1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "llvm/ADT/IndexedMap.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetOperations.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/CodeGen/FaultMaps.h" 28 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 29 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 30 #include "llvm/Demangle/Demangle.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 34 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 35 #include "llvm/MC/MCInst.h" 36 #include "llvm/MC/MCInstPrinter.h" 37 #include "llvm/MC/MCInstrAnalysis.h" 38 #include "llvm/MC/MCInstrInfo.h" 39 #include "llvm/MC/MCObjectFileInfo.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/MC/MCSubtargetInfo.h" 42 #include "llvm/MC/MCTargetOptions.h" 43 #include "llvm/Object/Archive.h" 44 #include "llvm/Object/COFF.h" 45 #include "llvm/Object/COFFImportFile.h" 46 #include "llvm/Object/ELFObjectFile.h" 47 #include "llvm/Object/MachO.h" 48 #include "llvm/Object/MachOUniversal.h" 49 #include "llvm/Object/ObjectFile.h" 50 #include "llvm/Object/Wasm.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/Errc.h" 55 #include "llvm/Support/FileSystem.h" 56 #include "llvm/Support/Format.h" 57 #include "llvm/Support/FormatVariadic.h" 58 #include "llvm/Support/GraphWriter.h" 59 #include "llvm/Support/Host.h" 60 #include "llvm/Support/InitLLVM.h" 61 #include "llvm/Support/MemoryBuffer.h" 62 #include "llvm/Support/SourceMgr.h" 63 #include "llvm/Support/StringSaver.h" 64 #include "llvm/Support/TargetRegistry.h" 65 #include "llvm/Support/TargetSelect.h" 66 #include "llvm/Support/WithColor.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include <algorithm> 69 #include <cctype> 70 #include <cstring> 71 #include <system_error> 72 #include <unordered_map> 73 #include <utility> 74 75 #define DEBUG_TYPE "objdump" 76 77 using namespace llvm::object; 78 79 namespace llvm { 80 81 cl::OptionCategory ObjdumpCat("llvm-objdump Options"); 82 83 // MachO specific 84 extern cl::OptionCategory MachOCat; 85 extern cl::opt<bool> Bind; 86 extern cl::opt<bool> DataInCode; 87 extern cl::opt<bool> DylibsUsed; 88 extern cl::opt<bool> DylibId; 89 extern cl::opt<bool> ExportsTrie; 90 extern cl::opt<bool> FirstPrivateHeader; 91 extern cl::opt<bool> IndirectSymbols; 92 extern cl::opt<bool> InfoPlist; 93 extern cl::opt<bool> LazyBind; 94 extern cl::opt<bool> LinkOptHints; 95 extern cl::opt<bool> ObjcMetaData; 96 extern cl::opt<bool> Rebase; 97 extern cl::opt<bool> UniversalHeaders; 98 extern cl::opt<bool> WeakBind; 99 100 static cl::opt<uint64_t> AdjustVMA( 101 "adjust-vma", 102 cl::desc("Increase the displayed address by the specified offset"), 103 cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat)); 104 105 static cl::opt<bool> 106 AllHeaders("all-headers", 107 cl::desc("Display all available header information"), 108 cl::cat(ObjdumpCat)); 109 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"), 110 cl::NotHidden, cl::Grouping, 111 cl::aliasopt(AllHeaders)); 112 113 static cl::opt<std::string> 114 ArchName("arch-name", 115 cl::desc("Target arch to disassemble for, " 116 "see -version for available targets"), 117 cl::cat(ObjdumpCat)); 118 119 cl::opt<bool> ArchiveHeaders("archive-headers", 120 cl::desc("Display archive header information"), 121 cl::cat(ObjdumpCat)); 122 static cl::alias ArchiveHeadersShort("a", 123 cl::desc("Alias for --archive-headers"), 124 cl::NotHidden, cl::Grouping, 125 cl::aliasopt(ArchiveHeaders)); 126 127 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"), 128 cl::init(false), cl::cat(ObjdumpCat)); 129 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"), 130 cl::NotHidden, cl::Grouping, 131 cl::aliasopt(Demangle)); 132 133 cl::opt<bool> Disassemble( 134 "disassemble", 135 cl::desc("Display assembler mnemonics for the machine instructions"), 136 cl::cat(ObjdumpCat)); 137 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"), 138 cl::NotHidden, cl::Grouping, 139 cl::aliasopt(Disassemble)); 140 141 cl::opt<bool> DisassembleAll( 142 "disassemble-all", 143 cl::desc("Display assembler mnemonics for the machine instructions"), 144 cl::cat(ObjdumpCat)); 145 static cl::alias DisassembleAllShort("D", 146 cl::desc("Alias for --disassemble-all"), 147 cl::NotHidden, cl::Grouping, 148 cl::aliasopt(DisassembleAll)); 149 150 static cl::list<std::string> 151 DisassembleSymbols("disassemble-symbols", cl::CommaSeparated, 152 cl::desc("List of symbols to disassemble. " 153 "Accept demangled names when --demangle is " 154 "specified, otherwise accept mangled names"), 155 cl::cat(ObjdumpCat)); 156 157 static cl::opt<bool> DisassembleZeroes( 158 "disassemble-zeroes", 159 cl::desc("Do not skip blocks of zeroes when disassembling"), 160 cl::cat(ObjdumpCat)); 161 static cl::alias 162 DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"), 163 cl::NotHidden, cl::Grouping, 164 cl::aliasopt(DisassembleZeroes)); 165 166 static cl::list<std::string> 167 DisassemblerOptions("disassembler-options", 168 cl::desc("Pass target specific disassembler options"), 169 cl::value_desc("options"), cl::CommaSeparated, 170 cl::cat(ObjdumpCat)); 171 static cl::alias 172 DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"), 173 cl::NotHidden, cl::Grouping, cl::Prefix, 174 cl::CommaSeparated, 175 cl::aliasopt(DisassemblerOptions)); 176 177 cl::opt<DIDumpType> DwarfDumpType( 178 "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"), 179 cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")), 180 cl::cat(ObjdumpCat)); 181 182 static cl::opt<bool> DynamicRelocations( 183 "dynamic-reloc", 184 cl::desc("Display the dynamic relocation entries in the file"), 185 cl::cat(ObjdumpCat)); 186 static cl::alias DynamicRelocationShort("R", 187 cl::desc("Alias for --dynamic-reloc"), 188 cl::NotHidden, cl::Grouping, 189 cl::aliasopt(DynamicRelocations)); 190 191 static cl::opt<bool> 192 FaultMapSection("fault-map-section", 193 cl::desc("Display contents of faultmap section"), 194 cl::cat(ObjdumpCat)); 195 196 static cl::opt<bool> 197 FileHeaders("file-headers", 198 cl::desc("Display the contents of the overall file header"), 199 cl::cat(ObjdumpCat)); 200 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"), 201 cl::NotHidden, cl::Grouping, 202 cl::aliasopt(FileHeaders)); 203 204 cl::opt<bool> SectionContents("full-contents", 205 cl::desc("Display the content of each section"), 206 cl::cat(ObjdumpCat)); 207 static cl::alias SectionContentsShort("s", 208 cl::desc("Alias for --full-contents"), 209 cl::NotHidden, cl::Grouping, 210 cl::aliasopt(SectionContents)); 211 212 static cl::list<std::string> InputFilenames(cl::Positional, 213 cl::desc("<input object files>"), 214 cl::ZeroOrMore, 215 cl::cat(ObjdumpCat)); 216 217 static cl::opt<bool> 218 PrintLines("line-numbers", 219 cl::desc("Display source line numbers with " 220 "disassembly. Implies disassemble object"), 221 cl::cat(ObjdumpCat)); 222 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"), 223 cl::NotHidden, cl::Grouping, 224 cl::aliasopt(PrintLines)); 225 226 static cl::opt<bool> MachOOpt("macho", 227 cl::desc("Use MachO specific object file parser"), 228 cl::cat(ObjdumpCat)); 229 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden, 230 cl::Grouping, cl::aliasopt(MachOOpt)); 231 232 cl::opt<std::string> 233 MCPU("mcpu", 234 cl::desc("Target a specific cpu type (-mcpu=help for details)"), 235 cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat)); 236 237 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated, 238 cl::desc("Target specific attributes"), 239 cl::value_desc("a1,+a2,-a3,..."), 240 cl::cat(ObjdumpCat)); 241 242 cl::opt<bool> NoShowRawInsn("no-show-raw-insn", 243 cl::desc("When disassembling " 244 "instructions, do not print " 245 "the instruction bytes."), 246 cl::cat(ObjdumpCat)); 247 cl::opt<bool> NoLeadingAddr("no-leading-addr", 248 cl::desc("Print no leading address"), 249 cl::cat(ObjdumpCat)); 250 251 static cl::opt<bool> RawClangAST( 252 "raw-clang-ast", 253 cl::desc("Dump the raw binary contents of the clang AST section"), 254 cl::cat(ObjdumpCat)); 255 256 cl::opt<bool> 257 Relocations("reloc", cl::desc("Display the relocation entries in the file"), 258 cl::cat(ObjdumpCat)); 259 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"), 260 cl::NotHidden, cl::Grouping, 261 cl::aliasopt(Relocations)); 262 263 cl::opt<bool> PrintImmHex("print-imm-hex", 264 cl::desc("Use hex format for immediate values"), 265 cl::cat(ObjdumpCat)); 266 267 cl::opt<bool> PrivateHeaders("private-headers", 268 cl::desc("Display format specific file headers"), 269 cl::cat(ObjdumpCat)); 270 static cl::alias PrivateHeadersShort("p", 271 cl::desc("Alias for --private-headers"), 272 cl::NotHidden, cl::Grouping, 273 cl::aliasopt(PrivateHeaders)); 274 275 cl::list<std::string> 276 FilterSections("section", 277 cl::desc("Operate on the specified sections only. " 278 "With -macho dump segment,section"), 279 cl::cat(ObjdumpCat)); 280 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"), 281 cl::NotHidden, cl::Grouping, cl::Prefix, 282 cl::aliasopt(FilterSections)); 283 284 cl::opt<bool> SectionHeaders("section-headers", 285 cl::desc("Display summaries of the " 286 "headers for each section."), 287 cl::cat(ObjdumpCat)); 288 static cl::alias SectionHeadersShort("headers", 289 cl::desc("Alias for --section-headers"), 290 cl::NotHidden, 291 cl::aliasopt(SectionHeaders)); 292 static cl::alias SectionHeadersShorter("h", 293 cl::desc("Alias for --section-headers"), 294 cl::NotHidden, cl::Grouping, 295 cl::aliasopt(SectionHeaders)); 296 297 static cl::opt<bool> 298 ShowLMA("show-lma", 299 cl::desc("Display LMA column when dumping ELF section headers"), 300 cl::cat(ObjdumpCat)); 301 302 static cl::opt<bool> PrintSource( 303 "source", 304 cl::desc( 305 "Display source inlined with disassembly. Implies disassemble object"), 306 cl::cat(ObjdumpCat)); 307 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"), 308 cl::NotHidden, cl::Grouping, 309 cl::aliasopt(PrintSource)); 310 311 static cl::opt<uint64_t> 312 StartAddress("start-address", cl::desc("Disassemble beginning at address"), 313 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat)); 314 static cl::opt<uint64_t> StopAddress("stop-address", 315 cl::desc("Stop disassembly at address"), 316 cl::value_desc("address"), 317 cl::init(UINT64_MAX), cl::cat(ObjdumpCat)); 318 319 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"), 320 cl::cat(ObjdumpCat)); 321 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"), 322 cl::NotHidden, cl::Grouping, 323 cl::aliasopt(SymbolTable)); 324 325 cl::opt<std::string> TripleName("triple", 326 cl::desc("Target triple to disassemble for, " 327 "see -version for available targets"), 328 cl::cat(ObjdumpCat)); 329 330 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"), 331 cl::cat(ObjdumpCat)); 332 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"), 333 cl::NotHidden, cl::Grouping, 334 cl::aliasopt(UnwindInfo)); 335 336 static cl::opt<bool> 337 Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"), 338 cl::cat(ObjdumpCat)); 339 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide)); 340 341 enum DebugVarsFormat { 342 DVDisabled, 343 DVUnicode, 344 DVASCII, 345 }; 346 347 static cl::opt<DebugVarsFormat> DbgVariables( 348 "debug-vars", cl::init(DVDisabled), 349 cl::desc("Print the locations (in registers or memory) of " 350 "source-level variables alongside disassembly"), 351 cl::ValueOptional, 352 cl::values(clEnumValN(DVUnicode, "", "unicode"), 353 clEnumValN(DVUnicode, "unicode", "unicode"), 354 clEnumValN(DVASCII, "ascii", "unicode")), 355 cl::cat(ObjdumpCat)); 356 357 static cl::opt<int> 358 DbgIndent("debug-vars-indent", cl::init(40), 359 cl::desc("Distance to indent the source-level variable display, " 360 "relative to the start of the disassembly"), 361 cl::cat(ObjdumpCat)); 362 363 static cl::extrahelp 364 HelpResponse("\nPass @FILE as argument to read options from FILE.