xref: /llvm-project/llvm/tools/llvm-exegesis/lib/Clustering.cpp (revision 69716394f3d65210c8ca62bf380b75f3f1346ec6)
1 //===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Clustering.h"
10 #include "llvm/ADT/SetVector.h"
11 #include "llvm/ADT/SmallSet.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include <algorithm>
14 #include <string>
15 #include <vector>
16 
17 namespace llvm {
18 namespace exegesis {
19 
20 // The clustering problem has the following characteristics:
21 //  (A) - Low dimension (dimensions are typically proc resource units,
22 //    typically < 10).
23 //  (B) - Number of points : ~thousands (points are measurements of an MCInst)
24 //  (C) - Number of clusters: ~tens.
25 //  (D) - The number of clusters is not known /a priory/.
26 //  (E) - The amount of noise is relatively small.
27 // The problem is rather small. In terms of algorithms, (D) disqualifies
28 // k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
29 //
30 // We've used DBSCAN here because it's simple to implement. This is a pretty
31 // straightforward and inefficient implementation of the pseudocode in [2].
32 //
33 // [1] https://en.wikipedia.org/wiki/DBSCAN
34 // [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
35 
36 // Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
37 // including Q).
38 void InstructionBenchmarkClustering::rangeQuery(
39     const size_t Q, std::vector<size_t> &Neighbors) const {
40   Neighbors.clear();
41   Neighbors.reserve(Points_.size() - 1); // The Q itself isn't a neighbor.
42   const auto &QMeasurements = Points_[Q].Measurements;
43   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
44     if (P == Q)
45       continue;
46     const auto &PMeasurements = Points_[P].Measurements;
47     if (PMeasurements.empty()) // Error point.
48       continue;
49     if (isNeighbour(PMeasurements, QMeasurements)) {
50       Neighbors.push_back(P);
51     }
52   }
53 }
54 
55 InstructionBenchmarkClustering::InstructionBenchmarkClustering(
56     const std::vector<InstructionBenchmark> &Points,
57     const double EpsilonSquared)
58     : Points_(Points), EpsilonSquared_(EpsilonSquared),
59       NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
60 
61 llvm::Error InstructionBenchmarkClustering::validateAndSetup() {
62   ClusterIdForPoint_.resize(Points_.size());
63   // Mark erroneous measurements out.
64   // All points must have the same number of dimensions, in the same order.
65   const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
66   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
67     const auto &Point = Points_[P];
68     if (!Point.Error.empty()) {
69       ClusterIdForPoint_[P] = ClusterId::error();
70       ErrorCluster_.PointIndices.push_back(P);
71       continue;
72     }
73     const auto *CurMeasurement = &Point.Measurements;
74     if (LastMeasurement) {
75       if (LastMeasurement->size() != CurMeasurement->size()) {
76         return llvm::make_error<llvm::StringError>(
77             "inconsistent measurement dimensions",
78             llvm::inconvertibleErrorCode());
79       }
80       for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
81         if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
82           return llvm::make_error<llvm::StringError>(
83               "inconsistent measurement dimensions keys",
84               llvm::inconvertibleErrorCode());
85         }
86       }
87     }
88     LastMeasurement = CurMeasurement;
89   }
90   if (LastMeasurement) {
91     NumDimensions_ = LastMeasurement->size();
92   }
93   return llvm::Error::success();
94 }
95 
96 void InstructionBenchmarkClustering::dbScan(const size_t MinPts) {
97   std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs.
98   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
99     if (!ClusterIdForPoint_[P].isUndef())
100       continue; // Previously processed in inner loop.
101     rangeQuery(P, Neighbors);
102     if (Neighbors.size() + 1 < MinPts) { // Density check.
103       // The region around P is not dense enough to create a new cluster, mark
104       // as noise for now.
105       ClusterIdForPoint_[P] = ClusterId::noise();
106       continue;
107     }
108 
109     // Create a new cluster, add P.
110     Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
111     Cluster &CurrentCluster = Clusters_.back();
112     ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
113     CurrentCluster.PointIndices.push_back(P);
114 
115     // Process P's neighbors.
