Object/COFFImportFile.h"
42 #include "llvm/Object/ELFObjectFile.h"
43 #include "llvm/Object/MachO.h"
44 #include "llvm/Object/MachOUniversal.h"
45 #include "llvm/Object/ObjectFile.h"
46 #include "llvm/Object/Wasm.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Errc.h"
51 #include "llvm/Support/FileSystem.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/Host.h"
55 #include "llvm/Support/InitLLVM.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/SourceMgr.h"
58 #include "llvm/Support/StringSaver.h"
59 #include "llvm/Support/TargetRegistry.h"
60 #include "llvm/Support/TargetSelect.h"
61 #include "llvm/Support/WithColor.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm::object;
71 
72 namespace llvm {
73 
74 // MachO specific
75 extern cl::opt<bool> Bind;
76 extern cl::opt<bool> DataInCode;
77 extern cl::opt<bool> DylibsUsed;
78 extern cl::opt<bool> DylibId;
79 extern cl::opt<bool> ExportsTrie;
80 extern cl::opt<bool> FirstPrivateHeader;
81 extern cl::opt<bool> IndirectSymbols;
82 extern cl::opt<bool> InfoPlist;
83 extern cl::opt<bool> LazyBind;
84 extern cl::opt<bool> LinkOptHints;
85 extern cl::opt<bool> ObjcMetaData;
86 extern cl::opt<bool> Rebase;
87 extern cl::opt<bool> UniversalHeaders;
88 extern cl::opt<bool> WeakBind;
89 
90 static cl::opt<unsigned long long> AdjustVMA(
91     "adjust-vma",
92     cl::desc("Increase the displayed address by the specified offset"),
93     cl::value_desc("offset"), cl::init(0));
94 
95 static cl::opt<bool>
96     AllHeaders("all-headers",
97                cl::desc("Display all available header information"));
98 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
99                                  cl::NotHidden, cl::Grouping,
100                                  cl::aliasopt(AllHeaders));
101 
102 static cl::opt<std::string>
103     ArchName("arch-name", cl::desc("Target arch to disassemble for, "
104                                    "see -version for available targets"));
105 
106 cl::opt<bool> ArchiveHeaders("archive-headers",
107                              cl::desc("Display archive header information"));
108 static cl::alias ArchiveHeadersShort("a",
109                                      cl::desc("Alias for --archive-headers"),
110                                      cl::NotHidden, cl::Grouping,
111                                      cl::aliasopt(ArchiveHeaders));
112 
113 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
114                        cl::init(false));
115 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
116                                cl::NotHidden, cl::Grouping,
117                                cl::aliasopt(Demangle));
118 
119 cl::opt<bool> Disassemble(
120     "disassemble",
121     cl::desc("Display assembler mnemonics for the machine instructions"));
122 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
123                                   cl::NotHidden, cl::Grouping,
124                                   cl::aliasopt(Disassemble));
125 
126 cl::opt<bool> DisassembleAll(
127     "disassemble-all",
128     cl::desc("Display assembler mnemonics for the machine instructions"));
129 static cl::alias DisassembleAllShort("D",
130                                      cl::desc("Alias for --disassemble-all"),
131                                      cl::NotHidden, cl::Grouping,
132                                      cl::aliasopt(DisassembleAll));
133 
134 static cl::list<std::string>
135 DisassembleFunctions("disassemble-functions",
136                      cl::CommaSeparated,
137                      cl::desc("List of functions to disassemble"));
138 
139 static cl::opt<bool> DisassembleZeroes(
140     "disassemble-zeroes",
141     cl::desc("Do not skip blocks of zeroes when disassembling"));
142 static cl::alias
143     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
144                            cl::NotHidden, cl::Grouping,
145                            cl::aliasopt(DisassembleZeroes));
146 
147 static cl::list<std::string>
148     DisassemblerOptions("disassembler-options",
149                         cl::desc("Pass target specific disassembler options"),
150                         cl::value_desc("options"), cl::CommaSeparated);
151 static cl::alias
152     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
153                              cl::NotHidden, cl::Grouping, cl::Prefix,
154                              cl::CommaSeparated,
155                              cl::aliasopt(DisassemblerOptions));
156 
157 cl::opt<DIDumpType> DwarfDumpType(
158     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
159     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
160 
161 static cl::opt<bool> DynamicRelocations(
162     "dynamic-reloc",
163     cl::desc("Display the dynamic relocation entries in the file"));
164 static cl::alias DynamicRelocationShort("R",
165                                         cl::desc("Alias for --dynamic-reloc"),
166                                         cl::NotHidden, cl::Grouping,
167                                         cl::aliasopt(DynamicRelocations));
168 
169 static cl::opt<bool>
170     FaultMapSection("fault-map-section",
171                    cl::desc("Display contents of faultmap section"));
172 
173 static cl::opt<bool>
174     FileHeaders("file-headers",
175                 cl::desc("Display the contents of the overall file header"));
176 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
177                                   cl::NotHidden, cl::Grouping,
178                                   cl::aliasopt(FileHeaders));
179 
180 cl::opt<bool> SectionContents("full-contents",
181                               cl::desc("Display the content of each section"));
182 static cl::alias SectionContentsShort("s",
183                                       cl::desc("Alias for --full-contents"),
184                                       cl::NotHidden, cl::Grouping,
185                                       cl::aliasopt(SectionContents));
186 
187 static cl::list<std::string>
188 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
189 
190 static cl::opt<bool>
191     PrintLines("line-numbers",
192                cl::desc("Display source line numbers with "
193                         "disassembly. Implies disassemble object"));
194 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
195                                  cl::NotHidden, cl::Grouping,
196                                  cl::aliasopt(PrintLines));
197 
198 static cl::opt<bool>
199 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
200 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
201                         cl::Grouping, cl::aliasopt(MachOOpt));
202 
203 cl::opt<std::string>
204     MCPU("mcpu",
205          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
206          cl::value_desc("cpu-name"), cl::init(""));
207 
208 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
209                              cl::desc("Target specific attributes"),
210                              cl::value_desc("a1,+a2,-a3,..."));
211 
212 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
213                             cl::desc("When disassembling "
214                                      "instructions, do not print "
215                                      "the instruction bytes."));
216 cl::opt<bool> NoLeadingAddr("no-leading-addr",
217                                    cl::desc("Print no leading address"));
218 
219 static cl::opt<bool> RawClangAST(
220     "raw-clang-ast",
221     cl::desc("Dump the raw binary contents of the clang AST section"));
222 
223 cl::opt<bool>
224     Relocations("reloc",
225                 cl::desc("Display the relocation entries in the file"));
226 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
227                                   cl::NotHidden, cl::Grouping,
228                                   cl::aliasopt(Relocations));
229 
230 cl::opt<bool>
231     PrintImmHex("print-imm-hex",
232                 cl::desc("Use hex format for immediate values"));
233 
234 cl::opt<bool>
235     PrivateHeaders("private-headers",
236                    cl::desc("Display format specific file headers"));
237 static cl::alias PrivateHeadersShort("p",
238                                      cl::desc("Alias for --private-headers"),
239                                      cl::NotHidden, cl::Grouping,
240                                      cl::aliasopt(PrivateHeaders));
241 
242 cl::list<std::string>
243     FilterSections("section",
244                    cl::desc("Operate on the specified sections only. "
245                             "With -macho dump segment,section"));
246 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
247                                  cl::NotHidden, cl::Grouping, cl::Prefix,
248                                  cl::aliasopt(FilterSections));
249 
250 cl::opt<bool> SectionHeaders("section-headers",
251                              cl::desc("Display summaries of the "
252                                       "headers for each section."));
253 static cl::alias SectionHeadersShort("headers",
254                                      cl::desc("Alias for --section-headers"),
255                                      cl::NotHidden,
256                                      cl::aliasopt(SectionHeaders));
257 static cl::alias SectionHeadersShorter("h",
258                                        cl::desc("Alias for --section-headers"),
259                                        cl::NotHidden, cl::Grouping,
260                                        cl::aliasopt(SectionHeaders));
261 
262 static cl::opt<bool>
263     ShowLMA("show-lma",
264             cl::desc("Display LMA column when dumping ELF section headers"));
265 
266 static cl::opt<bool> PrintSource(
267     "source",
268     cl::desc(
269         "Display source inlined with disassembly. Implies disassemble object"));
270 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
271                                   cl::NotHidden, cl::Grouping,
272                                   cl::aliasopt(PrintSource));
273 
274 static cl::opt<unsigned long long>
275     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
276                  cl::value_desc("address"), cl::init(0));
277 static cl::opt<unsigned long long>
278     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
279                 cl::value_desc("address"), cl::init(UINT64_MAX));
280 
281 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"));
282 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
283                                   cl::NotHidden, cl::Grouping,
284                                   cl::aliasopt(SymbolTable));
285 
286 cl::opt<std::string> TripleName("triple",
287                                 cl::desc("Target triple to disassemble for, "
288                                          "see -version for available targets"));
289 
290 cl::opt<bool> UnwindInfo("unwind-info",
291                                 cl::desc("Display unwind information"));
292 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
293                                  cl::NotHidden, cl::Grouping,
294                                  cl::aliasopt(UnwindInfo));
295 
296 
297 static cl::opt<bool>
298     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"));