\n"); 365 366 static StringSet<> DisasmSymbolSet; 367 StringSet<> FoundSectionSet; 368 static StringRef ToolName; 369 370 namespace { 371 struct FilterResult { 372 // True if the section should not be skipped. 373 bool Keep; 374 375 // True if the index counter should be incremented, even if the section should 376 // be skipped. For example, sections may be skipped if they are not included 377 // in the --section flag, but we still want those to count toward the section 378 // count. 379 bool IncrementIndex; 380 }; 381 } // namespace 382 383 static FilterResult checkSectionFilter(object::SectionRef S) { 384 if (FilterSections.empty()) 385 return {/*Keep=*/true, /*IncrementIndex=*/true}; 386 387 Expected<StringRef> SecNameOrErr = S.getName(); 388 if (!SecNameOrErr) { 389 consumeError(SecNameOrErr.takeError()); 390 return {/*Keep=*/false, /*IncrementIndex=*/false}; 391 } 392 StringRef SecName = *SecNameOrErr; 393 394 // StringSet does not allow empty key so avoid adding sections with 395 // no name (such as the section with index 0) here. 396 if (!SecName.empty()) 397 FoundSectionSet.insert(SecName); 398 399 // Only show the section if it's in the FilterSections list, but always 400 // increment so the indexing is stable. 401 return {/*Keep=*/is_contained(FilterSections, SecName), 402 /*IncrementIndex=*/true}; 403 } 404 405 SectionFilter ToolSectionFilter(object::ObjectFile const &O, uint64_t *Idx) { 406 // Start at UINT64_MAX so that the first index returned after an increment is 407 // zero (after the unsigned wrap). 408 if (Idx) 409 *Idx = UINT64_MAX; 410 return SectionFilter( 411 [Idx](object::SectionRef S) { 412 FilterResult Result = checkSectionFilter(S); 413 if (Idx != nullptr && Result.IncrementIndex) 414 *Idx += 1; 415 return Result.Keep; 416 }, 417 O); 418 } 419 420 std::string getFileNameForError(const object::Archive::Child &C, 421 unsigned Index) { 422 Expected<StringRef> NameOrErr = C.getName(); 423 if (NameOrErr) 424 return std::string(NameOrErr.get()); 425 // If we have an error getting the name then we print the index of the archive 426 // member. Since we are already in an error state, we just ignore this error. 427 consumeError(NameOrErr.takeError()); 428 return "<file index: " + std::to_string(Index) + ">"; 429 } 430 431 void reportWarning(Twine Message, StringRef File) { 432 // Output order between errs() and outs() matters especially for archive 433 // files where the output is per member object. 434 outs().flush(); 435 WithColor::warning(errs(), ToolName) 436 << "'" << File << "': " << Message << "\n"; 437 errs().flush(); 438 } 439 440 LLVM_ATTRIBUTE_NORETURN void reportError(StringRef File, Twine Message) { 441 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 442 exit(1); 443 } 444 445 LLVM_ATTRIBUTE_NORETURN void reportError(Error E, StringRef FileName, 446 StringRef ArchiveName, 447 StringRef ArchitectureName) { 448 assert(E); 449 WithColor::error(errs(), ToolName); 450 if (ArchiveName != "") 451 errs() << ArchiveName << "(" << FileName << ")"; 452 else 453 errs() << "'" << FileName << "'"; 454 if (!ArchitectureName.empty()) 455 errs() << " (for architecture " << ArchitectureName << ")"; 456 std::string Buf; 457 raw_string_ostream OS(Buf); 458 logAllUnhandledErrors(std::move(E), OS); 459 OS.flush(); 460 errs() << ": " << Buf; 461 exit(1); 462 } 463 464 static void reportCmdLineWarning(Twine Message) { 465 WithColor::warning(errs(), ToolName) << Message << "\n"; 466 } 467 468 LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) { 469 WithColor::error(errs(), ToolName) << Message << "\n"; 470 exit(1); 471 } 472 473 static void warnOnNoMatchForSections() { 474 SetVector<StringRef> MissingSections; 475 for (StringRef S : FilterSections) { 476 if (FoundSectionSet.count(S)) 477 return; 478 // User may specify a unnamed section. Don't warn for it. 479 if (!S.empty()) 480 MissingSections.insert(S); 481 } 482 483 // Warn only if no section in FilterSections is matched. 484 for (StringRef S : MissingSections) 485 reportCmdLineWarning("section '" + S + 486 "' mentioned in a -j/--section option, but not " 487 "found in any input file"); 488 } 489 490 static const Target *getTarget(const ObjectFile *Obj) { 491 // Figure out the target triple. 492 Triple TheTriple("unknown-unknown-unknown"); 493 if (TripleName.empty()) { 494 TheTriple = Obj->makeTriple(); 495 } else { 496 TheTriple.setTriple(Triple::normalize(TripleName)); 497 auto Arch = Obj->getArch(); 498 if (Arch == Triple::arm || Arch == Triple::armeb) 499 Obj->setARMSubArch(TheTriple); 500 } 501 502 // Get the target specific parser. 503 std::string Error; 504 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 505 Error); 506 if (!TheTarget) 507 reportError(Obj->getFileName(), "can't find target: " + Error); 508 509 // Update the triple name and return the found target. 510 TripleName = TheTriple.getTriple(); 511 return TheTarget; 512 } 513 514 bool isRelocAddressLess(RelocationRef A, RelocationRef B) { 515 return A.getOffset() < B.getOffset(); 516 } 517 518 static Error getRelocationValueString(const RelocationRef &Rel, 519 SmallVectorImpl<char> &Result) { 520 const ObjectFile *Obj = Rel.getObject(); 521 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 522 return getELFRelocationValueString(ELF, Rel, Result); 523 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 524 return getCOFFRelocationValueString(COFF, Rel, Result); 525 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 526 return getWasmRelocationValueString(Wasm, Rel, Result); 527 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 528 return getMachORelocationValueString(MachO, Rel, Result); 529 llvm_unreachable("unknown object file format"); 530 } 531 532 /// Indicates whether this relocation should hidden when listing 533 /// relocations, usually because it is the trailing part of a multipart 534 /// relocation that will be printed as part of the leading relocation. 535 static bool getHidden(RelocationRef RelRef) { 536 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 537 if (!MachO) 538 return false; 539 540 unsigned Arch = MachO->getArch(); 541 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 542 uint64_t Type = MachO->getRelocationType(Rel); 543 544 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 545 // is always hidden. 546 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 547 return Type == MachO::GENERIC_RELOC_PAIR; 548 549 if (Arch == Triple::x86_64) { 550 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 551 // an X86_64_RELOC_SUBTRACTOR. 552 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 553 DataRefImpl RelPrev = Rel; 554 RelPrev.d.a--; 555 uint64_t PrevType = MachO->getRelocationType(RelPrev); 556 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 557 return true; 558 } 559 } 560 561 return false; 562 } 563 564 namespace { 565 566 /// Get the column at which we want to start printing the instruction 567 /// disassembly, taking into account anything which appears to the left of it. 568 unsigned getInstStartColumn() { 569 return NoShowRawInsn ? 16 : 40; 570 } 571 572 /// Stores a single expression representing the location of a source-level 573 /// variable, along with the PC range for which that expression is valid. 574 struct LiveVariable { 575 DWARFLocationExpression LocExpr; 576 const char *VarName; 577 DWARFUnit *Unit; 578 const DWARFDie FuncDie; 579 580 LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName, 581 DWARFUnit *Unit, const DWARFDie FuncDie) 582 : LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {} 583 584 bool liveAtAddress(object::SectionedAddress Addr) { 585 if (LocExpr.Range == None) 586 return false; 587 return LocExpr.Range->SectionIndex == Addr.SectionIndex && 588 LocExpr.Range->LowPC <= Addr.Address && 589 LocExpr.Range->HighPC > Addr.Address; 590 } 591 592 void print(raw_ostream &OS, const MCRegisterInfo &MRI) const { 593 DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()}, 594 Unit->getContext().isLittleEndian(), 0); 595 DWARFExpression Expression(Data, Unit->getAddressByteSize()); 596 Expression.printCompact(OS, MRI); 597 } 598 }; 599 600 /// Helper class for printing source variable locations alongside disassembly. 601 class LiveVariablePrinter { 602 // Information we want to track about one column in which we are printing a 603 // variable live range. 604 struct Column { 605 unsigned VarIdx = NullVarIdx; 606 bool LiveIn = false; 607 bool LiveOut = false; 608 bool MustDrawLabel = false; 609 610 bool isActive() const { return VarIdx != NullVarIdx; } 611 612 static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max(); 613 }; 614 615 // All live variables we know about in the object/image file. 616 std::vector<LiveVariable> LiveVariables; 617 618 // The columns we are currently drawing. 619 IndexedMap<Column> ActiveCols; 620 621 const MCRegisterInfo &MRI; 622 623 void addVariable(DWARFDie FuncDie, DWARFDie VarDie) { 624 uint64_t FuncLowPC, FuncHighPC, SectionIndex; 625 FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex); 626 const char *VarName = VarDie.getName(DINameKind::ShortName); 627 DWARFUnit *U = VarDie.getDwarfUnit(); 628 629 Expected<DWARFLocationExpressionsVector> Locs = 630 VarDie.getLocations(dwarf::DW_AT_location); 631 if (!Locs) { 632 // If the variable doesn't have any locations, just ignore it. We don't 633 // report an error or warning here as that could be noisy on optimised 634 // code. 635 consumeError(Locs.takeError()); 636 return; 637 } 638 639 for (const DWARFLocationExpression &LocExpr : *Locs) { 640 if (LocExpr.Range) { 641 LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie); 642 } else { 643 // If the LocExpr does not have an associated range, it is valid for 644 // the whole of the function. 645 // TODO: technically it is not valid for any range covered by another 646 // LocExpr, does that happen in reality? 647 DWARFLocationExpression WholeFuncExpr{ 648 DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex), 649 LocExpr.Expr}; 650 LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie); 651 } 652 } 653 } 654 655 void addFunction(DWARFDie D) { 656 for (const DWARFDie &Child : D.children()) { 657 if (Child.getTag() == dwarf::DW_TAG_variable || 658 Child.getTag() == dwarf::DW_TAG_formal_parameter) 659 addVariable(D, Child); 660 else 661 addFunction(Child); 662 } 663 } 664 665 // Get the column number (in characters) at which the first live variable 666 // line should be printed. 667 unsigned getIndentLevel() const { 668 return DbgIndent + getInstStartColumn(); 669 } 670 671 // Indent to the first live-range column to the right of the currently 672 // printed line, and return the index of that column. 673 // TODO: formatted_raw_ostream uses "column" to mean a number of characters 674 // since the last \n, and we use it to mean the number of slots in which we 675 // put live variable lines. Pick a less overloaded word. 676 unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) { 677 // Logical column number: column zero is the first column we print in, each 678 // logical column is 2 physical columns wide. 679 unsigned FirstUnprintedLogicalColumn = 680 std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0); 681 // Physical column number: the actual column number in characters, with 682 // zero being the left-most side of the screen. 683 unsigned FirstUnprintedPhysicalColumn = 684 getIndentLevel() + FirstUnprintedLogicalColumn * 2; 685 686 if (FirstUnprintedPhysicalColumn > OS.getColumn()) 687 OS.PadToColumn(FirstUnprintedPhysicalColumn); 688 689 return FirstUnprintedLogicalColumn; 690 } 691 692 unsigned findFreeColumn() { 693 for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx) 694 if (!ActiveCols[ColIdx].isActive()) 695 return ColIdx; 696 697 size_t OldSize = ActiveCols.size(); 698 ActiveCols.grow(std::max<size_t>(OldSize * 2, 1)); 699 return OldSize; 700 } 701 702 public: 703 LiveVariablePrinter(const MCRegisterInfo &MRI) 704 : LiveVariables(), ActiveCols(Column()), MRI(MRI) {} 705 706 void dump() const { 707 for (const LiveVariable &LV : LiveVariables) { 708 dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": "; 709 LV.print(dbgs(), MRI); 710 dbgs() << "\n"; 711 } 712 } 713 714 void addCompileUnit(DWARFDie D) { 715 if (D.getTag() == dwarf::DW_TAG_subprogram) 716 addFunction(D); 717 else 718 for (const DWARFDie &Child : D.children()) 719 addFunction(Child); 720 } 721 722 /// Update to match the state of the instruction between ThisAddr and 723 /// NextAddr. In the common case, any live range active at ThisAddr is 724 /// live-in to the instruction, and any live range active at NextAddr is 725 /// live-out of the instruction. If IncludeDefinedVars is false, then live 726 /// ranges starting at NextAddr will be ignored. 