xref: /llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision 07d9ab9aa5d272cad99617a1f28cdcfd73d86550)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "COFFDump.h"
20 #include "ELFDump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
25 #include "WasmDump.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Triple.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
37 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
38 #include "llvm/Debuginfod/BuildIDFetcher.h"
39 #include "llvm/Debuginfod/Debuginfod.h"
40 #include "llvm/Debuginfod/HTTPClient.h"
41 #include "llvm/Demangle/Demangle.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCContext.h"
44 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
45 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
46 #include "llvm/MC/MCInst.h"
47 #include "llvm/MC/MCInstPrinter.h"
48 #include "llvm/MC/MCInstrAnalysis.h"
49 #include "llvm/MC/MCInstrInfo.h"
50 #include "llvm/MC/MCObjectFileInfo.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/MC/MCSubtargetInfo.h"
53 #include "llvm/MC/MCTargetOptions.h"
54 #include "llvm/MC/TargetRegistry.h"
55 #include "llvm/Object/Archive.h"
56 #include "llvm/Object/BuildID.h"
57 #include "llvm/Object/COFF.h"
58 #include "llvm/Object/COFFImportFile.h"
59 #include "llvm/Object/ELFObjectFile.h"
60 #include "llvm/Object/ELFTypes.h"
61 #include "llvm/Object/FaultMapParser.h"
62 #include "llvm/Object/MachO.h"
63 #include "llvm/Object/MachOUniversal.h"
64 #include "llvm/Object/ObjectFile.h"
65 #include "llvm/Object/OffloadBinary.h"
66 #include "llvm/Object/Wasm.h"
67 #include "llvm/Option/Arg.h"
68 #include "llvm/Option/ArgList.h"
69 #include "llvm/Option/Option.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/Errc.h"
73 #include "llvm/Support/FileSystem.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/GraphWriter.h"
77 #include "llvm/Support/Host.h"
78 #include "llvm/Support/InitLLVM.h"
79 #include "llvm/Support/MemoryBuffer.h"
80 #include "llvm/Support/SourceMgr.h"
81 #include "llvm/Support/StringSaver.h"
82 #include "llvm/Support/TargetSelect.h"
83 #include "llvm/Support/WithColor.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include <algorithm>
86 #include <cctype>
87 #include <cstring>
88 #include <optional>
89 #include <system_error>
90 #include <unordered_map>
91 #include <utility>
92 
93 using namespace llvm;
94 using namespace llvm::object;
95 using namespace llvm::objdump;
96 using namespace llvm::opt;
97 
98 namespace {
99 
100 class CommonOptTable : public opt::OptTable {
101 public:
102   CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage,
103                  const char *Description)
104       : OptTable(OptionInfos), Usage(Usage), Description(Description) {
105     setGroupedShortOptions(true);
106   }
107 
108   void printHelp(StringRef Argv0, bool ShowHidden = false) const {
109     Argv0 = sys::path::filename(Argv0);
110     opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description,
111                              ShowHidden, ShowHidden);
112     // TODO Replace this with OptTable API once it adds extrahelp support.
113     outs() << "\nPass @FILE as argument to read options from FILE.\n";
114   }
115 
116 private:
117   const char *Usage;
118   const char *Description;
119 };
120 
121 // ObjdumpOptID is in ObjdumpOptID.h
122 
123 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE;
124 #include "ObjdumpOpts.inc"
125 #undef PREFIX
126 
127 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = {
128 #define OBJDUMP_nullptr nullptr
129 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
130                HELPTEXT, METAVAR, VALUES)                                      \
131   {OBJDUMP_##PREFIX, NAME,         HELPTEXT,                                   \
132    METAVAR,          OBJDUMP_##ID, opt::Option::KIND##Class,                   \
133    PARAM,            FLAGS,        OBJDUMP_##GROUP,                            \
134    OBJDUMP_##ALIAS,  ALIASARGS,    VALUES},
135 #include "ObjdumpOpts.inc"
136 #undef OPTION
137 #undef OBJDUMP_nullptr
138 };
139 
140 class ObjdumpOptTable : public CommonOptTable {
141 public:
142   ObjdumpOptTable()
143       : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>",
144                        "llvm object file dumper") {}
145 };
146 
147 enum OtoolOptID {
148   OTOOL_INVALID = 0, // This is not an option ID.
149 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
150                HELPTEXT, METAVAR, VALUES)                                      \
151   OTOOL_##ID,
152 #include "OtoolOpts.inc"
153 #undef OPTION
154 };
155 
156 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE;
157 #include "OtoolOpts.inc"
158 #undef PREFIX
159 
160 static constexpr opt::OptTable::Info OtoolInfoTable[] = {
161 #define OTOOL_nullptr nullptr
162 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM,  \
163                HELPTEXT, METAVAR, VALUES)                                      \
164   {OTOOL_##PREFIX, NAME,       HELPTEXT,                                       \
165    METAVAR,        OTOOL_##ID, opt::Option::KIND##Class,                       \
166    PARAM,          FLAGS,      OTOOL_##GROUP,                                  \
167    OTOOL_##ALIAS,  ALIASARGS,  VALUES},
168 #include "OtoolOpts.inc"
169 #undef OPTION
170 #undef OTOOL_nullptr
171 };
172 
173 class OtoolOptTable : public CommonOptTable {
174 public:
175   OtoolOptTable()
176       : CommonOptTable(OtoolInfoTable, " [option...] [file...]",
177                        "Mach-O object file displaying tool") {}
178 };
179 
180 } // namespace
181 
182 #define DEBUG_TYPE "objdump"
183 
184 static uint64_t AdjustVMA;
185 static bool AllHeaders;
186 static std::string ArchName;
187 bool objdump::ArchiveHeaders;
188 bool objdump::Demangle;
189 bool objdump::Disassemble;
190 bool objdump::DisassembleAll;
191 bool objdump::SymbolDescription;
192 static std::vector<std::string> DisassembleSymbols;
193 static bool DisassembleZeroes;
194 static std::vector<std::string> DisassemblerOptions;
195 DIDumpType objdump::DwarfDumpType;
196 static bool DynamicRelocations;
197 static bool FaultMapSection;
198 static bool FileHeaders;
199 bool objdump::SectionContents;
200 static std::vector<std::string> InputFilenames;
201 bool objdump::PrintLines;
202 static bool MachOOpt;
203 std::string objdump::MCPU;
204 std::vector<std::string> objdump::MAttrs;
205 bool objdump::ShowRawInsn;
206 bool objdump::LeadingAddr;
207 static bool Offloading;
208 static bool RawClangAST;
209 bool objdump::Relocations;
210 bool objdump::PrintImmHex;
211 bool objdump::PrivateHeaders;
212 std::vector<std::string> objdump::FilterSections;
213 bool objdump::SectionHeaders;
214 static bool ShowAllSymbols;
215 static bool ShowLMA;
216 bool objdump::PrintSource;
217 
218 static uint64_t StartAddress;
219 static bool HasStartAddressFlag;
220 static uint64_t StopAddress = UINT64_MAX;
221 static bool HasStopAddressFlag;
222 
223 bool objdump::SymbolTable;
224 static bool SymbolizeOperands;
225 static bool DynamicSymbolTable;
226 std::string objdump::TripleName;
227 bool objdump::UnwindInfo;
228 static bool Wide;
229 std::string objdump::Prefix;
230 uint32_t objdump::PrefixStrip;
231 
232 DebugVarsFormat objdump::DbgVariables = DVDisabled;
233 
234 int objdump::DbgIndent = 52;
235 
236 static StringSet<> DisasmSymbolSet;
237 StringSet<> objdump::FoundSectionSet;
238 static StringRef ToolName;
239 
240 std::unique_ptr<BuildIDFetcher> BIDFetcher;
241 ExitOnError ExitOnErr;
242 
243 namespace {
244 struct FilterResult {
245   // True if the section should not be skipped.
246   bool Keep;
247 
248   // True if the index counter should be incremented, even if the section should
249   // be skipped. For example, sections may be skipped if they are not included
250   // in the --section flag, but we still want those to count toward the section
251   // count.
252   bool IncrementIndex;
253 };
254 } // namespace
255 
256 static FilterResult checkSectionFilter(object::SectionRef S) {
257   if (FilterSections.empty())
258     return {/*Keep=*/true, /*IncrementIndex=*/true};
259 
260   Expected<StringRef> SecNameOrErr = S.getName();
261   if (!SecNameOrErr) {
262     consumeError(SecNameOrErr.takeError());
263     return {/*Keep=*/false, /*IncrementIndex=*/false};
264   }
265   StringRef SecName = *SecNameOrErr;
266 
267   // StringSet does not allow empty key so avoid adding sections with
268   // no name (such as the section with index 0) here.
269   if (!SecName.empty())
270     FoundSectionSet.insert(SecName);
271 
272   // Only show the section if it's in the FilterSections list, but always
273   // increment so the indexing is stable.
274   return {/*Keep=*/is_contained(FilterSections, SecName),
275           /*IncrementIndex=*/true};
276 }
277 
278 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
279                                          uint64_t *Idx) {
280   // Start at UINT64_MAX so that the first index returned after an increment is
281   // zero (after the unsigned wrap).
282   if (Idx)
283     *Idx = UINT64_MAX;
284   return SectionFilter(
285       [Idx](object::SectionRef S) {
286         FilterResult Result = checkSectionFilter(S);
287         if (Idx != nullptr && Result.IncrementIndex)
288           *Idx += 1;
289         return Result.Keep;
290       },
291       O);
292 }
293 
294 std::string objdump::getFileNameForError(const object::Archive::Child &C,
295                                          unsigned Index) {
296   Expected<StringRef> NameOrErr = C.getName();
297   if (NameOrErr)
298     return std::string(NameOrErr.get());
299   // If we have an error getting the name then we print the index of the archive
300   // member. Since we are already in an error state, we just ignore this error.
301   consumeError(NameOrErr.takeError());
302   return "<file index: " + std::to_string(Index) + ">";
303 }
304 
305 void objdump::reportWarning(const Twine &Message, StringRef File) {
306   // Output order between errs() and outs() matters especially for archive
307   // files where the output is per member object.
308   outs().flush();
309   WithColor::warning(errs(), ToolName)
310       << "'" << File << "': " << Message << "\n";
311 }
312 
313 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) {
314   outs().flush();
315   WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
316   exit(1);
317 }
318 
319 [[noreturn]] void objdump::reportError(Error E, StringRef FileName,
320                                        StringRef ArchiveName,
321                                        StringRef ArchitectureName) {
322   assert(E);
323   outs().flush();
324   WithColor::error(errs(), ToolName);
325   if (ArchiveName != "")
326     errs() << ArchiveName << "(" << FileName << ")";
327   else
328     errs() << "'" << FileName << "'";
329   if (!ArchitectureName.empty())
330     errs() << " (for architecture " << ArchitectureName << ")";
331   errs() << ": ";
332   logAllUnhandledErrors(std::move(E), errs());
333   exit(1);
334 }
335 
336 static void reportCmdLineWarning(const Twine &Message) {
337   WithColor::warning(errs(), ToolName) << Message << "\n";
338 }
339 
340 [[noreturn]] static void reportCmdLineError(const Twine &Message) {
341   WithColor::error(errs(), ToolName) << Message << "\n";
342   exit(1);
343 }
344 
345 static void warnOnNoMatchForSections() {
346   SetVector<StringRef> MissingSections;
347   for (StringRef S : FilterSections) {
348     if (FoundSectionSet.count(S))
349       return;
350     // User may specify a unnamed section. Don't warn for it.
351     if (!S.empty())
352       MissingSections.insert(S);
353   }
354 
355   // Warn only if no section in FilterSections is matched.
356   for (StringRef S : MissingSections)
357     reportCmdLineWarning("section '" + S +
358                          "' mentioned in a -j/--section option, but not "
359                          "found in any input file");
360 }
361 
362 static const Target *getTarget(const ObjectFile *Obj) {
363   // Figure out the target triple.
364   Triple TheTriple("unknown-unknown-unknown");
365   if (TripleName.empty()) {
366     TheTriple = Obj->makeTriple();
367   } else {
368     TheTriple.setTriple(Triple::normalize(TripleName));
369     auto Arch = Obj->getArch();
370     if (Arch == Triple::arm || Arch == Triple::armeb)
371       Obj->setARMSubArch(TheTriple);
372   }
373 
374   // Get the target specific parser.
375   std::string Error;
376   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
377                                                          Error);
378   if (!TheTarget)
379     reportError(Obj->getFileName(), "can't find target: " + Error);
380 
381   // Update the triple name and return the found target.
382   TripleName = TheTriple.getTriple();
383   return TheTarget;
384 }
385 
386 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
387   return A.getOffset() < B.getOffset();
388 }
389 
390 static Error getRelocationValueString(const RelocationRef &Rel,
391                                       SmallVectorImpl<char> &Result) {
392   const ObjectFile *Obj = Rel.getObject();
393   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
394     return getELFRelocationValueString(ELF, Rel, Result);
395   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
396     return getCOFFRelocationValueString(COFF, Rel, Result);
397   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
398     return getWasmRelocationValueString(Wasm, Rel, Result);
399   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
400     return getMachORelocationValueString(MachO, Rel, Result);
401   if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
402     return getXCOFFRelocationValueString(*XCOFF, Rel, Result);
403   llvm_unreachable("unknown object file format");
404 }
405 
406 /// Indicates whether this relocation should hidden when listing
407 /// relocations, usually because it is the trailing part of a multipart
408 /// relocation that will be printed as part of the leading relocation.
409 static bool getHidden(RelocationRef RelRef) {
410   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
411   if (!MachO)
412     return false;
413 
414   unsigned Arch = MachO->getArch();
415   DataRefImpl Rel = RelRef.getRawDataRefImpl();
416   uint64_t Type = MachO->getRelocationType(Rel);
417 
418   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
419   // is always hidden.
420   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
421     return Type == MachO::GENERIC_RELOC_PAIR;
422 
423   if (Arch == Triple::x86_64) {
424     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
425     // an X86_64_RELOC_SUBTRACTOR.
426     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
427       DataRefImpl RelPrev = Rel;
428       RelPrev.d.a--;
429       uint64_t PrevType = MachO->getRelocationType(RelPrev);
430       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
431         return true;
432     }
433   }
434 
435   return false;
436 }
437 
438 namespace {
439 
440 /// Get the column at which we want to start printing the instruction
441 /// disassembly, taking into account anything which appears to the left of it.