116     llvm::SetVector<size_t, std::deque<size_t>> ToProcess;
117     ToProcess.insert(Neighbors.begin(), Neighbors.end());
118     while (!ToProcess.empty()) {
119       // Retrieve a point from the set.
120       const size_t Q = *ToProcess.begin();
121       ToProcess.erase(ToProcess.begin());
122 
123       if (ClusterIdForPoint_[Q].isNoise()) {
124         // Change noise point to border point.
125         ClusterIdForPoint_[Q] = CurrentCluster.Id;
126         CurrentCluster.PointIndices.push_back(Q);
127         continue;
128       }
129       if (!ClusterIdForPoint_[Q].isUndef()) {
130         continue; // Previously processed.
131       }
132       // Add Q to the current custer.
133       ClusterIdForPoint_[Q] = CurrentCluster.Id;
134       CurrentCluster.PointIndices.push_back(Q);
135       // And extend to the neighbors of Q if the region is dense enough.
136       rangeQuery(Q, Neighbors);
137       if (Neighbors.size() + 1 >= MinPts) {
138         ToProcess.insert(Neighbors.begin(), Neighbors.end());
139       }
140     }
141   }
142   // assert(Neighbors.capacity() == (Points_.size() - 1));
143   // ^ True, but it is not quaranteed to be true in all the cases.
144 
145   // Add noisy points to noise cluster.
146   for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
147     if (ClusterIdForPoint_[P].isNoise()) {
148       NoiseCluster_.PointIndices.push_back(P);
149     }
150   }
151 }
152 
153 // Given an instruction Opcode, we can make benchmarks (measurements) of the
154 // instruction characteristics/performance. Then, to facilitate further analysis
155 // we group the benchmarks with *similar* characteristics into clusters.
156 // Now, this is all not entirely deterministic. Some instructions have variable
157 // characteristics, depending on their arguments. And thus, if we do several
158 // benchmarks of the same instruction Opcode, we may end up with *different*
159 // performance characteristics measurements. And when we then do clustering,
160 // these several benchmarks of the same instruction Opcode may end up being
161 // clustered into *different* clusters. This is not great for further analysis.
162 // We shall find every opcode with benchmarks not in just one cluster, and move
163 // *all* the benchmarks of said Opcode into one new unstable cluster per Opcode.
164 void InstructionBenchmarkClustering::stabilize(unsigned NumOpcodes) {
165   // Given an instruction Opcode, in which clusters do benchmarks of this
166   // instruction lie? Normally, they all should be in the same cluster.
167   std::vector<llvm::SmallSet<ClusterId, 1>> OpcodeToClusterIDs;
168   OpcodeToClusterIDs.resize(NumOpcodes);
169   // The list of opcodes that have more than one cluster.
170   llvm::SetVector<size_t> UnstableOpcodes;
171   // Populate OpcodeToClusterIDs and UnstableOpcodes data structures.
172   assert(ClusterIdForPoint_.size() == Points_.size() && "size mismatch");
173   for (const auto &Point : zip(Points_, ClusterIdForPoint_)) {
174     const ClusterId &ClusterIdOfPoint = std::get<1>(Point);
175     if (!ClusterIdOfPoint.isValid())
176       continue; // Only process fully valid clusters.
177     const unsigned Opcode = std::get<0>(Point).keyInstruction().getOpcode();
178     assert(Opcode < NumOpcodes && "NumOpcodes is incorrect (too small)");
179     llvm::SmallSet<ClusterId, 1> &ClusterIDsOfOpcode =
180         OpcodeToClusterIDs[Opcode];
181     ClusterIDsOfOpcode.insert(ClusterIdOfPoint);
182     // Is there more than one ClusterID for this opcode?.
183     if (ClusterIDsOfOpcode.size() < 2)
184       continue; // If not, then at this moment this Opcode is stable.
185     // Else let's record this unstable opcode for future use.