727 void update(object::SectionedAddress ThisAddr, 728 object::SectionedAddress NextAddr, bool IncludeDefinedVars) { 729 // First, check variables which have already been assigned a column, so 730 // that we don't change their order. 731 SmallSet<unsigned, 8> CheckedVarIdxs; 732 for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) { 733 if (!ActiveCols[ColIdx].isActive()) 734 continue; 735 CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx); 736 LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx]; 737 ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr); 738 ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr); 739 LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-" 740 << NextAddr.Address << ", " << LV.VarName << ", Col " 741 << ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn 742 << ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n"); 743 744 if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut) 745 ActiveCols[ColIdx].VarIdx = Column::NullVarIdx; 746 } 747 748 // Next, look for variables which don't already have a column, but which 749 // are now live. 750 if (IncludeDefinedVars) { 751 for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End; 752 ++VarIdx) { 753 if (CheckedVarIdxs.count(VarIdx)) 754 continue; 755 LiveVariable &LV = LiveVariables[VarIdx]; 756 bool LiveIn = LV.liveAtAddress(ThisAddr); 757 bool LiveOut = LV.liveAtAddress(NextAddr); 758 if (!LiveIn && !LiveOut) 759 continue; 760 761 unsigned ColIdx = findFreeColumn(); 762 LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-" 763 << NextAddr.Address << ", " << LV.VarName << ", Col " 764 << ColIdx << ": LiveIn=" << LiveIn 765 << ", LiveOut=" << LiveOut << "\n"); 766 ActiveCols[ColIdx].VarIdx = VarIdx; 767 ActiveCols[ColIdx].LiveIn = LiveIn; 768 ActiveCols[ColIdx].LiveOut = LiveOut; 769 ActiveCols[ColIdx].MustDrawLabel = true; 770 } 771 } 772 } 773 774 enum class LineChar { 775 RangeStart, 776 RangeMid, 777 RangeEnd, 778 LabelVert, 779 LabelCornerNew, 780 LabelCornerActive, 781 LabelHoriz, 782 }; 783 const char *getLineChar(LineChar C) const { 784 bool IsASCII = DbgVariables == DVASCII; 785 switch (C) { 786 case LineChar::RangeStart: 787 return IsASCII ? "^" : "╈"; 788 case LineChar::RangeMid: 789 return IsASCII ? "|" : "┃"; 790 case LineChar::RangeEnd: 791 return IsASCII ? "v" : "┻"; 792 case LineChar::LabelVert: 793 return IsASCII ? "|" : "│"; 794 case LineChar::LabelCornerNew: 795 return IsASCII ? "/" : "┌"; 796 case LineChar::LabelCornerActive: 797 return IsASCII ? "|" : "┠"; 798 case LineChar::LabelHoriz: 799 return IsASCII ? "-" : "─"; 800 } 801 llvm_unreachable("Unexpected LineChar"); 802 } 803 804 /// Print live ranges to the right of an existing line. This assumes the 805 /// line is not an instruction, so doesn't start or end any live ranges, so 806 /// we only need to print active ranges or empty columns. If AfterInst is 807 /// true, this is being printed after the last instruction fed to update(), 808 /// otherwise this is being printed before it. 809 void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) { 810 if (ActiveCols.size()) { 811 unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS); 812 for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size(); 813 ColIdx < End; ++ColIdx) { 814 if (ActiveCols[ColIdx].isActive()) { 815 if ((AfterInst && ActiveCols[ColIdx].LiveOut) || 816 (!AfterInst && ActiveCols[ColIdx].LiveIn)) 817 OS << getLineChar(LineChar::RangeMid); 818 else if (!AfterInst && ActiveCols[ColIdx].LiveOut) 819 OS << getLineChar(LineChar::LabelVert); 820 else 821 OS << " "; 822 } 823 OS << " "; 824 } 825 } 826 OS << "\n"; 827 } 828 829 /// Print any live variable range info needed to the right of a 830 /// non-instruction line of disassembly. This is where we print the variable 831 /// names and expressions, with thin line-drawing characters connecting them 832 /// to the live range which starts at the next instruction. If MustPrint is 833 /// true, we have to print at least one line (with the continuation of any 834 /// already-active live ranges) because something has already been printed 835 /// earlier on this line. 836 void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) { 837 bool PrintedSomething = false; 838 for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) { 839 if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) { 840 // First we need to print the live range markers for any active 841 // columns to the left of this one. 842 OS.PadToColumn(getIndentLevel()); 843 for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) { 844 if (ActiveCols[ColIdx2].isActive()) { 845 if (ActiveCols[ColIdx2].MustDrawLabel && 846 !ActiveCols[ColIdx2].LiveIn) 847 OS << getLineChar(LineChar::LabelVert) << " "; 848 else 849 OS << getLineChar(LineChar::RangeMid) << " "; 850 } else 851 OS << " "; 852 } 853 854 // Then print the variable name and location of the new live range, 855 // with box drawing characters joining it to the live range line. 856 OS << getLineChar(ActiveCols[ColIdx].LiveIn 857 ? LineChar::LabelCornerActive 858 : LineChar::LabelCornerNew) 859 << getLineChar(LineChar::LabelHoriz) << " "; 860 WithColor(OS, raw_ostream::GREEN) 861 << LiveVariables[ActiveCols[ColIdx].VarIdx].VarName; 862 OS << " = "; 863 { 864 WithColor ExprColor(OS, raw_ostream::CYAN); 865 LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI); 866 } 867 868 // If there are any columns to the right of the expression we just 869 // printed, then continue their live range lines. 870 unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS); 871 for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size(); 872 ColIdx2 < End; ++ColIdx2) { 873 if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn) 874 OS << getLineChar(LineChar::RangeMid) << " "; 875 else 876 OS << " "; 877 } 878 879 OS << "\n"; 880 PrintedSomething = true; 881 } 882 } 883 884 for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) 885 if (ActiveCols[ColIdx].isActive()) 886 ActiveCols[ColIdx].MustDrawLabel = false; 887 888 // If we must print something (because we printed a line/column number), 889 // but don't have any new variables to print, then print a line which 890 // just continues any existing live ranges. 891 if (MustPrint && !PrintedSomething) 892 printAfterOtherLine(OS, false); 893 } 894 895 /// Print the live variable ranges to the right of a disassembled instruction. 896 void printAfterInst(formatted_raw_ostream &OS) { 897 if (!ActiveCols.size()) 898 return; 899 unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS); 900 for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size(); 901 ColIdx < End; ++ColIdx) { 902 if (!ActiveCols[ColIdx].isActive()) 903 OS << " "; 904 else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut) 905 OS << getLineChar(LineChar::RangeMid) << " "; 906 else if (ActiveCols[ColIdx].LiveOut) 907 OS << getLineChar(LineChar::RangeStart) << " "; 908 else if (ActiveCols[ColIdx].LiveIn) 909 OS << getLineChar(LineChar::RangeEnd) << " "; 910 else 911 llvm_unreachable("var must be live in or out!"); 912 } 913 } 914 }; 915 916 class SourcePrinter { 917 protected: 918 DILineInfo OldLineInfo; 919 const ObjectFile *Obj = nullptr; 920 std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer; 921 // File name to file contents of source. 922 std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache; 923 // Mark the line endings of the cached source. 924 std::unordered_map<std::string, std::vector<StringRef>> LineCache; 925 // Keep track of missing sources. 926 StringSet<> MissingSources; 927 // Only emit 'no debug info' warning once. 928 bool WarnedNoDebugInfo; 929 930 private: 931 bool cacheSource(const DILineInfo& LineInfoFile); 932 933 void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo, 934 StringRef Delimiter, LiveVariablePrinter &LVP); 935 936 void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo, 937 StringRef ObjectFilename, StringRef Delimiter, 938 LiveVariablePrinter &LVP); 939 940 public: 941 SourcePrinter() = default; 942 SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) 943 : Obj(Obj), WarnedNoDebugInfo(false) { 944 symbolize::LLVMSymbolizer::Options SymbolizerOpts; 945 SymbolizerOpts.PrintFunctions = 946 DILineInfoSpecifier::FunctionNameKind::LinkageName; 947 SymbolizerOpts.Demangle = Demangle; 948 SymbolizerOpts.DefaultArch = std::string(DefaultArch); 949 Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts)); 950 } 951 virtual ~SourcePrinter() = default; 952 virtual void printSourceLine(formatted_raw_ostream &OS, 953 object::SectionedAddress Address, 954 StringRef ObjectFilename, 955 LiveVariablePrinter &LVP, 956 StringRef Delimiter = "; "); 957 }; 958 959 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) { 960 std::unique_ptr<MemoryBuffer> Buffer; 961 if (LineInfo.Source) { 962 Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source); 963 } else { 964 auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName); 965 if (!BufferOrError) { 966 if (MissingSources.insert(LineInfo.FileName).second) 967 reportWarning("failed to find source " + LineInfo.FileName, 968 Obj->getFileName()); 969 return false; 970 } 971 Buffer = std::move(*BufferOrError); 972 } 973 // Chomp the file to get lines 974 const char *BufferStart = Buffer->getBufferStart(), 975 *BufferEnd = Buffer->getBufferEnd(); 976 std::vector<StringRef> &Lines = LineCache[LineInfo.FileName]; 977 const char *Start = BufferStart; 978 for (const char *I = BufferStart; I != BufferEnd; ++I) 979 if (*I == '\n') { 980 Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r')); 981 Start = I + 1; 982 } 983 if (Start < BufferEnd) 984 Lines.emplace_back(Start, BufferEnd - Start); 985 SourceCache[LineInfo.FileName] = std::move(Buffer); 986 return true; 987 } 988 989 void SourcePrinter::printSourceLine(formatted_raw_ostream &OS, 990 object::SectionedAddress Address, 991 StringRef ObjectFilename, 992 LiveVariablePrinter &LVP, 993 StringRef Delimiter) { 994 if (!Symbolizer) 995 return; 996 997 DILineInfo LineInfo = DILineInfo(); 998 auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address); 999 std::string ErrorMessage; 1000 if (!ExpectedLineInfo) 1001 ErrorMessage = toString(ExpectedLineInfo.takeError()); 1002 else 1003 LineInfo = *ExpectedLineInfo; 1004 1005 if (LineInfo.FileName == DILineInfo::BadString) { 1006 if (!WarnedNoDebugInfo) { 1007 std::string Warning = 1008 "failed to parse debug information for " + ObjectFilename.str(); 1009 if (!ErrorMessage.empty()) 1010 Warning += ": " + ErrorMessage; 1011 reportWarning(Warning, ObjectFilename); 1012 WarnedNoDebugInfo = true; 1013 } 1014 } 1015 1016 if (PrintLines) 1017 printLines(OS, LineInfo, Delimiter, LVP); 1018 if (PrintSource) 1019 printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP); 1020 OldLineInfo = LineInfo; 1021 } 1022 1023 void SourcePrinter::printLines(formatted_raw_ostream &OS, 1024 const DILineInfo &LineInfo, StringRef Delimiter, 1025 LiveVariablePrinter &LVP) { 1026 bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString && 1027 LineInfo.FunctionName != OldLineInfo.FunctionName; 1028 if (PrintFunctionName) { 1029 OS << Delimiter << LineInfo.FunctionName; 1030 // If demangling is successful, FunctionName will end with "()". Print it 1031 // only if demangling did not run or was unsuccessful. 