442 unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
443   return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
444 }
445 
446 static bool isAArch64Elf(const ObjectFile &Obj) {
447   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
448   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
449 }
450 
451 static bool isArmElf(const ObjectFile &Obj) {
452   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
453   return Elf && Elf->getEMachine() == ELF::EM_ARM;
454 }
455 
456 static bool isCSKYElf(const ObjectFile &Obj) {
457   const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj);
458   return Elf && Elf->getEMachine() == ELF::EM_CSKY;
459 }
460 
461 static bool hasMappingSymbols(const ObjectFile &Obj) {
462   return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ;
463 }
464 
465 static bool isMappingSymbol(const SymbolInfoTy &Sym) {
466   return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") ||
467          Sym.Name.startswith("$a") || Sym.Name.startswith("$t");
468 }
469 
470 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
471                             const RelocationRef &Rel, uint64_t Address,
472                             bool Is64Bits) {
473   StringRef Fmt = Is64Bits ? "%016" PRIx64 ":  " : "%08" PRIx64 ":  ";
474   SmallString<16> Name;
475   SmallString<32> Val;
476   Rel.getTypeName(Name);
477   if (Error E = getRelocationValueString(Rel, Val))
478     reportError(std::move(E), FileName);
479   OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t");
480   if (LeadingAddr)
481     OS << format(Fmt.data(), Address);
482   OS << Name << "\t" << Val;
483 }
484 
485 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI,
486                                    raw_ostream &OS) {
487   // The output of printInst starts with a tab. Print some spaces so that
488   // the tab has 1 column and advances to the target tab stop.
489   unsigned TabStop = getInstStartColumn(STI);
490   unsigned Column = OS.tell() - Start;
491   OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
492 }
493 
494 class PrettyPrinter {
495 public:
496   virtual ~PrettyPrinter() = default;
497   virtual void
498   printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
499             object::SectionedAddress Address, formatted_raw_ostream &OS,
500             StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
501             StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
502             LiveVariablePrinter &LVP) {
503     if (SP && (PrintSource || PrintLines))
504       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
505     LVP.printBetweenInsts(OS, false);
506 
507     size_t Start = OS.tell();
508     if (LeadingAddr)
509       OS << format("%8" PRIx64 ":", Address.Address);
510     if (ShowRawInsn) {
511       OS << ' ';
512       dumpBytes(Bytes, OS);
513     }
514 
515     AlignToInstStartColumn(Start, STI, OS);
516 
517     if (MI) {
518       // See MCInstPrinter::printInst. On targets where a PC relative immediate
519       // is relative to the next instruction and the length of a MCInst is
520       // difficult to measure (x86), this is the address of the next
521       // instruction.
522       uint64_t Addr =
523           Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
524       IP.printInst(MI, Addr, "", STI, OS);
525     } else
526       OS << "\t<unknown>";
527   }
528 };
529 PrettyPrinter PrettyPrinterInst;
530 
531 class HexagonPrettyPrinter : public PrettyPrinter {
532 public:
533   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
534                  formatted_raw_ostream &OS) {
535     uint32_t opcode =
536       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
537     if (LeadingAddr)
538       OS << format("%8" PRIx64 ":", Address);
539     if (ShowRawInsn) {
540       OS << "\t";
541       dumpBytes(Bytes.slice(0, 4), OS);
542       OS << format("\t%08" PRIx32, opcode);
543     }
544   }
545   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
546                  object::SectionedAddress Address, formatted_raw_ostream &OS,
547                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
548                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
549                  LiveVariablePrinter &LVP) override {
550     if (SP && (PrintSource || PrintLines))
551       SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
552     if (!MI) {
553       printLead(Bytes, Address.Address, OS);
554       OS << " <unknown>";
555       return;
556     }
557     std::string Buffer;
558     {
559       raw_string_ostream TempStream(Buffer);
560       IP.printInst(MI, Address.Address, "", STI, TempStream);
561     }
562     StringRef Contents(Buffer);
563     // Split off bundle attributes
564     auto PacketBundle = Contents.rsplit('\n');
565     // Split off first instruction from the rest
566     auto HeadTail = PacketBundle.first.split('\n');
567     auto Preamble = " { ";
568     auto Separator = "";
569 
570     // Hexagon's packets require relocations to be inline rather than
571     // clustered at the end of the packet.
572     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
573     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
574     auto PrintReloc = [&]() -> void {
575       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
576         if (RelCur->getOffset() == Address.Address) {
577           printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
578           return;
579         }
580         ++RelCur;
581       }
582     };
583 
584     while (!HeadTail.first.empty()) {
585       OS << Separator;
586       Separator = "\n";
587       if (SP && (PrintSource || PrintLines))
588         SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
589       printLead(Bytes, Address.Address, OS);
590       OS << Preamble;
591       Preamble = "   ";
592       StringRef Inst;
593       auto Duplex = HeadTail.first.split('\v');
594       if (!Duplex.second.empty()) {
595         OS << Duplex.first;
596         OS << "; ";
597         Inst = Duplex.second;
598       }
599       else
600         Inst = HeadTail.first;
601       OS << Inst;
602       HeadTail = HeadTail.second.split('\n');
603       if (HeadTail.first.empty())
604         OS << " } " << PacketBundle.second;
605       PrintReloc();
606       Bytes = Bytes.slice(4);
607       Address.Address += 4;
608     }
609   }
610 };
611 HexagonPrettyPrinter HexagonPrettyPrinterInst;
612 
613 class AMDGCNPrettyPrinter : public PrettyPrinter {
614 public:
615   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
616                  object::SectionedAddress Address, formatted_raw_ostream &OS,
617                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
618                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
619                  LiveVariablePrinter &LVP) override {
620     if (SP && (PrintSource || PrintLines))
621       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
622 
623     if (MI) {
624       SmallString<40> InstStr;
625       raw_svector_ostream IS(InstStr);
626 
627       IP.printInst(MI, Address.Address, "", STI, IS);
628 
629       OS << left_justify(IS.str(), 60);
630     } else {
631       // an unrecognized encoding - this is probably data so represent it
632       // using the .long directive, or .byte directive if fewer than 4 bytes
633       // remaining
634       if (Bytes.size() >= 4) {
635         OS << format("\t.long 0x%08" PRIx32 " ",
636                      support::endian::read32<support::little>(Bytes.data()));
637         OS.indent(42);
638       } else {
639           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
640           for (unsigned int i = 1; i < Bytes.size(); i++)
641             OS << format(", 0x%02" PRIx8, Bytes[i]);
642           OS.indent(55 - (6 * Bytes.size()));
643       }
644     }
645 
646     OS << format("// %012" PRIX64 ":", Address.Address);
647     if (Bytes.size() >= 4) {
648       // D should be casted to uint32_t here as it is passed by format to
649       // snprintf as vararg.
650       for (uint32_t D : makeArrayRef(
651                reinterpret_cast<const support::little32_t *>(Bytes.data()),
652                Bytes.size() / 4))
653         OS << format(" %08" PRIX32, D);
654     } else {
655       for (unsigned char B : Bytes)
656         OS << format(" %02" PRIX8, B);
657     }
658 
659     if (!Annot.empty())
660       OS << " // " << Annot;
661   }
662 };
663 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
664 
665 class BPFPrettyPrinter : public PrettyPrinter {
666 public:
667   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
668                  object::SectionedAddress Address, formatted_raw_ostream &OS,
669                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
670                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
671                  LiveVariablePrinter &LVP) override {
672     if (SP && (PrintSource || PrintLines))
673       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
674     if (LeadingAddr)
675       OS << format("%8" PRId64 ":", Address.Address / 8);
676     if (ShowRawInsn) {
677       OS << "\t";
678       dumpBytes(Bytes, OS);
679     }
680     if (MI)
681       IP.printInst(MI, Address.Address, "", STI, OS);
682     else
683       OS << "\t<unknown>";
684   }
685 };
686 BPFPrettyPrinter BPFPrettyPrinterInst;
687 
688 class ARMPrettyPrinter : public PrettyPrinter {
689 public:
690   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
691                  object::SectionedAddress Address, formatted_raw_ostream &OS,
692                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
693                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
694                  LiveVariablePrinter &LVP) override {
695     if (SP && (PrintSource || PrintLines))
696       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
697     LVP.printBetweenInsts(OS, false);
698 
699     size_t Start = OS.tell();
700     if (LeadingAddr)
701       OS << format("%8" PRIx64 ":", Address.Address);
702     if (ShowRawInsn) {
703       size_t Pos = 0, End = Bytes.size();
704       if (STI.checkFeatures("+thumb-mode")) {
705         for (; Pos + 2 <= End; Pos += 2)
706           OS << ' '
707              << format_hex_no_prefix(
708                     llvm::support::endian::read<uint16_t>(
709                         Bytes.data() + Pos, InstructionEndianness),
710                     4);
711       } else {
712         for (; Pos + 4 <= End; Pos += 4)
713           OS << ' '
714              << format_hex_no_prefix(
715                     llvm::support::endian::read<uint32_t>(
716                         Bytes.data() + Pos, InstructionEndianness),
717                     8);
718       }
719       if (Pos < End) {
720         OS << ' ';
721         dumpBytes(Bytes.slice(Pos), OS);
722       }
723     }
724 
725     AlignToInstStartColumn(Start, STI, OS);
726 
727     if (MI) {
728       IP.printInst(MI, Address.Address, "", STI, OS);
729     } else
730       OS << "\t<unknown>";
731   }
732 
733   void setInstructionEndianness(llvm::support::endianness Endianness) {
734     InstructionEndianness = Endianness;
735   }
736 
737 private:
738   llvm::support::endianness InstructionEndianness = llvm::support::little;
739 };
740 ARMPrettyPrinter ARMPrettyPrinterInst;
741 
742 class AArch64PrettyPrinter : public PrettyPrinter {
743 public:
744   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
745                  object::SectionedAddress Address, formatted_raw_ostream &OS,
746                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
747                  StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
748                  LiveVariablePrinter &LVP) override {
749     if (SP && (PrintSource || PrintLines))
750       SP->printSourceLine(OS, Address, ObjectFilename, LVP);
751     LVP.printBetweenInsts(OS, false);
752 
753     size_t Start = OS.tell();
754     if (LeadingAddr)
755       OS << format("%8" PRIx64 ":", Address.Address);
756     if (ShowRawInsn) {
757       size_t Pos = 0, End = Bytes.size();
758       for (; Pos + 4 <= End; Pos += 4)
759         OS << ' '
760            << format_hex_no_prefix(
761                   llvm::support::endian::read<uint32_t>(Bytes.data() + Pos,
762                                                         llvm::support::little),
763                   8);
764       if (Pos < End) {
765         OS << ' ';
766         dumpBytes(Bytes.slice(Pos), OS);
767       }
768     }
769 
770     AlignToInstStartColumn(Start, STI, OS);
771 
772     if (MI) {
773       IP.printInst(MI, Address.Address, "", STI, OS);
774     } else
775       OS << "\t<unknown>";
776   }
777 };
778 AArch64PrettyPrinter AArch64PrettyPrinterInst;
779 
780 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
781   switch(Triple.getArch()) {
782   default:
783     return PrettyPrinterInst;
784   case Triple::hexagon:
785     return HexagonPrettyPrinterInst;
786   case Triple::amdgcn:
787     return AMDGCNPrettyPrinterInst;
788   case Triple::bpfel:
789   case Triple::bpfeb:
790     return BPFPrettyPrinterInst;
791   case Triple::arm:
792   case Triple::armeb:
793   case Triple::thumb:
794   case Triple::thumbeb:
795     return ARMPrettyPrinterInst;
796   case Triple::aarch64:
797   case Triple::aarch64_be:
798   case Triple::aarch64_32:
799     return AArch64PrettyPrinterInst;
800   }
801 }
802 }
803 
804 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) {
805   assert(Obj.isELF());
806   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
807     return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()),
808                          Obj.getFileName())
809         ->getType();
810   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
811     return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()),
812                          Obj.getFileName())
813         ->getType();
814   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
815     return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()),
816                          Obj.getFileName())
817         ->getType();
818   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
819     return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()),
820                          Obj.getFileName())
821         ->getType();
822   llvm_unreachable("Unsupported binary format");
823 }
824 
825 template <class ELFT>
826 static void
827 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj,
828                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
829   for (auto Symbol : Obj.getDynamicSymbolIterators()) {
830     uint8_t SymbolType = Symbol.getELFType();
831     if (SymbolType == ELF::STT_SECTION)
832       continue;
833 
834     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName());
835     // ELFSymbolRef::getAddress() returns size instead of value for common
836     // symbols which is not desirable for disassembly output. Overriding.
837     if (SymbolType == ELF::STT_COMMON)
838       Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()),
839                               Obj.getFileName())
840                     ->st_value;
841 
842     StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName());
843     if (Name.empty())
844       continue;
845 
846     section_iterator SecI =
847         unwrapOrError(Symbol.getSection(), Obj.getFileName());
848     if (SecI == Obj.section_end())
849       continue;
850 
851     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
852   }
853 }
854 
855 static void
856 addDynamicElfSymbols(const ELFObjectFileBase &Obj,
857                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
858   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
859     addDynamicElfSymbols(*Elf32LEObj, AllSymbols);
860   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
861     addDynamicElfSymbols(*Elf64LEObj, AllSymbols);
862   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
863     addDynamicElfSymbols(*Elf32BEObj, AllSymbols);
864   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
865     addDynamicElfSymbols(*Elf64BEObj, AllSymbols);
866   else
867     llvm_unreachable("Unsupported binary format");
868 }
869 
870 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) {
871   for (auto SecI : Obj.sections()) {
872     const WasmSection &Section = Obj.getWasmSection(SecI);
873     if (Section.Type == wasm::WASM_SEC_CODE)
874       return SecI;
875   }
876   return std::nullopt;
877 }
878 
879 static void
880 addMissingWasmCodeSymbols(const WasmObjectFile &Obj,
881                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
882   std::optional<SectionRef> Section = getWasmCodeSection(Obj);
883   if (!Section)
884     return;
885   SectionSymbolsTy &Symbols = AllSymbols[*Section];
886 
887   std::set<uint64_t> SymbolAddresses;
888   for (const auto &Sym : Symbols)
889     SymbolAddresses.insert(Sym.Addr);
890 
891   for (const wasm::WasmFunction &Function : Obj.functions()) {
892     uint64_t Address = Function.CodeSectionOffset;
893     // Only add fallback symbols for functions not already present in the symbol
894     // table.