299 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
300 
301 static StringSet<> DisasmFuncsSet;
302 static StringRef ToolName;
303 
304 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
305 
306 SectionFilter ToolSectionFilter(object::ObjectFile const &O) {
307   return SectionFilter(
308       [](object::SectionRef const &S) {
309         if (FilterSections.empty())
310           return true;
311         StringRef String;
312         std::error_code error = S.getName(String);
313         if (error)
314           return false;
315         return is_contained(FilterSections, String);
316       },
317       O);
318 }
319 
320 void error(std::error_code EC) {
321   if (!EC)
322     return;
323   WithColor::error(errs(), ToolName)
324       << "reading file: " << EC.message() << ".\n";
325   errs().flush();
326   exit(1);
327 }
328 
329 void error(Error E) {
330   if (!E)
331     return;
332   WithColor::error(errs(), ToolName) << toString(std::move(E));
333   exit(1);
334 }
335 
336 LLVM_ATTRIBUTE_NORETURN void error(Twine Message) {
337   WithColor::error(errs(), ToolName) << Message << ".\n";
338   errs().flush();
339   exit(1);
340 }
341 
342 void warn(StringRef Message) {
343   WithColor::warning(errs(), ToolName) << Message << ".\n";
344   errs().flush();
345 }
346 
347 LLVM_ATTRIBUTE_NORETURN void report_error(StringRef File, Twine Message) {
348   WithColor::error(errs(), ToolName)
349       << "'" << File << "': " << Message << ".\n";
350   exit(1);
351 }
352 
353 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef File) {
354   assert(E);
355   std::string Buf;
356   raw_string_ostream OS(Buf);
357   logAllUnhandledErrors(std::move(E), OS);
358   OS.flush();
359   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
360   exit(1);
361 }
362 
363 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
364                                           StringRef FileName,
365                                           StringRef ArchitectureName) {
366   assert(E);
367   WithColor::error(errs(), ToolName);
368   if (ArchiveName != "")
369     errs() << ArchiveName << "(" << FileName << ")";
370   else
371     errs() << "'" << FileName << "'";
372   if (!ArchitectureName.empty())
373     errs() << " (for architecture " << ArchitectureName << ")";
374   std::string Buf;
375   raw_string_ostream OS(Buf);
376   logAllUnhandledErrors(std::move(E), OS);
377   OS.flush();
378   errs() << ": " << Buf;
379   exit(1);
380 }
381 
382 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
383                                           const object::Archive::Child &C,
384                                           StringRef ArchitectureName) {
385   Expected<StringRef> NameOrErr = C.getName();
386   // TODO: if we have a error getting the name then it would be nice to print
387   // the index of which archive member this is and or its offset in the
388   // archive instead of "???" as the name.
389   if (!NameOrErr) {
390     consumeError(NameOrErr.takeError());
391     report_error(std::move(E), ArchiveName, "???", ArchitectureName);
392   } else
393     report_error(std::move(E), ArchiveName, NameOrErr.get(), ArchitectureName);
394 }
395 
396 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
397   // Figure out the target triple.
398   Triple TheTriple("unknown-unknown-unknown");
399   if (TripleName.empty()) {
400     if (Obj)
401       TheTriple = Obj->makeTriple();
402   } else {
403     TheTriple.setTriple(Triple::normalize(TripleName));
404 
405     // Use the triple, but also try to combine with ARM build attributes.
406     if (Obj) {
407       auto Arch = Obj->getArch();
408       if (Arch == Triple::arm || Arch == Triple::armeb)
409         Obj->setARMSubArch(TheTriple);
410     }
411   }
412 
413   // Get the target specific parser.
414   std::string Error;
415   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
416                                                          Error);
417   if (!TheTarget) {
418     if (Obj)
419       report_error(Obj->getFileName(), "can't find target: " + Error);
420     else
421       error("can't find target: " + Error);
422   }
423 
424   // Update the triple name and return the found target.
425   TripleName = TheTriple.getTriple();
426   return TheTarget;
427 }
428 
429 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
430   return A.getOffset() < B.getOffset();
431 }
432 
433 static Error getRelocationValueString(const RelocationRef &Rel,
434                                       SmallVectorImpl<char> &Result) {
435   const ObjectFile *Obj = Rel.getObject();
436   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
437     return getELFRelocationValueString(ELF, Rel, Result);
438   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
439     return getCOFFRelocationValueString(COFF, Rel, Result);
440   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
441     return getWasmRelocationValueString(Wasm, Rel, Result);
442   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
443     return getMachORelocationValueString(MachO, Rel, Result);
444   llvm_unreachable("unknown object file format");
445 }
446 
447 /// Indicates whether this relocation should hidden when listing
448 /// relocations, usually because it is the trailing part of a multipart
449 /// relocation that will be printed as part of the leading relocation.
450 static bool getHidden(RelocationRef RelRef) {
451   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
452   if (!MachO)
453     return false;
454 
455   unsigned Arch = MachO->getArch();
456   DataRefImpl Rel = RelRef.getRawDataRefImpl();
457   uint64_t Type = MachO->getRelocationType(Rel);
458 
459   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
460   // is always hidden.
461   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
462     return Type == MachO::GENERIC_RELOC_PAIR;
463 
464   if (Arch == Triple::x86_64) {
465     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
466     // an X86_64_RELOC_SUBTRACTOR.
467     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
468       DataRefImpl RelPrev = Rel;
469       RelPrev.d.a--;
470       uint64_t PrevType = MachO->getRelocationType(RelPrev);
471       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
472         return true;
473     }
474   }
475 
476   return false;
477 }
478 
479 namespace {
480 class SourcePrinter {
481 protected:
482   DILineInfo OldLineInfo;
483   const ObjectFile *Obj = nullptr;
484   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
485   // File name to file contents of source
486   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
487   // Mark the line endings of the cached source
488   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
489 
490 private:
491   bool cacheSource(const DILineInfo& LineInfoFile);
492 
493 public:
494   SourcePrinter() = default;
495   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
496     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
497         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
498         DefaultArch);
499     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
500   }
501   virtual ~SourcePrinter() = default;
502   virtual void printSourceLine(raw_ostream &OS,
503                                object::SectionedAddress Address,
504                                StringRef Delimiter = "; ");
505 };
506 
507 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
508   std::unique_ptr<MemoryBuffer> Buffer;
509   if (LineInfo.Source) {
510     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
511   } else {
512     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
513     if (!BufferOrError)
514       return false;
515     Buffer = std::move(*BufferOrError);
516   }
517   // Chomp the file to get lines
518   const char *BufferStart = Buffer->getBufferStart(),
519              *BufferEnd = Buffer->getBufferEnd();
520   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
521   const char *Start = BufferStart;
522   for (const char *I = BufferStart; I != BufferEnd; ++I)
523     if (*I == '\n') {
524       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
525       Start = I + 1;
526     }
527   if (Start < BufferEnd)
528     Lines.emplace_back(Start, BufferEnd - Start);
529   SourceCache[LineInfo.FileName] = std::move(Buffer);
530   return true;
531 }
532 
533 void SourcePrinter::printSourceLine(raw_ostream &OS,
534                                     object::SectionedAddress Address,
535                                     StringRef Delimiter) {
536   if (!Symbolizer)
537     return;
538   DILineInfo LineInfo = DILineInfo();
539   auto ExpectedLineInfo =
540       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
541   if (!ExpectedLineInfo)
542     consumeError(ExpectedLineInfo.takeError());
543   else
544     LineInfo = *ExpectedLineInfo;
545 
546   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
547       LineInfo.Line == 0)
548     return;
549 
550   if (PrintLines)
551     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
552   if (PrintSource) {
553     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
554       if (!cacheSource(LineInfo))
555         return;
556     auto LineBuffer = LineCache.find(LineInfo.FileName);
557     if (LineBuffer != LineCache.end()) {
558       if (LineInfo.Line > LineBuffer->second.size())
559         return;
560       // Vector begins at 0, line numbers are non-zero
561       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
562     }
563   }
564   OldLineInfo = LineInfo;
565 }
566 
567 static bool isArmElf(const ObjectFile *Obj) {
568   return (Obj->isELF() &&
569           (Obj->getArch() == Triple::aarch64 ||
570            Obj->getArch() == Triple::aarch64_be ||
571            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
572            Obj->getArch() == Triple::thumb ||
573            Obj->getArch() == Triple::thumbeb));
574 }
575 
576 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
577                             uint8_t AddrSize) {
578   StringRef Fmt =
579       AddrSize > 4 ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
580   SmallString<16> Name;
581   SmallString<32> Val;
582   Rel.getTypeName(Name);
583   error(getRelocationValueString(Rel, Val));
584   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
585 }
586 
587 class PrettyPrinter {
588 public:
589   virtual ~PrettyPrinter() = default;
590   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
591                          ArrayRef<uint8_t> Bytes,
592                          object::SectionedAddress Address, raw_ostream &OS,
593                          StringRef Annot, MCSubtargetInfo const &STI,
594                          SourcePrinter *SP,
595                          std::vector<RelocationRef> *Rels = nullptr) {
596     if (SP && (PrintSource || PrintLines))
597       SP->printSourceLine(OS, Address);
598 
599     {
600       formatted_raw_ostream FOS(OS);
601       if (!NoLeadingAddr)
602         FOS << format("%8" PRIx64 ":", Address.Address);
603       if (!NoShowRawInsn) {
604         FOS << ' ';
605         dumpBytes(Bytes, FOS);
606       }
607       FOS.flush();
608       // The output of printInst starts with a tab. Print some spaces so that
609       // the tab has 1 column and advances to the target tab stop.