1032 if (!StringRef(LineInfo.FunctionName).endswith("()")) 1033 OS << "()"; 1034 OS << ":\n"; 1035 } 1036 if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 && 1037 (OldLineInfo.Line != LineInfo.Line || 1038 OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) { 1039 OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line; 1040 LVP.printBetweenInsts(OS, true); 1041 } 1042 } 1043 1044 void SourcePrinter::printSources(formatted_raw_ostream &OS, 1045 const DILineInfo &LineInfo, 1046 StringRef ObjectFilename, StringRef Delimiter, 1047 LiveVariablePrinter &LVP) { 1048 if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 || 1049 (OldLineInfo.Line == LineInfo.Line && 1050 OldLineInfo.FileName == LineInfo.FileName)) 1051 return; 1052 1053 if (SourceCache.find(LineInfo.FileName) == SourceCache.end()) 1054 if (!cacheSource(LineInfo)) 1055 return; 1056 auto LineBuffer = LineCache.find(LineInfo.FileName); 1057 if (LineBuffer != LineCache.end()) { 1058 if (LineInfo.Line > LineBuffer->second.size()) { 1059 reportWarning( 1060 formatv( 1061 "debug info line number {0} exceeds the number of lines in {1}", 1062 LineInfo.Line, LineInfo.FileName), 1063 ObjectFilename); 1064 return; 1065 } 1066 // Vector begins at 0, line numbers are non-zero 1067 OS << Delimiter << LineBuffer->second[LineInfo.Line - 1]; 1068 LVP.printBetweenInsts(OS, true); 1069 } 1070 } 1071 1072 static bool isAArch64Elf(const ObjectFile *Obj) { 1073 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1074 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 1075 } 1076 1077 static bool isArmElf(const ObjectFile *Obj) { 1078 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1079 return Elf && Elf->getEMachine() == ELF::EM_ARM; 1080 } 1081 1082 static bool hasMappingSymbols(const ObjectFile *Obj) { 1083 return isArmElf(Obj) || isAArch64Elf(Obj); 1084 } 1085 1086 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 1087 const RelocationRef &Rel, uint64_t Address, 1088 bool Is64Bits) { 1089 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 1090 SmallString<16> Name; 1091 SmallString<32> Val; 1092 Rel.getTypeName(Name); 1093 if (Error E = getRelocationValueString(Rel, Val)) 1094 reportError(std::move(E), FileName); 1095 OS << format(Fmt.data(), Address) << Name << "\t" << Val; 1096 } 1097 1098 class PrettyPrinter { 1099 public: 1100 virtual ~PrettyPrinter() = default; 1101 virtual void 1102 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1103 object::SectionedAddress Address, formatted_raw_ostream &OS, 1104 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 1105 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 1106 LiveVariablePrinter &LVP) { 1107 if (SP && (PrintSource || PrintLines)) 1108 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 1109 LVP.printBetweenInsts(OS, false); 1110 1111 size_t Start = OS.tell(); 1112 if (!NoLeadingAddr) 1113 OS << format("%8" PRIx64 ":", Address.Address); 1114 if (!NoShowRawInsn) { 1115 OS << ' '; 1116 dumpBytes(Bytes, OS); 1117 } 1118 1119 // The output of printInst starts with a tab. Print some spaces so that 1120 // the tab has 1 column and advances to the target tab stop. 1121 unsigned TabStop = getInstStartColumn(); 1122 unsigned Column = OS.tell() - Start; 1123 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 1124 1125 if (MI) 1126 IP.printInst(MI, Address.Address, "", STI, OS); 1127 else 1128 OS << "\t<unknown>"; 1129 } 1130 }; 1131 PrettyPrinter PrettyPrinterInst; 1132 1133 class HexagonPrettyPrinter : public PrettyPrinter { 1134 public: 1135 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 1136 formatted_raw_ostream &OS) { 1137 uint32_t opcode = 1138 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 1139 if (!NoLeadingAddr) 1140 OS << format("%8" PRIx64 ":", Address); 1141 if (!NoShowRawInsn) { 1142 OS << "\t"; 1143 dumpBytes(Bytes.slice(0, 4), OS); 1144 OS << format("\t%08" PRIx32, opcode); 1145 } 1146 } 1147 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1148 object::SectionedAddress Address, formatted_raw_ostream &OS, 1149 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 1150 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 1151 LiveVariablePrinter &LVP) override { 1152 if (SP && (PrintSource || PrintLines)) 1153 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 1154 if (!MI) { 1155 printLead(Bytes, Address.Address, OS); 1156 OS << " <unknown>"; 1157 return; 1158 } 1159 std::string Buffer; 1160 { 1161 raw_string_ostream TempStream(Buffer); 1162 IP.printInst(MI, Address.Address, "", STI, TempStream); 1163 } 1164 StringRef Contents(Buffer); 1165 // Split off bundle attributes 1166 auto PacketBundle = Contents.rsplit('\n'); 1167 // Split off first instruction from the rest 1168 auto HeadTail = PacketBundle.first.split('\n'); 1169 auto Preamble = " { "; 1170 auto Separator = ""; 1171 1172 // Hexagon's packets require relocations to be inline rather than 1173 // clustered at the end of the packet. 1174 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 1175 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 1176 auto PrintReloc = [&]() -> void { 1177 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 1178 if (RelCur->getOffset() == Address.Address) { 1179 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 1180 return; 1181 } 1182 ++RelCur; 1183 } 1184 }; 1185 1186 while (!HeadTail.first.empty()) { 1187 OS << Separator; 1188 Separator = "\n"; 1189 if (SP && (PrintSource || PrintLines)) 1190 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 1191 printLead(Bytes, Address.Address, OS); 1192 OS << Preamble; 1193 Preamble = " "; 1194 StringRef Inst; 1195 auto Duplex = HeadTail.first.split('\v'); 1196 if (!Duplex.second.empty()) { 1197 OS << Duplex.first; 1198 OS << "; "; 1199 Inst = Duplex.second; 1200 } 1201 else 1202 Inst = HeadTail.first; 1203 OS << Inst; 1204 HeadTail = HeadTail.second.split('\n'); 1205 if (HeadTail.first.empty()) 1206 OS << " } " << PacketBundle.second; 1207 PrintReloc(); 1208 Bytes = Bytes.slice(4); 1209 Address.Address += 4; 1210 } 1211 } 1212 }; 1213 HexagonPrettyPrinter HexagonPrettyPrinterInst; 1214 1215 class AMDGCNPrettyPrinter : public PrettyPrinter { 1216 public: 1217 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1218 object::SectionedAddress Address, formatted_raw_ostream &OS, 1219 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 1220 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 1221 LiveVariablePrinter &LVP) override { 1222 if (SP && (PrintSource || PrintLines)) 1223 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 1224 1225 if (MI) { 1226 SmallString<40> InstStr; 1227 raw_svector_ostream IS(InstStr); 1228 1229 IP.printInst(MI, Address.Address, "", STI, IS); 1230 1231 OS << left_justify(IS.str(), 60); 1232 } else { 1233 // an unrecognized encoding - this is probably data so represent it 1234 // using the .long directive, or .byte directive if fewer than 4 bytes 1235 // remaining 1236 if (Bytes.size() >= 4) { 1237 OS << format("\t.long 0x%08" PRIx32 " ", 1238 support::endian::read32<support::little>(Bytes.data())); 1239 OS.indent(42); 1240 } else { 1241 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 1242 for (unsigned int i = 1; i < Bytes.size(); i++) 1243 OS << format(", 0x%02" PRIx8, Bytes[i]); 1244 OS.indent(55 - (6 * Bytes.size())); 1245 } 1246 } 1247 1248 OS << format("// %012" PRIX64 ":", Address.Address); 1249 if (Bytes.size() >= 4) { 1250 // D should be casted to uint32_t here as it is passed by format to 1251 // snprintf as vararg. 1252 for (uint32_t D : makeArrayRef( 1253 reinterpret_cast<const support::little32_t *>(Bytes.data()), 1254 Bytes.size() / 4)) 1255 OS << format(" %08" PRIX32, D); 1256 } else { 1257 for (unsigned char B : Bytes) 1258 OS << format(" %02" PRIX8, B); 1259 } 1260 1261 if (!Annot.empty()) 1262 OS << " // " << Annot; 1263 } 1264 }; 1265 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 1266 1267 class BPFPrettyPrinter : public PrettyPrinter { 1268 public: 1269 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 1270 object::SectionedAddress Address, formatted_raw_ostream &OS, 1271 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 1272 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 1273 LiveVariablePrinter &LVP) override { 1274 if (SP && (PrintSource || PrintLines)) 1275 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 1276 if (!NoLeadingAddr) 1277 OS << format("%8" PRId64 ":", Address.Address / 8); 1278 if (!NoShowRawInsn) { 1279 OS << "\t"; 1280 dumpBytes(Bytes, OS); 1281 } 1282 if (MI) 1283 IP.printInst(MI, Address.Address, "", STI, OS); 1284 else 1285 OS << "\t<unknown>"; 1286 } 1287 }; 1288 BPFPrettyPrinter BPFPrettyPrinterInst; 1289 1290 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 1291 switch(Triple.getArch()) { 1292 default: 1293 return PrettyPrinterInst; 1294 case Triple::hexagon: 1295 return HexagonPrettyPrinterInst; 1296 case Triple::amdgcn: 1297 return AMDGCNPrettyPrinterInst; 1298 case Triple::bpfel: 1299 case Triple::bpfeb: 1300 return BPFPrettyPrinterInst; 1301 } 1302 } 1303 } 1304 1305 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 1306 assert(Obj->isELF()); 1307 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1308 return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1309 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1310 return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1311 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1312 return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1313 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1314 return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType(); 1315 llvm_unreachable("Unsupported binary format"); 1316 } 1317 1318 template <class ELFT> static void 1319 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 1320 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1321 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 1322 uint8_t SymbolType = Symbol.getELFType(); 1323 if (SymbolType == ELF::STT_SECTION) 1324 continue; 1325 1326 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 1327 // ELFSymbolRef::getAddress() returns size instead of value for common 1328 // symbols which is not desirable for disassembly output. Overriding. 1329 if (SymbolType == ELF::STT_COMMON) 1330 Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value; 1331 1332 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 1333 if (Name.empty()) 1334 continue; 1335 1336 section_iterator SecI = 1337 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 1338 if (SecI == Obj->section_end()) 1339 continue; 1340 1341 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1342 } 1343 } 1344 1345 static void 1346 addDynamicElfSymbols(const ObjectFile *Obj, 1347 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1348 assert(Obj->isELF()); 1349 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 1350 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 1351 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 1352 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 1353 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 1354 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 1355 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 1356 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 1357 else 1358 llvm_unreachable("Unsupported binary format"); 1359 } 1360 1361 static void addPltEntries(const ObjectFile *Obj, 1362 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1363 StringSaver &Saver) { 1364 Optional<SectionRef> Plt = None; 1365 for (const SectionRef &Section : Obj->sections()) { 1366 Expected<StringRef> SecNameOrErr = Section.getName(); 1367 if (!SecNameOrErr) { 1368 consumeError(SecNameOrErr.takeError()); 1369 continue; 1370 } 1371 if (*SecNameOrErr == ".plt") 1372 Plt = Section; 1373 } 1374 if (!Plt) 1375 return; 1376 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 1377 for (auto PltEntry : ElfObj->getPltAddresses()) { 1378 SymbolRef Symbol(PltEntry.first, ElfObj); 1379 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1380 1381 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 1382 if (!Name.empty()) 1383 AllSymbols[*Plt].emplace_back( 1384 PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType); 1385 } 1386 } 1387 } 1388 1389 // Normally the disassembly output will skip blocks of zeroes. This function 1390 // returns the number of zero bytes that can be skipped when dumping the 1391 // disassembly of the instructions in Buf. 1392 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 1393 // Find the number of leading zeroes. 