xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 134cf47dcbe7ff4b58bc2001926b412b28138afc)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This program is a utility that works like binutils "objdump", that is, it
11 // dumps out a plethora of information about an object file depending on the
12 // flags.
13 //
14 // The flags and output of this program should be near identical to those of
15 // binutils objdump.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm-objdump.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <cctype>
65 #include <cstring>
66 #include <system_error>
67 #include <unordered_map>
68 #include <utility>
69 
70 using namespace llvm;
71 using namespace object;
72 
73 cl::opt<bool>
74     llvm::AllHeaders("all-headers",
75                      cl::desc("Display all available header information"));
76 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
77                                  cl::aliasopt(AllHeaders));
78 
79 static cl::list<std::string>
80 InputFilenames(cl::Positional, cl::desc("<input object files>"),cl::ZeroOrMore);
81 
82 cl::opt<bool>
83 llvm::Disassemble("disassemble",
84   cl::desc("Display assembler mnemonics for the machine instructions"));
85 static cl::alias
86 Disassembled("d", cl::desc("Alias for --disassemble"),
87              cl::aliasopt(Disassemble));
88 
89 cl::opt<bool>
90 llvm::DisassembleAll("disassemble-all",
91   cl::desc("Display assembler mnemonics for the machine instructions"));
92 static cl::alias
93 DisassembleAlld("D", cl::desc("Alias for --disassemble-all"),
94              cl::aliasopt(DisassembleAll));
95 
96 cl::opt<bool> llvm::Demangle("demangle", cl::desc("Demangle symbols names"),
97                              cl::init(false));
98 
99 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
100                                cl::aliasopt(llvm::Demangle));
101 
102 static cl::list<std::string>
103 DisassembleFunctions("df",
104                      cl::CommaSeparated,
105                      cl::desc("List of functions to disassemble"));
106 static StringSet<> DisasmFuncsSet;
107 
108 cl::opt<bool>
109 llvm::Relocations("r", cl::desc("Display the relocation entries in the file"));
110 
111 cl::opt<bool>
112 llvm::DynamicRelocations("dynamic-reloc",
113   cl::desc("Display the dynamic relocation entries in the file"));
114 static cl::alias
115 DynamicRelocationsd("R", cl::desc("Alias for --dynamic-reloc"),
116              cl::aliasopt(DynamicRelocations));
117 
118 cl::opt<bool>
119 llvm::SectionContents("s", cl::desc("Display the content of each section"));
120 
121 cl::opt<bool>
122 llvm::SymbolTable("t", cl::desc("Display the symbol table"));
123 
124 cl::opt<bool>
125 llvm::ExportsTrie("exports-trie", cl::desc("Display mach-o exported symbols"));
126 
127 cl::opt<bool>
128 llvm::Rebase("rebase", cl::desc("Display mach-o rebasing info"));
129 
130 cl::opt<bool>
131 llvm::Bind("bind", cl::desc("Display mach-o binding info"));
132 
133 cl::opt<bool>
134 llvm::LazyBind("lazy-bind", cl::desc("Display mach-o lazy binding info"));
135 
136 cl::opt<bool>
137 llvm::WeakBind("weak-bind", cl::desc("Display mach-o weak binding info"));
138 
139 cl::opt<bool>
140 llvm::RawClangAST("raw-clang-ast",
141     cl::desc("Dump the raw binary contents of the clang AST section"));
142 
143 static cl::opt<bool>
144 MachOOpt("macho", cl::desc("Use MachO specific object file parser"));
145 static cl::alias
146 MachOm("m", cl::desc("Alias for --macho"), cl::aliasopt(MachOOpt));
147 
148 cl::opt<std::string>
149 llvm::TripleName("triple", cl::desc("Target triple to disassemble for, "
150                                     "see -version for available targets"));
151 
152 cl::opt<std::string>
153 llvm::MCPU("mcpu",
154      cl::desc("Target a specific cpu type (-mcpu=help for details)"),
155      cl::value_desc("cpu-name"),
156      cl::init(""));
157 
158 cl::opt<std::string>
159 llvm::ArchName("arch-name", cl::desc("Target arch to disassemble for, "
160                                 "see -version for available targets"));
161 
162 cl::opt<bool>
163 llvm::SectionHeaders("section-headers", cl::desc("Display summaries of the "
164                                                  "headers for each section."));
165 static cl::alias
166 SectionHeadersShort("headers", cl::desc("Alias for --section-headers"),
167                     cl::aliasopt(SectionHeaders));
168 static cl::alias
169 SectionHeadersShorter("h", cl::desc("Alias for --section-headers"),
170                       cl::aliasopt(SectionHeaders));
171 
172 cl::list<std::string>
173 llvm::FilterSections("section", cl::desc("Operate on the specified sections only. "
174                                          "With -macho dump segment,section"));
175 cl::alias
176 static FilterSectionsj("j", cl::desc("Alias for --section"),
177                  cl::aliasopt(llvm::FilterSections));
178 
179 cl::list<std::string>
180 llvm::MAttrs("mattr",
181   cl::CommaSeparated,
182   cl::desc("Target specific attributes"),
183   cl::value_desc("a1,+a2,-a3,..."));
184 
185 cl::opt<bool>
186 llvm::NoShowRawInsn("no-show-raw-insn", cl::desc("When disassembling "
187                                                  "instructions, do not print "
188                                                  "the instruction bytes."));
189 cl::opt<bool>
190 llvm::NoLeadingAddr("no-leading-addr", cl::desc("Print no leading address"));
191 
192 cl::opt<bool>
193 llvm::UnwindInfo("unwind-info", cl::desc("Display unwind information"));
194 
195 static cl::alias
196 UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
197                 cl::aliasopt(UnwindInfo));
198 
199 cl::opt<bool>
200 llvm::PrivateHeaders("private-headers",
201                      cl::desc("Display format specific file headers"));
202 
203 cl::opt<bool>
204 llvm::FirstPrivateHeader("private-header",
205                          cl::desc("Display only the first format specific file "
206                                   "header"));
207 
208 static cl::alias
209 PrivateHeadersShort("p", cl::desc("Alias for --private-headers"),
210                     cl::aliasopt(PrivateHeaders));
211 
212 cl::opt<bool> llvm::FileHeaders(
213     "file-headers",
214     cl::desc("Display the contents of the overall file header"));
215 
216 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
217                                   cl::aliasopt(FileHeaders));
218 
219 cl::opt<bool>
220     llvm::ArchiveHeaders("archive-headers",
221                          cl::desc("Display archive header information"));
222 
223 cl::alias
224 ArchiveHeadersShort("a", cl::desc("Alias for --archive-headers"),
225                     cl::aliasopt(ArchiveHeaders));
226 
227 cl::opt<bool>
228     llvm::PrintImmHex("print-imm-hex",
229                       cl::desc("Use hex format for immediate values"));
230 
231 cl::opt<bool> PrintFaultMaps("fault-map-section",
232                              cl::desc("Display contents of faultmap section"));
233 
234 cl::opt<DIDumpType> llvm::DwarfDumpType(
235     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
236     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")));
237 
238 cl::opt<bool> PrintSource(
239     "source",
240     cl::desc(
241         "Display source inlined with disassembly. Implies disassemble object"));
242 
243 cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
244                            cl::aliasopt(PrintSource));
245 
246 cl::opt<bool> PrintLines("line-numbers",
247                          cl::desc("Display source line numbers with "
248                                   "disassembly. Implies disassemble object"));
249 
250 cl::alias PrintLinesShort("l", cl::desc("Alias for -line-numbers"),
251                           cl::aliasopt(PrintLines));
252 
253 cl::opt<unsigned long long>
254     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
255                  cl::value_desc("address"), cl::init(0));
256 cl::opt<unsigned long long>
257     StopAddress("stop-address", cl::desc("Stop disassembly at address"),
258                 cl::value_desc("address"), cl::init(UINT64_MAX));
259 static StringRef ToolName;
260 
261 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
262 
263 namespace {
264 typedef std::function<bool(llvm::object::SectionRef const &)> FilterPredicate;
265 
266 class SectionFilterIterator {
267 public:
268   SectionFilterIterator(FilterPredicate P,
269                         llvm::object::section_iterator const &I,
270                         llvm::object::section_iterator const &E)
271       : Predicate(std::move(P)), Iterator(I), End(E) {
272     ScanPredicate();
273   }
274   const llvm::object::SectionRef &operator*() const { return *Iterator; }
275   SectionFilterIterator &operator++() {
276     ++Iterator;
277     ScanPredicate();
278     return *this;
279   }
280   bool operator!=(SectionFilterIterator const &Other) const {
281     return Iterator != Other.Iterator;
282   }
283 
284 private:
285   void ScanPredicate() {
286     while (Iterator != End && !Predicate(*Iterator)) {
287       ++Iterator;
288     }
289   }
290   FilterPredicate Predicate;
291   llvm::object::section_iterator Iterator;
292   llvm::object::section_iterator End;
293 };
294 
295 class SectionFilter {
296 public:
297   SectionFilter(FilterPredicate P, llvm::object::ObjectFile const &O)
298       : Predicate(std::move(P)), Object(O) {}
299   SectionFilterIterator begin() {
300     return SectionFilterIterator(Predicate, Object.section_begin(),
301                                  Object.section_end());
302   }
303   SectionFilterIterator end() {
304     return SectionFilterIterator(Predicate, Object.section_end(),
305                                  Object.section_end());
306   }
307 
308 private:
309   FilterPredicate Predicate;
310   llvm::object::ObjectFile const &Object;
311 };
312 SectionFilter ToolSectionFilter(llvm::object::ObjectFile const &O) {
313   return SectionFilter(
314       [](llvm::object::SectionRef const &S) {
315         if (FilterSections.empty())
316           return true;
317         llvm::StringRef String;
318         std::error_code error = S.getName(String);
319         if (error)
320           return false;
321         return is_contained(FilterSections, String);
322       },
323       O);
324 }
325 }
326 
327 void llvm::error(std::error_code EC) {
328   if (!EC)
329     return;
330 
331   errs() << ToolName << ": error reading file: " << EC.message() << ".\n";
332   errs().flush();
333   exit(1);
334 }
335 
336 LLVM_ATTRIBUTE_NORETURN void llvm::error(Twine Message) {
337   errs() << ToolName << ": " << Message << ".\n";
338   errs().flush();
339   exit(1);
340 }
341 
342 void llvm::warn(StringRef Message) {
343   errs() << ToolName << ": warning: " << Message << ".\n";
344   errs().flush();
345 }
346 
347 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
348                                                 Twine Message) {
349   errs() << ToolName << ": '" << File << "': " << Message << ".\n";
350   exit(1);
351 }
352 
353 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
354                                                 std::error_code EC) {
355   assert(EC);
356   errs() << ToolName << ": '" << File << "': " << EC.message() << ".\n";
357   exit(1);
358 }
359 
360 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef File,
361                                                 llvm::Error E) {
362   assert(E);
363   std::string Buf;
364   raw_string_ostream OS(Buf);
365   logAllUnhandledErrors(std::move(E), OS, "");
366   OS.flush();
367   errs() << ToolName << ": '" << File << "': " << Buf;
368   exit(1);
369 }
370 
371 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
372                                                 StringRef FileName,
373                                                 llvm::Error E,
374                                                 StringRef ArchitectureName) {
375   assert(E);
376   errs() << ToolName << ": ";
377   if (ArchiveName != "")
378     errs() << ArchiveName << "(" << FileName << ")";
379   else
380     errs() << "'" << FileName << "'";
381   if (!ArchitectureName.empty())
382     errs() << " (for architecture " << ArchitectureName << ")";
383   std::string Buf;
384   raw_string_ostream OS(Buf);
385   logAllUnhandledErrors(std::move(E), OS, "");
386   OS.flush();
387   errs() << ": " << Buf;
388   exit(1);
389 }
390 
391 LLVM_ATTRIBUTE_NORETURN void llvm::report_error(StringRef ArchiveName,
392                                                 const object::Archive::Child &C,
393                                                 llvm::Error E,
394                                                 StringRef ArchitectureName) {
395   Expected<StringRef> NameOrErr = C.getName();
396   // TODO: if we have a error getting the name then it would be nice to print
397   // the index of which archive member this is and or its offset in the
398   // archive instead of "???" as the name.