610       unsigned TabStop = NoShowRawInsn ? 16 : 40;
611       unsigned Column = FOS.getColumn();
612       FOS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
613 
614       // The dtor calls flush() to ensure the indent comes before printInst().
615     }
616 
617     if (MI)
618       IP.printInst(MI, OS, "", STI);
619     else
620       OS << "\t<unknown>";
621   }
622 };
623 PrettyPrinter PrettyPrinterInst;
624 class HexagonPrettyPrinter : public PrettyPrinter {
625 public:
626   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
627                  raw_ostream &OS) {
628     uint32_t opcode =
629       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
630     if (!NoLeadingAddr)
631       OS << format("%8" PRIx64 ":", Address);
632     if (!NoShowRawInsn) {
633       OS << "\t";
634       dumpBytes(Bytes.slice(0, 4), OS);
635       OS << format("\t%08" PRIx32, opcode);
636     }
637   }
638   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
639                  object::SectionedAddress Address, raw_ostream &OS,
640                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
641                  std::vector<RelocationRef> *Rels) override {
642     if (SP && (PrintSource || PrintLines))
643       SP->printSourceLine(OS, Address, "");
644     if (!MI) {
645       printLead(Bytes, Address.Address, OS);
646       OS << " <unknown>";
647       return;
648     }
649     std::string Buffer;
650     {
651       raw_string_ostream TempStream(Buffer);
652       IP.printInst(MI, TempStream, "", STI);
653     }
654     StringRef Contents(Buffer);
655     // Split off bundle attributes
656     auto PacketBundle = Contents.rsplit('\n');
657     // Split off first instruction from the rest
658     auto HeadTail = PacketBundle.first.split('\n');
659     auto Preamble = " { ";
660     auto Separator = "";
661 
662     // Hexagon's packets require relocations to be inline rather than
663     // clustered at the end of the packet.
664     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
665     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
666     auto PrintReloc = [&]() -> void {
667       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
668         if (RelCur->getOffset() == Address.Address) {
669           printRelocation(*RelCur, Address.Address, 4);
670           return;
671         }
672         ++RelCur;
673       }
674     };
675 
676     while (!HeadTail.first.empty()) {
677       OS << Separator;
678       Separator = "\n";
679       if (SP && (PrintSource || PrintLines))
680         SP->printSourceLine(OS, Address, "");
681       printLead(Bytes, Address.Address, OS);
682       OS << Preamble;
683       Preamble = "   ";
684       StringRef Inst;
685       auto Duplex = HeadTail.first.split('\v');
686       if (!Duplex.second.empty()) {
687         OS << Duplex.first;
688         OS << "; ";
689         Inst = Duplex.second;
690       }
691       else
692         Inst = HeadTail.first;
693       OS << Inst;
694       HeadTail = HeadTail.second.split('\n');
695       if (HeadTail.first.empty())
696         OS << " } " << PacketBundle.second;
697       PrintReloc();
698       Bytes = Bytes.slice(4);
699       Address.Address += 4;
700     }
701   }
702 };
703 HexagonPrettyPrinter HexagonPrettyPrinterInst;
704 
705 class AMDGCNPrettyPrinter : public PrettyPrinter {
706 public:
707   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
708                  object::SectionedAddress Address, raw_ostream &OS,
709                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
710                  std::vector<RelocationRef> *Rels) override {
711     if (SP && (PrintSource || PrintLines))
712       SP->printSourceLine(OS, Address);
713 
714     typedef support::ulittle32_t U32;
715 
716     if (MI) {
717       SmallString<40> InstStr;
718       raw_svector_ostream IS(InstStr);
719 
720       IP.printInst(MI, IS, "", STI);
721 
722       OS << left_justify(IS.str(), 60);
723     } else {
724       // an unrecognized encoding - this is probably data so represent it
725       // using the .long directive, or .byte directive if fewer than 4 bytes
726       // remaining
727       if (Bytes.size() >= 4) {
728         OS << format("\t.long 0x%08" PRIx32 " ",
729                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
730         OS.indent(42);
731       } else {
732           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
733           for (unsigned int i = 1; i < Bytes.size(); i++)
734             OS << format(", 0x%02" PRIx8, Bytes[i]);
735           OS.indent(55 - (6 * Bytes.size()));
736       }
737     }
738 
739     OS << format("// %012" PRIX64 ": ", Address.Address);
740     if (Bytes.size() >=4) {
741       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
742                                  Bytes.size() / sizeof(U32)))
743         // D should be explicitly casted to uint32_t here as it is passed
744         // by format to snprintf as vararg.
745         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
746     } else {
747       for (unsigned int i = 0; i < Bytes.size(); i++)
748         OS << format("%02" PRIX8 " ", Bytes[i]);
749     }
750 
751     if (!Annot.empty())
752       OS << "// " << Annot;
753   }
754 };
755 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
756 
757 class BPFPrettyPrinter : public PrettyPrinter {
758 public:
759   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
760                  object::SectionedAddress Address, raw_ostream &OS,
761                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
762                  std::vector<RelocationRef> *Rels) override {
763     if (SP && (PrintSource || PrintLines))
764       SP->printSourceLine(OS, Address);
765     if (!NoLeadingAddr)
766       OS << format("%8" PRId64 ":", Address.Address / 8);
767     if (!NoShowRawInsn) {
768       OS << "\t";
769       dumpBytes(Bytes, OS);
770     }
771     if (MI)
772       IP.printInst(MI, OS, "", STI);
773     else
774       OS << "\t<unknown>";
775   }
776 };
777 BPFPrettyPrinter BPFPrettyPrinterInst;
778 
779 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
780   switch(Triple.getArch()) {
781   default:
782     return PrettyPrinterInst;
783   case Triple::hexagon:
784     return HexagonPrettyPrinterInst;
785   case Triple::amdgcn:
786     return AMDGCNPrettyPrinterInst;
787   case Triple::bpfel:
788   case Triple::bpfeb:
789     return BPFPrettyPrinterInst;
790   }
791 }
792 }
793 
794 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
795   assert(Obj->isELF());
796   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
797     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
798   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
799     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
800   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
801     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
802   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
803     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
804   llvm_unreachable("Unsupported binary format");
805 }
806 
807 template <class ELFT> static void
808 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
809                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
810   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
811     uint8_t SymbolType = Symbol.getELFType();
812     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
813       continue;
814 
815     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
816     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
817     if (Name.empty())
818       continue;
819 
820     section_iterator SecI =
821         unwrapOrError(Symbol.getSection(), Obj->getFileName());
822     if (SecI == Obj->section_end())
823       continue;
824 
825     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
826   }
827 }
828 
829 static void
830 addDynamicElfSymbols(const ObjectFile *Obj,
831                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
832   assert(Obj->isELF());
833   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
834     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
835   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
836     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
837   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
838     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
839   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
840     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
841   else
842     llvm_unreachable("Unsupported binary format");
843 }
844 
845 static void addPltEntries(const ObjectFile *Obj,
846                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
847                           StringSaver &Saver) {
848   Optional<SectionRef> Plt = None;
849   for (const SectionRef &Section : Obj->sections()) {
850     StringRef Name;
851     if (Section.getName(Name))
852       continue;
853     if (Name == ".plt")
854       Plt = Section;
855   }
856   if (!Plt)
857     return;
858   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
859     for (auto PltEntry : ElfObj->getPltAddresses()) {
860       SymbolRef Symbol(PltEntry.first, ElfObj);
861       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
862 
863       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
864       if (!Name.empty())
865         AllSymbols[*Plt].emplace_back(
866             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
867     }
868   }
869 }
870 
871 // Normally the disassembly output will skip blocks of zeroes. This function
872 // returns the number of zero bytes that can be skipped when dumping the
873 // disassembly of the instructions in Buf.