1394 size_t N = 0; 1395 while (N < Buf.size() && !Buf[N]) 1396 ++N; 1397 1398 // We may want to skip blocks of zero bytes, but unless we see 1399 // at least 8 of them in a row. 1400 if (N < 8) 1401 return 0; 1402 1403 // We skip zeroes in multiples of 4 because do not want to truncate an 1404 // instruction if it starts with a zero byte. 1405 return N & ~0x3; 1406 } 1407 1408 // Returns a map from sections to their relocations. 1409 static std::map<SectionRef, std::vector<RelocationRef>> 1410 getRelocsMap(object::ObjectFile const &Obj) { 1411 std::map<SectionRef, std::vector<RelocationRef>> Ret; 1412 uint64_t I = (uint64_t)-1; 1413 for (SectionRef Sec : Obj.sections()) { 1414 ++I; 1415 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1416 if (!RelocatedOrErr) 1417 reportError(Obj.getFileName(), 1418 "section (" + Twine(I) + 1419 "): failed to get a relocated section: " + 1420 toString(RelocatedOrErr.takeError())); 1421 1422 section_iterator Relocated = *RelocatedOrErr; 1423 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1424 continue; 1425 std::vector<RelocationRef> &V = Ret[*Relocated]; 1426 for (const RelocationRef &R : Sec.relocations()) 1427 V.push_back(R); 1428 // Sort relocations by address. 1429 llvm::stable_sort(V, isRelocAddressLess); 1430 } 1431 return Ret; 1432 } 1433 1434 // Used for --adjust-vma to check if address should be adjusted by the 1435 // specified value for a given section. 1436 // For ELF we do not adjust non-allocatable sections like debug ones, 1437 // because they are not loadable. 1438 // TODO: implement for other file formats. 1439 static bool shouldAdjustVA(const SectionRef &Section) { 1440 const ObjectFile *Obj = Section.getObject(); 1441 if (isa<object::ELFObjectFileBase>(Obj)) 1442 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1443 return false; 1444 } 1445 1446 1447 typedef std::pair<uint64_t, char> MappingSymbolPair; 1448 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1449 uint64_t Address) { 1450 auto It = 1451 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1452 return Val.first <= Address; 1453 }); 1454 // Return zero for any address before the first mapping symbol; this means 1455 // we should use the default disassembly mode, depending on the target. 1456 if (It == MappingSymbols.begin()) 1457 return '\x00'; 1458 return (It - 1)->second; 1459 } 1460 1461 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1462 uint64_t End, const ObjectFile *Obj, 1463 ArrayRef<uint8_t> Bytes, 1464 ArrayRef<MappingSymbolPair> MappingSymbols, 1465 raw_ostream &OS) { 1466 support::endianness Endian = 1467 Obj->isLittleEndian() ? support::little : support::big; 1468 while (Index < End) { 1469 OS << format("%8" PRIx64 ":", SectionAddr + Index); 1470 OS << "\t"; 1471 if (Index + 4 <= End) { 1472 dumpBytes(Bytes.slice(Index, 4), OS); 1473 OS << "\t.word\t" 1474 << format_hex( 1475 support::endian::read32(Bytes.data() + Index, Endian), 10); 1476 Index += 4; 1477 } else if (Index + 2 <= End) { 1478 dumpBytes(Bytes.slice(Index, 2), OS); 1479 OS << "\t\t.short\t" 1480 << format_hex( 1481 support::endian::read16(Bytes.data() + Index, Endian), 6); 1482 Index += 2; 1483 } else { 1484 dumpBytes(Bytes.slice(Index, 1), OS); 1485 OS << "\t\t.byte\t" << format_hex(Bytes[0], 4); 1486 ++Index; 1487 } 1488 OS << "\n"; 1489 if (getMappingSymbolKind(MappingSymbols, Index) != 'd') 1490 break; 1491 } 1492 return Index; 1493 } 1494 1495 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1496 ArrayRef<uint8_t> Bytes) { 1497 // print out data up to 8 bytes at a time in hex and ascii 1498 uint8_t AsciiData[9] = {'\0'}; 1499 uint8_t Byte; 1500 int NumBytes = 0; 1501 1502 for (; Index < End; ++Index) { 1503 if (NumBytes == 0) 1504 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1505 Byte = Bytes.slice(Index)[0]; 1506 outs() << format(" %02x", Byte); 1507 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1508 1509 uint8_t IndentOffset = 0; 1510 NumBytes++; 1511 if (Index == End - 1 || NumBytes > 8) { 1512 // Indent the space for less than 8 bytes data. 1513 // 2 spaces for byte and one for space between bytes 1514 IndentOffset = 3 * (8 - NumBytes); 1515 for (int Excess = NumBytes; Excess < 8; Excess++) 1516 AsciiData[Excess] = '\0'; 1517 NumBytes = 8; 1518 } 1519 if (NumBytes == 8) { 1520 AsciiData[8] = '\0'; 1521 outs() << std::string(IndentOffset, ' ') << " "; 1522 outs() << reinterpret_cast<char *>(AsciiData); 1523 outs() << '\n'; 1524 NumBytes = 0; 1525 } 1526 } 1527 } 1528 1529 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1530 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1531 MCDisassembler *SecondaryDisAsm, 1532 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1533 const MCSubtargetInfo *PrimarySTI, 1534 const MCSubtargetInfo *SecondarySTI, 1535 PrettyPrinter &PIP, 1536 SourcePrinter &SP, bool InlineRelocs) { 1537 const MCSubtargetInfo *STI = PrimarySTI; 1538 MCDisassembler *DisAsm = PrimaryDisAsm; 1539 bool PrimaryIsThumb = false; 1540 if (isArmElf(Obj)) 1541 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1542 1543 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1544 if (InlineRelocs) 1545 RelocMap = getRelocsMap(*Obj); 1546 bool Is64Bits = Obj->getBytesInAddress() > 4; 1547 1548 // Create a mapping from virtual address to symbol name. This is used to 1549 // pretty print the symbols while disassembling. 1550 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1551 SectionSymbolsTy AbsoluteSymbols; 1552 const StringRef FileName = Obj->getFileName(); 1553 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1554 for (const SymbolRef &Symbol : Obj->symbols()) { 1555 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName); 1556 1557 StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1558 if (Name.empty()) 1559 continue; 1560 1561 uint8_t SymbolType = ELF::STT_NOTYPE; 1562 if (Obj->isELF()) { 1563 SymbolType = getElfSymbolType(Obj, Symbol); 1564 if (SymbolType == ELF::STT_SECTION) 1565 continue; 1566 } 1567 1568 // Don't ask a Mach-O STAB symbol for its section unless you know that 1569 // STAB symbol's section field refers to a valid section index. Otherwise 1570 // the symbol may error trying to load a section that does not exist. 1571 if (MachO) { 1572 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1573 uint8_t NType = (MachO->is64Bit() ? 1574 MachO->getSymbol64TableEntry(SymDRI).n_type: 1575 MachO->getSymbolTableEntry(SymDRI).n_type); 1576 if (NType & MachO::N_STAB) 1577 continue; 1578 } 1579 1580 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1581 if (SecI != Obj->section_end()) 1582 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1583 else 1584 AbsoluteSymbols.emplace_back(Address, Name, SymbolType); 1585 } 1586 if (AllSymbols.empty() && Obj->isELF()) 1587 addDynamicElfSymbols(Obj, AllSymbols); 1588 1589 BumpPtrAllocator A; 1590 StringSaver Saver(A); 1591 addPltEntries(Obj, AllSymbols, Saver); 1592 1593 // Create a mapping from virtual address to section. 1594 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1595 for (SectionRef Sec : Obj->sections()) 1596 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1597 array_pod_sort(SectionAddresses.begin(), SectionAddresses.end()); 1598 1599 // Linked executables (.exe and .dll files) typically don't include a real 1600 // symbol table but they might contain an export table. 1601 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1602 for (const auto &ExportEntry : COFFObj->export_directories()) { 1603 StringRef Name; 1604 if (std::error_code EC = ExportEntry.getSymbolName(Name)) 1605 reportError(errorCodeToError(EC), Obj->getFileName()); 1606 if (Name.empty()) 1607 continue; 1608 1609 uint32_t RVA; 1610 if (std::error_code EC = ExportEntry.getExportRVA(RVA)) 1611 reportError(errorCodeToError(EC), Obj->getFileName()); 1612 1613 uint64_t VA = COFFObj->getImageBase() + RVA; 1614 auto Sec = partition_point( 1615 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1616 return O.first <= VA; 1617 }); 1618 if (Sec != SectionAddresses.begin()) { 1619 --Sec; 1620 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1621 } else 1622 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1623 } 1624 } 1625 1626 // Sort all the symbols, this allows us to use a simple binary search to find 1627 // a symbol near an address. 1628 StringSet<> FoundDisasmSymbolSet; 1629 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1630 array_pod_sort(SecSyms.second.begin(), SecSyms.second.end()); 1631 array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); 1632 1633 std::unique_ptr<DWARFContext> DICtx; 1634 LiveVariablePrinter LVP(*Ctx.getRegisterInfo()); 1635 1636 if (DbgVariables != DVDisabled) { 1637 DICtx = DWARFContext::create(*Obj); 1638 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1639 LVP.addCompileUnit(CU->getUnitDIE(false)); 1640 } 1641 1642 LLVM_DEBUG(LVP.dump()); 1643 1644 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1645 if (FilterSections.empty() && !DisassembleAll && 1646 (!Section.isText() || Section.isVirtual())) 1647 continue; 1648 1649 uint64_t SectionAddr = Section.getAddress(); 1650 uint64_t SectSize = Section.getSize(); 1651 if (!SectSize) 1652 continue; 1653 1654 // Get the list of all the symbols in this section. 1655 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1656 std::vector<MappingSymbolPair> MappingSymbols; 1657 if (hasMappingSymbols(Obj)) { 1658 for (const auto &Symb : Symbols) { 1659 uint64_t Address = Symb.Addr; 1660 StringRef Name = Symb.Name; 1661 if (Name.startswith("$d")) 1662 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1663 if (Name.startswith("$x")) 1664 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1665 if (Name.startswith("$a")) 1666 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1667 if (Name.startswith("$t")) 1668 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1669 } 1670 } 1671 1672 llvm::sort(MappingSymbols); 1673 1674 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1675 // AMDGPU disassembler uses symbolizer for printing labels 1676 std::unique_ptr<MCRelocationInfo> RelInfo( 1677 TheTarget->createMCRelocationInfo(TripleName, Ctx)); 1678 if (RelInfo) { 1679 std::unique_ptr<MCSymbolizer> Symbolizer( 1680 TheTarget->createMCSymbolizer( 1681 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1682 DisAsm->setSymbolizer(std::move(Symbolizer)); 1683 } 1684 } 1685 1686 StringRef SegmentName = ""; 1687 if (MachO) { 1688 DataRefImpl DR = Section.getRawDataRefImpl(); 1689 SegmentName = MachO->getSectionFinalSegmentName(DR); 1690 } 1691 1692 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1693 // If the section has no symbol at the start, just insert a dummy one. 1694 if (Symbols.empty() || Symbols[0].Addr != 0) { 1695 Symbols.insert( 1696 Symbols.begin(), 1697 SymbolInfoTy(SectionAddr, SectionName, 1698 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT)); 1699 } 1700 1701 SmallString<40> Comments; 1702 raw_svector_ostream CommentStream(Comments); 1703 1704 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1705 unwrapOrError(Section.getContents(), Obj->getFileName())); 1706 1707 uint64_t VMAAdjustment = 0; 1708 if (shouldAdjustVA(Section)) 1709 VMAAdjustment = AdjustVMA; 1710 1711 uint64_t Size; 1712 uint64_t Index; 1713 bool PrintedSection = false; 1714 std::vector<RelocationRef> Rels = RelocMap[Section]; 1715 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1716 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1717 // Disassemble symbol by symbol. 