399   if (!NameOrErr) {
400     consumeError(NameOrErr.takeError());
401     llvm::report_error(ArchiveName, "???", std::move(E), ArchitectureName);
402   } else
403     llvm::report_error(ArchiveName, NameOrErr.get(), std::move(E),
404                        ArchitectureName);
405 }
406 
407 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
408   // Figure out the target triple.
409   llvm::Triple TheTriple("unknown-unknown-unknown");
410   if (TripleName.empty()) {
411     if (Obj) {
412       TheTriple = Obj->makeTriple();
413     }
414   } else {
415     TheTriple.setTriple(Triple::normalize(TripleName));
416 
417     // Use the triple, but also try to combine with ARM build attributes.
418     if (Obj) {
419       auto Arch = Obj->getArch();
420       if (Arch == Triple::arm || Arch == Triple::armeb) {
421         Obj->setARMSubArch(TheTriple);
422       }
423     }
424   }
425 
426   // Get the target specific parser.
427   std::string Error;
428   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
429                                                          Error);
430   if (!TheTarget) {
431     if (Obj)
432       report_error(Obj->getFileName(), "can't find target: " + Error);
433     else
434       error("can't find target: " + Error);
435   }
436 
437   // Update the triple name and return the found target.
438   TripleName = TheTriple.getTriple();
439   return TheTarget;
440 }
441 
442 bool llvm::RelocAddressLess(RelocationRef a, RelocationRef b) {
443   return a.getOffset() < b.getOffset();
444 }
445 
446 template <class ELFT>
447 static std::error_code getRelocationValueString(const ELFObjectFile<ELFT> *Obj,
448                                                 const RelocationRef &RelRef,
449                                                 SmallVectorImpl<char> &Result) {
450   DataRefImpl Rel = RelRef.getRawDataRefImpl();
451 
452   typedef typename ELFObjectFile<ELFT>::Elf_Sym Elf_Sym;
453   typedef typename ELFObjectFile<ELFT>::Elf_Shdr Elf_Shdr;
454   typedef typename ELFObjectFile<ELFT>::Elf_Rela Elf_Rela;
455 
456   const ELFFile<ELFT> &EF = *Obj->getELFFile();
457 
458   auto SecOrErr = EF.getSection(Rel.d.a);
459   if (!SecOrErr)
460     return errorToErrorCode(SecOrErr.takeError());
461   const Elf_Shdr *Sec = *SecOrErr;
462   auto SymTabOrErr = EF.getSection(Sec->sh_link);
463   if (!SymTabOrErr)
464     return errorToErrorCode(SymTabOrErr.takeError());
465   const Elf_Shdr *SymTab = *SymTabOrErr;
466   assert(SymTab->sh_type == ELF::SHT_SYMTAB ||
467          SymTab->sh_type == ELF::SHT_DYNSYM);
468   auto StrTabSec = EF.getSection(SymTab->sh_link);
469   if (!StrTabSec)
470     return errorToErrorCode(StrTabSec.takeError());
471   auto StrTabOrErr = EF.getStringTable(*StrTabSec);
472   if (!StrTabOrErr)
473     return errorToErrorCode(StrTabOrErr.takeError());
474   StringRef StrTab = *StrTabOrErr;
475   int64_t addend = 0;
476   // If there is no Symbol associated with the relocation, we set the undef
477   // boolean value to 'true'. This will prevent us from calling functions that
478   // requires the relocation to be associated with a symbol.
479   bool undef = false;
480   switch (Sec->sh_type) {
481   default:
482     return object_error::parse_failed;
483   case ELF::SHT_REL: {
484     // TODO: Read implicit addend from section data.
485     break;
486   }
487   case ELF::SHT_RELA: {
488     const Elf_Rela *ERela = Obj->getRela(Rel);
489     addend = ERela->r_addend;
490     undef = ERela->getSymbol(false) == 0;
491     break;
492   }
493   }
494   StringRef Target;
495   if (!undef) {
496     symbol_iterator SI = RelRef.getSymbol();
497     const Elf_Sym *symb = Obj->getSymbol(SI->getRawDataRefImpl());
498     if (symb->getType() == ELF::STT_SECTION) {
499       Expected<section_iterator> SymSI = SI->getSection();
500       if (!SymSI)
501         return errorToErrorCode(SymSI.takeError());
502       const Elf_Shdr *SymSec = Obj->getSection((*SymSI)->getRawDataRefImpl());
503       auto SecName = EF.getSectionName(SymSec);
504       if (!SecName)
505         return errorToErrorCode(SecName.takeError());
506       Target = *SecName;
507     } else {
508       Expected<StringRef> SymName = symb->getName(StrTab);
509       if (!SymName)
510         return errorToErrorCode(SymName.takeError());
511       Target = *SymName;
512     }
513   } else
514     Target = "*ABS*";
515 
516   // Default scheme is to print Target, as well as "+ <addend>" for nonzero
517   // addend. Should be acceptable for all normal purposes.
518   std::string fmtbuf;
519   raw_string_ostream fmt(fmtbuf);
520   fmt << Target;
521   if (addend != 0)
522     fmt << (addend < 0 ? "" : "+") << addend;
523   fmt.flush();
524   Result.append(fmtbuf.begin(), fmtbuf.end());
525   return std::error_code();
526 }
527 
528 static std::error_code getRelocationValueString(const ELFObjectFileBase *Obj,
529                                                 const RelocationRef &Rel,
530                                                 SmallVectorImpl<char> &Result) {
531   if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj))
532     return getRelocationValueString(ELF32LE, Rel, Result);
533   if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj))
534     return getRelocationValueString(ELF64LE, Rel, Result);
535   if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj))
536     return getRelocationValueString(ELF32BE, Rel, Result);
537   auto *ELF64BE = cast<ELF64BEObjectFile>(Obj);
538   return getRelocationValueString(ELF64BE, Rel, Result);
539 }
540 
541 static std::error_code getRelocationValueString(const COFFObjectFile *Obj,
542                                                 const RelocationRef &Rel,
543                                                 SmallVectorImpl<char> &Result) {
544   symbol_iterator SymI = Rel.getSymbol();
545   Expected<StringRef> SymNameOrErr = SymI->getName();
546   if (!SymNameOrErr)
547     return errorToErrorCode(SymNameOrErr.takeError());
548   StringRef SymName = *SymNameOrErr;
549   Result.append(SymName.begin(), SymName.end());
550   return std::error_code();
551 }
552 
553 static void printRelocationTargetName(const MachOObjectFile *O,
554                                       const MachO::any_relocation_info &RE,
555                                       raw_string_ostream &fmt) {
556   bool IsScattered = O->isRelocationScattered(RE);
557 
558   // Target of a scattered relocation is an address.  In the interest of
559   // generating pretty output, scan through the symbol table looking for a
560   // symbol that aligns with that address.  If we find one, print it.
561   // Otherwise, we just print the hex address of the target.
562   if (IsScattered) {
563     uint32_t Val = O->getPlainRelocationSymbolNum(RE);
564 
565     for (const SymbolRef &Symbol : O->symbols()) {
566       std::error_code ec;
567       Expected<uint64_t> Addr = Symbol.getAddress();
568       if (!Addr)
569         report_error(O->getFileName(), Addr.takeError());
570       if (*Addr != Val)
571         continue;
572       Expected<StringRef> Name = Symbol.getName();
573       if (!Name)
574         report_error(O->getFileName(), Name.takeError());
575       fmt << *Name;
576       return;
577     }
578 
579     // If we couldn't find a symbol that this relocation refers to, try
580     // to find a section beginning instead.
581     for (const SectionRef &Section : ToolSectionFilter(*O)) {
582       std::error_code ec;
583 
584       StringRef Name;
585       uint64_t Addr = Section.getAddress();
586       if (Addr != Val)
587         continue;
588       if ((ec = Section.getName(Name)))
589         report_error(O->getFileName(), ec);
590       fmt << Name;
591       return;
592     }
593 
594     fmt << format("0x%x", Val);
595     return;
596   }
597 
598   StringRef S;
599   bool isExtern = O->getPlainRelocationExternal(RE);
600   uint64_t Val = O->getPlainRelocationSymbolNum(RE);
601 
602   if (O->getAnyRelocationType(RE) == MachO::ARM64_RELOC_ADDEND) {
603     fmt << format("0x%0" PRIx64, Val);
604     return;
605   } else if (isExtern) {
606     symbol_iterator SI = O->symbol_begin();
607     advance(SI, Val);
608     Expected<StringRef> SOrErr = SI->getName();
609     if (!SOrErr)
610       report_error(O->getFileName(), SOrErr.takeError());
611     S = *SOrErr;
612   } else {
613     section_iterator SI = O->section_begin();
614     // Adjust for the fact that sections are 1-indexed.
615     if (Val == 0) {
616       fmt << "0 (?,?)";
617       return;
618     }
619     uint32_t i = Val - 1;
620     while (i != 0 && SI != O->section_end()) {
621       i--;
622       advance(SI, 1);
623     }
624     if (SI == O->section_end())
625       fmt << Val << " (?,?)";
626     else
627       SI->getName(S);
628   }
629 
630   fmt << S;
631 }
632 
633 static std::error_code getRelocationValueString(const WasmObjectFile *Obj,
634                                                 const RelocationRef &RelRef,
635                                                 SmallVectorImpl<char> &Result) {
636   const wasm::WasmRelocation& Rel = Obj->getWasmRelocation(RelRef);
637   symbol_iterator SI = RelRef.getSymbol();
638   std::string fmtbuf;
639   raw_string_ostream fmt(fmtbuf);
640   if (SI == Obj->symbol_end()) {
641     // Not all wasm relocations have symbols associated with them.
642     // In particular R_WEBASSEMBLY_TYPE_INDEX_LEB.
643     fmt << Rel.Index;
644   } else {
645     Expected<StringRef> SymNameOrErr = SI->getName();
646     if (!SymNameOrErr)
647       return errorToErrorCode(SymNameOrErr.takeError());
648     StringRef SymName = *SymNameOrErr;
649     Result.append(SymName.begin(), SymName.end());
650   }
651   fmt << (Rel.Addend < 0 ? "" : "+") << Rel.Addend;
652   fmt.flush();
653   Result.append(fmtbuf.begin(), fmtbuf.end());
654   return std::error_code();
655 }
656 
657 static std::error_code getRelocationValueString(const MachOObjectFile *Obj,
658                                                 const RelocationRef &RelRef,
659                                                 SmallVectorImpl<char> &Result) {
660   DataRefImpl Rel = RelRef.getRawDataRefImpl();
661   MachO::any_relocation_info RE = Obj->getRelocation(Rel);
662 
663   unsigned Arch = Obj->getArch();
664 
665   std::string fmtbuf;
666   raw_string_ostream fmt(fmtbuf);
667   unsigned Type = Obj->getAnyRelocationType(RE);
668   bool IsPCRel = Obj->getAnyRelocationPCRel(RE);
669 
670   // Determine any addends that should be displayed with the relocation.