895     if (SymbolAddresses.count(Address))
896       continue;
897     // This function has no symbol, so it should have no SymbolName.
898     assert(Function.SymbolName.empty());
899     // We use DebugName for the name, though it may be empty if there is no
900     // "name" custom section, or that section is missing a name for this
901     // function.
902     StringRef Name = Function.DebugName;
903     Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE);
904   }
905 }
906 
907 static void addPltEntries(const ObjectFile &Obj,
908                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
909                           StringSaver &Saver) {
910   std::optional<SectionRef> Plt;
911   for (const SectionRef &Section : Obj.sections()) {
912     Expected<StringRef> SecNameOrErr = Section.getName();
913     if (!SecNameOrErr) {
914       consumeError(SecNameOrErr.takeError());
915       continue;
916     }
917     if (*SecNameOrErr == ".plt")
918       Plt = Section;
919   }
920   if (!Plt)
921     return;
922   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) {
923     for (auto PltEntry : ElfObj->getPltAddresses()) {
924       if (PltEntry.first) {
925         SymbolRef Symbol(*PltEntry.first, ElfObj);
926         uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
927         if (Expected<StringRef> NameOrErr = Symbol.getName()) {
928           if (!NameOrErr->empty())
929             AllSymbols[*Plt].emplace_back(
930                 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
931                 SymbolType);
932           continue;
933         } else {
934           // The warning has been reported in disassembleObject().
935           consumeError(NameOrErr.takeError());
936         }
937       }
938       reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
939                         " references an invalid symbol",
940                     Obj.getFileName());
941     }
942   }
943 }
944 
945 // Normally the disassembly output will skip blocks of zeroes. This function
946 // returns the number of zero bytes that can be skipped when dumping the
947 // disassembly of the instructions in Buf.
948 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
949   // Find the number of leading zeroes.
950   size_t N = 0;
951   while (N < Buf.size() && !Buf[N])
952     ++N;
953 
954   // We may want to skip blocks of zero bytes, but unless we see
955   // at least 8 of them in a row.
956   if (N < 8)
957     return 0;
958 
959   // We skip zeroes in multiples of 4 because do not want to truncate an
960   // instruction if it starts with a zero byte.
961   return N & ~0x3;
962 }
963 
964 // Returns a map from sections to their relocations.
965 static std::map<SectionRef, std::vector<RelocationRef>>
966 getRelocsMap(object::ObjectFile const &Obj) {
967   std::map<SectionRef, std::vector<RelocationRef>> Ret;
968   uint64_t I = (uint64_t)-1;
969   for (SectionRef Sec : Obj.sections()) {
970     ++I;
971     Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
972     if (!RelocatedOrErr)
973       reportError(Obj.getFileName(),
974                   "section (" + Twine(I) +
975                       "): failed to get a relocated section: " +
976                       toString(RelocatedOrErr.takeError()));
977 
978     section_iterator Relocated = *RelocatedOrErr;
979     if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
980       continue;
981     std::vector<RelocationRef> &V = Ret[*Relocated];
982     append_range(V, Sec.relocations());
983     // Sort relocations by address.
984     llvm::stable_sort(V, isRelocAddressLess);
985   }
986   return Ret;
987 }
988 
989 // Used for --adjust-vma to check if address should be adjusted by the
990 // specified value for a given section.
991 // For ELF we do not adjust non-allocatable sections like debug ones,
992 // because they are not loadable.
993 // TODO: implement for other file formats.
994 static bool shouldAdjustVA(const SectionRef &Section) {
995   const ObjectFile *Obj = Section.getObject();
996   if (Obj->isELF())
997     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
998   return false;
999 }
1000 
1001 
1002 typedef std::pair<uint64_t, char> MappingSymbolPair;
1003 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
1004                                  uint64_t Address) {
1005   auto It =
1006       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1007         return Val.first <= Address;
1008       });
1009   // Return zero for any address before the first mapping symbol; this means
1010   // we should use the default disassembly mode, depending on the target.
1011   if (It == MappingSymbols.begin())
1012     return '\x00';
1013   return (It - 1)->second;
1014 }
1015 
1016 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
1017                                uint64_t End, const ObjectFile &Obj,
1018                                ArrayRef<uint8_t> Bytes,
1019                                ArrayRef<MappingSymbolPair> MappingSymbols,
1020                                const MCSubtargetInfo &STI, raw_ostream &OS) {
1021   support::endianness Endian =
1022       Obj.isLittleEndian() ? support::little : support::big;
1023   size_t Start = OS.tell();
1024   OS << format("%8" PRIx64 ": ", SectionAddr + Index);
1025   if (Index + 4 <= End) {
1026     dumpBytes(Bytes.slice(Index, 4), OS);
1027     AlignToInstStartColumn(Start, STI, OS);
1028     OS << "\t.word\t"
1029            << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
1030                          10);
1031     return 4;
1032   }
1033   if (Index + 2 <= End) {
1034     dumpBytes(Bytes.slice(Index, 2), OS);
1035     AlignToInstStartColumn(Start, STI, OS);
1036     OS << "\t.short\t"
1037        << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6);
1038     return 2;
1039   }
1040   dumpBytes(Bytes.slice(Index, 1), OS);
1041   AlignToInstStartColumn(Start, STI, OS);
1042   OS << "\t.byte\t" << format_hex(Bytes[Index], 4);
1043   return 1;
1044 }
1045 
1046 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1047                         ArrayRef<uint8_t> Bytes) {
1048   // print out data up to 8 bytes at a time in hex and ascii
1049   uint8_t AsciiData[9] = {'\0'};
1050   uint8_t Byte;
1051   int NumBytes = 0;
1052 
1053   for (; Index < End; ++Index) {
1054     if (NumBytes == 0)
1055       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1056     Byte = Bytes.slice(Index)[0];
1057     outs() << format(" %02x", Byte);
1058     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1059 
1060     uint8_t IndentOffset = 0;
1061     NumBytes++;
1062     if (Index == End - 1 || NumBytes > 8) {
1063       // Indent the space for less than 8 bytes data.
1064       // 2 spaces for byte and one for space between bytes
1065       IndentOffset = 3 * (8 - NumBytes);
1066       for (int Excess = NumBytes; Excess < 8; Excess++)
1067         AsciiData[Excess] = '\0';
1068       NumBytes = 8;
1069     }
1070     if (NumBytes == 8) {
1071       AsciiData[8] = '\0';
1072       outs() << std::string(IndentOffset, ' ') << "         ";
1073       outs() << reinterpret_cast<char *>(AsciiData);
1074       outs() << '\n';
1075       NumBytes = 0;
1076     }
1077   }
1078 }
1079 
1080 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj,
1081                                        const SymbolRef &Symbol) {
1082   const StringRef FileName = Obj.getFileName();
1083   const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
1084   const StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1085 
1086   if (Obj.isXCOFF() && SymbolDescription) {
1087     const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj);
1088     DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();
1089 
1090     const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p);
1091     std::optional<XCOFF::StorageMappingClass> Smc =
1092         getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
1093     return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
1094                         isLabel(XCOFFObj, Symbol));
1095   } else if (Obj.isXCOFF()) {
1096     const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName);
1097     return SymbolInfoTy(Addr, Name, SymType, true);
1098   } else
1099     return SymbolInfoTy(Addr, Name,
1100                         Obj.isELF() ? getElfSymbolType(Obj, Symbol)
1101                                     : (uint8_t)ELF::STT_NOTYPE);
1102 }
1103 
1104 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj,
1105                                           const uint64_t Addr, StringRef &Name,
1106                                           uint8_t Type) {
1107   if (Obj.isXCOFF() && SymbolDescription)
1108     return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false);
1109   else
1110     return SymbolInfoTy(Addr, Name, Type);
1111 }
1112 
1113 static void
1114 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap,
1115                        uint64_t SectionAddr, uint64_t Start, uint64_t End,
1116                        std::unordered_map<uint64_t, std::vector<std::string>> &Labels) {
1117   if (AddrToBBAddrMap.empty())
1118     return;
1119   Labels.clear();
1120   uint64_t StartAddress = SectionAddr + Start;
1121   uint64_t EndAddress = SectionAddr + End;
1122   auto Iter = AddrToBBAddrMap.find(StartAddress);
1123   if (Iter == AddrToBBAddrMap.end())
1124     return;
1125   for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) {
1126     uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr;
1127     if (BBAddress >= EndAddress)
1128       continue;
1129     Labels[BBAddress].push_back(("BB" + Twine(I)).str());
1130   }
1131 }
1132 
1133 static void collectLocalBranchTargets(
1134     ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm,
1135     MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr,
1136     uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) {
1137   // So far only supports PowerPC and X86.
1138   if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86())
1139     return;
1140 
1141   Labels.clear();
1142   unsigned LabelCount = 0;
1143   Start += SectionAddr;
1144   End += SectionAddr;
1145   uint64_t Index = Start;
1146   while (Index < End) {
1147     // Disassemble a real instruction and record function-local branch labels.
1148     MCInst Inst;
1149     uint64_t Size;
1150     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr);
1151     bool Disassembled =
1152         DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls());
1153     if (Size == 0)
1154       Size = std::min<uint64_t>(ThisBytes.size(),
1155                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1156 
1157     if (Disassembled && MIA) {
1158       uint64_t Target;
1159       bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
1160       // On PowerPC, if the address of a branch is the same as the target, it
1161       // means that it's a function call. Do not mark the label for this case.
1162       if (TargetKnown && (Target >= Start && Target < End) &&
1163           !Labels.count(Target) &&
1164           !(STI->getTargetTriple().isPPC() && Target == Index))
1165         Labels[Target] = ("L" + Twine(LabelCount++)).str();
1166     }
1167     Index += Size;
1168   }
1169 }
1170 
1171 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1172 // This is currently only used on AMDGPU, and assumes the format of the
1173 // void * argument passed to AMDGPU's createMCSymbolizer.
1174 static void addSymbolizer(
1175     MCContext &Ctx, const Target *Target, StringRef TripleName,
1176     MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes,
1177     SectionSymbolsTy &Symbols,
1178     std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) {
1179 
1180   std::unique_ptr<MCRelocationInfo> RelInfo(
1181       Target->createMCRelocationInfo(TripleName, Ctx));
1182   if (!RelInfo)
1183     return;
1184   std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer(
1185       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1186   MCSymbolizer *SymbolizerPtr = &*Symbolizer;
1187   DisAsm->setSymbolizer(std::move(Symbolizer));
1188 
1189   if (!SymbolizeOperands)
1190     return;
1191 
1192   // Synthesize labels referenced by branch instructions by
1193   // disassembling, discarding the output, and collecting the referenced
1194   // addresses from the symbolizer.
1195   for (size_t Index = 0; Index != Bytes.size();) {
1196     MCInst Inst;
1197     uint64_t Size;
1198     ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1199     const uint64_t ThisAddr = SectionAddr + Index;
1200     DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls());
1201     if (Size == 0)
1202       Size = std::min<uint64_t>(ThisBytes.size(),
1203                                 DisAsm->suggestBytesToSkip(ThisBytes, Index));
1204     Index += Size;
1205   }
1206   ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses();
1207   // Copy and sort to remove duplicates.
1208   std::vector<uint64_t> LabelAddrs;
1209   LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(),
1210                     LabelAddrsRef.end());
1211   llvm::sort(LabelAddrs);
1212   LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) -
1213                     LabelAddrs.begin());
1214   // Add the labels.
1215   for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) {
1216     auto Name = std::make_unique<std::string>();
1217     *Name = (Twine("L") + Twine(LabelNum)).str();
1218     SynthesizedLabelNames.push_back(std::move(Name));
1219     Symbols.push_back(SymbolInfoTy(
1220         LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE));
1221   }
1222   llvm::stable_sort(Symbols);
1223   // Recreate the symbolizer with the new symbols list.
1224   RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx));
1225   Symbolizer.reset(Target->createMCSymbolizer(
1226       TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1227   DisAsm->setSymbolizer(std::move(Symbolizer));
1228 }
1229 
1230 static StringRef getSegmentName(const MachOObjectFile *MachO,
1231                                 const SectionRef &Section) {
1232   if (MachO) {
1233     DataRefImpl DR = Section.getRawDataRefImpl();
1234     StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1235     return SegmentName;
1236   }
1237   return "";
1238 }
1239 
1240 static void emitPostInstructionInfo(formatted_raw_ostream &FOS,
1241                                     const MCAsmInfo &MAI,
1242                                     const MCSubtargetInfo &STI,
1243                                     StringRef Comments,
1244                                     LiveVariablePrinter &LVP) {
1245   do {
1246     if (!Comments.empty()) {
1247       // Emit a line of comments.
1248       StringRef Comment;
1249       std::tie(Comment, Comments) = Comments.split('\n');
1250       // MAI.getCommentColumn() assumes that instructions are printed at the
1251       // position of 8, while getInstStartColumn() returns the actual position.
1252       unsigned CommentColumn =
1253           MAI.getCommentColumn() - 8 + getInstStartColumn(STI);
1254       FOS.PadToColumn(CommentColumn);
1255       FOS << MAI.getCommentString() << ' ' << Comment;
1256     }
1257     LVP.printAfterInst(FOS);
1258     FOS << '\n';
1259   } while (!Comments.empty());
1260   FOS.flush();
1261 }
1262 
1263 static void createFakeELFSections(ObjectFile &Obj) {
1264   assert(Obj.isELF());
1265   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1266     Elf32LEObj->createFakeSections();
1267   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1268     Elf64LEObj->createFakeSections();
1269   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1270     Elf32BEObj->createFakeSections();
1271   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj))
1272     Elf64BEObj->createFakeSections();
1273   else
1274     llvm_unreachable("Unsupported binary format");
1275 }
1276 
1277 // Tries to fetch a more complete version of the given object file using its
1278 // Build ID. Returns std::nullopt if nothing was found.
