xref: /llvm-project/llvm/tools/llvm-exegesis/lib/SchedClassResolution.cpp (revision 1d1330c5463f90ce2172a0110be9b625534614fa)
1 //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SchedClassResolution.h"
10 #include "BenchmarkResult.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/MC/MCAsmInfo.h"
13 #include "llvm/Support/FormatVariadic.h"
14 #include <limits>
15 #include <unordered_set>
16 #include <vector>
17 
18 namespace llvm {
19 namespace exegesis {
20 
21 // Return the non-redundant list of WriteProcRes used by the given sched class.
22 // The scheduling model for LLVM is such that each instruction has a certain
23 // number of uops which consume resources which are described by WriteProcRes
24 // entries. Each entry describe how many cycles are spent on a specific ProcRes
25 // kind.
26 // For example, an instruction might have 3 uOps, one dispatching on P0
27 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
28 // Note that LLVM additionally denormalizes resource consumption to include
29 // usage of super resources by subresources. So in practice if there exists a
30 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
31 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
32 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
33 // denote implied usage of superresources by subresources:
34 //            P0      P06    P016
35 //     uOp1    1      (1)     (1)
36 //     uOp2            1      (1)
37 //     uOp3            1      (1)
38 //     =============================
39 //             1       3       3
40 // Eventually we end up with three entries for the WriteProcRes of the
41 // instruction:
42 //    {ProcResIdx=1,  Cycles=1}  // P0
43 //    {ProcResIdx=7,  Cycles=3}  // P06
44 //    {ProcResIdx=10, Cycles=3}  // P016
45 //
46 // Note that in this case, P016 does not contribute any cycles, so it would
47 // be removed by this function.
48 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
49 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
50 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
51                             const llvm::MCSubtargetInfo &STI) {
52   llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
53   const auto &SM = STI.getSchedModel();
54   const unsigned NumProcRes = SM.getNumProcResourceKinds();
55 
56   // This assumes that the ProcResDescs are sorted in topological order, which
57   // is guaranteed by the tablegen backend.
58   llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
59   for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
60                   *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
61        WPR != WPREnd; ++WPR) {
62     const llvm::MCProcResourceDesc *const ProcResDesc =
63         SM.getProcResource(WPR->ProcResourceIdx);
64     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
65       // This is a ProcResUnit.
66       Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
67       ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
68     } else {
69       // This is a ProcResGroup. First see if it contributes any cycles or if
70       // it has cycles just from subunits.
71       float RemainingCycles = WPR->Cycles;
72       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
73            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
74            ++SubResIdx) {
75         RemainingCycles -= ProcResUnitUsage[*SubResIdx];
76       }
77       if (RemainingCycles < 0.01f) {
78         // The ProcResGroup contributes no cycles of its own.
79         continue;
80       }
81       // The ProcResGroup contributes `RemainingCycles` cycles of its own.
82       Result.push_back({WPR->ProcResourceIdx,
83                         static_cast<uint16_t>(std::round(RemainingCycles))});
84       // Spread the remaining cycles over all subunits.
85       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
86            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
87            ++SubResIdx) {
88         ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
89       }
90     }
91   }
92   return Result;
93 }
94 
95 // Distributes a pressure budget as evenly as possible on the provided subunits
96 // given the already existing port pressure distribution.
97 //
98 // The algorithm is as follows: while there is remaining pressure to
99 // distribute, find the subunits with minimal pressure, and distribute
100 // remaining pressure equally up to the pressure of the unit with
101 // second-to-minimal pressure.
102 // For example, let's assume we want to distribute 2*P1256
103 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
104 //     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7
105 //                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5
106 //     RemainingPressure = 2.0
107 // We sort the subunits by pressure:
108 //     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
109 // We'll first start by the subunits with minimal pressure, which are at
110 // the beginning of the sorted array. In this example there is one (P2).
111 // The subunit with second-to-minimal pressure is the next one in the
112 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
113 // from the budget.
114 //     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
115 //     RemainingPressure = 1.9
116 // We repeat this process: distribute 0.2 pressure on each of the minimal
117 // P2 and P1, decrease budget by 2*0.2:
118 //     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
119 //     RemainingPressure = 1.5
120 // There are no second-to-minimal subunits so we just share the remaining
121 // budget (1.5 cycles) equally:
122 //     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
123 //     RemainingPressure = 0.0
124 // We stop as there is no remaining budget to distribute.