671   // These require decoding the relocation type, which is triple-specific.
672 
673   // X86_64 has entirely custom relocation types.
674   if (Arch == Triple::x86_64) {
675     bool isPCRel = Obj->getAnyRelocationPCRel(RE);
676 
677     switch (Type) {
678     case MachO::X86_64_RELOC_GOT_LOAD:
679     case MachO::X86_64_RELOC_GOT: {
680       printRelocationTargetName(Obj, RE, fmt);
681       fmt << "@GOT";
682       if (isPCRel)
683         fmt << "PCREL";
684       break;
685     }
686     case MachO::X86_64_RELOC_SUBTRACTOR: {
687       DataRefImpl RelNext = Rel;
688       Obj->moveRelocationNext(RelNext);
689       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
690 
691       // X86_64_RELOC_SUBTRACTOR must be followed by a relocation of type
692       // X86_64_RELOC_UNSIGNED.
693       // NOTE: Scattered relocations don't exist on x86_64.
694       unsigned RType = Obj->getAnyRelocationType(RENext);
695       if (RType != MachO::X86_64_RELOC_UNSIGNED)
696         report_error(Obj->getFileName(), "Expected X86_64_RELOC_UNSIGNED after "
697                      "X86_64_RELOC_SUBTRACTOR.");
698 
699       // The X86_64_RELOC_UNSIGNED contains the minuend symbol;
700       // X86_64_RELOC_SUBTRACTOR contains the subtrahend.
701       printRelocationTargetName(Obj, RENext, fmt);
702       fmt << "-";
703       printRelocationTargetName(Obj, RE, fmt);
704       break;
705     }
706     case MachO::X86_64_RELOC_TLV:
707       printRelocationTargetName(Obj, RE, fmt);
708       fmt << "@TLV";
709       if (isPCRel)
710         fmt << "P";
711       break;
712     case MachO::X86_64_RELOC_SIGNED_1:
713       printRelocationTargetName(Obj, RE, fmt);
714       fmt << "-1";
715       break;
716     case MachO::X86_64_RELOC_SIGNED_2:
717       printRelocationTargetName(Obj, RE, fmt);
718       fmt << "-2";
719       break;
720     case MachO::X86_64_RELOC_SIGNED_4:
721       printRelocationTargetName(Obj, RE, fmt);
722       fmt << "-4";
723       break;
724     default:
725       printRelocationTargetName(Obj, RE, fmt);
726       break;
727     }
728     // X86 and ARM share some relocation types in common.
729   } else if (Arch == Triple::x86 || Arch == Triple::arm ||
730              Arch == Triple::ppc) {
731     // Generic relocation types...
732     switch (Type) {
733     case MachO::GENERIC_RELOC_PAIR: // prints no info
734       return std::error_code();
735     case MachO::GENERIC_RELOC_SECTDIFF: {
736       DataRefImpl RelNext = Rel;
737       Obj->moveRelocationNext(RelNext);
738       MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
739 
740       // X86 sect diff's must be followed by a relocation of type
741       // GENERIC_RELOC_PAIR.
742       unsigned RType = Obj->getAnyRelocationType(RENext);
743 
744       if (RType != MachO::GENERIC_RELOC_PAIR)
745         report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
746                      "GENERIC_RELOC_SECTDIFF.");
747 
748       printRelocationTargetName(Obj, RE, fmt);
749       fmt << "-";
750       printRelocationTargetName(Obj, RENext, fmt);
751       break;
752     }
753     }
754 
755     if (Arch == Triple::x86 || Arch == Triple::ppc) {
756       switch (Type) {
757       case MachO::GENERIC_RELOC_LOCAL_SECTDIFF: {
758         DataRefImpl RelNext = Rel;
759         Obj->moveRelocationNext(RelNext);
760         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
761 
762         // X86 sect diff's must be followed by a relocation of type
763         // GENERIC_RELOC_PAIR.
764         unsigned RType = Obj->getAnyRelocationType(RENext);
765         if (RType != MachO::GENERIC_RELOC_PAIR)
766           report_error(Obj->getFileName(), "Expected GENERIC_RELOC_PAIR after "
767                        "GENERIC_RELOC_LOCAL_SECTDIFF.");
768 
769         printRelocationTargetName(Obj, RE, fmt);
770         fmt << "-";
771         printRelocationTargetName(Obj, RENext, fmt);
772         break;
773       }
774       case MachO::GENERIC_RELOC_TLV: {
775         printRelocationTargetName(Obj, RE, fmt);
776         fmt << "@TLV";
777         if (IsPCRel)
778           fmt << "P";
779         break;
780       }
781       default:
782         printRelocationTargetName(Obj, RE, fmt);
783       }
784     } else { // ARM-specific relocations
785       switch (Type) {
786       case MachO::ARM_RELOC_HALF:
787       case MachO::ARM_RELOC_HALF_SECTDIFF: {
788         // Half relocations steal a bit from the length field to encode
789         // whether this is an upper16 or a lower16 relocation.
790         bool isUpper = (Obj->getAnyRelocationLength(RE) & 0x1) == 1;
791 
792         if (isUpper)
793           fmt << ":upper16:(";
794         else
795           fmt << ":lower16:(";
796         printRelocationTargetName(Obj, RE, fmt);
797 
798         DataRefImpl RelNext = Rel;
799         Obj->moveRelocationNext(RelNext);
800         MachO::any_relocation_info RENext = Obj->getRelocation(RelNext);
801 
802         // ARM half relocs must be followed by a relocation of type
803         // ARM_RELOC_PAIR.
804         unsigned RType = Obj->getAnyRelocationType(RENext);
805         if (RType != MachO::ARM_RELOC_PAIR)
806           report_error(Obj->getFileName(), "Expected ARM_RELOC_PAIR after "
807                        "ARM_RELOC_HALF");
808 
809         // NOTE: The half of the target virtual address is stashed in the
810         // address field of the secondary relocation, but we can't reverse
811         // engineer the constant offset from it without decoding the movw/movt
812         // instruction to find the other half in its immediate field.
813 
814         // ARM_RELOC_HALF_SECTDIFF encodes the second section in the
815         // symbol/section pointer of the follow-on relocation.
816         if (Type == MachO::ARM_RELOC_HALF_SECTDIFF) {
817           fmt << "-";
818           printRelocationTargetName(Obj, RENext, fmt);
819         }
820 
821         fmt << ")";
822         break;
823       }
824       default: { printRelocationTargetName(Obj, RE, fmt); }
825       }
826     }
827   } else
828     printRelocationTargetName(Obj, RE, fmt);
829 
830   fmt.flush();
831   Result.append(fmtbuf.begin(), fmtbuf.end());
832   return std::error_code();
833 }
834 
835 static std::error_code getRelocationValueString(const RelocationRef &Rel,
836                                                 SmallVectorImpl<char> &Result) {
837   const ObjectFile *Obj = Rel.getObject();
838   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
839     return getRelocationValueString(ELF, Rel, Result);
840   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
841     return getRelocationValueString(COFF, Rel, Result);
842   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
843     return getRelocationValueString(Wasm, Rel, Result);
844   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
845     return getRelocationValueString(MachO, Rel, Result);
846   llvm_unreachable("unknown object file format");
847 }
848 
849 /// Indicates whether this relocation should hidden when listing
850 /// relocations, usually because it is the trailing part of a multipart
851 /// relocation that will be printed as part of the leading relocation.
852 static bool getHidden(RelocationRef RelRef) {
853   const ObjectFile *Obj = RelRef.getObject();
854   auto *MachO = dyn_cast<MachOObjectFile>(Obj);
855   if (!MachO)
856     return false;
857 
858   unsigned Arch = MachO->getArch();
859   DataRefImpl Rel = RelRef.getRawDataRefImpl();
860   uint64_t Type = MachO->getRelocationType(Rel);
861 
862   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
863   // is always hidden.
864   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) {
865     if (Type == MachO::GENERIC_RELOC_PAIR)
866       return true;
867   } else if (Arch == Triple::x86_64) {
868     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
869     // an X86_64_RELOC_SUBTRACTOR.