874 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
875   // Find the number of leading zeroes.
876   size_t N = 0;
877   while (N < Buf.size() && !Buf[N])
878     ++N;
879 
880   // We may want to skip blocks of zero bytes, but unless we see
881   // at least 8 of them in a row.
882   if (N < 8)
883     return 0;
884 
885   // We skip zeroes in multiples of 4 because do not want to truncate an
886   // instruction if it starts with a zero byte.
887   return N & ~0x3;
888 }
889 
890 // Returns a map from sections to their relocations.
891 static std::map<SectionRef, std::vector<RelocationRef>>
892 getRelocsMap(object::ObjectFile const &Obj) {
893   std::map<SectionRef, std::vector<RelocationRef>> Ret;
894   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
895     section_iterator RelSec = Section.getRelocatedSection();
896     if (RelSec == Obj.section_end())
897       continue;
898     std::vector<RelocationRef> &V = Ret[*RelSec];
899     for (const RelocationRef &R : Section.relocations())
900       V.push_back(R);
901     // Sort relocations by address.
902     llvm::sort(V, isRelocAddressLess);
903   }
904   return Ret;
905 }
906 
907 // Used for --adjust-vma to check if address should be adjusted by the
908 // specified value for a given section.
909 // For ELF we do not adjust non-allocatable sections like debug ones,
910 // because they are not loadable.
911 // TODO: implement for other file formats.
912 static bool shouldAdjustVA(const SectionRef &Section) {
913   const ObjectFile *Obj = Section.getObject();
914   if (isa<object::ELFObjectFileBase>(Obj))
915     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
916   return false;
917 }
918 
919 static uint64_t
920 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
921                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
922                const std::vector<uint64_t> &TextMappingSymsAddr) {
923   support::endianness Endian =
924       Obj->isLittleEndian() ? support::little : support::big;
925   while (Index < End) {
926     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
927     outs() << "\t";
928     if (Index + 4 <= End) {
929       dumpBytes(Bytes.slice(Index, 4), outs());
930       outs() << "\t.word\t"
931              << format_hex(
932                     support::endian::read32(Bytes.data() + Index, Endian), 10);
933       Index += 4;
934     } else if (Index + 2 <= End) {
935       dumpBytes(Bytes.slice(Index, 2), outs());
936       outs() << "\t\t.short\t"
937              << format_hex(
938                     support::endian::read16(Bytes.data() + Index, Endian), 6);
939       Index += 2;
940     } else {
941       dumpBytes(Bytes.slice(Index, 1), outs());
942       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
943       ++Index;
944     }
945     outs() << "\n";
946     if (std::binary_search(TextMappingSymsAddr.begin(),
947                            TextMappingSymsAddr.end(), Index))
948       break;
949   }
950   return Index;
951 }
952 
953 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
954                         ArrayRef<uint8_t> Bytes) {
955   // print out data up to 8 bytes at a time in hex and ascii
956   uint8_t AsciiData[9] = {'\0'};
957   uint8_t Byte;
958   int NumBytes = 0;
959 
960   for (; Index < End; ++Index) {
961     if (NumBytes == 0) {
962       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
963       outs() << "\t";
964     }
965     Byte = Bytes.slice(Index)[0];
966     outs() << format(" %02x", Byte);
967     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
968 
969     uint8_t IndentOffset = 0;
970     NumBytes++;
971     if (Index == End - 1 || NumBytes > 8) {
972       // Indent the space for less than 8 bytes data.
973       // 2 spaces for byte and one for space between bytes
974       IndentOffset = 3 * (8 - NumBytes);
975       for (int Excess = NumBytes; Excess < 8; Excess++)
976         AsciiData[Excess] = '\0';
977       NumBytes = 8;
978     }
979     if (NumBytes == 8) {
980       AsciiData[8] = '\0';
981       outs() << std::string(IndentOffset, ' ') << "         ";
982       outs() << reinterpret_cast<char *>(AsciiData);
983       outs() << '\n';
984       NumBytes = 0;
985     }
986   }
987 }
988 
989 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
990                               MCContext &Ctx, MCDisassembler *DisAsm,
991                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
992                               const MCSubtargetInfo *STI, PrettyPrinter &PIP,
993                               SourcePrinter &SP, bool InlineRelocs) {
994   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
995   if (InlineRelocs)
996     RelocMap = getRelocsMap(*Obj);
997 
998   // Create a mapping from virtual address to symbol name.  This is used to
999   // pretty print the symbols while disassembling.
1000   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1001   SectionSymbolsTy AbsoluteSymbols;
1002   const StringRef FileName = Obj->getFileName();
1003   for (const SymbolRef &Symbol : Obj->symbols()) {
1004     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1005 
1006     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1007     if (Name.empty())
1008       continue;
1009 
1010     uint8_t SymbolType = ELF::STT_NOTYPE;
1011     if (Obj->isELF()) {
1012       SymbolType = getElfSymbolType(Obj, Symbol);
1013       if (SymbolType == ELF::STT_SECTION)
1014         continue;
1015     }
1016 
1017     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1018     if (SecI != Obj->section_end())
1019       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1020     else
1021       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1022   }
1023   if (AllSymbols.empty() && Obj->isELF())
1024     addDynamicElfSymbols(Obj, AllSymbols);
1025 
1026   BumpPtrAllocator A;
1027   StringSaver Saver(A);
1028   addPltEntries(Obj, AllSymbols, Saver);
1029 
1030   // Create a mapping from virtual address to section.
1031   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1032   for (SectionRef Sec : Obj->sections())
1033     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1034   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1035 
1036   // Linked executables (.exe and .dll files) typically don't include a real
1037   // symbol table but they might contain an export table.
1038   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1039     for (const auto &ExportEntry : COFFObj->export_directories()) {
1040       StringRef Name;
1041       error(ExportEntry.getSymbolName(Name));
1042       if (Name.empty())
1043         continue;
1044       uint32_t RVA;
1045       error(ExportEntry.getExportRVA(RVA));
1046 
1047       uint64_t VA = COFFObj->getImageBase() + RVA;
1048       auto Sec = llvm::upper_bound(
1049           SectionAddresses, VA,
1050           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1051             return LHS < RHS.first;
1052           });
1053       if (Sec != SectionAddresses.begin()) {
1054         --Sec;
1055         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1056       } else
1057         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1058     }
1059   }
1060 
1061   // Sort all the symbols, this allows us to use a simple binary search to find
1062   // a symbol near an address.
1063   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1064     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1065   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1066 
1067   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1068     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1069       continue;
1070 
1071     uint64_t SectionAddr = Section.getAddress();
1072     uint64_t SectSize = Section.getSize();
1073     if (!SectSize)
1074       continue;
1075 
1076     // Get the list of all the symbols in this section.