125 static void distributePressure(float RemainingPressure,
126                                llvm::SmallVector<uint16_t, 32> Subunits,
127                                llvm::SmallVector<float, 32> &DensePressure) {
128   // Find the number of subunits with minimal pressure (they are at the
129   // front).
130   llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
131     return DensePressure[A] < DensePressure[B];
132   });
133   const auto getPressureForSubunit = [&DensePressure,
134                                       &Subunits](size_t I) -> float & {
135     return DensePressure[Subunits[I]];
136   };
137   size_t NumMinimalSU = 1;
138   while (NumMinimalSU < Subunits.size() &&
139          getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
140     ++NumMinimalSU;
141   }
142   while (RemainingPressure > 0.0f) {
143     if (NumMinimalSU == Subunits.size()) {
144       // All units are minimal, just distribute evenly and be done.
145       for (size_t I = 0; I < NumMinimalSU; ++I) {
146         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
147       }
148       return;
149     }
150     // Distribute the remaining pressure equally.
151     const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
152     const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
153     assert(MinimalPressure < SecondToMinimalPressure);
154     const float Increment = SecondToMinimalPressure - MinimalPressure;
155     if (RemainingPressure <= NumMinimalSU * Increment) {
156       // There is not enough remaining pressure.
157       for (size_t I = 0; I < NumMinimalSU; ++I) {
158         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
159       }
160       return;
161     }
162     // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
163     for (size_t I = 0; I < NumMinimalSU; ++I) {
164       getPressureForSubunit(I) = SecondToMinimalPressure;
165       RemainingPressure -= SecondToMinimalPressure;
166     }
167     while (NumMinimalSU < Subunits.size() &&
168            getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
169       ++NumMinimalSU;
170     }
171   }
172 }
173 
174 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
175     const llvm::MCSchedModel &SM,
176     llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
177   // DensePressure[I] is the port pressure for Proc Resource I.
178   llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
179   llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
180                       const llvm::MCWriteProcResEntry &B) {
181     return A.ProcResourceIdx < B.ProcResourceIdx;
182   });
183   for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
184     // Get units for the entry.
185     const llvm::MCProcResourceDesc *const ProcResDesc =
186         SM.getProcResource(WPR.ProcResourceIdx);
187     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
188       // This is a ProcResUnit.
189       DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
190     } else {
191       // This is a ProcResGroup.
192       llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
193                                                ProcResDesc->SubUnitsIdxBegin +
194                                                    ProcResDesc->NumUnits);
195       distributePressure(WPR.Cycles, Subunits, DensePressure);
196     }
197   }
198   // Turn dense pressure into sparse pressure by removing zero entries.
199   std::vector<std::pair<uint16_t, float>> Pressure;
200   for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
201     if (DensePressure[I] > 0.0f)
202       Pressure.emplace_back(I, DensePressure[I]);
203   }
204   return Pressure;
205 }
206 
207 ResolvedSchedClass::ResolvedSchedClass(const llvm::MCSubtargetInfo &STI,
208                                        unsigned ResolvedSchedClassId,
209                                        bool WasVariant)
210     : SchedClassId(ResolvedSchedClassId),
211       SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
212       WasVariant(WasVariant),
213       NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
214       IdealizedProcResPressure(computeIdealizedProcResPressure(
215           STI.getSchedModel(), NonRedundantWriteProcRes)) {
216   assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
217          "ResolvedSchedClass should never be variant");
218 }
219 
220 static unsigned ResolveVariantSchedClassId(const llvm::MCSubtargetInfo &STI,
221                                            unsigned SchedClassId,
222                                            const llvm::MCInst &MCI) {
223   const auto &SM = STI.getSchedModel();
224   while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
225     SchedClassId =
226         STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
227   return SchedClassId;
228 }
229 
230 std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
231 ResolvedSchedClass::resolveSchedClassId(
232     const llvm::MCSubtargetInfo &SubtargetInfo,
233     const llvm::MCInstrInfo &InstrInfo, const llvm::MCInst &MCI) {
234   unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
235   const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
236                                               .getSchedClassDesc(SchedClassId)
237                                               ->isVariant();
238   SchedClassId = ResolveVariantSchedClassId(SubtargetInfo, SchedClassId, MCI);
239   return std::make_pair(SchedClassId, WasVariant);
240 }
241 
242 } // namespace exegesis
243 } // namespace llvm
244