870     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
871       DataRefImpl RelPrev = Rel;
872       RelPrev.d.a--;
873       uint64_t PrevType = MachO->getRelocationType(RelPrev);
874       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
875         return true;
876     }
877   }
878 
879   return false;
880 }
881 
882 namespace {
883 class SourcePrinter {
884 protected:
885   DILineInfo OldLineInfo;
886   const ObjectFile *Obj = nullptr;
887   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
888   // File name to file contents of source
889   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
890   // Mark the line endings of the cached source
891   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
892 
893 private:
894   bool cacheSource(const DILineInfo& LineInfoFile);
895 
896 public:
897   SourcePrinter() = default;
898   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
899     symbolize::LLVMSymbolizer::Options SymbolizerOpts(
900         DILineInfoSpecifier::FunctionNameKind::None, true, false, false,
901         DefaultArch);
902     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
903   }
904   virtual ~SourcePrinter() = default;
905   virtual void printSourceLine(raw_ostream &OS, uint64_t Address,
906                                StringRef Delimiter = "; ");
907 };
908 
909 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
910   std::unique_ptr<MemoryBuffer> Buffer;
911   if (LineInfo.Source) {
912     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
913   } else {
914     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
915     if (!BufferOrError)
916       return false;
917     Buffer = std::move(*BufferOrError);
918   }
919   // Chomp the file to get lines
920   size_t BufferSize = Buffer->getBufferSize();
921   const char *BufferStart = Buffer->getBufferStart();
922   for (const char *Start = BufferStart, *End = BufferStart;
923        End < BufferStart + BufferSize; End++)
924     if (*End == '\n' || End == BufferStart + BufferSize - 1 ||
925         (*End == '\r' && *(End + 1) == '\n')) {
926       LineCache[LineInfo.FileName].push_back(StringRef(Start, End - Start));
927       if (*End == '\r')
928         End++;
929       Start = End + 1;
930     }
931   SourceCache[LineInfo.FileName] = std::move(Buffer);
932   return true;
933 }
934 
935 void SourcePrinter::printSourceLine(raw_ostream &OS, uint64_t Address,
936                                     StringRef Delimiter) {
937   if (!Symbolizer)
938     return;
939   DILineInfo LineInfo = DILineInfo();
940   auto ExpectecLineInfo =
941       Symbolizer->symbolizeCode(Obj->getFileName(), Address);
942   if (!ExpectecLineInfo)
943     consumeError(ExpectecLineInfo.takeError());
944   else
945     LineInfo = *ExpectecLineInfo;
946 
947   if ((LineInfo.FileName == "<invalid>") || OldLineInfo.Line == LineInfo.Line ||
948       LineInfo.Line == 0)
949     return;
950 
951   if (PrintLines)
952     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
953   if (PrintSource) {
954     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
955       if (!cacheSource(LineInfo))
956         return;
957     auto FileBuffer = SourceCache.find(LineInfo.FileName);
958     if (FileBuffer != SourceCache.end()) {
959       auto LineBuffer = LineCache.find(LineInfo.FileName);
960       if (LineBuffer != LineCache.end()) {
961         if (LineInfo.Line > LineBuffer->second.size())
962           return;
963         // Vector begins at 0, line numbers are non-zero
964         OS << Delimiter << LineBuffer->second[LineInfo.Line - 1].ltrim()
965            << "\n";
966       }
967     }
968   }
969   OldLineInfo = LineInfo;
970 }
971 
972 static bool isArmElf(const ObjectFile *Obj) {
973   return (Obj->isELF() &&
974           (Obj->getArch() == Triple::aarch64 ||
975            Obj->getArch() == Triple::aarch64_be ||
976            Obj->getArch() == Triple::arm || Obj->getArch() == Triple::armeb ||
977            Obj->getArch() == Triple::thumb ||
978            Obj->getArch() == Triple::thumbeb));
979 }
980 
981 class PrettyPrinter {
982 public:
983   virtual ~PrettyPrinter() = default;
984   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
985                          ArrayRef<uint8_t> Bytes, uint64_t Address,
986                          raw_ostream &OS, StringRef Annot,
987                          MCSubtargetInfo const &STI, SourcePrinter *SP,
988                          std::vector<RelocationRef> *Rels = nullptr) {
989     if (SP && (PrintSource || PrintLines))
990       SP->printSourceLine(OS, Address);
991     if (!NoLeadingAddr)
992       OS << format("%8" PRIx64 ":", Address);
993     if (!NoShowRawInsn) {
994       OS << "\t";
995       dumpBytes(Bytes, OS);
996     }
997     if (MI)
998       IP.printInst(MI, OS, "", STI);
999     else
1000       OS << " <unknown>";
1001   }
1002 };
1003 PrettyPrinter PrettyPrinterInst;
1004 class HexagonPrettyPrinter : public PrettyPrinter {
1005 public:
1006   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
1007                  raw_ostream &OS) {
1008     uint32_t opcode =
1009       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
1010     if (!NoLeadingAddr)
1011       OS << format("%8" PRIx64 ":", Address);
1012     if (!NoShowRawInsn) {
1013       OS << "\t";
1014       dumpBytes(Bytes.slice(0, 4), OS);
1015       OS << format("%08" PRIx32, opcode);
1016     }
1017   }
1018   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1019                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1020                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1021                  std::vector<RelocationRef> *Rels) override {
1022     if (SP && (PrintSource || PrintLines))
1023       SP->printSourceLine(OS, Address, "");
1024     if (!MI) {
1025       printLead(Bytes, Address, OS);
1026       OS << " <unknown>";
1027       return;
1028     }
1029     std::string Buffer;
1030     {
1031       raw_string_ostream TempStream(Buffer);
1032       IP.printInst(MI, TempStream, "", STI);
1033     }
1034     StringRef Contents(Buffer);
1035     // Split off bundle attributes
1036     auto PacketBundle = Contents.rsplit('\n');
1037     // Split off first instruction from the rest
1038     auto HeadTail = PacketBundle.first.split('\n');
1039     auto Preamble = " { ";
1040     auto Separator = "";
1041     StringRef Fmt = "\t\t\t%08" PRIx64 ":  ";
1042     std::vector<RelocationRef>::const_iterator rel_cur = Rels->begin();
1043     std::vector<RelocationRef>::const_iterator rel_end = Rels->end();
1044 
1045     // Hexagon's packets require relocations to be inline rather than
1046     // clustered at the end of the packet.
1047     auto PrintReloc = [&]() -> void {
1048       while ((rel_cur != rel_end) && (rel_cur->getOffset() <= Address)) {
1049         if (rel_cur->getOffset() == Address) {
1050           SmallString<16> name;
1051           SmallString<32> val;
1052           rel_cur->getTypeName(name);
1053           error(getRelocationValueString(*rel_cur, val));
1054           OS << Separator << format(Fmt.data(), Address) << name << "\t" << val
1055                 << "\n";
1056           return;
1057         }
1058         rel_cur++;
1059       }
1060     };
1061 
1062     while(!HeadTail.first.empty()) {
1063       OS << Separator;
1064       Separator = "\n";
1065       if (SP && (PrintSource || PrintLines))
1066         SP->printSourceLine(OS, Address, "");
1067       printLead(Bytes, Address, OS);
1068       OS << Preamble;
1069       Preamble = "   ";
1070       StringRef Inst;
1071       auto Duplex = HeadTail.first.split('\v');
1072       if(!Duplex.second.empty()){
1073         OS << Duplex.first;
1074         OS << "; ";
1075         Inst = Duplex.second;
1076       }
1077       else
1078         Inst = HeadTail.first;
1079       OS << Inst;
1080       HeadTail = HeadTail.second.split('\n');
1081       if (HeadTail.first.empty())
1082         OS << " } " << PacketBundle.second;
1083       PrintReloc();
1084       Bytes = Bytes.slice(4);
1085       Address += 4;
1086     }
1087   }
1088 };
1089 HexagonPrettyPrinter HexagonPrettyPrinterInst;
1090 
1091 class AMDGCNPrettyPrinter : public PrettyPrinter {
1092 public:
1093   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1094                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1095                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1096                  std::vector<RelocationRef> *Rels) override {
1097     if (SP && (PrintSource || PrintLines))
1098       SP->printSourceLine(OS, Address);
1099 
1100     typedef support::ulittle32_t U32;
1101 
1102     if (MI) {
1103       SmallString<40> InstStr;
1104       raw_svector_ostream IS(InstStr);
1105 
1106       IP.printInst(MI, IS, "", STI);
1107 
1108       OS << left_justify(IS.str(), 60);
1109     } else {
1110       // an unrecognized encoding - this is probably data so represent it
1111       // using the .long directive, or .byte directive if fewer than 4 bytes
1112       // remaining
1113       if (Bytes.size() >= 4) {
1114         OS << format("\t.long 0x%08" PRIx32 " ",
1115                      static_cast<uint32_t>(*reinterpret_cast<const U32*>(Bytes.data())));
1116         OS.indent(42);
1117       } else {
1118           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
1119           for (unsigned int i = 1; i < Bytes.size(); i++)
1120             OS << format(", 0x%02" PRIx8, Bytes[i]);
1121           OS.indent(55 - (6 * Bytes.size()));
1122       }
1123     }
1124 
1125     OS << format("// %012" PRIX64 ": ", Address);
1126     if (Bytes.size() >=4) {
1127       for (auto D : makeArrayRef(reinterpret_cast<const U32*>(Bytes.data()),
1128                                  Bytes.size() / sizeof(U32)))
1129         // D should be explicitly casted to uint32_t here as it is passed
1130         // by format to snprintf as vararg.
1131         OS << format("%08" PRIX32 " ", static_cast<uint32_t>(D));
1132     } else {
1133       for (unsigned int i = 0; i < Bytes.size(); i++)
1134         OS << format("%02" PRIX8 " ", Bytes[i]);
1135     }
1136 
1137     if (!Annot.empty())
1138       OS << "// " << Annot;
1139   }
1140 };
1141 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
1142 
1143 class BPFPrettyPrinter : public PrettyPrinter {
1144 public:
1145   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
1146                  uint64_t Address, raw_ostream &OS, StringRef Annot,
1147                  MCSubtargetInfo const &STI, SourcePrinter *SP,
1148                  std::vector<RelocationRef> *Rels) override {
1149     if (SP && (PrintSource || PrintLines))
1150       SP->printSourceLine(OS, Address);
1151     if (!NoLeadingAddr)
1152       OS << format("%8" PRId64 ":", Address / 8);
1153     if (!NoShowRawInsn) {
1154       OS << "\t";
1155       dumpBytes(Bytes, OS);
1156     }
1157     if (MI)
1158       IP.printInst(MI, OS, "", STI);
1159     else
1160       OS << " <unknown>";
1161   }
1162 };
1163 BPFPrettyPrinter BPFPrettyPrinterInst;
1164 
1165 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
1166   switch(Triple.getArch()) {
1167   default:
1168     return PrettyPrinterInst;
1169   case Triple::hexagon:
1170     return HexagonPrettyPrinterInst;
1171   case Triple::amdgcn:
1172     return AMDGCNPrettyPrinterInst;
1173   case Triple::bpfel:
1174   case Triple::bpfeb:
1175     return BPFPrettyPrinterInst;
1176   }
1177 }
1178 }
1179 
1180 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
1181   assert(Obj->isELF());
1182   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1183     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1184   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1185     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1186   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1187     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1188   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1189     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
1190   llvm_unreachable("Unsupported binary format");
1191 }
1192 
1193 template <class ELFT> static void
1194 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
1195                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1196   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
1197     uint8_t SymbolType = Symbol.getELFType();
1198     if (SymbolType != ELF::STT_FUNC || Symbol.getSize() == 0)
1199       continue;
1200 
1201     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1202     if (!AddressOrErr)
1203       report_error(Obj->getFileName(), AddressOrErr.takeError());
1204     uint64_t Address = *AddressOrErr;
1205 
1206     Expected<StringRef> Name = Symbol.getName();
1207     if (!Name)
1208       report_error(Obj->getFileName(), Name.takeError());
1209     if (Name->empty())
1210       continue;
1211 
1212     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1213     if (!SectionOrErr)
1214       report_error(Obj->getFileName(), SectionOrErr.takeError());
1215     section_iterator SecI = *SectionOrErr;
1216     if (SecI == Obj->section_end())
1217       continue;
1218 
1219     AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1220   }
1221 }
1222 
1223 static void
1224 addDynamicElfSymbols(const ObjectFile *Obj,
1225                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
1226   assert(Obj->isELF());
1227   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
1228     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
1229   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
1230     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
1231   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
1232     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
1233   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
1234     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
1235   else
1236     llvm_unreachable("Unsupported binary format");
1237 }
1238 
1239 static void addPltEntries(const ObjectFile *Obj,
1240                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
1241                           StringSaver &Saver) {
1242   Optional<SectionRef> Plt = None;
1243   for (const SectionRef &Section : Obj->sections()) {
1244     StringRef Name;
1245     if (Section.getName(Name))
1246       continue;
1247     if (Name == ".plt")
1248       Plt = Section;
1249   }
1250   if (!Plt)
1251     return;
1252   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
1253     for (auto PltEntry : ElfObj->getPltAddresses()) {
1254       SymbolRef Symbol(PltEntry.first, ElfObj);
1255 
1256       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
1257 
1258       Expected<StringRef> NameOrErr = Symbol.getName();
1259       if (!NameOrErr)
1260         report_error(Obj->getFileName(), NameOrErr.takeError());
1261       if (NameOrErr->empty())
1262         continue;
1263       StringRef Name = Saver.save((*NameOrErr + "@plt").str());
1264 
1265       AllSymbols[*Plt].emplace_back(PltEntry.second, Name, SymbolType);
1266     }
1267   }
1268 }
1269 
1270 static void DisassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1271   if (StartAddress > StopAddress)
1272     error("Start address should be less than stop address");
1273 
1274   const Target *TheTarget = getTarget(Obj);
1275 
1276   // Package up features to be passed to target/subtarget
1277   SubtargetFeatures Features = Obj->getFeatures();
1278   if (MAttrs.size()) {
1279     for (unsigned i = 0; i != MAttrs.size(); ++i)
1280       Features.AddFeature(MAttrs[i]);
1281   }
1282 
1283   std::unique_ptr<const MCRegisterInfo> MRI(
1284       TheTarget->createMCRegInfo(TripleName));
1285   if (!MRI)
1286     report_error(Obj->getFileName(), "no register info for target " +
1287                  TripleName);
1288 
1289   // Set up disassembler.