1077     SectionSymbolsTy &Symbols = AllSymbols[Section];
1078     std::vector<uint64_t> DataMappingSymsAddr;
1079     std::vector<uint64_t> TextMappingSymsAddr;
1080     if (isArmElf(Obj)) {
1081       for (const auto &Symb : Symbols) {
1082         uint64_t Address = std::get<0>(Symb);
1083         StringRef Name = std::get<1>(Symb);
1084         if (Name.startswith("$d"))
1085           DataMappingSymsAddr.push_back(Address - SectionAddr);
1086         if (Name.startswith("$x"))
1087           TextMappingSymsAddr.push_back(Address - SectionAddr);
1088         if (Name.startswith("$a"))
1089           TextMappingSymsAddr.push_back(Address - SectionAddr);
1090         if (Name.startswith("$t"))
1091           TextMappingSymsAddr.push_back(Address - SectionAddr);
1092       }
1093     }
1094 
1095     llvm::sort(DataMappingSymsAddr);
1096     llvm::sort(TextMappingSymsAddr);
1097 
1098     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1099       // AMDGPU disassembler uses symbolizer for printing labels
1100       std::unique_ptr<MCRelocationInfo> RelInfo(
1101         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1102       if (RelInfo) {
1103         std::unique_ptr<MCSymbolizer> Symbolizer(
1104           TheTarget->createMCSymbolizer(
1105             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1106         DisAsm->setSymbolizer(std::move(Symbolizer));
1107       }
1108     }
1109 
1110     StringRef SegmentName = "";
1111     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1112       DataRefImpl DR = Section.getRawDataRefImpl();
1113       SegmentName = MachO->getSectionFinalSegmentName(DR);
1114     }
1115     StringRef SectionName;
1116     error(Section.getName(SectionName));
1117 
1118     // If the section has no symbol at the start, just insert a dummy one.
1119     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1120       Symbols.insert(
1121           Symbols.begin(),
1122           std::make_tuple(SectionAddr, SectionName,
1123                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1124     }
1125 
1126     SmallString<40> Comments;
1127     raw_svector_ostream CommentStream(Comments);
1128 
1129     StringRef BytesStr;
1130     error(Section.getContents(BytesStr));
1131     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(BytesStr);
1132 
1133     uint64_t VMAAdjustment = 0;
1134     if (shouldAdjustVA(Section))
1135       VMAAdjustment = AdjustVMA;
1136 
1137     uint64_t Size;
1138     uint64_t Index;
1139     bool PrintedSection = false;
1140     std::vector<RelocationRef> Rels = RelocMap[Section];
1141     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1142     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1143     // Disassemble symbol by symbol.
1144     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1145       uint64_t Start = std::get<0>(Symbols[SI]) - SectionAddr;
1146       // The end is either the section end or the beginning of the next
1147       // symbol.
1148       uint64_t End = (SI == SE - 1)
1149                          ? SectSize
1150                          : std::get<0>(Symbols[SI + 1]) - SectionAddr;
1151       // Don't try to disassemble beyond the end of section contents.
1152       if (End > SectSize)
1153         End = SectSize;
1154       // If this symbol has the same address as the next symbol, then skip it.
1155       if (Start >= End)
1156         continue;
1157 
1158       // Check if we need to skip symbol
1159       // Skip if the symbol's data is not between StartAddress and StopAddress
1160       if (End + SectionAddr <= StartAddress ||
1161           Start + SectionAddr >= StopAddress)
1162         continue;
1163 
1164       // Stop disassembly at the stop address specified
1165       if (End + SectionAddr > StopAddress)
1166         End = StopAddress - SectionAddr;
1167 
1168       /// Skip if user requested specific symbols and this is not in the list
1169       if (!DisasmFuncsSet.empty() &&
1170           !DisasmFuncsSet.count(std::get<1>(Symbols[SI])))
1171         continue;
1172 
1173       if (!PrintedSection) {
1174         PrintedSection = true;
1175         outs() << "Disassembly of section ";
1176         if (!SegmentName.empty())
1177           outs() << SegmentName << ",";
1178         outs() << SectionName << ':';
1179       }
1180 
1181       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1182         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1183           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1184           Start += 256;
1185         }
1186         if (SI == SE - 1 ||
1187             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1188           // cut trailing zeroes at the end of kernel
1189           // cut up to 256 bytes
1190           const uint64_t EndAlign = 256;
1191           const auto Limit = End - (std::min)(EndAlign, End - Start);
1192           while (End > Limit &&
1193             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1194             End -= 4;
1195         }
1196       }
1197 
1198       outs() << '\n';
1199       if (!NoLeadingAddr)
1200         outs() << format("%016" PRIx64 " ",
1201                          SectionAddr + Start + VMAAdjustment);
1202 
1203       StringRef SymbolName = std::get<1>(Symbols[SI]);
1204       if (Demangle)
1205         outs() << demangle(SymbolName) << ":\n";
1206       else
1207         outs() << SymbolName << ":\n";
1208 
1209       // Don't print raw contents of a virtual section. A virtual section
1210       // doesn't have any contents in the file.
1211       if (Section.isVirtual()) {
1212         outs() << "...\n";
1213         continue;
1214       }
1215 
1216 #ifndef NDEBUG
1217       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1218 #else
1219       raw_ostream &DebugOut = nulls();
1220 #endif
1221 
1222       // Some targets (like WebAssembly) have a special prelude at the start
1223       // of each symbol.
1224       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1225                             SectionAddr + Start, DebugOut, CommentStream);
1226       Start += Size;
1227 
1228       Index = Start;
1229       if (SectionAddr < StartAddress)
1230         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1231 
1232       // If there is a data symbol inside an ELF text section and we are
1233       // only disassembling text (applicable all architectures), we are in a
1234       // situation where we must print the data and not disassemble it.
1235       if (Obj->isELF() && std::get<2>(Symbols[SI]) == ELF::STT_OBJECT &&
1236           !DisassembleAll && Section.isText()) {
1237         dumpELFData(SectionAddr, Index, End, Bytes);
1238         Index = End;
1239       }
1240 
1241       bool CheckARMELFData = isArmElf(Obj) &&
1242                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1243                              !DisassembleAll;
1244       while (Index < End) {
1245         // AArch64 ELF binaries can interleave data and text in the same
1246         // section. We rely on the markers introduced to understand what we
1247         // need to dump. If the data marker is within a function, it is
1248         // denoted as a word/short etc.
1249         if (CheckARMELFData &&
1250             std::binary_search(DataMappingSymsAddr.begin(),
1251                                DataMappingSymsAddr.end(), Index)) {
1252           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1253                                  TextMappingSymsAddr);
1254           continue;
1255         }
1256 
1257         // When -z or --disassemble-zeroes are given we always dissasemble
1258         // them. Otherwise we might want to skip zero bytes we see.
1259         if (!DisassembleZeroes) {
1260           uint64_t MaxOffset = End - Index;
1261           // For -reloc: print zero blocks patched by relocations, so that
1262           // relocations can be shown in the dump.
1263           if (RelCur != RelEnd)
1264             MaxOffset = RelCur->getOffset() - Index;
1265 
1266           if (size_t N =
1267                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1268             outs() << "\t\t..." << '\n';
1269             Index += N;
1270             continue;
1271           }
1272         }
1273 
1274         // Disassemble a real instruction or a data when disassemble all is
1275         // provided
1276         MCInst Inst;
1277         bool Disassembled = DisAsm->getInstruction(
1278             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1279             CommentStream);
1280         if (Size == 0)
1281           Size = 1;
1282 
1283         PIP.printInst(
1284             *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1285             {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, outs(),
1286             "", *STI, &SP, &Rels);
1287         outs() << CommentStream.str();
1288         Comments.clear();
1289 
1290         // Try to resolve the target of a call, tail call, etc. to a specific
1291         // symbol.
1292         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1293                     MIA->isConditionalBranch(Inst))) {
1294           uint64_t Target;
1295           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1296             // In a relocatable object, the target's section must reside in
1297             // the same section as the call instruction or it is accessed
1298             // through a relocation.
1299             //
1300             // In a non-relocatable object, the target may be in any section.
1301             //
1302             // N.B. We don't walk the relocations in the relocatable case yet.
1303             auto *TargetSectionSymbols = &Symbols;
1304             if (!Obj->isRelocatableObject()) {
1305               auto SectionAddress = llvm::upper_bound(
1306                   SectionAddresses, Target,
1307                   [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1308                     return LHS < RHS.first;
1309                   });
1310               if (SectionAddress != SectionAddresses.begin()) {
1311                 --SectionAddress;
1312                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1313               } else {
1314                 TargetSectionSymbols = &AbsoluteSymbols;
1315               }
1316             }
1317 
1318             // Find the first symbol in the section whose offset is less than
1319             // or equal to the target. If there isn't a section that contains
1320             // the target, find the nearest preceding absolute symbol.