1718 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1719 std::string SymbolName = Symbols[SI].Name.str(); 1720 if (Demangle) 1721 SymbolName = demangle(SymbolName); 1722 1723 // Skip if --disassemble-symbols is not empty and the symbol is not in 1724 // the list. 1725 if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName)) 1726 continue; 1727 1728 uint64_t Start = Symbols[SI].Addr; 1729 if (Start < SectionAddr || StopAddress <= Start) 1730 continue; 1731 else 1732 FoundDisasmSymbolSet.insert(SymbolName); 1733 1734 // The end is the section end, the beginning of the next symbol, or 1735 // --stop-address. 1736 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1737 if (SI + 1 < SE) 1738 End = std::min(End, Symbols[SI + 1].Addr); 1739 if (Start >= End || End <= StartAddress) 1740 continue; 1741 Start -= SectionAddr; 1742 End -= SectionAddr; 1743 1744 if (!PrintedSection) { 1745 PrintedSection = true; 1746 outs() << "\nDisassembly of section "; 1747 if (!SegmentName.empty()) 1748 outs() << SegmentName << ","; 1749 outs() << SectionName << ":\n"; 1750 } 1751 1752 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1753 if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) { 1754 // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes) 1755 Start += 256; 1756 } 1757 if (SI == SE - 1 || 1758 Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) { 1759 // cut trailing zeroes at the end of kernel 1760 // cut up to 256 bytes 1761 const uint64_t EndAlign = 256; 1762 const auto Limit = End - (std::min)(EndAlign, End - Start); 1763 while (End > Limit && 1764 *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0) 1765 End -= 4; 1766 } 1767 } 1768 1769 outs() << '\n'; 1770 if (!NoLeadingAddr) 1771 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1772 SectionAddr + Start + VMAAdjustment); 1773 1774 outs() << '<' << SymbolName << ">:\n"; 1775 1776 // Don't print raw contents of a virtual section. A virtual section 1777 // doesn't have any contents in the file. 1778 if (Section.isVirtual()) { 1779 outs() << "...\n"; 1780 continue; 1781 } 1782 1783 // Some targets (like WebAssembly) have a special prelude at the start 1784 // of each symbol. 1785 DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start), 1786 SectionAddr + Start, CommentStream); 1787 Start += Size; 1788 1789 Index = Start; 1790 if (SectionAddr < StartAddress) 1791 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1792 1793 // If there is a data/common symbol inside an ELF text section and we are 1794 // only disassembling text (applicable all architectures), we are in a 1795 // situation where we must print the data and not disassemble it. 1796 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1797 uint8_t SymTy = Symbols[SI].Type; 1798 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1799 dumpELFData(SectionAddr, Index, End, Bytes); 1800 Index = End; 1801 } 1802 } 1803 1804 bool CheckARMELFData = hasMappingSymbols(Obj) && 1805 Symbols[SI].Type != ELF::STT_OBJECT && 1806 !DisassembleAll; 1807 formatted_raw_ostream FOS(outs()); 1808 while (Index < End) { 1809 // ARM and AArch64 ELF binaries can interleave data and text in the 1810 // same section. We rely on the markers introduced to understand what 1811 // we need to dump. If the data marker is within a function, it is 1812 // denoted as a word/short etc. 1813 if (CheckARMELFData && 1814 getMappingSymbolKind(MappingSymbols, Index) == 'd') { 1815 Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1816 MappingSymbols, FOS); 1817 continue; 1818 } 1819 1820 // When -z or --disassemble-zeroes are given we always dissasemble 1821 // them. Otherwise we might want to skip zero bytes we see. 1822 if (!DisassembleZeroes) { 1823 uint64_t MaxOffset = End - Index; 1824 // For -reloc: print zero blocks patched by relocations, so that 1825 // relocations can be shown in the dump. 1826 if (RelCur != RelEnd) 1827 MaxOffset = RelCur->getOffset() - Index; 1828 1829 if (size_t N = 1830 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1831 FOS << "\t\t..." << '\n'; 1832 Index += N; 1833 continue; 1834 } 1835 } 1836 1837 if (SecondarySTI) { 1838 if (getMappingSymbolKind(MappingSymbols, Index) == 'a') { 1839 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1840 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1841 } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') { 1842 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1843 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1844 } 1845 } 1846 1847 // Disassemble a real instruction or a data when disassemble all is 1848 // provided 1849 MCInst Inst; 1850 bool Disassembled = DisAsm->getInstruction( 1851 Inst, Size, Bytes.slice(Index), SectionAddr + Index, CommentStream); 1852 if (Size == 0) 1853 Size = 1; 1854 1855 LVP.update({Index, Section.getIndex()}, 1856 {Index + Size, Section.getIndex()}, Index + Size != End); 1857 1858 PIP.printInst(*IP, Disassembled ? &Inst : nullptr, 1859 Bytes.slice(Index, Size), 1860 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, 1861 FOS, "", *STI, &SP, Obj->getFileName(), &Rels, LVP); 1862 FOS << CommentStream.str(); 1863 Comments.clear(); 1864 1865 // If disassembly has failed, continue with the next instruction, to 1866 // avoid analysing invalid/incomplete instruction information. 1867 if (!Disassembled) { 1868 FOS << "\n"; 1869 Index += Size; 1870 continue; 1871 } 1872 1873 // Try to resolve the target of a call, tail call, etc. to a specific 1874 // symbol. 1875 if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || 1876 MIA->isConditionalBranch(Inst))) { 1877 uint64_t Target; 1878 if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) { 1879 // In a relocatable object, the target's section must reside in 1880 // the same section as the call instruction or it is accessed 1881 // through a relocation. 1882 // 1883 // In a non-relocatable object, the target may be in any section. 1884 // 1885 // N.B. We don't walk the relocations in the relocatable case yet. 1886 auto *TargetSectionSymbols = &Symbols; 1887 if (!Obj->isRelocatableObject()) { 1888 auto It = partition_point( 1889 SectionAddresses, 1890 [=](const std::pair<uint64_t, SectionRef> &O) { 1891 return O.first <= Target; 1892 }); 1893 if (It != SectionAddresses.begin()) { 1894 --It; 1895 TargetSectionSymbols = &AllSymbols[It->second]; 1896 } else { 1897 TargetSectionSymbols = &AbsoluteSymbols; 1898 } 1899 } 1900 1901 // Find the last symbol in the section whose offset is less than 1902 // or equal to the target. If there isn't a section that contains 1903 // the target, find the nearest preceding absolute symbol. 1904 auto TargetSym = partition_point( 1905 *TargetSectionSymbols, 1906 [=](const SymbolInfoTy &O) { 1907 return O.Addr <= Target; 1908 }); 1909 if (TargetSym == TargetSectionSymbols->begin()) { 1910 TargetSectionSymbols = &AbsoluteSymbols; 1911 TargetSym = partition_point( 1912 AbsoluteSymbols, 1913 [=](const SymbolInfoTy &O) { 1914 return O.Addr <= Target; 1915 }); 1916 } 1917 if (TargetSym != TargetSectionSymbols->begin()) { 1918 --TargetSym; 1919 uint64_t TargetAddress = TargetSym->Addr; 1920 StringRef TargetName = TargetSym->Name; 1921 FOS << " <" << TargetName; 1922 uint64_t Disp = Target - TargetAddress; 1923 if (Disp) 1924 FOS << "+0x" << Twine::utohexstr(Disp); 1925 FOS << '>'; 1926 } 1927 } 1928 } 1929 1930 LVP.printAfterInst(FOS); 1931 FOS << "\n"; 1932 1933 // Hexagon does this in pretty printer 1934 if (Obj->getArch() != Triple::hexagon) { 1935 // Print relocation for instruction. 1936 while (RelCur != RelEnd) { 1937 uint64_t Offset = RelCur->getOffset(); 1938 // If this relocation is hidden, skip it. 1939 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1940 ++RelCur; 1941 continue; 1942 } 1943 1944 // Stop when RelCur's offset is past the current instruction. 1945 if (Offset >= Index + Size) 1946 break; 1947 1948 // When --adjust-vma is used, update the address printed. 1949 if (RelCur->getSymbol() != Obj->symbol_end()) { 1950 Expected<section_iterator> SymSI = 1951 RelCur->getSymbol()->getSection(); 1952 if (SymSI && *SymSI != Obj->section_end() && 1953 shouldAdjustVA(**SymSI)) 1954 Offset += AdjustVMA; 1955 } 1956 1957 printRelocation(FOS, Obj->getFileName(), *RelCur, 1958 SectionAddr + Offset, Is64Bits); 1959 LVP.printAfterOtherLine(FOS, true); 1960 ++RelCur; 1961 } 1962 } 1963 1964 Index += Size; 1965 } 1966 } 1967 } 1968 StringSet<> MissingDisasmSymbolSet = 1969 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1970 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1971 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1972 } 1973 1974 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1975 const Target *TheTarget = getTarget(Obj); 1976 1977 // Package up features to be passed to target/subtarget 1978 SubtargetFeatures Features = Obj->getFeatures(); 1979 if (!MAttrs.empty()) 1980 for (unsigned I = 0; I != MAttrs.size(); ++I) 1981 Features.AddFeature(MAttrs[I]); 1982 1983 std::unique_ptr<const MCRegisterInfo> MRI( 1984 TheTarget->createMCRegInfo(TripleName)); 1985 if (!MRI) 1986 reportError(Obj->getFileName(), 1987 "no register info for target " + TripleName); 1988 1989 // Set up disassembler. 1990 MCTargetOptions MCOptions; 1991 std::unique_ptr<const MCAsmInfo> AsmInfo( 1992 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 1993 if (!AsmInfo) 1994 reportError(Obj->getFileName(), 1995 "no assembly info for target " + TripleName); 1996 std::unique_ptr<const MCSubtargetInfo> STI( 1997 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1998 if (!STI) 1999 reportError(Obj->getFileName(), 2000 "no subtarget info for target " + TripleName); 2001 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 2002 if (!MII) 2003 reportError(Obj->getFileName(), 2004 "no instruction info for target " + TripleName); 2005 MCObjectFileInfo MOFI; 2006 MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI); 2007 // FIXME: for now initialize MCObjectFileInfo with default values 2008 MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx); 2009 2010 std::unique_ptr<MCDisassembler> DisAsm( 2011 TheTarget->createMCDisassembler(*STI, Ctx)); 2012 if (!DisAsm) 2013 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 2014 2015 // If we have an ARM object file, we need a second disassembler, because 2016 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2017 // We use mapping symbols to switch between the two assemblers, where 2018 // appropriate. 2019 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 2020 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 2021 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 2022 if (STI->checkFeatures("+thumb-mode")) 2023 Features.AddFeature("-thumb-mode"); 2024 else 2025 Features.AddFeature("+thumb-mode"); 2026 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 2027 Features.getString())); 2028 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 2029 } 2030 2031 std::unique_ptr<const MCInstrAnalysis> MIA( 2032 TheTarget->createMCInstrAnalysis(MII.get())); 2033 2034 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 2035 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 2036 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 2037 if (!IP) 2038 reportError(Obj->getFileName(), 2039 "no instruction printer for target " + TripleName); 2040 IP->setPrintImmHex(PrintImmHex); 2041 2042 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 2043 SourcePrinter SP(Obj, TheTarget->getName()); 2044 2045 for (StringRef Opt : DisassemblerOptions) 2046 if (!IP->applyTargetSpecificCLOption(Opt)) 2047 reportError(Obj->getFileName(), 2048 "Unrecognized disassembler option: " + Opt); 2049 2050 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 2051 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 2052 SP, InlineRelocs); 2053 } 2054 2055 void printRelocations(const ObjectFile *Obj) { 2056 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 2057 "%08" PRIx64; 2058 // Regular objdump doesn't print relocations in non-relocatable object 2059 // files. 