1290   std::unique_ptr<const MCAsmInfo> AsmInfo(
1291       TheTarget->createMCAsmInfo(*MRI, TripleName));
1292   if (!AsmInfo)
1293     report_error(Obj->getFileName(), "no assembly info for target " +
1294                  TripleName);
1295   std::unique_ptr<const MCSubtargetInfo> STI(
1296       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1297   if (!STI)
1298     report_error(Obj->getFileName(), "no subtarget info for target " +
1299                  TripleName);
1300   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1301   if (!MII)
1302     report_error(Obj->getFileName(), "no instruction info for target " +
1303                  TripleName);
1304   MCObjectFileInfo MOFI;
1305   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1306   // FIXME: for now initialize MCObjectFileInfo with default values
1307   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1308 
1309   std::unique_ptr<MCDisassembler> DisAsm(
1310     TheTarget->createMCDisassembler(*STI, Ctx));
1311   if (!DisAsm)
1312     report_error(Obj->getFileName(), "no disassembler for target " +
1313                  TripleName);
1314 
1315   std::unique_ptr<const MCInstrAnalysis> MIA(
1316       TheTarget->createMCInstrAnalysis(MII.get()));
1317 
1318   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1319   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1320       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1321   if (!IP)
1322     report_error(Obj->getFileName(), "no instruction printer for target " +
1323                  TripleName);
1324   IP->setPrintImmHex(PrintImmHex);
1325   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1326 
1327   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "\t\t%016" PRIx64 ":  " :
1328                                                  "\t\t\t%08" PRIx64 ":  ";
1329 
1330   SourcePrinter SP(Obj, TheTarget->getName());
1331 
1332   // Create a mapping, RelocSecs = SectionRelocMap[S], where sections
1333   // in RelocSecs contain the relocations for section S.
1334   std::error_code EC;
1335   std::map<SectionRef, SmallVector<SectionRef, 1>> SectionRelocMap;
1336   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1337     section_iterator Sec2 = Section.getRelocatedSection();
1338     if (Sec2 != Obj->section_end())
1339       SectionRelocMap[*Sec2].push_back(Section);
1340   }
1341 
1342   // Create a mapping from virtual address to symbol name.  This is used to
1343   // pretty print the symbols while disassembling.
1344   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1345   SectionSymbolsTy AbsoluteSymbols;
1346   for (const SymbolRef &Symbol : Obj->symbols()) {
1347     Expected<uint64_t> AddressOrErr = Symbol.getAddress();
1348     if (!AddressOrErr)
1349       report_error(Obj->getFileName(), AddressOrErr.takeError());
1350     uint64_t Address = *AddressOrErr;
1351 
1352     Expected<StringRef> Name = Symbol.getName();
1353     if (!Name)
1354       report_error(Obj->getFileName(), Name.takeError());
1355     if (Name->empty())
1356       continue;
1357 
1358     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1359     if (!SectionOrErr)
1360       report_error(Obj->getFileName(), SectionOrErr.takeError());
1361 
1362     uint8_t SymbolType = ELF::STT_NOTYPE;
1363     if (Obj->isELF())
1364       SymbolType = getElfSymbolType(Obj, Symbol);
1365 
1366     section_iterator SecI = *SectionOrErr;
1367     if (SecI != Obj->section_end())
1368       AllSymbols[*SecI].emplace_back(Address, *Name, SymbolType);
1369     else
1370       AbsoluteSymbols.emplace_back(Address, *Name, SymbolType);
1371 
1372 
1373   }
1374   if (AllSymbols.empty() && Obj->isELF())
1375     addDynamicElfSymbols(Obj, AllSymbols);
1376 
1377   BumpPtrAllocator A;
1378   StringSaver Saver(A);
1379   addPltEntries(Obj, AllSymbols, Saver);
1380 
1381   // Create a mapping from virtual address to section.
1382   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1383   for (SectionRef Sec : Obj->sections())
1384     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1385   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1386 
1387   // Linked executables (.exe and .dll files) typically don't include a real
1388   // symbol table but they might contain an export table.
1389   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1390     for (const auto &ExportEntry : COFFObj->export_directories()) {
1391       StringRef Name;
1392       error(ExportEntry.getSymbolName(Name));
1393       if (Name.empty())
1394         continue;
1395       uint32_t RVA;
1396       error(ExportEntry.getExportRVA(RVA));
1397 
1398       uint64_t VA = COFFObj->getImageBase() + RVA;
1399       auto Sec = std::upper_bound(
1400           SectionAddresses.begin(), SectionAddresses.end(), VA,
1401           [](uint64_t LHS, const std::pair<uint64_t, SectionRef> &RHS) {
1402             return LHS < RHS.first;
1403           });
1404       if (Sec != SectionAddresses.begin())
1405         --Sec;
1406       else
1407         Sec = SectionAddresses.end();
1408 
1409       if (Sec != SectionAddresses.end())
1410         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1411       else
1412         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1413     }
1414   }
1415 
1416   // Sort all the symbols, this allows us to use a simple binary search to find
1417   // a symbol near an address.
1418   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1419     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1420   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1421 
1422   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1423     if (!DisassembleAll && (!Section.isText() || Section.isVirtual()))
1424       continue;
1425 
1426     uint64_t SectionAddr = Section.getAddress();
1427     uint64_t SectSize = Section.getSize();
1428     if (!SectSize)
1429       continue;
1430 
1431     // Get the list of all the symbols in this section.
1432     SectionSymbolsTy &Symbols = AllSymbols[Section];
1433     std::vector<uint64_t> DataMappingSymsAddr;
1434     std::vector<uint64_t> TextMappingSymsAddr;
1435     if (isArmElf(Obj)) {
1436       for (const auto &Symb : Symbols) {
1437         uint64_t Address = std::get<0>(Symb);
1438         StringRef Name = std::get<1>(Symb);
1439         if (Name.startswith("$d"))
1440           DataMappingSymsAddr.push_back(Address - SectionAddr);
1441         if (Name.startswith("$x"))
1442           TextMappingSymsAddr.push_back(Address - SectionAddr);
1443         if (Name.startswith("$a"))
1444           TextMappingSymsAddr.push_back(Address - SectionAddr);
1445         if (Name.startswith("$t"))
1446           TextMappingSymsAddr.push_back(Address - SectionAddr);
1447       }
1448     }
1449 
1450     llvm::sort(DataMappingSymsAddr.begin(), DataMappingSymsAddr.end());
1451     llvm::sort(TextMappingSymsAddr.begin(), TextMappingSymsAddr.end());
1452 
1453     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1454       // AMDGPU disassembler uses symbolizer for printing labels
1455       std::unique_ptr<MCRelocationInfo> RelInfo(
1456         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1457       if (RelInfo) {
1458         std::unique_ptr<MCSymbolizer> Symbolizer(
1459           TheTarget->createMCSymbolizer(
1460             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1461         DisAsm->setSymbolizer(std::move(Symbolizer));
1462       }
1463     }
1464 
1465     // Make a list of all the relocations for this section.
1466     std::vector<RelocationRef> Rels;
1467     if (InlineRelocs) {
1468       for (const SectionRef &RelocSec : SectionRelocMap[Section]) {
1469         for (const RelocationRef &Reloc : RelocSec.relocations()) {
1470           Rels.push_back(Reloc);
1471         }
1472       }
1473     }
1474 
1475     // Sort relocations by address.
1476     llvm::sort(Rels.begin(), Rels.end(), RelocAddressLess);
1477 
1478     StringRef SegmentName = "";
1479     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1480       DataRefImpl DR = Section.getRawDataRefImpl();
1481       SegmentName = MachO->getSectionFinalSegmentName(DR);
1482     }
1483     StringRef SectionName;
1484     error(Section.getName(SectionName));
1485 
1486     // If the section has no symbol at the start, just insert a dummy one.
1487     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1488       Symbols.insert(
1489           Symbols.begin(),
1490           std::make_tuple(SectionAddr, SectionName,
1491                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1492     }
1493 
1494     SmallString<40> Comments;
1495     raw_svector_ostream CommentStream(Comments);
1496 
1497     StringRef BytesStr;
1498     error(Section.getContents(BytesStr));
1499     ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
1500                             BytesStr.size());
1501 
1502     uint64_t Size;
1503     uint64_t Index;
1504     bool PrintedSection = false;
1505 
1506     std::vector<RelocationRef>::const_iterator rel_cur = Rels.begin();
1507     std::vector<RelocationRef>::const_iterator rel_end = Rels.end();
1508     // Disassemble symbol by symbol.
1509     for (unsigned si = 0, se = Symbols.size(); si != se; ++si) {
1510       uint64_t Start = std::get<0>(Symbols[si]) - SectionAddr;
1511       // The end is either the section end or the beginning of the next
1512       // symbol.
1513       uint64_t End =
1514           (si == se - 1) ? SectSize : std::get<0>(Symbols[si + 1]) - SectionAddr;
1515       // Don't try to disassemble beyond the end of section contents.
1516       if (End > SectSize)
1517         End = SectSize;
1518       // If this symbol has the same address as the next symbol, then skip it.
1519       if (Start >= End)
1520         continue;
1521 
1522       // Check if we need to skip symbol
1523       // Skip if the symbol's data is not between StartAddress and StopAddress
1524       if (End + SectionAddr < StartAddress ||
1525           Start + SectionAddr > StopAddress) {
1526         continue;
1527       }
1528 
1529       /// Skip if user requested specific symbols and this is not in the list
1530       if (!DisasmFuncsSet.empty() &&
1531           !DisasmFuncsSet.count(std::get<1>(Symbols[si])))
1532         continue;
1533 
1534       if (!PrintedSection) {
1535         PrintedSection = true;
1536         outs() << "Disassembly of section ";
1537         if (!SegmentName.empty())
1538           outs() << SegmentName << ",";
1539         outs() << SectionName << ':';
1540       }
1541 
1542       // Stop disassembly at the stop address specified
1543       if (End + SectionAddr > StopAddress)
1544         End = StopAddress - SectionAddr;
1545 
1546       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1547         if (std::get<2>(Symbols[si]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1548           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1549           Start += 256;
1550         }
1551         if (si == se - 1 ||
1552             std::get<2>(Symbols[si + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1553           // cut trailing zeroes at the end of kernel
1554           // cut up to 256 bytes
1555           const uint64_t EndAlign = 256;
1556           const auto Limit = End - (std::min)(EndAlign, End - Start);
1557           while (End > Limit &&
1558             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1559             End -= 4;
1560         }
1561       }
1562 
1563       auto PrintSymbol = [](StringRef Name) {
1564         outs() << '\n' << Name << ":\n";
1565       };
1566       StringRef SymbolName = std::get<1>(Symbols[si]);
1567       if (Demangle) {
1568         char *DemangledSymbol = nullptr;
1569         size_t Size = 0;
1570         int Status = -1;
1571         if (SymbolName.startswith("_Z"))
1572           DemangledSymbol = itaniumDemangle(SymbolName.data(), DemangledSymbol,
1573                                             &Size, &Status);
1574         else if (SymbolName.startswith("?"))