1279 static std::optional<OwningBinary<Binary>>
1280 fetchBinaryByBuildID(const ObjectFile &Obj) {
1281   std::optional<object::BuildIDRef> BuildID = getBuildID(&Obj);
1282   if (!BuildID)
1283     return std::nullopt;
1284   std::optional<std::string> Path = BIDFetcher->fetch(*BuildID);
1285   if (!Path)
1286     return std::nullopt;
1287   Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path);
1288   if (!DebugBinary) {
1289     reportWarning(toString(DebugBinary.takeError()), *Path);
1290     return std::nullopt;
1291   }
1292   return std::move(*DebugBinary);
1293 }
1294 
1295 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj,
1296                               const ObjectFile &DbgObj, MCContext &Ctx,
1297                               MCDisassembler *PrimaryDisAsm,
1298                               MCDisassembler *SecondaryDisAsm,
1299                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1300                               const MCSubtargetInfo *PrimarySTI,
1301                               const MCSubtargetInfo *SecondarySTI,
1302                               PrettyPrinter &PIP, SourcePrinter &SP,
1303                               bool InlineRelocs) {
1304   const MCSubtargetInfo *STI = PrimarySTI;
1305   MCDisassembler *DisAsm = PrimaryDisAsm;
1306   bool PrimaryIsThumb = false;
1307   if (isArmElf(Obj))
1308     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1309 
1310   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1311   if (InlineRelocs)
1312     RelocMap = getRelocsMap(Obj);
1313   bool Is64Bits = Obj.getBytesInAddress() > 4;
1314 
1315   // Create a mapping from virtual address to symbol name.  This is used to
1316   // pretty print the symbols while disassembling.
1317   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1318   SectionSymbolsTy AbsoluteSymbols;
1319   const StringRef FileName = Obj.getFileName();
1320   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj);
1321   for (const SymbolRef &Symbol : Obj.symbols()) {
1322     Expected<StringRef> NameOrErr = Symbol.getName();
1323     if (!NameOrErr) {
1324       reportWarning(toString(NameOrErr.takeError()), FileName);
1325       continue;
1326     }
1327     if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription))
1328       continue;
1329 
1330     if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
1331       continue;
1332 
1333     if (MachO) {
1334       // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1335       // symbols that support MachO header introspection. They do not bind to
1336       // code locations and are irrelevant for disassembly.
1337       if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header"))
1338         continue;
1339       // Don't ask a Mach-O STAB symbol for its section unless you know that
1340       // STAB symbol's section field refers to a valid section index. Otherwise
1341       // the symbol may error trying to load a section that does not exist.
1342       DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
1343       uint8_t NType = (MachO->is64Bit() ?
1344                        MachO->getSymbol64TableEntry(SymDRI).n_type:
1345                        MachO->getSymbolTableEntry(SymDRI).n_type);
1346       if (NType & MachO::N_STAB)
1347         continue;
1348     }
1349 
1350     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1351     if (SecI != Obj.section_end())
1352       AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
1353     else
1354       AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
1355   }
1356 
1357   if (AllSymbols.empty() && Obj.isELF())
1358     addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols);
1359 
1360   if (Obj.isWasm())
1361     addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols);
1362 
1363   if (Obj.isELF() && Obj.sections().empty())
1364     createFakeELFSections(Obj);
1365 
1366   BumpPtrAllocator A;
1367   StringSaver Saver(A);
1368   addPltEntries(Obj, AllSymbols, Saver);
1369 
1370   // Create a mapping from virtual address to section. An empty section can
1371   // cause more than one section at the same address. Sort such sections to be
1372   // before same-addressed non-empty sections so that symbol lookups prefer the
1373   // non-empty section.
1374   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1375   for (SectionRef Sec : Obj.sections())
1376     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1377   llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
1378     if (LHS.first != RHS.first)
1379       return LHS.first < RHS.first;
1380     return LHS.second.getSize() < RHS.second.getSize();
1381   });
1382 
1383   // Linked executables (.exe and .dll files) typically don't include a real
1384   // symbol table but they might contain an export table.
1385   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) {
1386     for (const auto &ExportEntry : COFFObj->export_directories()) {
1387       StringRef Name;
1388       if (Error E = ExportEntry.getSymbolName(Name))
1389         reportError(std::move(E), Obj.getFileName());
1390       if (Name.empty())
1391         continue;
1392 
1393       uint32_t RVA;
1394       if (Error E = ExportEntry.getExportRVA(RVA))
1395         reportError(std::move(E), Obj.getFileName());
1396 
1397       uint64_t VA = COFFObj->getImageBase() + RVA;
1398       auto Sec = partition_point(
1399           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1400             return O.first <= VA;
1401           });
1402       if (Sec != SectionAddresses.begin()) {
1403         --Sec;
1404         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1405       } else
1406         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1407     }
1408   }
1409 
1410   // Sort all the symbols, this allows us to use a simple binary search to find
1411   // Multiple symbols can have the same address. Use a stable sort to stabilize
1412   // the output.
1413   StringSet<> FoundDisasmSymbolSet;
1414   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1415     llvm::stable_sort(SecSyms.second);
1416   llvm::stable_sort(AbsoluteSymbols);
1417 
1418   std::unique_ptr<DWARFContext> DICtx;
1419   LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);
1420 
1421   if (DbgVariables != DVDisabled) {
1422     DICtx = DWARFContext::create(DbgObj);
1423     for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
1424       LVP.addCompileUnit(CU->getUnitDIE(false));
1425   }
1426 
1427   LLVM_DEBUG(LVP.dump());
1428 
1429   std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap;
1430   auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex =
1431                                std::nullopt) {
1432     AddrToBBAddrMap.clear();
1433     if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) {
1434       auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex);
1435       if (!BBAddrMapsOrErr)
1436         reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName());
1437       for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr)
1438         AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr,
1439                                 std::move(FunctionBBAddrMap));
1440     }
1441   };
1442 
1443   // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1444   // single mapping, since they don't have any conflicts.
1445   if (SymbolizeOperands && !Obj.isRelocatableObject())
1446     ReadBBAddrMap();
1447 
1448   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
1449     if (FilterSections.empty() && !DisassembleAll &&
1450         (!Section.isText() || Section.isVirtual()))
1451       continue;
1452 
1453     uint64_t SectionAddr = Section.getAddress();
1454     uint64_t SectSize = Section.getSize();
1455     if (!SectSize)
1456       continue;
1457 
1458     // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1459     // corresponding to this section, if present.
1460     if (SymbolizeOperands && Obj.isRelocatableObject())
1461       ReadBBAddrMap(Section.getIndex());
1462 
1463     // Get the list of all the symbols in this section.
1464     SectionSymbolsTy &Symbols = AllSymbols[Section];
1465     std::vector<MappingSymbolPair> MappingSymbols;
1466     if (hasMappingSymbols(Obj)) {
1467       for (const auto &Symb : Symbols) {
1468         uint64_t Address = Symb.Addr;
1469         StringRef Name = Symb.Name;
1470         if (Name.startswith("$d"))
1471           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1472         if (Name.startswith("$x"))
1473           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1474         if (Name.startswith("$a"))
1475           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1476         if (Name.startswith("$t"))
1477           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1478       }
1479     }
1480 
1481     llvm::sort(MappingSymbols);
1482 
1483     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1484         unwrapOrError(Section.getContents(), Obj.getFileName()));
1485 
1486     std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames;
1487     if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) {
1488       // AMDGPU disassembler uses symbolizer for printing labels
1489       addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes,
1490                     Symbols, SynthesizedLabelNames);
1491     }
1492 
1493     StringRef SegmentName = getSegmentName(MachO, Section);
1494     StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName());
1495     // If the section has no symbol at the start, just insert a dummy one.
1496     if (Symbols.empty() || Symbols[0].Addr != 0) {
1497       Symbols.insert(Symbols.begin(),
1498                      createDummySymbolInfo(Obj, SectionAddr, SectionName,
1499                                            Section.isText() ? ELF::STT_FUNC
1500                                                             : ELF::STT_OBJECT));
1501     }
1502 
1503     SmallString<40> Comments;
1504     raw_svector_ostream CommentStream(Comments);
1505 
1506     uint64_t VMAAdjustment = 0;
1507     if (shouldAdjustVA(Section))
1508       VMAAdjustment = AdjustVMA;
1509 
1510     // In executable and shared objects, r_offset holds a virtual address.
1511     // Subtract SectionAddr from the r_offset field of a relocation to get
1512     // the section offset.
1513     uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr;
1514     uint64_t Size;
1515     uint64_t Index;
1516     bool PrintedSection = false;
1517     std::vector<RelocationRef> Rels = RelocMap[Section];
1518     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1519     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1520 
1521     // Loop over each chunk of code between two points where at least
1522     // one symbol is defined.
1523     for (size_t SI = 0, SE = Symbols.size(); SI != SE;) {
1524       // Advance SI past all the symbols starting at the same address,
1525       // and make an ArrayRef of them.
1526       unsigned FirstSI = SI;
1527       uint64_t Start = Symbols[SI].Addr;
1528       ArrayRef<SymbolInfoTy> SymbolsHere;
1529       while (SI != SE && Symbols[SI].Addr == Start)
1530         ++SI;
1531       SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI);
1532 
1533       // Get the demangled names of all those symbols. We end up with a vector
1534       // of StringRef that holds the names we're going to use, and a vector of
1535       // std::string that stores the new strings returned by demangle(), if
1536       // any. If we don't call demangle() then that vector can stay empty.
1537       std::vector<StringRef> SymNamesHere;
1538       std::vector<std::string> DemangledSymNamesHere;
1539       if (Demangle) {
1540         // Fetch the demangled names and store them locally.
1541         for (const SymbolInfoTy &Symbol : SymbolsHere)
1542           DemangledSymNamesHere.push_back(demangle(Symbol.Name.str()));
1543         // Now we've finished modifying that vector, it's safe to make
1544         // a vector of StringRefs pointing into it.
1545         SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(),
1546                             DemangledSymNamesHere.end());
1547       } else {
1548         for (const SymbolInfoTy &Symbol : SymbolsHere)
1549           SymNamesHere.push_back(Symbol.Name);
1550       }
1551 
1552       // Distinguish ELF data from code symbols, which will be used later on to
1553       // decide whether to 'disassemble' this chunk as a data declaration via
1554       // dumpELFData(), or whether to treat it as code.
1555       //
1556       // If data _and_ code symbols are defined at the same address, the code
1557       // takes priority, on the grounds that disassembling code is our main
1558       // purpose here, and it would be a worse failure to _not_ interpret
1559       // something that _was_ meaningful as code than vice versa.
1560       //
1561       // Any ELF symbol type that is not clearly data will be regarded as code.
1562       // In particular, one of the uses of STT_NOTYPE is for branch targets
1563       // inside functions, for which STT_FUNC would be inaccurate.
1564       //
1565       // So here, we spot whether there's any non-data symbol present at all,
1566       // and only set the DisassembleAsData flag if there isn't. Also, we use
1567       // this distinction to inform the decision of which symbol to print at
1568       // the head of the section, so that if we're printing code, we print a
1569       // code-related symbol name to go with it.
1570       bool DisassembleAsData = false;
1571       size_t DisplaySymIndex = SymbolsHere.size() - 1;
1572       if (Obj.isELF() && !DisassembleAll && Section.isText()) {
1573         DisassembleAsData = true; // unless we find a code symbol below
1574 
1575         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1576           uint8_t SymTy = SymbolsHere[i].Type;
1577           if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) {
1578             DisassembleAsData = false;
1579             DisplaySymIndex = i;
1580           }
1581         }
1582       }
1583 
1584       // Decide which symbol(s) from this collection we're going to print.
1585       std::vector<bool> SymsToPrint(SymbolsHere.size(), false);
1586       // If the user has given the --disassemble-symbols option, then we must
1587       // display every symbol in that set, and no others.
1588       if (!DisasmSymbolSet.empty()) {
1589         bool FoundAny = false;
1590         for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1591           if (DisasmSymbolSet.count(SymNamesHere[i])) {
1592             SymsToPrint[i] = true;
1593             FoundAny = true;
1594           }
1595         }
1596 
1597         // And if none of the symbols here is one that the user asked for, skip
1598         // disassembling this entire chunk of code.
1599         if (!FoundAny)
1600           continue;
1601       } else {
1602         // Otherwise, print whichever symbol at this location is last in the
1603         // Symbols array, because that array is pre-sorted in a way intended to
1604         // correlate with priority of which symbol to display.
1605         SymsToPrint[DisplaySymIndex] = true;
1606       }
1607 
1608       // Now that we know we're disassembling this section, override the choice
1609       // of which symbols to display by printing _all_ of them at this address
1610       // if the user asked for all symbols.
1611       //
1612       // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1613       // only the chunk of code headed by 'foo', but also show any other
1614       // symbols defined at that address, such as aliases for 'foo', or the ARM
1615       // mapping symbol preceding its code.
1616       if (ShowAllSymbols) {
1617         for (size_t i = 0; i < SymbolsHere.size(); ++i)
1618           SymsToPrint[i] = true;
1619       }
1620 
1621       if (Start < SectionAddr || StopAddress <= Start)
1622         continue;
1623 
1624       for (size_t i = 0; i < SymbolsHere.size(); ++i)
1625         FoundDisasmSymbolSet.insert(SymNamesHere[i]);
1626 
1627       // The end is the section end, the beginning of the next symbol, or
1628       // --stop-address.
1629       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1630       if (SI < SE)
1631         End = std::min(End, Symbols[SI].Addr);
1632       if (Start >= End || End <= StartAddress)
1633         continue;
1634       Start -= SectionAddr;
1635       End -= SectionAddr;
1636 
1637       if (!PrintedSection) {
1638         PrintedSection = true;
1639         outs() << "\nDisassembly of section ";
1640         if (!SegmentName.empty())
1641           outs() << SegmentName << ",";
1642         outs() << SectionName << ":\n";
1643       }
1644 
1645       outs() << '\n';
1646 
1647       for (size_t i = 0; i < SymbolsHere.size(); ++i) {
1648         if (!SymsToPrint[i])
1649           continue;
1650 
1651         const SymbolInfoTy &Symbol = SymbolsHere[i];
1652         const StringRef SymbolName = SymNamesHere[i];
1653 
1654         if (LeadingAddr)
1655           outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1656                            SectionAddr + Start + VMAAdjustment);
1657         if (Obj.isXCOFF() && SymbolDescription) {
1658           outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n";
1659         } else
1660           outs() << '<' << SymbolName << ">:\n";
1661       }
1662 
1663       // Don't print raw contents of a virtual section. A virtual section
1664       // doesn't have any contents in the file.