2060 if (!Obj->isRelocatableObject()) 2061 return; 2062 2063 // Build a mapping from relocation target to a vector of relocation 2064 // sections. Usually, there is an only one relocation section for 2065 // each relocated section. 2066 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2067 uint64_t Ndx; 2068 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 2069 if (Section.relocation_begin() == Section.relocation_end()) 2070 continue; 2071 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2072 if (!SecOrErr) 2073 reportError(Obj->getFileName(), 2074 "section (" + Twine(Ndx) + 2075 "): unable to get a relocation target: " + 2076 toString(SecOrErr.takeError())); 2077 SecToRelSec[**SecOrErr].push_back(Section); 2078 } 2079 2080 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2081 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 2082 outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n"; 2083 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2084 uint32_t TypePadding = 24; 2085 outs() << left_justify("OFFSET", OffsetPadding) << " " 2086 << left_justify("TYPE", TypePadding) << " " 2087 << "VALUE\n"; 2088 2089 for (SectionRef Section : P.second) { 2090 for (const RelocationRef &Reloc : Section.relocations()) { 2091 uint64_t Address = Reloc.getOffset(); 2092 SmallString<32> RelocName; 2093 SmallString<32> ValueStr; 2094 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2095 continue; 2096 Reloc.getTypeName(RelocName); 2097 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2098 reportError(std::move(E), Obj->getFileName()); 2099 2100 outs() << format(Fmt.data(), Address) << " " 2101 << left_justify(RelocName, TypePadding) << " " << ValueStr 2102 << "\n"; 2103 } 2104 } 2105 outs() << "\n"; 2106 } 2107 } 2108 2109 void printDynamicRelocations(const ObjectFile *Obj) { 2110 // For the moment, this option is for ELF only 2111 if (!Obj->isELF()) 2112 return; 2113 2114 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 2115 if (!Elf || Elf->getEType() != ELF::ET_DYN) { 2116 reportError(Obj->getFileName(), "not a dynamic object"); 2117 return; 2118 } 2119 2120 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 2121 if (DynRelSec.empty()) 2122 return; 2123 2124 outs() << "DYNAMIC RELOCATION RECORDS\n"; 2125 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2126 for (const SectionRef &Section : DynRelSec) 2127 for (const RelocationRef &Reloc : Section.relocations()) { 2128 uint64_t Address = Reloc.getOffset(); 2129 SmallString<32> RelocName; 2130 SmallString<32> ValueStr; 2131 Reloc.getTypeName(RelocName); 2132 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2133 reportError(std::move(E), Obj->getFileName()); 2134 outs() << format(Fmt.data(), Address) << " " << RelocName << " " 2135 << ValueStr << "\n"; 2136 } 2137 } 2138 2139 // Returns true if we need to show LMA column when dumping section headers. We 2140 // show it only when the platform is ELF and either we have at least one section 2141 // whose VMA and LMA are different and/or when --show-lma flag is used. 2142 static bool shouldDisplayLMA(const ObjectFile *Obj) { 2143 if (!Obj->isELF()) 2144 return false; 2145 for (const SectionRef &S : ToolSectionFilter(*Obj)) 2146 if (S.getAddress() != getELFSectionLMA(S)) 2147 return true; 2148 return ShowLMA; 2149 } 2150 2151 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 2152 // Default column width for names is 13 even if no names are that long. 2153 size_t MaxWidth = 13; 2154 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2155 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2156 MaxWidth = std::max(MaxWidth, Name.size()); 2157 } 2158 return MaxWidth; 2159 } 2160 2161 void printSectionHeaders(const ObjectFile *Obj) { 2162 size_t NameWidth = getMaxSectionNameWidth(Obj); 2163 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 2164 bool HasLMAColumn = shouldDisplayLMA(Obj); 2165 if (HasLMAColumn) 2166 outs() << "Sections:\n" 2167 "Idx " 2168 << left_justify("Name", NameWidth) << " Size " 2169 << left_justify("VMA", AddressWidth) << " " 2170 << left_justify("LMA", AddressWidth) << " Type\n"; 2171 else 2172 outs() << "Sections:\n" 2173 "Idx " 2174 << left_justify("Name", NameWidth) << " Size " 2175 << left_justify("VMA", AddressWidth) << " Type\n"; 2176 2177 uint64_t Idx; 2178 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 2179 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2180 uint64_t VMA = Section.getAddress(); 2181 if (shouldAdjustVA(Section)) 2182 VMA += AdjustVMA; 2183 2184 uint64_t Size = Section.getSize(); 2185 2186 std::string Type = Section.isText() ? "TEXT" : ""; 2187 if (Section.isData()) 2188 Type += Type.empty() ? "DATA" : " DATA"; 2189 if (Section.isBSS()) 2190 Type += Type.empty() ? "BSS" : " BSS"; 2191 2192 if (HasLMAColumn) 2193 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2194 Name.str().c_str(), Size) 2195 << format_hex_no_prefix(VMA, AddressWidth) << " " 2196 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2197 << " " << Type << "\n"; 2198 else 2199 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2200 Name.str().c_str(), Size) 2201 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2202 } 2203 outs() << "\n"; 2204 } 2205 2206 void printSectionContents(const ObjectFile *Obj) { 2207 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2208 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2209 uint64_t BaseAddr = Section.getAddress(); 2210 uint64_t Size = Section.getSize(); 2211 if (!Size) 2212 continue; 2213 2214 outs() << "Contents of section " << Name << ":\n"; 2215 if (Section.isBSS()) { 2216 outs() << format("<skipping contents of bss section at [%04" PRIx64 2217 ", %04" PRIx64 ")>\n", 2218 BaseAddr, BaseAddr + Size); 2219 continue; 2220 } 2221 2222 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2223 2224 // Dump out the content as hex and printable ascii characters. 2225 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2226 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2227 // Dump line of hex. 2228 for (std::size_t I = 0; I < 16; ++I) { 2229 if (I != 0 && I % 4 == 0) 2230 outs() << ' '; 2231 if (Addr + I < End) 2232 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2233 << hexdigit(Contents[Addr + I] & 0xF, true); 2234 else 2235 outs() << " "; 2236 } 2237 // Print ascii. 2238 outs() << " "; 2239 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2240 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2241 outs() << Contents[Addr + I]; 2242 else 2243 outs() << "."; 2244 } 2245 outs() << "\n"; 2246 } 2247 } 2248 } 2249 2250 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 2251 StringRef ArchitectureName) { 2252 outs() << "SYMBOL TABLE:\n"; 2253 2254 if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) { 2255 printCOFFSymbolTable(Coff); 2256 return; 2257 } 2258 2259 const StringRef FileName = O->getFileName(); 2260 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O); 2261 for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) { 2262 const SymbolRef &Symbol = *I; 2263 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 2264 ArchitectureName); 2265 if ((Address < StartAddress) || (Address > StopAddress)) 2266 continue; 2267 SymbolRef::Type Type = unwrapOrError(Symbol.getType(), FileName, 2268 ArchiveName, ArchitectureName); 2269 uint32_t Flags = Symbol.getFlags(); 2270 2271 // Don't ask a Mach-O STAB symbol for its section unless you know that 2272 // STAB symbol's section field refers to a valid section index. Otherwise 2273 // the symbol may error trying to load a section that does not exist. 2274 bool isSTAB = false; 2275 if (MachO) { 2276 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2277 uint8_t NType = (MachO->is64Bit() ? 2278 MachO->getSymbol64TableEntry(SymDRI).n_type: 2279 MachO->getSymbolTableEntry(SymDRI).n_type); 2280 if (NType & MachO::N_STAB) 2281 isSTAB = true; 2282 } 2283 section_iterator Section = isSTAB ? O->section_end() : 2284 unwrapOrError(Symbol.getSection(), FileName, 2285 ArchiveName, ArchitectureName); 2286 2287 StringRef Name; 2288 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 2289 if (Expected<StringRef> NameOrErr = Section->getName()) 2290 Name = *NameOrErr; 2291 else 2292 consumeError(NameOrErr.takeError()); 2293 2294 } else { 2295 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2296 ArchitectureName); 2297 } 2298 2299 bool Global = Flags & SymbolRef::SF_Global; 2300 bool Weak = Flags & SymbolRef::SF_Weak; 2301 bool Absolute = Flags & SymbolRef::SF_Absolute; 2302 bool Common = Flags & SymbolRef::SF_Common; 2303 bool Hidden = Flags & SymbolRef::SF_Hidden; 2304 2305 char GlobLoc = ' '; 2306 if ((Section != O->section_end() || Absolute) && !Weak) 2307 GlobLoc = Global ? 'g' : 'l'; 2308 char IFunc = ' '; 2309 if (isa<ELFObjectFileBase>(O)) { 2310 if (ELFSymbolRef(*I).getELFType() == ELF::STT_GNU_IFUNC) 2311 IFunc = 'i'; 2312 if (ELFSymbolRef(*I).getBinding() == ELF::STB_GNU_UNIQUE) 2313 GlobLoc = 'u'; 2314 } 2315 char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2316 ? 'd' : ' '; 2317 char FileFunc = ' '; 2318 if (Type == SymbolRef::ST_File) 2319 FileFunc = 'f'; 2320 else if (Type == SymbolRef::ST_Function) 2321 FileFunc = 'F'; 2322 else if (Type == SymbolRef::ST_Data) 2323 FileFunc = 'O'; 2324 2325 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : 2326 "%08" PRIx64; 2327 2328 outs() << format(Fmt, Address) << " " 2329 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2330 << (Weak ? 'w' : ' ') // Weak? 2331 << ' ' // Constructor. Not supported yet. 2332 << ' ' // Warning. Not supported yet. 2333 << IFunc 2334 << Debug // Debugging (d) or dynamic (D) symbol. 2335 << FileFunc // Name of function (F), file (f) or object (O). 2336 << ' '; 2337 if (Absolute) { 2338 outs() << "*ABS*"; 2339 } else if (Common) { 2340 outs() << "*COM*"; 2341 } else if (Section == O->section_end()) { 2342 outs() << "*UND*"; 2343 } else { 2344 if (const MachOObjectFile *MachO = 2345 dyn_cast<const MachOObjectFile>(O)) { 2346 DataRefImpl DR = Section->getRawDataRefImpl(); 2347 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 2348 outs() << SegmentName << ","; 2349 } 2350 StringRef SectionName = 2351 unwrapOrError(Section->getName(), O->getFileName()); 2352 outs() << SectionName; 2353 } 2354 2355 if (Common || isa<ELFObjectFileBase>(O)) { 2356 uint64_t Val = 2357 Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize(); 2358 outs() << '\t' << format(Fmt, Val); 2359 } 2360 2361 if (isa<ELFObjectFileBase>(O)) { 2362 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2363 switch (Other) { 2364 case ELF::STV_DEFAULT: 2365 break; 2366 case ELF::STV_INTERNAL: 2367 outs() << " .internal"; 2368 break; 2369 case ELF::STV_HIDDEN: 2370 outs() << " .hidden"; 2371 break; 2372 case ELF::STV_PROTECTED: 2373 outs() << " .protected"; 2374 break; 2375 default: 2376 outs() << format(" 0x%02x", Other); 2377 break; 2378 } 2379 } else if (Hidden) { 2380 outs() << " .hidden"; 2381 } 2382 2383 if (Demangle) 2384 outs() << ' ' << demangle(std::string(Name)) << '\n'; 2385 else 2386 outs() << ' ' << Name << '\n'; 2387 } 2388 } 2389 2390 static void printUnwindInfo(const ObjectFile *O) { 2391 outs() << "Unwind info:\n\n"; 2392 2393 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2394 printCOFFUnwindInfo(Coff); 2395 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2396 printMachOUnwindInfo(MachO); 2397 else 2398 // TODO: Extract DWARF dump tool to objdump. 2399 WithColor::error(errs(), ToolName) 2400 << "This operation is only currently supported " 2401 "for COFF and MachO object files.\n"; 2402 } 2403 2404 /// Dump the raw contents of the __clangast section so the output can be piped 2405 /// into llvm-bcanalyzer. 2406 void printRawClangAST(const ObjectFile *Obj) { 2407 if (outs().is_displayed()) { 2408 WithColor::error(errs(), ToolName) 2409 << "The -raw-clang-ast option will dump the raw binary contents of " 2410 "the clang ast section.\n" 2411 "Please redirect the output to a file or another program such as " 2412 "llvm-bcanalyzer.