1575           DemangledSymbol = microsoftDemangle(SymbolName.data(),
1576                                               DemangledSymbol, &Size, &Status);
1577 
1578         if (Status == 0 && DemangledSymbol)
1579           PrintSymbol(StringRef(DemangledSymbol));
1580         else
1581           PrintSymbol(SymbolName);
1582 
1583         if (DemangledSymbol)
1584           free(DemangledSymbol);
1585       } else
1586         PrintSymbol(SymbolName);
1587 
1588       // Don't print raw contents of a virtual section. A virtual section
1589       // doesn't have any contents in the file.
1590       if (Section.isVirtual()) {
1591         outs() << "...\n";
1592         continue;
1593       }
1594 
1595 #ifndef NDEBUG
1596       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1597 #else
1598       raw_ostream &DebugOut = nulls();
1599 #endif
1600 
1601       for (Index = Start; Index < End; Index += Size) {
1602         MCInst Inst;
1603 
1604         if (Index + SectionAddr < StartAddress ||
1605             Index + SectionAddr > StopAddress) {
1606           // skip byte by byte till StartAddress is reached
1607           Size = 1;
1608           continue;
1609         }
1610         // AArch64 ELF binaries can interleave data and text in the
1611         // same section. We rely on the markers introduced to
1612         // understand what we need to dump. If the data marker is within a
1613         // function, it is denoted as a word/short etc
1614         if (isArmElf(Obj) && std::get<2>(Symbols[si]) != ELF::STT_OBJECT &&
1615             !DisassembleAll) {
1616           uint64_t Stride = 0;
1617 
1618           auto DAI = std::lower_bound(DataMappingSymsAddr.begin(),
1619                                       DataMappingSymsAddr.end(), Index);
1620           if (DAI != DataMappingSymsAddr.end() && *DAI == Index) {
1621             // Switch to data.
1622             while (Index < End) {
1623               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1624               outs() << "\t";
1625               if (Index + 4 <= End) {
1626                 Stride = 4;
1627                 dumpBytes(Bytes.slice(Index, 4), outs());
1628                 outs() << "\t.word\t";
1629                 uint32_t Data = 0;
1630                 if (Obj->isLittleEndian()) {
1631                   const auto Word =
1632                       reinterpret_cast<const support::ulittle32_t *>(
1633                           Bytes.data() + Index);
1634                   Data = *Word;
1635                 } else {
1636                   const auto Word = reinterpret_cast<const support::ubig32_t *>(
1637                       Bytes.data() + Index);
1638                   Data = *Word;
1639                 }
1640                 outs() << "0x" << format("%08" PRIx32, Data);
1641               } else if (Index + 2 <= End) {
1642                 Stride = 2;
1643                 dumpBytes(Bytes.slice(Index, 2), outs());
1644                 outs() << "\t\t.short\t";
1645                 uint16_t Data = 0;
1646                 if (Obj->isLittleEndian()) {
1647                   const auto Short =
1648                       reinterpret_cast<const support::ulittle16_t *>(
1649                           Bytes.data() + Index);
1650                   Data = *Short;
1651                 } else {
1652                   const auto Short =
1653                       reinterpret_cast<const support::ubig16_t *>(Bytes.data() +
1654                                                                   Index);
1655                   Data = *Short;
1656                 }
1657                 outs() << "0x" << format("%04" PRIx16, Data);
1658               } else {
1659                 Stride = 1;
1660                 dumpBytes(Bytes.slice(Index, 1), outs());
1661                 outs() << "\t\t.byte\t";
1662                 outs() << "0x" << format("%02" PRIx8, Bytes.slice(Index, 1)[0]);
1663               }
1664               Index += Stride;
1665               outs() << "\n";
1666               auto TAI = std::lower_bound(TextMappingSymsAddr.begin(),
1667                                           TextMappingSymsAddr.end(), Index);
1668               if (TAI != TextMappingSymsAddr.end() && *TAI == Index)
1669                 break;
1670             }
1671           }
1672         }
1673 
1674         // If there is a data symbol inside an ELF text section and we are only
1675         // disassembling text (applicable all architectures),
1676         // we are in a situation where we must print the data and not
1677         // disassemble it.
1678         if (Obj->isELF() && std::get<2>(Symbols[si]) == ELF::STT_OBJECT &&
1679             !DisassembleAll && Section.isText()) {
1680           // print out data up to 8 bytes at a time in hex and ascii
1681           uint8_t AsciiData[9] = {'\0'};
1682           uint8_t Byte;
1683           int NumBytes = 0;
1684 
1685           for (Index = Start; Index < End; Index += 1) {
1686             if (((SectionAddr + Index) < StartAddress) ||
1687                 ((SectionAddr + Index) > StopAddress))
1688               continue;
1689             if (NumBytes == 0) {
1690               outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1691               outs() << "\t";
1692             }
1693             Byte = Bytes.slice(Index)[0];
1694             outs() << format(" %02x", Byte);
1695             AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1696 
1697             uint8_t IndentOffset = 0;
1698             NumBytes++;
1699             if (Index == End - 1 || NumBytes > 8) {
1700               // Indent the space for less than 8 bytes data.
1701               // 2 spaces for byte and one for space between bytes
1702               IndentOffset = 3 * (8 - NumBytes);
1703               for (int Excess = 8 - NumBytes; Excess < 8; Excess++)
1704                 AsciiData[Excess] = '\0';
1705               NumBytes = 8;
1706             }
1707             if (NumBytes == 8) {
1708               AsciiData[8] = '\0';
1709               outs() << std::string(IndentOffset, ' ') << "         ";
1710               outs() << reinterpret_cast<char *>(AsciiData);
1711               outs() << '\n';
1712               NumBytes = 0;
1713             }
1714           }
1715         }
1716         if (Index >= End)
1717           break;
1718 
1719         // Disassemble a real instruction or a data when disassemble all is
1720         // provided
1721         bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
1722                                                    SectionAddr + Index, DebugOut,
1723                                                    CommentStream);
1724         if (Size == 0)
1725           Size = 1;
1726 
1727         PIP.printInst(*IP, Disassembled ? &Inst : nullptr,
1728                       Bytes.slice(Index, Size), SectionAddr + Index, outs(), "",
1729                       *STI, &SP, &Rels);
1730         outs() << CommentStream.str();
1731         Comments.clear();
1732 
1733         // Try to resolve the target of a call, tail call, etc. to a specific
1734         // symbol.
1735         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1736                     MIA->isConditionalBranch(Inst))) {
1737           uint64_t Target;
1738           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1739             // In a relocatable object, the target's section must reside in
1740             // the same section as the call instruction or it is accessed
1741             // through a relocation.
1742             //
1743             // In a non-relocatable object, the target may be in any section.
1744             //
1745             // N.B. We don't walk the relocations in the relocatable case yet.
1746             auto *TargetSectionSymbols = &Symbols;
1747             if (!Obj->isRelocatableObject()) {
1748               auto SectionAddress = std::upper_bound(
1749                   SectionAddresses.begin(), SectionAddresses.end(), Target,
1750                   [](uint64_t LHS,
1751                       const std::pair<uint64_t, SectionRef> &RHS) {
1752                     return LHS < RHS.first;
1753                   });
1754               if (SectionAddress != SectionAddresses.begin()) {
1755                 --SectionAddress;
1756                 TargetSectionSymbols = &AllSymbols[SectionAddress->second];
1757               } else {
1758                 TargetSectionSymbols = &AbsoluteSymbols;
1759               }
1760             }
1761 
1762             // Find the first symbol in the section whose offset is less than
1763             // or equal to the target. If there isn't a section that contains
1764             // the target, find the nearest preceding absolute symbol.
1765             auto TargetSym = std::upper_bound(
1766                 TargetSectionSymbols->begin(), TargetSectionSymbols->end(),
1767                 Target, [](uint64_t LHS,
1768                            const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1769                   return LHS < std::get<0>(RHS);
1770                 });
1771             if (TargetSym == TargetSectionSymbols->begin()) {
1772               TargetSectionSymbols = &AbsoluteSymbols;
1773               TargetSym = std::upper_bound(
1774                   AbsoluteSymbols.begin(), AbsoluteSymbols.end(),
1775                   Target, [](uint64_t LHS,
1776                              const std::tuple<uint64_t, StringRef, uint8_t> &RHS) {
1777                             return LHS < std::get<0>(RHS);
1778                           });
1779             }
1780             if (TargetSym != TargetSectionSymbols->begin()) {
1781               --TargetSym;
1782               uint64_t TargetAddress = std::get<0>(*TargetSym);
1783               StringRef TargetName = std::get<1>(*TargetSym);
1784               outs() << " <" << TargetName;
1785               uint64_t Disp = Target - TargetAddress;
1786               if (Disp)
1787                 outs() << "+0x" << Twine::utohexstr(Disp);
1788               outs() << '>';
1789             }
1790           }
1791         }
1792         outs() << "\n";
1793 
1794         // Hexagon does this in pretty printer
1795         if (Obj->getArch() != Triple::hexagon)
1796           // Print relocation for instruction.
1797           while (rel_cur != rel_end) {
1798             bool hidden = getHidden(*rel_cur);
1799             uint64_t addr = rel_cur->getOffset();
1800             SmallString<16> name;
1801             SmallString<32> val;
1802 
1803             // If this relocation is hidden, skip it.
1804             if (hidden || ((SectionAddr + addr) < StartAddress)) {
1805               ++rel_cur;
1806               continue;
1807             }
1808 
1809             // Stop when rel_cur's address is past the current instruction.
1810             if (addr >= Index + Size) break;
1811             rel_cur->getTypeName(name);
1812             error(getRelocationValueString(*rel_cur, val));
1813             outs() << format(Fmt.data(), SectionAddr + addr) << name
1814                    << "\t" << val << "\n";
1815             ++rel_cur;
1816           }
1817       }
1818     }
1819   }
1820 }
1821 
1822 void llvm::PrintRelocations(const ObjectFile *Obj) {
1823   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1824                                                  "%08" PRIx64;
1825   // Regular objdump doesn't print relocations in non-relocatable object
1826   // files.