1321             auto TargetSym = llvm::upper_bound(
1322                 *TargetSectionSymbols, Target,
1323                 [](uint64_t LHS,
1324                    const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1325                   return LHS < std::get<0>(RHS);
1326                 });
1327             if (TargetSym == TargetSectionSymbols->begin()) {
1328               TargetSectionSymbols = &AbsoluteSymbols;
1329               TargetSym = llvm::upper_bound(
1330                   AbsoluteSymbols, Target,
1331                   [](uint64_t LHS,
1332                      const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1333                     return LHS < std::get<0>(RHS);
1334                   });
1335             }
1336             if (TargetSym != TargetSectionSymbols->begin()) {
1337               --TargetSym;
1338               uint64_t TargetAddress = std::get<0>(*TargetSym);
1339               StringRef TargetName = std::get<1>(*TargetSym);
1340               outs() << " <" << TargetName;
1341               uint64_t Disp = Target - TargetAddress;
1342               if (Disp)
1343                 outs() << "+0x" << Twine::utohexstr(Disp);
1344               outs() << '>';
1345             }
1346           }
1347         }
1348         outs() << "\n";
1349 
1350         // Hexagon does this in pretty printer
1351         if (Obj->getArch() != Triple::hexagon) {
1352           // Print relocation for instruction.
1353           while (RelCur != RelEnd) {
1354             uint64_t Offset = RelCur->getOffset();
1355             // If this relocation is hidden, skip it.
1356             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1357               ++RelCur;
1358               continue;
1359             }
1360 
1361             // Stop when RelCur's offset is past the current instruction.
1362             if (Offset >= Index + Size)
1363               break;
1364 
1365             // When --adjust-vma is used, update the address printed.
1366             if (RelCur->getSymbol() != Obj->symbol_end()) {
1367               Expected<section_iterator> SymSI =
1368                   RelCur->getSymbol()->getSection();
1369               if (SymSI && *SymSI != Obj->section_end() &&
1370                   shouldAdjustVA(**SymSI))
1371                 Offset += AdjustVMA;
1372             }
1373 
1374             printRelocation(*RelCur, SectionAddr + Offset,
1375                             Obj->getBytesInAddress());
1376             ++RelCur;
1377           }
1378         }
1379 
1380         Index += Size;
1381       }
1382     }
1383   }
1384 }
1385 
1386 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1387   if (StartAddress > StopAddress)
1388     error("Start address should be less than stop address");
1389 
1390   const Target *TheTarget = getTarget(Obj);
1391 
1392   // Package up features to be passed to target/subtarget
1393   SubtargetFeatures Features = Obj->getFeatures();
1394   if (!MAttrs.empty())
1395     for (unsigned I = 0; I != MAttrs.size(); ++I)
1396       Features.AddFeature(MAttrs[I]);
1397 
1398   std::unique_ptr<const MCRegisterInfo> MRI(
1399       TheTarget->createMCRegInfo(TripleName));
1400   if (!MRI)
1401     report_error(Obj->getFileName(),
1402                  "no register info for target " + TripleName);
1403 
1404   // Set up disassembler.
1405   std::unique_ptr<const MCAsmInfo> AsmInfo(
1406       TheTarget->createMCAsmInfo(*MRI, TripleName));
1407   if (!AsmInfo)
1408     report_error(Obj->getFileName(),
1409                  "no assembly info for target " + TripleName);
1410   std::unique_ptr<const MCSubtargetInfo> STI(
1411       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1412   if (!STI)
1413     report_error(Obj->getFileName(),
1414                  "no subtarget info for target " + TripleName);
1415   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1416   if (!MII)
1417     report_error(Obj->getFileName(),
1418                  "no instruction info for target " + TripleName);
1419   MCObjectFileInfo MOFI;
1420   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1421   // FIXME: for now initialize MCObjectFileInfo with default values
1422   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1423 
1424   std::unique_ptr<MCDisassembler> DisAsm(
1425       TheTarget->createMCDisassembler(*STI, Ctx));
1426   if (!DisAsm)
1427     report_error(Obj->getFileName(),
1428                  "no disassembler for target " + TripleName);
1429 
1430   std::unique_ptr<const MCInstrAnalysis> MIA(
1431       TheTarget->createMCInstrAnalysis(MII.get()));
1432 
1433   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1434   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1435       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1436   if (!IP)
1437     report_error(Obj->getFileName(),
1438                  "no instruction printer for target " + TripleName);
1439   IP->setPrintImmHex(PrintImmHex);
1440 
1441   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1442   SourcePrinter SP(Obj, TheTarget->getName());
1443 
1444   for (StringRef Opt : DisassemblerOptions)
1445     if (!IP->applyTargetSpecificCLOption(Opt))
1446       error("Unrecognized disassembler option: " + Opt);
1447 
1448   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), MIA.get(), IP.get(),
1449                     STI.get(), PIP, SP, InlineRelocs);
1450 }
1451 
1452 void printRelocations(const ObjectFile *Obj) {
1453   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1454                                                  "%08" PRIx64;
1455   // Regular objdump doesn't print relocations in non-relocatable object
1456   // files.
1457   if (!Obj->isRelocatableObject())
1458     return;
1459 
1460   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1461     if (Section.relocation_begin() == Section.relocation_end())
1462       continue;
1463     StringRef SecName;
1464     error(Section.getName(SecName));
1465     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1466     for (const RelocationRef &Reloc : Section.relocations()) {
1467       uint64_t Address = Reloc.getOffset();
1468       SmallString<32> RelocName;
1469       SmallString<32> ValueStr;
1470       if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1471         continue;
1472       Reloc.getTypeName(RelocName);
1473       error(getRelocationValueString(Reloc, ValueStr));
1474       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1475              << ValueStr << "\n";
1476     }
1477     outs() << "\n";
1478   }
1479 }
1480 
1481 void printDynamicRelocations(const ObjectFile *Obj) {
1482   // For the moment, this option is for ELF only
1483   if (!Obj->isELF())
1484     return;
1485 
1486   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1487   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1488     error("not a dynamic object");
1489     return;
1490   }
1491 
1492   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1493   if (DynRelSec.empty())
1494     return;
1495 
1496   outs() << "DYNAMIC RELOCATION RECORDS\n";
1497   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1498   for (const SectionRef &Section : DynRelSec) {
1499     if (Section.relocation_begin() == Section.relocation_end())
1500       continue;
1501     for (const RelocationRef &Reloc : Section.relocations()) {
1502       uint64_t Address = Reloc.getOffset();
1503       SmallString<32> RelocName;
1504       SmallString<32> ValueStr;
1505       Reloc.getTypeName(RelocName);
1506       error(getRelocationValueString(Reloc, ValueStr));
1507       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1508              << ValueStr << "\n";
1509     }
1510   }
1511 }
1512 
1513 // Returns true if we need to show LMA column when dumping section headers. We
1514 // show it only when the platform is ELF and either we have at least one section
1515 // whose VMA and LMA are different and/or when --show-lma flag is used.
1516 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1517   if (!Obj->isELF())
1518     return false;
1519   for (const SectionRef &S : ToolSectionFilter(*Obj))
1520     if (S.getAddress() != getELFSectionLMA(S))
1521       return true;
1522   return ShowLMA;
1523 }
1524 
1525 void printSectionHeaders(const ObjectFile *Obj) {
1526   bool HasLMAColumn = shouldDisplayLMA(Obj);
1527   if (HasLMAColumn)
1528     outs() << "Sections:\n"
1529               "Idx Name          Size     VMA              LMA              "
1530               "Type\n";
1531   else
1532     outs() << "Sections:\n"
1533               "Idx Name          Size     VMA          Type\n";
1534 
1535   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1536     StringRef Name;
1537     error(Section.getName(Name));
1538     uint64_t VMA = Section.getAddress();
1539     if (shouldAdjustVA(Section))
1540       VMA += AdjustVMA;
1541 
1542     uint64_t Size = Section.getSize();
1543     bool Text = Section.isText();
1544     bool Data = Section.isData();
1545     bool BSS = Section.isBSS();
1546     std::string Type = (std::string(Text ? "TEXT " : "") +
1547                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1548 
1549     if (HasLMAColumn)
1550       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1551                        " %s\n",
1552                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1553                        VMA, getELFSectionLMA(Section), Type.c_str());
1554     else
1555       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1556                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1557                        VMA, Type.c_str());
1558   }
1559   outs() << "\n";
1560 }
1561 
1562 void printSectionContents(const ObjectFile *Obj) {
1563   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1564     StringRef Name;
1565     StringRef Contents;
1566     error(Section.getName(Name));
1567     uint64_t BaseAddr = Section.getAddress();
1568     uint64_t Size = Section.getSize();
1569     if (!Size)
1570       continue;
1571 
1572     outs() << "Contents of section " << Name << ":\n";
1573     if (Section.isBSS()) {
1574       outs() << format("<skipping contents of bss section at [%04" PRIx64
1575                        ", %04" PRIx64 ")>\n",
1576                        BaseAddr, BaseAddr + Size);
1577       continue;
1578     }
1579 
1580     error(Section.getContents(Contents));
1581 
1582     // Dump out the content as hex and printable ascii characters.