\n"; 2413 return; 2414 } 2415 2416 StringRef ClangASTSectionName("__clangast"); 2417 if (isa<COFFObjectFile>(Obj)) { 2418 ClangASTSectionName = "clangast"; 2419 } 2420 2421 Optional<object::SectionRef> ClangASTSection; 2422 for (auto Sec : ToolSectionFilter(*Obj)) { 2423 StringRef Name; 2424 if (Expected<StringRef> NameOrErr = Sec.getName()) 2425 Name = *NameOrErr; 2426 else 2427 consumeError(NameOrErr.takeError()); 2428 2429 if (Name == ClangASTSectionName) { 2430 ClangASTSection = Sec; 2431 break; 2432 } 2433 } 2434 if (!ClangASTSection) 2435 return; 2436 2437 StringRef ClangASTContents = unwrapOrError( 2438 ClangASTSection.getValue().getContents(), Obj->getFileName()); 2439 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2440 } 2441 2442 static void printFaultMaps(const ObjectFile *Obj) { 2443 StringRef FaultMapSectionName; 2444 2445 if (isa<ELFObjectFileBase>(Obj)) { 2446 FaultMapSectionName = ".llvm_faultmaps"; 2447 } else if (isa<MachOObjectFile>(Obj)) { 2448 FaultMapSectionName = "__llvm_faultmaps"; 2449 } else { 2450 WithColor::error(errs(), ToolName) 2451 << "This operation is only currently supported " 2452 "for ELF and Mach-O executable files.\n"; 2453 return; 2454 } 2455 2456 Optional<object::SectionRef> FaultMapSection; 2457 2458 for (auto Sec : ToolSectionFilter(*Obj)) { 2459 StringRef Name; 2460 if (Expected<StringRef> NameOrErr = Sec.getName()) 2461 Name = *NameOrErr; 2462 else 2463 consumeError(NameOrErr.takeError()); 2464 2465 if (Name == FaultMapSectionName) { 2466 FaultMapSection = Sec; 2467 break; 2468 } 2469 } 2470 2471 outs() << "FaultMap table:\n"; 2472 2473 if (!FaultMapSection.hasValue()) { 2474 outs() << "<not found>\n"; 2475 return; 2476 } 2477 2478 StringRef FaultMapContents = 2479 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2480 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2481 FaultMapContents.bytes_end()); 2482 2483 outs() << FMP; 2484 } 2485 2486 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2487 if (O->isELF()) { 2488 printELFFileHeader(O); 2489 printELFDynamicSection(O); 2490 printELFSymbolVersionInfo(O); 2491 return; 2492 } 2493 if (O->isCOFF()) 2494 return printCOFFFileHeader(O); 2495 if (O->isWasm()) 2496 return printWasmFileHeader(O); 2497 if (O->isMachO()) { 2498 printMachOFileHeader(O); 2499 if (!OnlyFirst) 2500 printMachOLoadCommands(O); 2501 return; 2502 } 2503 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2504 } 2505 2506 static void printFileHeaders(const ObjectFile *O) { 2507 if (!O->isELF() && !O->isCOFF()) 2508 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2509 2510 Triple::ArchType AT = O->getArch(); 2511 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2512 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2513 2514 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2515 outs() << "start address: " 2516 << "0x" << format(Fmt.data(), Address) << "\n\n"; 2517 } 2518 2519 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2520 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2521 if (!ModeOrErr) { 2522 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2523 consumeError(ModeOrErr.takeError()); 2524 return; 2525 } 2526 sys::fs::perms Mode = ModeOrErr.get(); 2527 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2528 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2529 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2530 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2531 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2532 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2533 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2534 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2535 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2536 2537 outs() << " "; 2538 2539 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2540 unwrapOrError(C.getGID(), Filename), 2541 unwrapOrError(C.getRawSize(), Filename)); 2542 2543 StringRef RawLastModified = C.getRawLastModified(); 2544 unsigned Seconds; 2545 if (RawLastModified.getAsInteger(10, Seconds)) 2546 outs() << "(date: \"" << RawLastModified 2547 << "\" contains non-decimal chars) "; 2548 else { 2549 // Since ctime(3) returns a 26 character string of the form: 2550 // "Sun Sep 16 01:03:52 1973\n\0" 2551 // just print 24 characters. 2552 time_t t = Seconds; 2553 outs() << format("%.24s ", ctime(&t)); 2554 } 2555 2556 StringRef Name = ""; 2557 Expected<StringRef> NameOrErr = C.getName(); 2558 if (!NameOrErr) { 2559 consumeError(NameOrErr.takeError()); 2560 Name = unwrapOrError(C.getRawName(), Filename); 2561 } else { 2562 Name = NameOrErr.get(); 2563 } 2564 outs() << Name << "\n"; 2565 } 2566 2567 // For ELF only now. 2568 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2569 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2570 if (Elf->getEType() != ELF::ET_REL) 2571 return true; 2572 } 2573 return false; 2574 } 2575 2576 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2577 uint64_t Start, uint64_t Stop) { 2578 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2579 return; 2580 2581 for (const SectionRef &Section : Obj->sections()) 2582 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2583 uint64_t BaseAddr = Section.getAddress(); 2584 uint64_t Size = Section.getSize(); 2585 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2586 return; 2587 } 2588 2589 if (StartAddress.getNumOccurrences() == 0) 2590 reportWarning("no section has address less than 0x" + 2591 Twine::utohexstr(Stop) + " specified by --stop-address", 2592 Obj->getFileName()); 2593 else if (StopAddress.getNumOccurrences() == 0) 2594 reportWarning("no section has address greater than or equal to 0x" + 2595 Twine::utohexstr(Start) + " specified by --start-address", 2596 Obj->getFileName()); 2597 else 2598 reportWarning("no section overlaps the range [0x" + 2599 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2600 ") specified by --start-address/--stop-address", 2601 Obj->getFileName()); 2602 } 2603 2604 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2605 const Archive::Child *C = nullptr) { 2606 // Avoid other output when using a raw option. 2607 if (!RawClangAST) { 2608 outs() << '\n'; 2609 if (A) 2610 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2611 else 2612 outs() << O->getFileName(); 2613 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n"; 2614 } 2615 2616 if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences()) 2617 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2618 2619 // Note: the order here matches GNU objdump for compatability. 2620 StringRef ArchiveName = A ? A->getFileName() : ""; 2621 if (ArchiveHeaders && !MachOOpt && C) 2622 printArchiveChild(ArchiveName, *C); 2623 if (FileHeaders) 2624 printFileHeaders(O); 2625 if (PrivateHeaders || FirstPrivateHeader) 2626 printPrivateFileHeaders(O, FirstPrivateHeader); 2627 if (SectionHeaders) 2628 printSectionHeaders(O); 2629 if (SymbolTable) 2630 printSymbolTable(O, ArchiveName); 2631 if (DwarfDumpType != DIDT_Null) { 2632 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2633 // Dump the complete DWARF structure. 2634 DIDumpOptions DumpOpts; 2635 DumpOpts.DumpType = DwarfDumpType; 2636 DICtx->dump(outs(), DumpOpts); 2637 } 2638 if (Relocations && !Disassemble) 2639 printRelocations(O); 2640 if (DynamicRelocations) 2641 printDynamicRelocations(O); 2642 if (SectionContents) 2643 printSectionContents(O); 2644 if (Disassemble) 2645 disassembleObject(O, Relocations); 2646 if (UnwindInfo) 2647 printUnwindInfo(O); 2648 2649 // Mach-O specific options: 2650 if (ExportsTrie) 2651 printExportsTrie(O); 2652 if (Rebase) 2653 printRebaseTable(O); 2654 if (Bind) 2655 printBindTable(O); 2656 if (LazyBind) 2657 printLazyBindTable(O); 2658 if (WeakBind) 2659 printWeakBindTable(O); 2660 2661 // Other special sections: 2662 if (RawClangAST) 2663 printRawClangAST(O); 2664 if (FaultMapSection) 2665 printFaultMaps(O); 2666 } 2667 2668 static void dumpObject(const COFFImportFile *I, const Archive *A, 2669 const Archive::Child *C = nullptr) { 2670 StringRef ArchiveName = A ? A->getFileName() : ""; 2671 2672 // Avoid other output when using a raw option. 2673 if (!RawClangAST) 2674 outs() << '\n' 2675 << ArchiveName << "(" << I->getFileName() << ")" 2676 << ":\tfile format COFF-import-file" 2677 << "\n\n"; 2678 2679 if (ArchiveHeaders && !MachOOpt && C) 2680 printArchiveChild(ArchiveName, *C); 2681 if (SymbolTable) 2682 printCOFFSymbolTable(I); 2683 } 2684 2685 /// Dump each object file in \a a; 2686 static void dumpArchive(const Archive *A) { 2687 Error Err = Error::success(); 2688 unsigned I = -1; 2689 for (auto &C : A->children(Err)) { 2690 ++I; 2691 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2692 if (!ChildOrErr) { 2693 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2694 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2695 continue; 2696 } 2697 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2698 dumpObject(O, A, &C); 2699 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2700 dumpObject(I, A, &C); 2701 else 2702 reportError(errorCodeToError(object_error::invalid_file_type), 2703 A->getFileName()); 2704 } 2705 if (Err) 2706 reportError(std::move(Err), A->getFileName()); 2707 } 2708 2709 /// Open file and figure out how to dump it. 2710 static void dumpInput(StringRef file) { 2711 // If we are using the Mach-O specific object file parser, then let it parse 2712 // the file and process the command line options. So the -arch flags can 2713 // be used to select specific slices, etc. 2714 if (MachOOpt) { 2715 parseInputMachO(file); 2716 return; 2717 } 2718 2719 // Attempt to open the binary. 2720 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2721 Binary &Binary = *OBinary.getBinary(); 2722 2723 if (Archive *A = dyn_cast<Archive>(&Binary)) 2724 dumpArchive(A); 2725 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2726 dumpObject(O); 2727 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2728 parseInputMachO(UB); 2729 else 2730 reportError(errorCodeToError(object_error::invalid_file_type), file); 2731 } 2732 } // namespace llvm 2733 2734 int main(int argc, char **argv) { 2735 using namespace llvm; 2736 InitLLVM X(argc, argv); 2737 const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat}; 2738 cl::HideUnrelatedOptions(OptionFilters); 2739 2740 // Initialize targets and assembly printers/parsers. 2741 InitializeAllTargetInfos(); 2742 InitializeAllTargetMCs(); 2743 InitializeAllDisassemblers(); 2744 2745 // Register the target printer for --version. 2746 cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion); 2747 2748 cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr, 2749 /*EnvVar=*/nullptr, 2750 /*LongOptionsUseDoubleDash=*/true); 2751 2752 if (StartAddress >= StopAddress) 2753 reportCmdLineError("start address should be less than stop address"); 2754 2755 ToolName = argv[0]; 2756 2757 // Defaults to a.out if no filenames specified. 2758 if (InputFilenames.empty()) 2759 InputFilenames.push_back("a.out"); 2760 2761 if (AllHeaders) 2762 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2763 SectionHeaders = SymbolTable = true; 2764 2765 if (DisassembleAll || PrintSource || PrintLines || 2766 !DisassembleSymbols.empty()) 2767 Disassemble = true; 2768 2769 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2770 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2771 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2772 !UnwindInfo && !FaultMapSection && 2773 !(MachOOpt && 2774 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2775 FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind || 2776 LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders || 2777 WeakBind || !FilterSections.empty()))) { 2778 cl::PrintHelpMessage(); 2779 return 2; 2780 } 2781 2782 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 2783 2784 llvm::for_each(InputFilenames, dumpInput); 2785 2786 warnOnNoMatchForSections(); 2787 2788 return EXIT_SUCCESS; 2789 } 2790