1665       if (Section.isVirtual()) {
1666         outs() << "...\n";
1667         continue;
1668       }
1669 
1670       // See if any of the symbols defined at this location triggers target-
1671       // specific disassembly behavior, e.g. of special descriptors or function
1672       // prelude information.
1673       //
1674       // We stop this loop at the first symbol that triggers some kind of
1675       // interesting behavior (if any), on the assumption that if two symbols
1676       // defined at the same address trigger two conflicting symbol handlers,
1677       // the object file is probably confused anyway, and it would make even
1678       // less sense to present the output of _both_ handlers, because that
1679       // would describe the same data twice.
1680       for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) {
1681         SymbolInfoTy Symbol = SymbolsHere[SHI];
1682 
1683         auto Status =
1684             DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start),
1685                                   SectionAddr + Start, CommentStream);
1686 
1687         if (!Status) {
1688           // If onSymbolStart returns std::nullopt, that means it didn't trigger
1689           // any interesting handling for this symbol. Try the other symbols
1690           // defined at this address.
1691           continue;
1692         }
1693 
1694         if (*Status == MCDisassembler::Fail) {
1695           // If onSymbolStart returns Fail, that means it identified some kind
1696           // of special data at this address, but wasn't able to disassemble it
1697           // meaningfully. So we fall back to disassembling the failed region
1698           // as bytes, assuming that the target detected the failure before
1699           // printing anything.
1700           //
1701           // Return values Success or SoftFail (i.e no 'real' failure) are
1702           // expected to mean that the target has emitted its own output.
1703           //
1704           // Either way, 'Size' will have been set to the amount of data
1705           // covered by whatever prologue the target identified. So we advance
1706           // our own position to beyond that. Sometimes that will be the entire
1707           // distance to the next symbol, and sometimes it will be just a
1708           // prologue and we should start disassembling instructions from where
1709           // it left off.
1710           outs() << "// Error in decoding " << SymNamesHere[SHI]
1711                  << " : Decoding failed region as bytes.\n";
1712           for (uint64_t I = 0; I < Size; ++I) {
1713             outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
1714                    << "\n";
1715           }
1716         }
1717         Start += Size;
1718         break;
1719       }
1720 
1721       Index = Start;
1722       if (SectionAddr < StartAddress)
1723         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1724 
1725       if (DisassembleAsData) {
1726         dumpELFData(SectionAddr, Index, End, Bytes);
1727         Index = End;
1728         continue;
1729       }
1730 
1731       bool DumpARMELFData = false;
1732       formatted_raw_ostream FOS(outs());
1733 
1734       std::unordered_map<uint64_t, std::string> AllLabels;
1735       std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels;
1736       if (SymbolizeOperands) {
1737         collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
1738                                   SectionAddr, Index, End, AllLabels);
1739         collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End,
1740                                BBAddrMapLabels);
1741       }
1742 
1743       while (Index < End) {
1744         // ARM and AArch64 ELF binaries can interleave data and text in the
1745         // same section. We rely on the markers introduced to understand what
1746         // we need to dump. If the data marker is within a function, it is
1747         // denoted as a word/short etc.
1748         if (!MappingSymbols.empty()) {
1749           char Kind = getMappingSymbolKind(MappingSymbols, Index);
1750           DumpARMELFData = Kind == 'd';
1751           if (SecondarySTI) {
1752             if (Kind == 'a') {
1753               STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1754               DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1755             } else if (Kind == 't') {
1756               STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1757               DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1758             }
1759           }
1760         }
1761 
1762         if (DumpARMELFData) {
1763           Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1764                                 MappingSymbols, *STI, FOS);
1765         } else {
1766           // When -z or --disassemble-zeroes are given we always dissasemble
1767           // them. Otherwise we might want to skip zero bytes we see.
1768           if (!DisassembleZeroes) {
1769             uint64_t MaxOffset = End - Index;
1770             // For --reloc: print zero blocks patched by relocations, so that
1771             // relocations can be shown in the dump.
1772             if (RelCur != RelEnd)
1773               MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index,
1774                                    MaxOffset);
1775 
1776             if (size_t N =
1777                     countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1778               FOS << "\t\t..." << '\n';
1779               Index += N;
1780               continue;
1781             }
1782           }
1783 
1784           // Print local label if there's any.
1785           auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index);
1786           if (Iter1 != BBAddrMapLabels.end()) {
1787             for (StringRef Label : Iter1->second)
1788               FOS << "<" << Label << ">:\n";
1789           } else {
1790             auto Iter2 = AllLabels.find(SectionAddr + Index);
1791             if (Iter2 != AllLabels.end())
1792               FOS << "<" << Iter2->second << ">:\n";
1793           }
1794 
1795           // Disassemble a real instruction or a data when disassemble all is
1796           // provided
1797           MCInst Inst;
1798           ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index);
1799           uint64_t ThisAddr = SectionAddr + Index;
1800           bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes,
1801                                                      ThisAddr, CommentStream);
1802           if (Size == 0)
1803             Size = std::min<uint64_t>(
1804                 ThisBytes.size(),
1805                 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr));
1806 
1807           LVP.update({Index, Section.getIndex()},
1808                      {Index + Size, Section.getIndex()}, Index + Size != End);
1809 
1810           IP->setCommentStream(CommentStream);
1811 
1812           PIP.printInst(
1813               *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1814               {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
1815               "", *STI, &SP, Obj.getFileName(), &Rels, LVP);
1816 
1817           IP->setCommentStream(llvm::nulls());
1818 
1819           // If disassembly has failed, avoid analysing invalid/incomplete
1820           // instruction information. Otherwise, try to resolve the target
1821           // address (jump target or memory operand address) and print it on the
1822           // right of the instruction.
1823           if (Disassembled && MIA) {
1824             // Branch targets are printed just after the instructions.
1825             llvm::raw_ostream *TargetOS = &FOS;
1826             uint64_t Target;
1827             bool PrintTarget =
1828                 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
1829             if (!PrintTarget)
1830               if (std::optional<uint64_t> MaybeTarget =
1831                       MIA->evaluateMemoryOperandAddress(
1832                           Inst, STI, SectionAddr + Index, Size)) {
1833                 Target = *MaybeTarget;
1834                 PrintTarget = true;
1835                 // Do not print real address when symbolizing.
1836                 if (!SymbolizeOperands) {
1837                   // Memory operand addresses are printed as comments.
1838                   TargetOS = &CommentStream;
1839                   *TargetOS << "0x" << Twine::utohexstr(Target);
1840                 }
1841               }
1842             if (PrintTarget) {
1843               // In a relocatable object, the target's section must reside in
1844               // the same section as the call instruction or it is accessed
1845               // through a relocation.
1846               //
1847               // In a non-relocatable object, the target may be in any section.
1848               // In that case, locate the section(s) containing the target
1849               // address and find the symbol in one of those, if possible.
1850               //
1851               // N.B. We don't walk the relocations in the relocatable case yet.
1852               std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
1853               if (!Obj.isRelocatableObject()) {
1854                 auto It = llvm::partition_point(
1855                     SectionAddresses,
1856                     [=](const std::pair<uint64_t, SectionRef> &O) {
1857                       return O.first <= Target;
1858                     });
1859                 uint64_t TargetSecAddr = 0;
1860                 while (It != SectionAddresses.begin()) {
1861                   --It;
1862                   if (TargetSecAddr == 0)
1863                     TargetSecAddr = It->first;
1864                   if (It->first != TargetSecAddr)
1865                     break;
1866                   TargetSectionSymbols.push_back(&AllSymbols[It->second]);
1867                 }
1868               } else {
1869                 TargetSectionSymbols.push_back(&Symbols);
1870               }
1871               TargetSectionSymbols.push_back(&AbsoluteSymbols);
1872 
1873               // Find the last symbol in the first candidate section whose
1874               // offset is less than or equal to the target. If there are no
1875               // such symbols, try in the next section and so on, before finally
1876               // using the nearest preceding absolute symbol (if any), if there
1877               // are no other valid symbols.
1878               const SymbolInfoTy *TargetSym = nullptr;
1879               for (const SectionSymbolsTy *TargetSymbols :
1880                    TargetSectionSymbols) {
1881                 auto It = llvm::partition_point(
1882                     *TargetSymbols,
1883                     [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
1884                 while (It != TargetSymbols->begin()) {
1885                   --It;
1886                   // Skip mapping symbols to avoid possible ambiguity as they
1887                   // do not allow uniquely identifying the target address.
1888                   if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) {
1889                     TargetSym = &*It;
1890                     break;
1891                   }
1892                 }
1893                 if (TargetSym)
1894                   break;
1895               }
1896 
1897               // Print the labels corresponding to the target if there's any.
1898               bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target);
1899               bool LabelAvailable = AllLabels.count(Target);
1900               if (TargetSym != nullptr) {
1901                 uint64_t TargetAddress = TargetSym->Addr;
1902                 uint64_t Disp = Target - TargetAddress;
1903                 std::string TargetName = TargetSym->Name.str();
1904                 if (Demangle)
1905                   TargetName = demangle(TargetName);
1906 
1907                 *TargetOS << " <";
1908                 if (!Disp) {
1909                   // Always Print the binary symbol precisely corresponding to
1910                   // the target address.
1911                   *TargetOS << TargetName;
1912                 } else if (BBAddrMapLabelAvailable) {
1913                   *TargetOS << BBAddrMapLabels[Target].front();
1914                 } else if (LabelAvailable) {
1915                   *TargetOS << AllLabels[Target];
1916                 } else {
1917                   // Always Print the binary symbol plus an offset if there's no
1918                   // local label corresponding to the target address.
1919                   *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp);
1920                 }
1921                 *TargetOS << ">";
1922               } else if (BBAddrMapLabelAvailable) {
1923                 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">";
1924               } else if (LabelAvailable) {
1925                 *TargetOS << " <" << AllLabels[Target] << ">";
1926               }
1927               // By convention, each record in the comment stream should be
1928               // terminated.
1929               if (TargetOS == &CommentStream)
1930                 *TargetOS << "\n";
1931             }
1932           }
1933         }
1934 
1935         assert(Ctx.getAsmInfo());
1936         emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI,
1937                                 CommentStream.str(), LVP);
1938         Comments.clear();
1939 
1940         // Hexagon does this in pretty printer
1941         if (Obj.getArch() != Triple::hexagon) {
1942           // Print relocation for instruction and data.
1943           while (RelCur != RelEnd) {
1944             uint64_t Offset = RelCur->getOffset() - RelAdjustment;
1945             // If this relocation is hidden, skip it.
1946             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1947               ++RelCur;
1948               continue;
1949             }
1950 
1951             // Stop when RelCur's offset is past the disassembled
1952             // instruction/data. Note that it's possible the disassembled data
1953             // is not the complete data: we might see the relocation printed in
1954             // the middle of the data, but this matches the binutils objdump
1955             // output.
1956             if (Offset >= Index + Size)
1957               break;
1958 
1959             // When --adjust-vma is used, update the address printed.
1960             if (RelCur->getSymbol() != Obj.symbol_end()) {
1961               Expected<section_iterator> SymSI =
1962                   RelCur->getSymbol()->getSection();
1963               if (SymSI && *SymSI != Obj.section_end() &&
1964                   shouldAdjustVA(**SymSI))
1965                 Offset += AdjustVMA;
1966             }
1967 
1968             printRelocation(FOS, Obj.getFileName(), *RelCur,
1969                             SectionAddr + Offset, Is64Bits);
1970             LVP.printAfterOtherLine(FOS, true);
1971             ++RelCur;
1972           }
1973         }
1974 
1975         Index += Size;
1976       }
1977     }
1978   }
1979   StringSet<> MissingDisasmSymbolSet =
1980       set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
1981   for (StringRef Sym : MissingDisasmSymbolSet.keys())
1982     reportWarning("failed to disassemble missing symbol " + Sym, FileName);
1983 }
1984 
1985 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) {
1986   // If information useful for showing the disassembly is missing, try to find a
1987   // more complete binary and disassemble that instead.
1988   OwningBinary<Binary> FetchedBinary;
1989   if (Obj->symbols().empty()) {
1990     if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt =
1991             fetchBinaryByBuildID(*Obj)) {
1992       if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) {
1993         if (!O->symbols().empty() ||
1994             (!O->sections().empty() && Obj->sections().empty())) {
1995           FetchedBinary = std::move(*FetchedBinaryOpt);
1996           Obj = O;
1997         }
1998       }
1999     }
2000   }
2001 
2002   const Target *TheTarget = getTarget(Obj);
2003 
2004   // Package up features to be passed to target/subtarget
2005   SubtargetFeatures Features = Obj->getFeatures();
2006   if (!MAttrs.empty()) {
2007     for (unsigned I = 0; I != MAttrs.size(); ++I)
2008       Features.AddFeature(MAttrs[I]);
2009   } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) {
2010     Features.AddFeature("+all");
2011   }
2012 
2013   std::unique_ptr<const MCRegisterInfo> MRI(
2014       TheTarget->createMCRegInfo(TripleName));
2015   if (!MRI)
2016     reportError(Obj->getFileName(),
2017                 "no register info for target " + TripleName);
2018 
2019   // Set up disassembler.
2020   MCTargetOptions MCOptions;
2021   std::unique_ptr<const MCAsmInfo> AsmInfo(
2022       TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
2023   if (!AsmInfo)
2024     reportError(Obj->getFileName(),
2025                 "no assembly info for target " + TripleName);
2026 
2027   if (MCPU.empty())
2028     MCPU = Obj->tryGetCPUName().value_or("").str();
2029 
2030   if (isArmElf(*Obj)) {
2031     // When disassembling big-endian Arm ELF, the instruction endianness is
2032     // determined in a complex way. In relocatable objects, AAELF32 mandates
2033     // that instruction endianness matches the ELF file endianness; in
2034     // executable images, that's true unless the file header has the EF_ARM_BE8
2035     // flag, in which case instructions are little-endian regardless of data
2036     // endianness.