1583     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1584       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1585       // Dump line of hex.
1586       for (std::size_t I = 0; I < 16; ++I) {
1587         if (I != 0 && I % 4 == 0)
1588           outs() << ' ';
1589         if (Addr + I < End)
1590           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1591                  << hexdigit(Contents[Addr + I] & 0xF, true);
1592         else
1593           outs() << "  ";
1594       }
1595       // Print ascii.
1596       outs() << "  ";
1597       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1598         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1599           outs() << Contents[Addr + I];
1600         else
1601           outs() << ".";
1602       }
1603       outs() << "\n";
1604     }
1605   }
1606 }
1607 
1608 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1609                       StringRef ArchitectureName) {
1610   outs() << "SYMBOL TABLE:\n";
1611 
1612   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1613     printCOFFSymbolTable(Coff);
1614     return;
1615   }
1616 
1617   const StringRef FileName = O->getFileName();
1618   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1619     // Skip printing the special zero symbol when dumping an ELF file.
1620     // This makes the output consistent with the GNU objdump.
1621     if (I == O->symbol_begin() && isa<ELFObjectFileBase>(O))
1622       continue;
1623 
1624     const SymbolRef &Symbol = *I;
1625     uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName,
1626                                      ArchitectureName);
1627     if ((Address < StartAddress) || (Address > StopAddress))
1628       continue;
1629     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName,
1630                                          FileName, ArchitectureName);
1631     uint32_t Flags = Symbol.getFlags();
1632     section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName,
1633                                              FileName, ArchitectureName);
1634     StringRef Name;
1635     if (Type == SymbolRef::ST_Debug && Section != O->section_end())
1636       Section->getName(Name);
1637     else
1638       Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName,
1639                            ArchitectureName);
1640 
1641     bool Global = Flags & SymbolRef::SF_Global;
1642     bool Weak = Flags & SymbolRef::SF_Weak;
1643     bool Absolute = Flags & SymbolRef::SF_Absolute;
1644     bool Common = Flags & SymbolRef::SF_Common;
1645     bool Hidden = Flags & SymbolRef::SF_Hidden;
1646 
1647     char GlobLoc = ' ';
1648     if (Type != SymbolRef::ST_Unknown)
1649       GlobLoc = Global ? 'g' : 'l';
1650     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1651                  ? 'd' : ' ';
1652     char FileFunc = ' ';
1653     if (Type == SymbolRef::ST_File)
1654       FileFunc = 'f';
1655     else if (Type == SymbolRef::ST_Function)
1656       FileFunc = 'F';
1657     else if (Type == SymbolRef::ST_Data)
1658       FileFunc = 'O';
1659 
1660     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1661                                                    "%08" PRIx64;
1662 
1663     outs() << format(Fmt, Address) << " "
1664            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1665            << (Weak ? 'w' : ' ') // Weak?
1666            << ' ' // Constructor. Not supported yet.
1667            << ' ' // Warning. Not supported yet.
1668            << ' ' // Indirect reference to another symbol.
1669            << Debug // Debugging (d) or dynamic (D) symbol.
1670            << FileFunc // Name of function (F), file (f) or object (O).
1671            << ' ';
1672     if (Absolute) {
1673       outs() << "*ABS*";
1674     } else if (Common) {
1675       outs() << "*COM*";
1676     } else if (Section == O->section_end()) {
1677       outs() << "*UND*";
1678     } else {
1679       if (const MachOObjectFile *MachO =
1680           dyn_cast<const MachOObjectFile>(O)) {
1681         DataRefImpl DR = Section->getRawDataRefImpl();
1682         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1683         outs() << SegmentName << ",";
1684       }
1685       StringRef SectionName;
1686       error(Section->getName(SectionName));
1687       outs() << SectionName;
1688     }
1689 
1690     outs() << '\t';
1691     if (Common || isa<ELFObjectFileBase>(O)) {
1692       uint64_t Val =
1693           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1694       outs() << format("\t %08" PRIx64 " ", Val);
1695     }
1696 
1697     if (Hidden)
1698       outs() << ".hidden ";
1699 
1700     if (Demangle)
1701       outs() << demangle(Name) << '\n';
1702     else
1703       outs() << Name << '\n';
1704   }
1705 }
1706 
1707 static void printUnwindInfo(const ObjectFile *O) {
1708   outs() << "Unwind info:\n\n";
1709 
1710   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1711     printCOFFUnwindInfo(Coff);
1712   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1713     printMachOUnwindInfo(MachO);
1714   else
1715     // TODO: Extract DWARF dump tool to objdump.
1716     WithColor::error(errs(), ToolName)
1717         << "This operation is only currently supported "
1718            "for COFF and MachO object files.\n";
1719 }
1720 
1721 /// Dump the raw contents of the __clangast section so the output can be piped
1722 /// into llvm-bcanalyzer.
1723 void printRawClangAST(const ObjectFile *Obj) {
1724   if (outs().is_displayed()) {
1725     WithColor::error(errs(), ToolName)
1726         << "The -raw-clang-ast option will dump the raw binary contents of "
1727            "the clang ast section.\n"
1728            "Please redirect the output to a file or another program such as "
1729            "llvm-bcanalyzer.\n";
1730     return;
1731   }
1732 
1733   StringRef ClangASTSectionName("__clangast");
1734   if (isa<COFFObjectFile>(Obj)) {
1735     ClangASTSectionName = "clangast";
1736   }
1737 
1738   Optional<object::SectionRef> ClangASTSection;
1739   for (auto Sec : ToolSectionFilter(*Obj)) {
1740     StringRef Name;
1741     Sec.getName(Name);
1742     if (Name == ClangASTSectionName) {
1743       ClangASTSection = Sec;
1744       break;
1745     }
1746   }
1747   if (!ClangASTSection)
1748     return;
1749 
1750   StringRef ClangASTContents;
1751   error(ClangASTSection.getValue().getContents(ClangASTContents));
1752   outs().write(ClangASTContents.data(), ClangASTContents.size());
1753 }
1754 
1755 static void printFaultMaps(const ObjectFile *Obj) {
1756   StringRef FaultMapSectionName;
1757 
1758   if (isa<ELFObjectFileBase>(Obj)) {
1759     FaultMapSectionName = ".llvm_faultmaps";
1760   } else if (isa<MachOObjectFile>(Obj)) {
1761     FaultMapSectionName = "__llvm_faultmaps";
1762   } else {
1763     WithColor::error(errs(), ToolName)
1764         << "This operation is only currently supported "
1765            "for ELF and Mach-O executable files.\n";
1766     return;
1767   }
1768 
1769   Optional<object::SectionRef> FaultMapSection;
1770 
1771   for (auto Sec : ToolSectionFilter(*Obj)) {
1772     StringRef Name;
1773     Sec.getName(Name);
1774     if (Name == FaultMapSectionName) {
1775       FaultMapSection = Sec;
1776       break;
1777     }
1778   }
1779 
1780   outs() << "FaultMap table:\n";
1781 
1782   if (!FaultMapSection.hasValue()) {
1783     outs() << "<not found>\n";
1784     return;
1785   }
1786 
1787   StringRef FaultMapContents;
1788   error(FaultMapSection.getValue().getContents(FaultMapContents));
1789 
1790   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1791                      FaultMapContents.bytes_end());
1792 
1793   outs() << FMP;
1794 }
1795 
1796 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1797   if (O->isELF()) {
1798     printELFFileHeader(O);
1799     printELFDynamicSection(O);
1800     printELFSymbolVersionInfo(O);
1801     return;
1802   }
1803   if (O->isCOFF())
1804     return printCOFFFileHeader(O);
1805   if (O->isWasm())
1806     return printWasmFileHeader(O);
1807   if (O->isMachO()) {
1808     printMachOFileHeader(O);
1809     if (!OnlyFirst)
1810       printMachOLoadCommands(O);
1811     return;
1812   }
1813   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1814 }
1815 
1816 static void printFileHeaders(const ObjectFile *O) {
1817   if (!O->isELF() && !O->isCOFF())
1818     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1819 
1820   Triple::ArchType AT = O->getArch();
1821   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1822   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
1823 
1824   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1825   outs() << "start address: "
1826          << "0x" << format(Fmt.data(), Address) << "\n\n";
1827 }
1828 
1829 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1830   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1831   if (!ModeOrErr) {
1832     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1833     consumeError(ModeOrErr.takeError());
1834     return;
1835   }
1836   sys::fs::perms Mode = ModeOrErr.get();
1837   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1838   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1839   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1840   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1841   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1842   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1843   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1844   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1845   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1846 
1847   outs() << " ";
1848 
1849   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
1850                    unwrapOrError(C.getGID(), Filename),
1851                    unwrapOrError(C.getRawSize(), Filename));
1852 
1853   StringRef RawLastModified = C.getRawLastModified();
1854   unsigned Seconds;
1855   if (RawLastModified.getAsInteger(10, Seconds))
1856     outs() << "(date: \"" << RawLastModified
1857            << "\" contains non-decimal chars) ";
1858   else {
1859     // Since ctime(3) returns a 26 character string of the form:
1860     // "Sun Sep 16 01:03:52 1973\n\0"
1861     // just print 24 characters.