1827   if (!Obj->isRelocatableObject())
1828     return;
1829 
1830   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1831     if (Section.relocation_begin() == Section.relocation_end())
1832       continue;
1833     StringRef secname;
1834     error(Section.getName(secname));
1835     outs() << "RELOCATION RECORDS FOR [" << secname << "]:\n";
1836     for (const RelocationRef &Reloc : Section.relocations()) {
1837       bool hidden = getHidden(Reloc);
1838       uint64_t address = Reloc.getOffset();
1839       SmallString<32> relocname;
1840       SmallString<32> valuestr;
1841       if (address < StartAddress || address > StopAddress || hidden)
1842         continue;
1843       Reloc.getTypeName(relocname);
1844       error(getRelocationValueString(Reloc, valuestr));
1845       outs() << format(Fmt.data(), address) << " " << relocname << " "
1846              << valuestr << "\n";
1847     }
1848     outs() << "\n";
1849   }
1850 }
1851 
1852 void llvm::PrintDynamicRelocations(const ObjectFile *Obj) {
1853 
1854   // For the moment, this option is for ELF only
1855   if (!Obj->isELF())
1856     return;
1857 
1858   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1859 
1860   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1861     error("not a dynamic object");
1862     return;
1863   }
1864 
1865   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1866 
1867   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1868   if (DynRelSec.empty())
1869     return;
1870 
1871   outs() << "DYNAMIC RELOCATION RECORDS\n";
1872   for (const SectionRef &Section : DynRelSec) {
1873     if (Section.relocation_begin() == Section.relocation_end())
1874       continue;
1875     for (const RelocationRef &Reloc : Section.relocations()) {
1876       uint64_t address = Reloc.getOffset();
1877       SmallString<32> relocname;
1878       SmallString<32> valuestr;
1879       Reloc.getTypeName(relocname);
1880       error(getRelocationValueString(Reloc, valuestr));
1881       outs() << format(Fmt.data(), address) << " " << relocname << " "
1882              << valuestr << "\n";
1883     }
1884   }
1885 }
1886 
1887 void llvm::PrintSectionHeaders(const ObjectFile *Obj) {
1888   outs() << "Sections:\n"
1889             "Idx Name          Size      Address          Type\n";
1890   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1891     StringRef Name;
1892     error(Section.getName(Name));
1893     uint64_t Address = Section.getAddress();
1894     uint64_t Size = Section.getSize();
1895     bool Text = Section.isText();
1896     bool Data = Section.isData();
1897     bool BSS = Section.isBSS();
1898     std::string Type = (std::string(Text ? "TEXT " : "") +
1899                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1900     outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1901                      (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1902                      Address, Type.c_str());
1903   }
1904 }
1905 
1906 void llvm::PrintSectionContents(const ObjectFile *Obj) {
1907   std::error_code EC;
1908   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1909     StringRef Name;
1910     StringRef Contents;
1911     error(Section.getName(Name));
1912     uint64_t BaseAddr = Section.getAddress();
1913     uint64_t Size = Section.getSize();
1914     if (!Size)
1915       continue;
1916 
1917     outs() << "Contents of section " << Name << ":\n";
1918     if (Section.isBSS()) {
1919       outs() << format("<skipping contents of bss section at [%04" PRIx64
1920                        ", %04" PRIx64 ")>\n",
1921                        BaseAddr, BaseAddr + Size);
1922       continue;
1923     }
1924 
1925     error(Section.getContents(Contents));
1926 
1927     // Dump out the content as hex and printable ascii characters.
1928     for (std::size_t addr = 0, end = Contents.size(); addr < end; addr += 16) {
1929       outs() << format(" %04" PRIx64 " ", BaseAddr + addr);
1930       // Dump line of hex.
1931       for (std::size_t i = 0; i < 16; ++i) {
1932         if (i != 0 && i % 4 == 0)
1933           outs() << ' ';
1934         if (addr + i < end)
1935           outs() << hexdigit((Contents[addr + i] >> 4) & 0xF, true)
1936                  << hexdigit(Contents[addr + i] & 0xF, true);
1937         else
1938           outs() << "  ";
1939       }
1940       // Print ascii.
1941       outs() << "  ";
1942       for (std::size_t i = 0; i < 16 && addr + i < end; ++i) {
1943         if (isPrint(static_cast<unsigned char>(Contents[addr + i]) & 0xFF))
1944           outs() << Contents[addr + i];
1945         else
1946           outs() << ".";
1947       }
1948       outs() << "\n";
1949     }
1950   }
1951 }
1952 
1953 void llvm::PrintSymbolTable(const ObjectFile *o, StringRef ArchiveName,
1954                             StringRef ArchitectureName) {
1955   outs() << "SYMBOL TABLE:\n";
1956 
1957   if (const COFFObjectFile *coff = dyn_cast<const COFFObjectFile>(o)) {
1958     printCOFFSymbolTable(coff);
1959     return;
1960   }
1961   for (const SymbolRef &Symbol : o->symbols()) {
1962     Expected<uint64_t> AddressOrError = Symbol.getAddress();
1963     if (!AddressOrError)
1964       report_error(ArchiveName, o->getFileName(), AddressOrError.takeError(),
1965                    ArchitectureName);
1966     uint64_t Address = *AddressOrError;
1967     if ((Address < StartAddress) || (Address > StopAddress))
1968       continue;
1969     Expected<SymbolRef::Type> TypeOrError = Symbol.getType();
1970     if (!TypeOrError)
1971       report_error(ArchiveName, o->getFileName(), TypeOrError.takeError(),
1972                    ArchitectureName);
1973     SymbolRef::Type Type = *TypeOrError;
1974     uint32_t Flags = Symbol.getFlags();
1975     Expected<section_iterator> SectionOrErr = Symbol.getSection();
1976     if (!SectionOrErr)
1977       report_error(ArchiveName, o->getFileName(), SectionOrErr.takeError(),
1978                    ArchitectureName);
1979     section_iterator Section = *SectionOrErr;
1980     StringRef Name;
1981     if (Type == SymbolRef::ST_Debug && Section != o->section_end()) {
1982       Section->getName(Name);
1983     } else {
1984       Expected<StringRef> NameOrErr = Symbol.getName();
1985       if (!NameOrErr)
1986         report_error(ArchiveName, o->getFileName(), NameOrErr.takeError(),
1987                      ArchitectureName);
1988       Name = *NameOrErr;
1989     }
1990 
1991     bool Global = Flags & SymbolRef::SF_Global;
1992     bool Weak = Flags & SymbolRef::SF_Weak;
1993     bool Absolute = Flags & SymbolRef::SF_Absolute;
1994     bool Common = Flags & SymbolRef::SF_Common;
1995     bool Hidden = Flags & SymbolRef::SF_Hidden;
1996 
1997     char GlobLoc = ' ';
1998     if (Type != SymbolRef::ST_Unknown)
1999       GlobLoc = Global ? 'g' : 'l';
2000     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2001                  ? 'd' : ' ';
2002     char FileFunc = ' ';
2003     if (Type == SymbolRef::ST_File)
2004       FileFunc = 'f';
2005     else if (Type == SymbolRef::ST_Function)
2006       FileFunc = 'F';
2007 
2008     const char *Fmt = o->getBytesInAddress() > 4 ? "%016" PRIx64 :
2009                                                    "%08" PRIx64;
2010 
2011     outs() << format(Fmt, Address) << " "
2012            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
2013            << (Weak ? 'w' : ' ') // Weak?
2014            << ' ' // Constructor. Not supported yet.
2015            << ' ' // Warning. Not supported yet.
2016            << ' ' // Indirect reference to another symbol.
2017            << Debug // Debugging (d) or dynamic (D) symbol.
2018            << FileFunc // Name of function (F), file (f) or object (O).
2019            << ' ';
2020     if (Absolute) {
2021       outs() << "*ABS*";
2022     } else if (Common) {
2023       outs() << "*COM*";
2024     } else if (Section == o->section_end()) {
2025       outs() << "*UND*";
2026     } else {
2027       if (const MachOObjectFile *MachO =
2028           dyn_cast<const MachOObjectFile>(o)) {
2029         DataRefImpl DR = Section->getRawDataRefImpl();
2030         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
2031         outs() << SegmentName << ",";
2032       }
2033       StringRef SectionName;
2034       error(Section->getName(SectionName));
2035       outs() << SectionName;
2036     }
2037 
2038     outs() << '\t';
2039     if (Common || isa<ELFObjectFileBase>(o)) {
2040       uint64_t Val =
2041           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
2042       outs() << format("\t %08" PRIx64 " ", Val);
2043     }
2044 
2045     if (Hidden) {
2046       outs() << ".hidden ";
2047     }
2048     outs() << Name
2049            << '\n';
2050   }
2051 }
2052 
2053 static void PrintUnwindInfo(const ObjectFile *o) {
2054   outs() << "Unwind info:\n\n";
2055 
2056   if (const COFFObjectFile *coff = dyn_cast<COFFObjectFile>(o)) {
2057     printCOFFUnwindInfo(coff);
2058   } else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2059     printMachOUnwindInfo(MachO);
2060   else {
2061     // TODO: Extract DWARF dump tool to objdump.
2062     errs() << "This operation is only currently supported "
2063               "for COFF and MachO object files.\n";
2064     return;
2065   }
2066 }
2067 
2068 void llvm::printExportsTrie(const ObjectFile *o) {
2069   outs() << "Exports trie:\n";
2070   if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2071     printMachOExportsTrie(MachO);
2072   else {
2073     errs() << "This operation is only currently supported "
2074               "for Mach-O executable files.\n";
2075     return;
2076   }
2077 }
2078 
2079 void llvm::printRebaseTable(ObjectFile *o) {
2080   outs() << "Rebase table:\n";
2081   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2082     printMachORebaseTable(MachO);
2083   else {
2084     errs() << "This operation is only currently supported "
2085               "for Mach-O executable files.\n";
2086     return;
2087   }
2088 }
2089 
2090 void llvm::printBindTable(ObjectFile *o) {
2091   outs() << "Bind table:\n";
2092   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2093     printMachOBindTable(MachO);
2094   else {
2095     errs() << "This operation is only currently supported "
2096               "for Mach-O executable files.\n";
2097     return;
2098   }
2099 }
2100 
2101 void llvm::printLazyBindTable(ObjectFile *o) {
2102   outs() << "Lazy bind table:\n";
2103   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2104     printMachOLazyBindTable(MachO);
2105   else {
2106     errs() << "This operation is only currently supported "
2107               "for Mach-O executable files.\n";
2108     return;
2109   }
2110 }
2111 
2112 void llvm::printWeakBindTable(ObjectFile *o) {
2113   outs() << "Weak bind table:\n";
2114   if (MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(o))
2115     printMachOWeakBindTable(MachO);
2116   else {
2117     errs() << "This operation is only currently supported "
2118               "for Mach-O executable files.\n";
2119     return;
2120   }
2121 }
2122 
2123 /// Dump the raw contents of the __clangast section so the output can be piped
2124 /// into llvm-bcanalyzer.