2037     //
2038     // We must set the big-endian-instructions SubtargetFeature to make the
2039     // disassembler read the instructions the right way round, and also tell
2040     // our own prettyprinter to retrieve the encodings the same way to print in
2041     // hex.
2042     const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj);
2043 
2044     if (Elf32BE && (Elf32BE->isRelocatableObject() ||
2045                     !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) {
2046       Features.AddFeature("+big-endian-instructions");
2047       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big);
2048     } else {
2049       ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little);
2050     }
2051   }
2052 
2053   std::unique_ptr<const MCSubtargetInfo> STI(
2054       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
2055   if (!STI)
2056     reportError(Obj->getFileName(),
2057                 "no subtarget info for target " + TripleName);
2058   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
2059   if (!MII)
2060     reportError(Obj->getFileName(),
2061                 "no instruction info for target " + TripleName);
2062   MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get());
2063   // FIXME: for now initialize MCObjectFileInfo with default values
2064   std::unique_ptr<MCObjectFileInfo> MOFI(
2065       TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false));
2066   Ctx.setObjectFileInfo(MOFI.get());
2067 
2068   std::unique_ptr<MCDisassembler> DisAsm(
2069       TheTarget->createMCDisassembler(*STI, Ctx));
2070   if (!DisAsm)
2071     reportError(Obj->getFileName(), "no disassembler for target " + TripleName);
2072 
2073   // If we have an ARM object file, we need a second disassembler, because
2074   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2075   // We use mapping symbols to switch between the two assemblers, where
2076   // appropriate.
2077   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
2078   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
2079   if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) {
2080     if (STI->checkFeatures("+thumb-mode"))
2081       Features.AddFeature("-thumb-mode");
2082     else
2083       Features.AddFeature("+thumb-mode");
2084     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
2085                                                         Features.getString()));
2086     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
2087   }
2088 
2089   std::unique_ptr<const MCInstrAnalysis> MIA(
2090       TheTarget->createMCInstrAnalysis(MII.get()));
2091 
2092   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
2093   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
2094       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
2095   if (!IP)
2096     reportError(Obj->getFileName(),
2097                 "no instruction printer for target " + TripleName);
2098   IP->setPrintImmHex(PrintImmHex);
2099   IP->setPrintBranchImmAsAddress(true);
2100   IP->setSymbolizeOperands(SymbolizeOperands);
2101   IP->setMCInstrAnalysis(MIA.get());
2102 
2103   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
2104 
2105   const ObjectFile *DbgObj = Obj;
2106   if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) {
2107     if (std::optional<OwningBinary<Binary>> DebugBinaryOpt =
2108             fetchBinaryByBuildID(*Obj)) {
2109       if (auto *FetchedObj =
2110               dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) {
2111         if (FetchedObj->hasDebugInfo()) {
2112           FetchedBinary = std::move(*DebugBinaryOpt);
2113           DbgObj = FetchedObj;
2114         }
2115       }
2116     }
2117   }
2118 
2119   std::unique_ptr<object::Binary> DSYMBinary;
2120   std::unique_ptr<MemoryBuffer> DSYMBuf;
2121   if (!DbgObj->hasDebugInfo()) {
2122     if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) {
2123       DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(),
2124                                            DSYMBinary, DSYMBuf);
2125       if (!DbgObj)
2126         return;
2127     }
2128   }
2129 
2130   SourcePrinter SP(DbgObj, TheTarget->getName());
2131 
2132   for (StringRef Opt : DisassemblerOptions)
2133     if (!IP->applyTargetSpecificCLOption(Opt))
2134       reportError(Obj->getFileName(),
2135                   "Unrecognized disassembler option: " + Opt);
2136 
2137   disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(),
2138                     SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(),
2139                     SecondarySTI.get(), PIP, SP, InlineRelocs);
2140 }
2141 
2142 void objdump::printRelocations(const ObjectFile *Obj) {
2143   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
2144                                                  "%08" PRIx64;
2145 
2146   // Build a mapping from relocation target to a vector of relocation
2147   // sections. Usually, there is an only one relocation section for
2148   // each relocated section.
2149   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
2150   uint64_t Ndx;
2151   for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
2152     if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC))
2153       continue;
2154     if (Section.relocation_begin() == Section.relocation_end())
2155       continue;
2156     Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
2157     if (!SecOrErr)
2158       reportError(Obj->getFileName(),
2159                   "section (" + Twine(Ndx) +
2160                       "): unable to get a relocation target: " +
2161                       toString(SecOrErr.takeError()));
2162     SecToRelSec[**SecOrErr].push_back(Section);
2163   }
2164 
2165   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
2166     StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
2167     outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n";
2168     uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2169     uint32_t TypePadding = 24;
2170     outs() << left_justify("OFFSET", OffsetPadding) << " "
2171            << left_justify("TYPE", TypePadding) << " "
2172            << "VALUE\n";
2173 
2174     for (SectionRef Section : P.second) {
2175       for (const RelocationRef &Reloc : Section.relocations()) {
2176         uint64_t Address = Reloc.getOffset();
2177         SmallString<32> RelocName;
2178         SmallString<32> ValueStr;
2179         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
2180           continue;
2181         Reloc.getTypeName(RelocName);
2182         if (Error E = getRelocationValueString(Reloc, ValueStr))
2183           reportError(std::move(E), Obj->getFileName());
2184 
2185         outs() << format(Fmt.data(), Address) << " "
2186                << left_justify(RelocName, TypePadding) << " " << ValueStr
2187                << "\n";
2188       }
2189     }
2190   }
2191 }
2192 
2193 void objdump::printDynamicRelocations(const ObjectFile *Obj) {
2194   // For the moment, this option is for ELF only
2195   if (!Obj->isELF())
2196     return;
2197 
2198   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
2199   if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) {
2200         return Sec.getType() == ELF::SHT_DYNAMIC;
2201       })) {
2202     reportError(Obj->getFileName(), "not a dynamic object");
2203     return;
2204   }
2205 
2206   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
2207   if (DynRelSec.empty())
2208     return;
2209 
2210   outs() << "\nDYNAMIC RELOCATION RECORDS\n";
2211   const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
2212   const uint32_t TypePadding = 24;
2213   outs() << left_justify("OFFSET", OffsetPadding) << ' '
2214          << left_justify("TYPE", TypePadding) << " VALUE\n";
2215 
2216   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2217   for (const SectionRef &Section : DynRelSec)
2218     for (const RelocationRef &Reloc : Section.relocations()) {
2219       uint64_t Address = Reloc.getOffset();
2220       SmallString<32> RelocName;
2221       SmallString<32> ValueStr;
2222       Reloc.getTypeName(RelocName);
2223       if (Error E = getRelocationValueString(Reloc, ValueStr))
2224         reportError(std::move(E), Obj->getFileName());
2225       outs() << format(Fmt.data(), Address) << ' '
2226              << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n';
2227     }
2228 }
2229 
2230 // Returns true if we need to show LMA column when dumping section headers. We
2231 // show it only when the platform is ELF and either we have at least one section
2232 // whose VMA and LMA are different and/or when --show-lma flag is used.
2233 static bool shouldDisplayLMA(const ObjectFile &Obj) {
2234   if (!Obj.isELF())
2235     return false;
2236   for (const SectionRef &S : ToolSectionFilter(Obj))
2237     if (S.getAddress() != getELFSectionLMA(S))
2238       return true;
2239   return ShowLMA;
2240 }
2241 
2242 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) {
2243   // Default column width for names is 13 even if no names are that long.
2244   size_t MaxWidth = 13;
2245   for (const SectionRef &Section : ToolSectionFilter(Obj)) {
2246     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2247     MaxWidth = std::max(MaxWidth, Name.size());
2248   }
2249   return MaxWidth;
2250 }
2251 
2252 void objdump::printSectionHeaders(ObjectFile &Obj) {
2253   if (Obj.isELF() && Obj.sections().empty())
2254     createFakeELFSections(Obj);
2255 
2256   size_t NameWidth = getMaxSectionNameWidth(Obj);
2257   size_t AddressWidth = 2 * Obj.getBytesInAddress();
2258   bool HasLMAColumn = shouldDisplayLMA(Obj);
2259   outs() << "\nSections:\n";
2260   if (HasLMAColumn)
2261     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2262            << left_justify("VMA", AddressWidth) << " "
2263            << left_justify("LMA", AddressWidth) << " Type\n";
2264   else
2265     outs() << "Idx " << left_justify("Name", NameWidth) << " Size     "
2266            << left_justify("VMA", AddressWidth) << " Type\n";
2267 
2268   uint64_t Idx;
2269   for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) {
2270     StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName());
2271     uint64_t VMA = Section.getAddress();
2272     if (shouldAdjustVA(Section))
2273       VMA += AdjustVMA;
2274 
2275     uint64_t Size = Section.getSize();
2276 
2277     std::string Type = Section.isText() ? "TEXT" : "";
2278     if (Section.isData())
2279       Type += Type.empty() ? "DATA" : ", DATA";
2280     if (Section.isBSS())
2281       Type += Type.empty() ? "BSS" : ", BSS";
2282     if (Section.isDebugSection())
2283       Type += Type.empty() ? "DEBUG" : ", DEBUG";
2284 
2285     if (HasLMAColumn)
2286       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2287                        Name.str().c_str(), Size)
2288              << format_hex_no_prefix(VMA, AddressWidth) << " "
2289              << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
2290              << " " << Type << "\n";
2291     else
2292       outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
2293                        Name.str().c_str(), Size)
2294              << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
2295   }
2296 }
2297 
2298 void objdump::printSectionContents(const ObjectFile *Obj) {
2299   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
2300 
2301   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
2302     StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
2303     uint64_t BaseAddr = Section.getAddress();
2304     uint64_t Size = Section.getSize();
2305     if (!Size)
2306       continue;
2307 
2308     outs() << "Contents of section ";
2309     StringRef SegmentName = getSegmentName(MachO, Section);
2310     if (!SegmentName.empty())
2311       outs() << SegmentName << ",";
2312     outs() << Name << ":\n";
2313     if (Section.isBSS()) {
2314       outs() << format("<skipping contents of bss section at [%04" PRIx64
2315                        ", %04" PRIx64 ")>\n",
2316                        BaseAddr, BaseAddr + Size);
2317       continue;
2318     }
2319 
2320     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
2321 
2322     // Dump out the content as hex and printable ascii characters.
2323     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
2324       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
2325       // Dump line of hex.
2326       for (std::size_t I = 0; I < 16; ++I) {
2327         if (I != 0 && I % 4 == 0)
2328           outs() << ' ';
2329         if (Addr + I < End)
2330           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
2331                  << hexdigit(Contents[Addr + I] & 0xF, true);
2332         else
2333           outs() << "  ";
2334       }
2335       // Print ascii.
2336       outs() << "  ";
2337       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
2338         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
2339           outs() << Contents[Addr + I];
2340         else
2341           outs() << ".";
2342       }
2343       outs() << "\n";
2344     }
2345   }
2346 }
2347 
2348 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName,
2349                                StringRef ArchitectureName, bool DumpDynamic) {
2350   if (O.isCOFF() && !DumpDynamic) {
2351     outs() << "\nSYMBOL TABLE:\n";
2352     printCOFFSymbolTable(cast<const COFFObjectFile>(O));
2353     return;
2354   }
2355 
2356   const StringRef FileName = O.getFileName();
2357 
2358   if (!DumpDynamic) {
2359     outs() << "\nSYMBOL TABLE:\n";
2360     for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I)
2361       printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName,
2362                   DumpDynamic);
2363     return;
2364   }
2365 
2366   outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2367   if (!O.isELF()) {
2368     reportWarning(
2369         "this operation is not currently supported for this file format",
2370         FileName);
2371     return;
2372   }
2373 
2374   const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O);
2375   auto Symbols = ELF->getDynamicSymbolIterators();
2376   Expected<std::vector<VersionEntry>> SymbolVersionsOrErr =
2377       ELF->readDynsymVersions();
2378   if (!SymbolVersionsOrErr) {
2379     reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName);
2380     SymbolVersionsOrErr = std::vector<VersionEntry>();
2381     (void)!SymbolVersionsOrErr;
2382   }
2383   for (auto &Sym : Symbols)
2384     printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName,
2385                 ArchitectureName, DumpDynamic);
2386 }
2387 
2388 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol,
2389                           ArrayRef<VersionEntry> SymbolVersions,
2390                           StringRef FileName, StringRef ArchiveName,
2391                           StringRef ArchitectureName, bool DumpDynamic) {
2392   const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O);
2393   uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
2394                                    ArchitectureName);
2395   if ((Address < StartAddress) || (Address > StopAddress))
2396     return;
2397   SymbolRef::Type Type =
2398       unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
2399   uint32_t Flags =
2400       unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);
2401 
2402   // Don't ask a Mach-O STAB symbol for its section unless you know that
2403   // STAB symbol's section field refers to a valid section index. Otherwise
2404   // the symbol may error trying to load a section that does not exist.
2405   bool IsSTAB = false;
2406   if (MachO) {
2407     DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
2408     uint8_t NType =
2409         (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
2410                           : MachO->getSymbolTableEntry(SymDRI).n_type);
2411     if (NType & MachO::N_STAB)
2412       IsSTAB = true;
2413   }
2414   section_iterator Section = IsSTAB
2415                                  ? O.section_end()
2416                                  : unwrapOrError(Symbol.getSection(), FileName,
2417                                                  ArchiveName, ArchitectureName);
2418 
2419   StringRef Name;
2420   if (Type == SymbolRef::ST_Debug && Section != O.section_end()) {
2421     if (Expected<StringRef> NameOrErr = Section->getName())
2422       Name = *NameOrErr;
2423     else
2424       consumeError(NameOrErr.takeError());
2425 
2426   } else {
2427     Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
2428                          ArchitectureName);
2429   }
2430 
2431   bool Global = Flags & SymbolRef::SF_Global;
2432   bool Weak = Flags & SymbolRef::SF_Weak;
2433   bool Absolute = Flags & SymbolRef::SF_Absolute;
2434   bool Common = Flags & SymbolRef::SF_Common;
2435   bool Hidden = Flags & SymbolRef::SF_Hidden;
2436 
2437   char GlobLoc = ' ';
2438   if ((Section != O.section_end() || Absolute) && !Weak)
2439     GlobLoc = Global ? 'g' : 'l';
2440   char IFunc = ' ';
2441   if (O.isELF()) {
2442     if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
2443       IFunc = 'i';
2444     if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
2445       GlobLoc = 'u';
2446   }
2447 
2448   char Debug = ' ';
2449   if (DumpDynamic)
2450     Debug = 'D';
2451   else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
2452     Debug = 'd';
2453 
2454   char FileFunc = ' ';
2455   if (Type == SymbolRef::ST_File)
2456     FileFunc = 'f';
2457   else if (Type == SymbolRef::ST_Function)
2458     FileFunc = 'F';
2459   else if (Type == SymbolRef::ST_Data)
2460     FileFunc = 'O';
2461 
2462   const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2463 
2464   outs() << format(Fmt, Address) << " "
2465          << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
2466          << (Weak ? 'w' : ' ') // Weak?