1862     time_t t = Seconds;
1863     outs() << format("%.24s ", ctime(&t));
1864   }
1865 
1866   StringRef Name = "";
1867   Expected<StringRef> NameOrErr = C.getName();
1868   if (!NameOrErr) {
1869     consumeError(NameOrErr.takeError());
1870     Name = unwrapOrError(C.getRawName(), Filename);
1871   } else {
1872     Name = NameOrErr.get();
1873   }
1874   outs() << Name << "\n";
1875 }
1876 
1877 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
1878                        const Archive::Child *C = nullptr) {
1879   // Avoid other output when using a raw option.
1880   if (!RawClangAST) {
1881     outs() << '\n';
1882     if (A)
1883       outs() << A->getFileName() << "(" << O->getFileName() << ")";
1884     else
1885       outs() << O->getFileName();
1886     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
1887   }
1888 
1889   StringRef ArchiveName = A ? A->getFileName() : "";
1890   if (FileHeaders)
1891     printFileHeaders(O);
1892   if (ArchiveHeaders && !MachOOpt && C)
1893     printArchiveChild(ArchiveName, *C);
1894   if (Disassemble)
1895     disassembleObject(O, Relocations);
1896   if (Relocations && !Disassemble)
1897     printRelocations(O);
1898   if (DynamicRelocations)
1899     printDynamicRelocations(O);
1900   if (SectionHeaders)
1901     printSectionHeaders(O);
1902   if (SectionContents)
1903     printSectionContents(O);
1904   if (SymbolTable)
1905     printSymbolTable(O, ArchiveName);
1906   if (UnwindInfo)
1907     printUnwindInfo(O);
1908   if (PrivateHeaders || FirstPrivateHeader)
1909     printPrivateFileHeaders(O, FirstPrivateHeader);
1910   if (ExportsTrie)
1911     printExportsTrie(O);
1912   if (Rebase)
1913     printRebaseTable(O);
1914   if (Bind)
1915     printBindTable(O);
1916   if (LazyBind)
1917     printLazyBindTable(O);
1918   if (WeakBind)
1919     printWeakBindTable(O);
1920   if (RawClangAST)
1921     printRawClangAST(O);
1922   if (FaultMapSection)
1923     printFaultMaps(O);
1924   if (DwarfDumpType != DIDT_Null) {
1925     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
1926     // Dump the complete DWARF structure.
1927     DIDumpOptions DumpOpts;
1928     DumpOpts.DumpType = DwarfDumpType;
1929     DICtx->dump(outs(), DumpOpts);
1930   }
1931 }
1932 
1933 static void dumpObject(const COFFImportFile *I, const Archive *A,
1934                        const Archive::Child *C = nullptr) {
1935   StringRef ArchiveName = A ? A->getFileName() : "";
1936 
1937   // Avoid other output when using a raw option.
1938   if (!RawClangAST)
1939     outs() << '\n'
1940            << ArchiveName << "(" << I->getFileName() << ")"
1941            << ":\tfile format COFF-import-file"
1942            << "\n\n";
1943 
1944   if (ArchiveHeaders && !MachOOpt && C)
1945     printArchiveChild(ArchiveName, *C);
1946   if (SymbolTable)
1947     printCOFFSymbolTable(I);
1948 }
1949 
1950 /// Dump each object file in \a a;
1951 static void dumpArchive(const Archive *A) {
1952   Error Err = Error::success();
1953   for (auto &C : A->children(Err)) {
1954     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1955     if (!ChildOrErr) {
1956       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1957         report_error(std::move(E), A->getFileName(), C);
1958       continue;
1959     }
1960     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
1961       dumpObject(O, A, &C);
1962     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
1963       dumpObject(I, A, &C);
1964     else
1965       report_error(errorCodeToError(object_error::invalid_file_type),
1966                    A->getFileName());
1967   }
1968   if (Err)
1969     report_error(std::move(Err), A->getFileName());
1970 }
1971 
1972 /// Open file and figure out how to dump it.
1973 static void dumpInput(StringRef file) {
1974   // If we are using the Mach-O specific object file parser, then let it parse
1975   // the file and process the command line options.  So the -arch flags can
1976   // be used to select specific slices, etc.
1977   if (MachOOpt) {
1978     parseInputMachO(file);
1979     return;
1980   }
1981 
1982   // Attempt to open the binary.
1983   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
1984   Binary &Binary = *OBinary.getBinary();
1985 
1986   if (Archive *A = dyn_cast<Archive>(&Binary))
1987     dumpArchive(A);
1988   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
1989     dumpObject(O);
1990   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
1991     parseInputMachO(UB);
1992   else
1993     report_error(errorCodeToError(object_error::invalid_file_type), file);
1994 }
1995 } // namespace llvm
1996 
1997 int main(int argc, char **argv) {
1998   using namespace llvm;
1999   InitLLVM X(argc, argv);
2000 
2001   // Initialize targets and assembly printers/parsers.
2002   InitializeAllTargetInfos();
2003   InitializeAllTargetMCs();
2004   InitializeAllDisassemblers();
2005 
2006   // Register the target printer for --version.
2007   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2008 
2009   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2010 
2011   ToolName = argv[0];
2012 
2013   // Defaults to a.out if no filenames specified.
2014   if (InputFilenames.empty())
2015     InputFilenames.push_back("a.out");
2016 
2017   if (AllHeaders)
2018     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2019         SectionHeaders = SymbolTable = true;
2020 
2021   if (DisassembleAll || PrintSource || PrintLines)
2022     Disassemble = true;
2023 
2024   if (!Disassemble
2025       && !Relocations
2026       && !DynamicRelocations
2027       && !SectionHeaders
2028       && !SectionContents
2029       && !SymbolTable
2030       && !UnwindInfo
2031       && !PrivateHeaders
2032       && !FileHeaders
2033       && !FirstPrivateHeader
2034       && !ExportsTrie
2035       && !Rebase
2036       && !Bind
2037       && !LazyBind
2038       && !WeakBind
2039       && !RawClangAST
2040       && !(UniversalHeaders && MachOOpt)
2041       && !ArchiveHeaders
2042       && !(IndirectSymbols && MachOOpt)
2043       && !(DataInCode && MachOOpt)
2044       && !(LinkOptHints && MachOOpt)
2045       && !(InfoPlist && MachOOpt)
2046       && !(DylibsUsed && MachOOpt)
2047       && !(DylibId && MachOOpt)
2048       && !(ObjcMetaData && MachOOpt)
2049       && !(!FilterSections.empty() && MachOOpt)
2050       && !FaultMapSection
2051       && DwarfDumpType == DIDT_Null) {
2052     cl::PrintHelpMessage();
2053     return 2;
2054   }
2055 
2056   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2057                         DisassembleFunctions.end());
2058 
2059   llvm::for_each(InputFilenames, dumpInput);
2060 
2061   return EXIT_SUCCESS;
2062 }
2063