2125 void llvm::printRawClangAST(const ObjectFile *Obj) {
2126   if (outs().is_displayed()) {
2127     errs() << "The -raw-clang-ast option will dump the raw binary contents of "
2128               "the clang ast section.\n"
2129               "Please redirect the output to a file or another program such as "
2130               "llvm-bcanalyzer.\n";
2131     return;
2132   }
2133 
2134   StringRef ClangASTSectionName("__clangast");
2135   if (isa<COFFObjectFile>(Obj)) {
2136     ClangASTSectionName = "clangast";
2137   }
2138 
2139   Optional<object::SectionRef> ClangASTSection;
2140   for (auto Sec : ToolSectionFilter(*Obj)) {
2141     StringRef Name;
2142     Sec.getName(Name);
2143     if (Name == ClangASTSectionName) {
2144       ClangASTSection = Sec;
2145       break;
2146     }
2147   }
2148   if (!ClangASTSection)
2149     return;
2150 
2151   StringRef ClangASTContents;
2152   error(ClangASTSection.getValue().getContents(ClangASTContents));
2153   outs().write(ClangASTContents.data(), ClangASTContents.size());
2154 }
2155 
2156 static void printFaultMaps(const ObjectFile *Obj) {
2157   const char *FaultMapSectionName = nullptr;
2158 
2159   if (isa<ELFObjectFileBase>(Obj)) {
2160     FaultMapSectionName = ".llvm_faultmaps";
2161   } else if (isa<MachOObjectFile>(Obj)) {
2162     FaultMapSectionName = "__llvm_faultmaps";
2163   } else {
2164     errs() << "This operation is only currently supported "
2165               "for ELF and Mach-O executable files.\n";
2166     return;
2167   }
2168 
2169   Optional<object::SectionRef> FaultMapSection;
2170 
2171   for (auto Sec : ToolSectionFilter(*Obj)) {
2172     StringRef Name;
2173     Sec.getName(Name);
2174     if (Name == FaultMapSectionName) {
2175       FaultMapSection = Sec;
2176       break;
2177     }
2178   }
2179 
2180   outs() << "FaultMap table:\n";
2181 
2182   if (!FaultMapSection.hasValue()) {
2183     outs() << "<not found>\n";
2184     return;
2185   }
2186 
2187   StringRef FaultMapContents;
2188   error(FaultMapSection.getValue().getContents(FaultMapContents));
2189 
2190   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2191                      FaultMapContents.bytes_end());
2192 
2193   outs() << FMP;
2194 }
2195 
2196 static void printPrivateFileHeaders(const ObjectFile *o, bool onlyFirst) {
2197   if (o->isELF()) {
2198     printELFFileHeader(o);
2199     return printELFDynamicSection(o);
2200   }
2201   if (o->isCOFF())
2202     return printCOFFFileHeader(o);
2203   if (o->isWasm())
2204     return printWasmFileHeader(o);
2205   if (o->isMachO()) {
2206     printMachOFileHeader(o);
2207     if (!onlyFirst)
2208       printMachOLoadCommands(o);
2209     return;
2210   }
2211   report_error(o->getFileName(), "Invalid/Unsupported object file format");
2212 }
2213 
2214 static void printFileHeaders(const ObjectFile *o) {
2215   if (!o->isELF() && !o->isCOFF())
2216     report_error(o->getFileName(), "Invalid/Unsupported object file format");
2217 
2218   Triple::ArchType AT = o->getArch();
2219   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2220   Expected<uint64_t> StartAddrOrErr = o->getStartAddress();
2221   if (!StartAddrOrErr)
2222     report_error(o->getFileName(), StartAddrOrErr.takeError());
2223   outs() << "start address: "
2224          << format("0x%0*x", o->getBytesInAddress(), StartAddrOrErr.get())
2225          << "\n";
2226 }
2227 
2228 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2229   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2230   if (!ModeOrErr) {
2231     errs() << "ill-formed archive entry.\n";
2232     consumeError(ModeOrErr.takeError());
2233     return;
2234   }
2235   sys::fs::perms Mode = ModeOrErr.get();
2236   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2237   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2238   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2239   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2240   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2241   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2242   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2243   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2244   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2245 
2246   outs() << " ";
2247 
2248   Expected<unsigned> UIDOrErr = C.getUID();
2249   if (!UIDOrErr)
2250     report_error(Filename, UIDOrErr.takeError());
2251   unsigned UID = UIDOrErr.get();
2252   outs() << format("%d/", UID);
2253 
2254   Expected<unsigned> GIDOrErr = C.getGID();
2255   if (!GIDOrErr)
2256     report_error(Filename, GIDOrErr.takeError());
2257   unsigned GID = GIDOrErr.get();
2258   outs() << format("%-d ", GID);
2259 
2260   Expected<uint64_t> Size = C.getRawSize();
2261   if (!Size)
2262     report_error(Filename, Size.takeError());
2263   outs() << format("%6" PRId64, Size.get()) << " ";
2264 
2265   StringRef RawLastModified = C.getRawLastModified();
2266   unsigned Seconds;
2267   if (RawLastModified.getAsInteger(10, Seconds))
2268     outs() << "(date: \"" << RawLastModified
2269            << "\" contains non-decimal chars) ";
2270   else {
2271     // Since ctime(3) returns a 26 character string of the form:
2272     // "Sun Sep 16 01:03:52 1973\n\0"
2273     // just print 24 characters.
2274     time_t t = Seconds;
2275     outs() << format("%.24s ", ctime(&t));
2276   }
2277 
2278   StringRef Name = "";
2279   Expected<StringRef> NameOrErr = C.getName();
2280   if (!NameOrErr) {
2281     consumeError(NameOrErr.takeError());
2282     Expected<StringRef> RawNameOrErr = C.getRawName();
2283     if (!RawNameOrErr)
2284       report_error(Filename, NameOrErr.takeError());
2285     Name = RawNameOrErr.get();
2286   } else {
2287     Name = NameOrErr.get();
2288   }
2289   outs() << Name << "\n";
2290 }
2291 
2292 static void DumpObject(ObjectFile *o, const Archive *a = nullptr,
2293                        const Archive::Child *c = nullptr) {
2294   StringRef ArchiveName = a != nullptr ? a->getFileName() : "";
2295   // Avoid other output when using a raw option.
2296   if (!RawClangAST) {
2297     outs() << '\n';
2298     if (a)
2299       outs() << a->getFileName() << "(" << o->getFileName() << ")";
2300     else
2301       outs() << o->getFileName();
2302     outs() << ":\tfile format " << o->getFileFormatName() << "\n\n";
2303   }
2304 
2305   if (ArchiveHeaders && !MachOOpt)
2306     printArchiveChild(a->getFileName(), *c);
2307   if (Disassemble)
2308     DisassembleObject(o, Relocations);
2309   if (Relocations && !Disassemble)
2310     PrintRelocations(o);
2311   if (DynamicRelocations)
2312     PrintDynamicRelocations(o);
2313   if (SectionHeaders)
2314     PrintSectionHeaders(o);
2315   if (SectionContents)
2316     PrintSectionContents(o);
2317   if (SymbolTable)
2318     PrintSymbolTable(o, ArchiveName);
2319   if (UnwindInfo)
2320     PrintUnwindInfo(o);
2321   if (PrivateHeaders || FirstPrivateHeader)
2322     printPrivateFileHeaders(o, FirstPrivateHeader);
2323   if (FileHeaders)
2324     printFileHeaders(o);
2325   if (ExportsTrie)
2326     printExportsTrie(o);
2327   if (Rebase)
2328     printRebaseTable(o);
2329   if (Bind)
2330     printBindTable(o);
2331   if (LazyBind)
2332     printLazyBindTable(o);
2333   if (WeakBind)
2334     printWeakBindTable(o);
2335   if (RawClangAST)
2336     printRawClangAST(o);
2337   if (PrintFaultMaps)
2338     printFaultMaps(o);
2339   if (DwarfDumpType != DIDT_Null) {
2340     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*o);
2341     // Dump the complete DWARF structure.
2342     DIDumpOptions DumpOpts;
2343     DumpOpts.DumpType = DwarfDumpType;
2344     DICtx->dump(outs(), DumpOpts);
2345   }
2346 }
2347 
2348 static void DumpObject(const COFFImportFile *I, const Archive *A,
2349                        const Archive::Child *C = nullptr) {
2350   StringRef ArchiveName = A ? A->getFileName() : "";
2351 
2352   // Avoid other output when using a raw option.
2353   if (!RawClangAST)
2354     outs() << '\n'
2355            << ArchiveName << "(" << I->getFileName() << ")"
2356            << ":\tfile format COFF-import-file"
2357            << "\n\n";
2358 
2359   if (ArchiveHeaders && !MachOOpt)
2360     printArchiveChild(A->getFileName(), *C);
2361   if (SymbolTable)
2362     printCOFFSymbolTable(I);
2363 }
2364 
2365 /// Dump each object file in \a a;
2366 static void DumpArchive(const Archive *a) {
2367   Error Err = Error::success();
2368   for (auto &C : a->children(Err)) {
2369     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2370     if (!ChildOrErr) {
2371       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2372         report_error(a->getFileName(), C, std::move(E));
2373       continue;
2374     }
2375     if (ObjectFile *o = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2376       DumpObject(o, a, &C);
2377     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2378       DumpObject(I, a, &C);
2379     else
2380       report_error(a->getFileName(), object_error::invalid_file_type);
2381   }
2382   if (Err)
2383     report_error(a->getFileName(), std::move(Err));
2384 }
2385 
2386 /// Open file and figure out how to dump it.
2387 static void DumpInput(StringRef file) {
2388 
2389   // If we are using the Mach-O specific object file parser, then let it parse
2390   // the file and process the command line options.  So the -arch flags can
2391   // be used to select specific slices, etc.
2392   if (MachOOpt) {
2393     ParseInputMachO(file);
2394     return;
2395   }
2396 
2397   // Attempt to open the binary.
2398   Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(file);
2399   if (!BinaryOrErr)
2400     report_error(file, BinaryOrErr.takeError());
2401   Binary &Binary = *BinaryOrErr.get().getBinary();
2402 
2403   if (Archive *a = dyn_cast<Archive>(&Binary))
2404     DumpArchive(a);
2405   else if (ObjectFile *o = dyn_cast<ObjectFile>(&Binary))
2406     DumpObject(o);
2407   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2408     ParseInputMachO(UB);
2409   else
2410     report_error(file, object_error::invalid_file_type);
2411 }
2412 
2413 int main(int argc, char **argv) {
2414   InitLLVM X(argc, argv);
2415 
2416   // Initialize targets and assembly printers/parsers.
2417   llvm::InitializeAllTargetInfos();
2418   llvm::InitializeAllTargetMCs();
2419   llvm::InitializeAllDisassemblers();
2420 
2421   // Register the target printer for --version.
2422   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2423 
2424   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2425 
2426   ToolName = argv[0];
2427 
2428   // Defaults to a.out if no filenames specified.
2429   if (InputFilenames.size() == 0)
2430     InputFilenames.push_back("a.out");
2431 
2432   if (AllHeaders)
2433     PrivateHeaders = Relocations = SectionHeaders = SymbolTable = true;
2434 
2435   if (DisassembleAll || PrintSource || PrintLines)
2436     Disassemble = true;
2437 
2438   if (!Disassemble
2439       && !Relocations
2440       && !DynamicRelocations
2441       && !SectionHeaders
2442       && !SectionContents
2443       && !SymbolTable
2444       && !UnwindInfo
2445       && !PrivateHeaders
2446       && !FileHeaders
2447       && !FirstPrivateHeader
2448       && !ExportsTrie
2449       && !Rebase
2450       && !Bind
2451       && !LazyBind
2452       && !WeakBind
2453       && !RawClangAST
2454       && !(UniversalHeaders && MachOOpt)
2455       && !ArchiveHeaders
2456       && !(IndirectSymbols && MachOOpt)
2457       && !(DataInCode && MachOOpt)
2458       && !(LinkOptHints && MachOOpt)
2459       && !(InfoPlist && MachOOpt)
2460       && !(DylibsUsed && MachOOpt)
2461       && !(DylibId && MachOOpt)
2462       && !(ObjcMetaData && MachOOpt)
2463       && !(FilterSections.size() != 0 && MachOOpt)
2464       && !PrintFaultMaps
2465       && DwarfDumpType == DIDT_Null) {
2466     cl::PrintHelpMessage();
2467     return 2;
2468   }
2469 
2470   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2471                         DisassembleFunctions.end());
2472 
2473   llvm::for_each(InputFilenames, DumpInput);
2474 
2475   return EXIT_SUCCESS;
2476 }
2477