2467          << ' '                // Constructor. Not supported yet.
2468          << ' '                // Warning. Not supported yet.
2469          << IFunc              // Indirect reference to another symbol.
2470          << Debug              // Debugging (d) or dynamic (D) symbol.
2471          << FileFunc           // Name of function (F), file (f) or object (O).
2472          << ' ';
2473   if (Absolute) {
2474     outs() << "*ABS*";
2475   } else if (Common) {
2476     outs() << "*COM*";
2477   } else if (Section == O.section_end()) {
2478     if (O.isXCOFF()) {
2479       XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef(
2480           Symbol.getRawDataRefImpl());
2481       if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber())
2482         outs() << "*DEBUG*";
2483       else
2484         outs() << "*UND*";
2485     } else
2486       outs() << "*UND*";
2487   } else {
2488     StringRef SegmentName = getSegmentName(MachO, *Section);
2489     if (!SegmentName.empty())
2490       outs() << SegmentName << ",";
2491     StringRef SectionName = unwrapOrError(Section->getName(), FileName);
2492     outs() << SectionName;
2493     if (O.isXCOFF()) {
2494       std::optional<SymbolRef> SymRef =
2495           getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol);
2496       if (SymRef) {
2497 
2498         Expected<StringRef> NameOrErr = SymRef->getName();
2499 
2500         if (NameOrErr) {
2501           outs() << " (csect:";
2502           std::string SymName(NameOrErr.get());
2503 
2504           if (Demangle)
2505             SymName = demangle(SymName);
2506 
2507           if (SymbolDescription)
2508             SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef),
2509                                                 SymName);
2510 
2511           outs() << ' ' << SymName;
2512           outs() << ") ";
2513         } else
2514           reportWarning(toString(NameOrErr.takeError()), FileName);
2515       }
2516     }
2517   }
2518 
2519   if (Common)
2520     outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment()));
2521   else if (O.isXCOFF())
2522     outs() << '\t'
2523            << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize(
2524                               Symbol.getRawDataRefImpl()));
2525   else if (O.isELF())
2526     outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize());
2527 
2528   if (O.isELF()) {
2529     if (!SymbolVersions.empty()) {
2530       const VersionEntry &Ver =
2531           SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1];
2532       std::string Str;
2533       if (!Ver.Name.empty())
2534         Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')';
2535       outs() << ' ' << left_justify(Str, 12);
2536     }
2537 
2538     uint8_t Other = ELFSymbolRef(Symbol).getOther();
2539     switch (Other) {
2540     case ELF::STV_DEFAULT:
2541       break;
2542     case ELF::STV_INTERNAL:
2543       outs() << " .internal";
2544       break;
2545     case ELF::STV_HIDDEN:
2546       outs() << " .hidden";
2547       break;
2548     case ELF::STV_PROTECTED:
2549       outs() << " .protected";
2550       break;
2551     default:
2552       outs() << format(" 0x%02x", Other);
2553       break;
2554     }
2555   } else if (Hidden) {
2556     outs() << " .hidden";
2557   }
2558 
2559   std::string SymName(Name);
2560   if (Demangle)
2561     SymName = demangle(SymName);
2562 
2563   if (O.isXCOFF() && SymbolDescription)
2564     SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName);
2565 
2566   outs() << ' ' << SymName << '\n';
2567 }
2568 
2569 static void printUnwindInfo(const ObjectFile *O) {
2570   outs() << "Unwind info:\n\n";
2571 
2572   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
2573     printCOFFUnwindInfo(Coff);
2574   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
2575     printMachOUnwindInfo(MachO);
2576   else
2577     // TODO: Extract DWARF dump tool to objdump.
2578     WithColor::error(errs(), ToolName)
2579         << "This operation is only currently supported "
2580            "for COFF and MachO object files.\n";
2581 }
2582 
2583 /// Dump the raw contents of the __clangast section so the output can be piped
2584 /// into llvm-bcanalyzer.
2585 static void printRawClangAST(const ObjectFile *Obj) {
2586   if (outs().is_displayed()) {
2587     WithColor::error(errs(), ToolName)
2588         << "The -raw-clang-ast option will dump the raw binary contents of "
2589            "the clang ast section.\n"
2590            "Please redirect the output to a file or another program such as "
2591            "llvm-bcanalyzer.\n";
2592     return;
2593   }
2594 
2595   StringRef ClangASTSectionName("__clangast");
2596   if (Obj->isCOFF()) {
2597     ClangASTSectionName = "clangast";
2598   }
2599 
2600   std::optional<object::SectionRef> ClangASTSection;
2601   for (auto Sec : ToolSectionFilter(*Obj)) {
2602     StringRef Name;
2603     if (Expected<StringRef> NameOrErr = Sec.getName())
2604       Name = *NameOrErr;
2605     else
2606       consumeError(NameOrErr.takeError());
2607 
2608     if (Name == ClangASTSectionName) {
2609       ClangASTSection = Sec;
2610       break;
2611     }
2612   }
2613   if (!ClangASTSection)
2614     return;
2615 
2616   StringRef ClangASTContents =
2617       unwrapOrError(ClangASTSection->getContents(), Obj->getFileName());
2618   outs().write(ClangASTContents.data(), ClangASTContents.size());
2619 }
2620 
2621 static void printFaultMaps(const ObjectFile *Obj) {
2622   StringRef FaultMapSectionName;
2623 
2624   if (Obj->isELF()) {
2625     FaultMapSectionName = ".llvm_faultmaps";
2626   } else if (Obj->isMachO()) {
2627     FaultMapSectionName = "__llvm_faultmaps";
2628   } else {
2629     WithColor::error(errs(), ToolName)
2630         << "This operation is only currently supported "
2631            "for ELF and Mach-O executable files.\n";
2632     return;
2633   }
2634 
2635   std::optional<object::SectionRef> FaultMapSection;
2636 
2637   for (auto Sec : ToolSectionFilter(*Obj)) {
2638     StringRef Name;
2639     if (Expected<StringRef> NameOrErr = Sec.getName())
2640       Name = *NameOrErr;
2641     else
2642       consumeError(NameOrErr.takeError());
2643 
2644     if (Name == FaultMapSectionName) {
2645       FaultMapSection = Sec;
2646       break;
2647     }
2648   }
2649 
2650   outs() << "FaultMap table:\n";
2651 
2652   if (!FaultMapSection) {
2653     outs() << "<not found>\n";
2654     return;
2655   }
2656 
2657   StringRef FaultMapContents =
2658       unwrapOrError(FaultMapSection->getContents(), Obj->getFileName());
2659   FaultMapParser FMP(FaultMapContents.bytes_begin(),
2660                      FaultMapContents.bytes_end());
2661 
2662   outs() << FMP;
2663 }
2664 
2665 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
2666   if (O->isELF()) {
2667     printELFFileHeader(O);
2668     printELFDynamicSection(O);
2669     printELFSymbolVersionInfo(O);
2670     return;
2671   }
2672   if (O->isCOFF())
2673     return printCOFFFileHeader(cast<object::COFFObjectFile>(*O));
2674   if (O->isWasm())
2675     return printWasmFileHeader(O);
2676   if (O->isMachO()) {
2677     printMachOFileHeader(O);
2678     if (!OnlyFirst)
2679       printMachOLoadCommands(O);
2680     return;
2681   }
2682   reportError(O->getFileName(), "Invalid/Unsupported object file format");
2683 }
2684 
2685 static void printFileHeaders(const ObjectFile *O) {
2686   if (!O->isELF() && !O->isCOFF())
2687     reportError(O->getFileName(), "Invalid/Unsupported object file format");
2688 
2689   Triple::ArchType AT = O->getArch();
2690   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
2691   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
2692 
2693   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
2694   outs() << "start address: "
2695          << "0x" << format(Fmt.data(), Address) << "\n";
2696 }
2697 
2698 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
2699   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
2700   if (!ModeOrErr) {
2701     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
2702     consumeError(ModeOrErr.takeError());
2703     return;
2704   }
2705   sys::fs::perms Mode = ModeOrErr.get();
2706   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
2707   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
2708   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
2709   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
2710   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
2711   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
2712   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
2713   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
2714   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
2715 
2716   outs() << " ";
2717 
2718   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
2719                    unwrapOrError(C.getGID(), Filename),
2720                    unwrapOrError(C.getRawSize(), Filename));
2721 
2722   StringRef RawLastModified = C.getRawLastModified();
2723   unsigned Seconds;
2724   if (RawLastModified.getAsInteger(10, Seconds))
2725     outs() << "(date: \"" << RawLastModified
2726            << "\" contains non-decimal chars) ";
2727   else {
2728     // Since ctime(3) returns a 26 character string of the form:
2729     // "Sun Sep 16 01:03:52 1973\n\0"
2730     // just print 24 characters.
2731     time_t t = Seconds;
2732     outs() << format("%.24s ", ctime(&t));
2733   }
2734 
2735   StringRef Name = "";
2736   Expected<StringRef> NameOrErr = C.getName();
2737   if (!NameOrErr) {
2738     consumeError(NameOrErr.takeError());
2739     Name = unwrapOrError(C.getRawName(), Filename);
2740   } else {
2741     Name = NameOrErr.get();
2742   }
2743   outs() << Name << "\n";
2744 }
2745 
2746 // For ELF only now.
2747 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
2748   if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
2749     if (Elf->getEType() != ELF::ET_REL)
2750       return true;
2751   }
2752   return false;
2753 }
2754 
2755 static void checkForInvalidStartStopAddress(ObjectFile *Obj,
2756                                             uint64_t Start, uint64_t Stop) {
2757   if (!shouldWarnForInvalidStartStopAddress(Obj))
2758     return;
2759 
2760   for (const SectionRef &Section : Obj->sections())
2761     if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
2762       uint64_t BaseAddr = Section.getAddress();
2763       uint64_t Size = Section.getSize();
2764       if ((Start < BaseAddr + Size) && Stop > BaseAddr)
2765         return;
2766     }
2767 
2768   if (!HasStartAddressFlag)
2769     reportWarning("no section has address less than 0x" +
2770                       Twine::utohexstr(Stop) + " specified by --stop-address",
2771                   Obj->getFileName());
2772   else if (!HasStopAddressFlag)
2773     reportWarning("no section has address greater than or equal to 0x" +
2774                       Twine::utohexstr(Start) + " specified by --start-address",
2775                   Obj->getFileName());
2776   else
2777     reportWarning("no section overlaps the range [0x" +
2778                       Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
2779                       ") specified by --start-address/--stop-address",
2780                   Obj->getFileName());
2781 }
2782 
2783 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2784                        const Archive::Child *C = nullptr) {
2785   // Avoid other output when using a raw option.
2786   if (!RawClangAST) {
2787     outs() << '\n';
2788     if (A)
2789       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2790     else
2791       outs() << O->getFileName();
2792     outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n";
2793   }
2794 
2795   if (HasStartAddressFlag || HasStopAddressFlag)
2796     checkForInvalidStartStopAddress(O, StartAddress, StopAddress);
2797 
2798   // Note: the order here matches GNU objdump for compatability.
2799   StringRef ArchiveName = A ? A->getFileName() : "";
2800   if (ArchiveHeaders && !MachOOpt && C)
2801     printArchiveChild(ArchiveName, *C);
2802   if (FileHeaders)
2803     printFileHeaders(O);
2804   if (PrivateHeaders || FirstPrivateHeader)
2805     printPrivateFileHeaders(O, FirstPrivateHeader);
2806   if (SectionHeaders)
2807     printSectionHeaders(*O);
2808   if (SymbolTable)
2809     printSymbolTable(*O, ArchiveName);
2810   if (DynamicSymbolTable)
2811     printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"",
2812                      /*DumpDynamic=*/true);
2813   if (DwarfDumpType != DIDT_Null) {
2814     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2815     // Dump the complete DWARF structure.
2816     DIDumpOptions DumpOpts;
2817     DumpOpts.DumpType = DwarfDumpType;
2818     DICtx->dump(outs(), DumpOpts);
2819   }
2820   if (Relocations && !Disassemble)
2821     printRelocations(O);
2822   if (DynamicRelocations)
2823     printDynamicRelocations(O);
2824   if (SectionContents)
2825     printSectionContents(O);
2826   if (Disassemble)
2827     disassembleObject(O, Relocations);
2828   if (UnwindInfo)
2829     printUnwindInfo(O);
2830 
2831   // Mach-O specific options:
2832   if (ExportsTrie)
2833     printExportsTrie(O);
2834   if (Rebase)
2835     printRebaseTable(O);
2836   if (Bind)
2837     printBindTable(O);
2838   if (LazyBind)
2839     printLazyBindTable(O);
2840   if (WeakBind)
2841     printWeakBindTable(O);
2842 
2843   // Other special sections:
2844   if (RawClangAST)
2845     printRawClangAST(O);
2846   if (FaultMapSection)
2847     printFaultMaps(O);
2848   if (Offloading)
2849     dumpOffloadBinary(*O);
2850 }
2851 
2852 static void dumpObject(const COFFImportFile *I, const Archive *A,
2853                        const Archive::Child *C = nullptr) {
2854   StringRef ArchiveName = A ? A->getFileName() : "";
2855 
2856   // Avoid other output when using a raw option.
2857   if (!RawClangAST)
2858     outs() << '\n'
2859            << ArchiveName << "(" << I->getFileName() << ")"
2860            << ":\tfile format COFF-import-file"
2861            << "\n\n";
2862 
2863   if (ArchiveHeaders && !MachOOpt && C)
2864     printArchiveChild(ArchiveName, *C);
2865   if (SymbolTable)
2866     printCOFFSymbolTable(*I);
2867 }
2868 
2869 /// Dump each object file in \a a;
2870 static void dumpArchive(const Archive *A) {
2871   Error Err = Error::success();
2872   unsigned I = -1;
2873   for (auto &C : A->children(Err)) {
2874     ++I;
2875     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2876     if (!ChildOrErr) {
2877       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2878         reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
2879       continue;
2880     }
2881     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2882       dumpObject(O, A, &C);
2883     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2884       dumpObject(I, A, &C);
2885     else
2886       reportError(errorCodeToError(object_error::invalid_file_type),
2887                   A->getFileName());
2888   }
2889   if (Err)
2890     reportError(std::move(Err), A->getFileName());
2891 }
2892 
2893 /// Open file and figure out how to dump it.
2894 static void dumpInput(StringRef file) {
2895   // If we are using the Mach-O specific object file parser, then let it parse
2896   // the file and process the command line options.  So the -arch flags can
2897   // be used to select specific slices, etc.
2898   if (MachOOpt) {
2899     parseInputMachO(file);
2900     return;
2901   }
2902 
2903   // Attempt to open the binary.
2904   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2905   Binary &Binary = *OBinary.getBinary();
2906 
2907   if (Archive *A = dyn_cast<Archive>(&Binary))
2908     dumpArchive(A);
2909   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2910     dumpObject(O);
2911   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2912     parseInputMachO(UB);
2913   else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary))
2914     dumpOffloadSections(*OB);
2915   else
2916     reportError(errorCodeToError(object_error::invalid_file_type), file);
2917 }
2918 
2919 template <typename T>
2920 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID,
2921                         T &Value) {
2922   if (const opt::Arg *A = InputArgs.getLastArg(ID)) {
2923     StringRef V(A->getValue());
2924     if (!llvm::to_integer(V, Value, 0)) {
2925       reportCmdLineError(A->getSpelling() +
2926                          ": expected a non-negative integer, but got '" + V +
2927                          "'");
2928     }
2929   }
2930 }
2931 
2932 static object::BuildID parseBuildIDArg(const opt::Arg *A) {
2933   StringRef V(A->getValue());
2934   std::string Bytes;
2935   if (!tryGetFromHex(V, Bytes))
2936     reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" +
2937                        V + "'");
2938   ArrayRef<uint8_t> BuildID(reinterpret_cast<const uint8_t *>(Bytes.data()),
2939                             Bytes.size());
2940   return object::BuildID(BuildID.begin(), BuildID.end());
2941 }
2942 
2943 void objdump::invalidArgValue(const opt::Arg *A) {
2944   reportCmdLineError("'" + StringRef(A->getValue()) +
2945                      "' is not a valid value for '" + A->getSpelling() + "'");
2946 }
2947 
2948 static std::vector<std::string>
2949 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) {
2950   std::vector<std::string> Values;
2951   for (StringRef Value : InputArgs.getAllArgValues(ID)) {
2952     llvm::SmallVector<StringRef, 2> SplitValues;
2953     llvm::SplitString(Value, SplitValues, ",");
2954     for (StringRef SplitValue : SplitValues)
2955       Values.push_back(SplitValue.str());
2956   }
2957   return Values;
2958 }
2959 
2960 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) {
2961   MachOOpt = true;
2962   FullLeadingAddr = true;
2963   PrintImmHex = true;
2964 
2965   ArchName = InputArgs.getLastArgValue(OTOOL_arch).str();
2966   LinkOptHints = InputArgs.hasArg(OTOOL_C);
2967   if (InputArgs.hasArg(OTOOL_d))
2968     FilterSections.push_back("__DATA,__data");
2969   DylibId = InputArgs.hasArg(OTOOL_D);
2970   UniversalHeaders = InputArgs.hasArg(OTOOL_f);
2971   DataInCode = InputArgs.hasArg(OTOOL_G);
2972   FirstPrivateHeader = InputArgs.hasArg(OTOOL_h);
2973   IndirectSymbols = InputArgs.hasArg(OTOOL_I);
2974   ShowRawInsn = InputArgs.hasArg(OTOOL_j);
2975   PrivateHeaders = InputArgs.hasArg(OTOOL_l);
2976   DylibsUsed = InputArgs.hasArg(OTOOL_L);
2977   MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str();
2978   ObjcMetaData = InputArgs.hasArg(OTOOL_o);
2979   DisSymName = InputArgs.getLastArgValue(OTOOL_p).str();
2980   InfoPlist = InputArgs.hasArg(OTOOL_P);
2981   Relocations = InputArgs.hasArg(OTOOL_r);
2982   if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) {
2983     auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str();
2984     FilterSections.push_back(Filter);
2985   }
2986   if (InputArgs.hasArg(OTOOL_t))
2987     FilterSections.push_back("__TEXT,__text");
2988   Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) ||
2989             InputArgs.hasArg(OTOOL_o);
2990   SymbolicOperands = InputArgs.hasArg(OTOOL_V);
2991   if (InputArgs.hasArg(OTOOL_x))
2992     FilterSections.push_back(",__text");
2993   LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X);
2994 
2995   ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups);
2996   DyldInfo = InputArgs.hasArg(OTOOL_dyld_info);
2997 
2998   InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT);
2999   if (InputFilenames.empty())
3000     reportCmdLineError("no input file");
3001 
3002   for (const Arg *A : InputArgs) {
3003     const Option &O = A->getOption();
3004     if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) {
3005       reportCmdLineWarning(O.getPrefixedName() +
3006                            " is obsolete and not implemented");
3007     }
3008   }
3009 }
3010 
3011 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) {
3012   parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA);
3013   AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers);
3014   ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str();
3015   ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers);
3016   Demangle = InputArgs.hasArg(OBJDUMP_demangle);
3017   Disassemble = InputArgs.hasArg(OBJDUMP_disassemble);
3018   DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all);
3019   SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description);
3020   DisassembleSymbols =
3021       commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ);
3022   DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes);
3023   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) {
3024     DwarfDumpType = StringSwitch<DIDumpType>(A->getValue())
3025                         .Case("frames", DIDT_DebugFrame)
3026                         .Default(DIDT_Null);
3027     if (DwarfDumpType == DIDT_Null)
3028       invalidArgValue(A);
3029   }
3030   DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc);
3031   FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section);
3032   Offloading = InputArgs.hasArg(OBJDUMP_offloading);
3033   FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers);
3034   SectionContents = InputArgs.hasArg(OBJDUMP_full_contents);
3035   PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers);
3036   InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT);
3037   MachOOpt = InputArgs.hasArg(OBJDUMP_macho);
3038   MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str();
3039   MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ);
3040   ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn);
3041   LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr);
3042   RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast);
3043   Relocations = InputArgs.hasArg(OBJDUMP_reloc);
3044   PrintImmHex =
3045       InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true);
3046   PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers);
3047   FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ);
3048   SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers);
3049   ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols);
3050   ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma);
3051   PrintSource = InputArgs.hasArg(OBJDUMP_source);
3052   parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress);
3053   HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ);
3054   parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress);
3055   HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ);
3056   SymbolTable = InputArgs.hasArg(OBJDUMP_syms);
3057   SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands);
3058   DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms);
3059   TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str();
3060   UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info);
3061   Wide = InputArgs.hasArg(OBJDUMP_wide);
3062   Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str();
3063   parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip);
3064   if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) {
3065     DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue())
3066                        .Case("ascii", DVASCII)
3067                        .Case("unicode", DVUnicode)
3068                        .Default(DVInvalid);
3069     if (DbgVariables == DVInvalid)
3070       invalidArgValue(A);
3071   }
3072   parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent);
3073 
3074   parseMachOOptions(InputArgs);
3075 
3076   // Parse -M (--disassembler-options) and deprecated
3077   // --x86-asm-syntax={att,intel}.
3078   //
3079   // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3080   // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3081   // called too late. For now we have to use the internal cl::opt option.
3082   const char *AsmSyntax = nullptr;
3083   for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ,
3084                                           OBJDUMP_x86_asm_syntax_att,
3085                                           OBJDUMP_x86_asm_syntax_intel)) {
3086     switch (A->getOption().getID()) {
3087     case OBJDUMP_x86_asm_syntax_att:
3088       AsmSyntax = "--x86-asm-syntax=att";
3089       continue;
3090     case OBJDUMP_x86_asm_syntax_intel:
3091       AsmSyntax = "--x86-asm-syntax=intel";
3092       continue;
3093     }
3094 
3095     SmallVector<StringRef, 2> Values;
3096     llvm::SplitString(A->getValue(), Values, ",");
3097     for (StringRef V : Values) {
3098       if (V == "att")
3099         AsmSyntax = "--x86-asm-syntax=att";
3100       else if (V == "intel")
3101         AsmSyntax = "--x86-asm-syntax=intel";
3102       else
3103         DisassemblerOptions.push_back(V.str());
3104     }
3105   }
3106   if (AsmSyntax) {
3107     const char *Argv[] = {"llvm-objdump", AsmSyntax};
3108     llvm::cl::ParseCommandLineOptions(2, Argv);
3109   }
3110 
3111   // Look up any provided build IDs, then append them to the input filenames.
3112   for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) {
3113     object::BuildID BuildID = parseBuildIDArg(A);
3114     std::optional<std::string> Path = BIDFetcher->fetch(BuildID);
3115     if (!Path) {
3116       reportCmdLineError(A->getSpelling() + ": could not find build ID '" +
3117                          A->getValue() + "'");
3118     }
3119     InputFilenames.push_back(std::move(*Path));
3120   }
3121 
3122   // objdump defaults to a.out if no filenames specified.
3123   if (InputFilenames.empty())
3124     InputFilenames.push_back("a.out");
3125 }
3126 
3127 int main(int argc, char **argv) {
3128   using namespace llvm;
3129   InitLLVM X(argc, argv);
3130 
3131   ToolName = argv[0];
3132   std::unique_ptr<CommonOptTable> T;
3133   OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag;
3134 
3135   StringRef Stem = sys::path::stem(ToolName);
3136   auto Is = [=](StringRef Tool) {
3137     // We need to recognize the following filenames:
3138     //
3139     // llvm-objdump -> objdump
3140     // llvm-otool-10.exe -> otool
3141     // powerpc64-unknown-freebsd13-objdump -> objdump
3142     auto I = Stem.rfind_insensitive(Tool);
3143     return I != StringRef::npos &&
3144            (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()]));
3145   };
3146   if (Is("otool")) {
3147     T = std::make_unique<OtoolOptTable>();
3148     Unknown = OTOOL_UNKNOWN;
3149     HelpFlag = OTOOL_help;
3150     HelpHiddenFlag = OTOOL_help_hidden;
3151     VersionFlag = OTOOL_version;
3152   } else {
3153     T = std::make_unique<ObjdumpOptTable>();
3154     Unknown = OBJDUMP_UNKNOWN;
3155     HelpFlag = OBJDUMP_help;
3156     HelpHiddenFlag = OBJDUMP_help_hidden;
3157     VersionFlag = OBJDUMP_version;
3158   }
3159 
3160   BumpPtrAllocator A;
3161   StringSaver Saver(A);
3162   opt::InputArgList InputArgs =
3163       T->parseArgs(argc, argv, Unknown, Saver,
3164                    [&](StringRef Msg) { reportCmdLineError(Msg); });
3165 
3166   if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) {
3167     T->printHelp(ToolName);
3168     return 0;
3169   }
3170   if (InputArgs.hasArg(HelpHiddenFlag)) {
3171     T->printHelp(ToolName, /*ShowHidden=*/true);
3172     return 0;
3173   }
3174 
3175   // Initialize targets and assembly printers/parsers.
3176   InitializeAllTargetInfos();
3177   InitializeAllTargetMCs();
3178   InitializeAllDisassemblers();
3179 
3180   if (InputArgs.hasArg(VersionFlag)) {
3181     cl::PrintVersionMessage();
3182     if (!Is("otool")) {
3183       outs() << '\n';
3184       TargetRegistry::printRegisteredTargetsForVersion(outs());
3185     }
3186     return 0;
3187   }
3188 
3189   // Initialize debuginfod.
3190   const bool ShouldUseDebuginfodByDefault =
3191       InputArgs.hasArg(OBJDUMP_build_id) ||
3192       (HTTPClient::isAvailable() &&
3193        !ExitOnErr(getDefaultDebuginfodUrls()).empty());
3194   std::vector<std::string> DebugFileDirectories =
3195       InputArgs.getAllArgValues(OBJDUMP_debug_file_directory);
3196   if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod,
3197                         ShouldUseDebuginfodByDefault)) {
3198     HTTPClient::initialize();
3199     BIDFetcher =
3200         std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories));
3201   } else {
3202     BIDFetcher =
3203         std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories));
3204   }
3205 
3206   if (Is("otool"))
3207     parseOtoolOptions(InputArgs);
3208   else
3209     parseObjdumpOptions(InputArgs);
3210 
3211   if (StartAddress >= StopAddress)
3212     reportCmdLineError("start address should be less than stop address");
3213 
3214   // Removes trailing separators from prefix.
3215   while (!Prefix.empty() && sys::path::is_separator(Prefix.back()))
3216     Prefix.pop_back();
3217 
3218   if (AllHeaders)
3219     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
3220         SectionHeaders = SymbolTable = true;
3221 
3222   if (DisassembleAll || PrintSource || PrintLines ||
3223       !DisassembleSymbols.empty())
3224     Disassemble = true;
3225 
3226   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
3227       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
3228       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
3229       !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading &&
3230       !(MachOOpt &&
3231         (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId ||
3232          DylibsUsed || ExportsTrie || FirstPrivateHeader ||
3233          FunctionStartsType != FunctionStartsMode::None || IndirectSymbols ||
3234          InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase ||
3235          Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) {
3236     T->printHelp(ToolName);
3237     return 2;
3238   }
3239 
3240   DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());
3241 
3242   llvm::for_each(InputFilenames, dumpInput);
3243 
3244   warnOnNoMatchForSections();
3245 
3246   return EXIT_SUCCESS;
3247 }
3248