186     UnstableOpcodes.insert(Opcode);
187   }
188   assert(OpcodeToClusterIDs.size() == NumOpcodes && "sanity check");
189 
190   // We know with how many [new] clusters we will end up with.
191   const auto NewTotalClusterCount = Clusters_.size() + UnstableOpcodes.size();
192   Clusters_.reserve(NewTotalClusterCount);
193   for (const size_t UnstableOpcode : UnstableOpcodes.getArrayRef()) {
194     const llvm::SmallSet<ClusterId, 1> &ClusterIDs =
195         OpcodeToClusterIDs[UnstableOpcode];
196     assert(ClusterIDs.size() > 1 &&
197            "Should only have Opcodes with more than one cluster.");
198 
199     // Create a new unstable cluster, one per Opcode.
200     Clusters_.emplace_back(ClusterId::makeValidUnstable(Clusters_.size()));
201     Cluster &UnstableCluster = Clusters_.back();
202     // We will find *at least* one point in each of these clusters.
203     UnstableCluster.PointIndices.reserve(ClusterIDs.size());
204 
205     // Go through every cluster which we recorded as containing benchmarks
206     // of this UnstableOpcode. NOTE: we only recorded valid clusters.
207     for (const ClusterId &CID : ClusterIDs) {
208       assert(CID.isValid() &&
209              "We only recorded valid clusters, not noise/error clusters.");
210       Cluster &OldCluster = Clusters_[CID.getId()]; // Valid clusters storage.
211       // Within each cluster, go through each point, and either move it to the
212       // new unstable cluster, or 'keep' it.
213       // In this case, we'll reshuffle OldCluster.PointIndices vector
214       // so that all the points that are *not* for UnstableOpcode are first,
215       // and the rest of the points is for the UnstableOpcode.
216       const auto it = std::stable_partition(
217           OldCluster.PointIndices.begin(), OldCluster.PointIndices.end(),
218           [this, UnstableOpcode](size_t P) {
219             return Points_[P].keyInstruction().getOpcode() != UnstableOpcode;
220           });
221       assert(std::distance(it, OldCluster.PointIndices.end()) > 0 &&
222              "Should have found at least one bad point");
223       // Mark to-be-moved points as belonging to the new cluster.
224       std::for_each(it, OldCluster.PointIndices.end(),
225                     [this, &UnstableCluster](size_t P) {
226                       ClusterIdForPoint_[P] = UnstableCluster.Id;
227                     });
228       // Actually append to-be-moved points to the new cluster.
229       UnstableCluster.PointIndices.insert(UnstableCluster.PointIndices.cend(),
230                                           it, OldCluster.PointIndices.end());
231       // And finally, remove "to-be-moved" points form the old cluster.
232       OldCluster.PointIndices.erase(it, OldCluster.PointIndices.cend());
233       // Now, the old cluster may end up being empty, but let's just keep it
234       // in whatever state it ended up. Purging empty clusters isn't worth it.
235     };
236     assert(UnstableCluster.PointIndices.size() > 1 &&
237            "New unstable cluster should end up with more than one point.");
238     assert(UnstableCluster.PointIndices.size() >= ClusterIDs.size() &&
239            "New unstable cluster should end up with no less points than there "
240            "was clusters");
241   }
242   assert(Clusters_.size() == NewTotalClusterCount && "sanity check");
243 }
244 
245 llvm::Expected<InstructionBenchmarkClustering>
246 InstructionBenchmarkClustering::create(
247     const std::vector<InstructionBenchmark> &Points, const size_t MinPts,
248     const double Epsilon, llvm::Optional<unsigned> NumOpcodes) {
249   InstructionBenchmarkClustering Clustering(Points, Epsilon * Epsilon);
250   if (auto Error = Clustering.validateAndSetup()) {
251     return std::move(Error);
252   }
253   if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
254     return Clustering; // Nothing to cluster.
255   }
256 
257   Clustering.dbScan(MinPts);
258 
259   if (NumOpcodes.hasValue())
260     Clustering.stabilize(NumOpcodes.getValue());
261 
262   return Clustering;
263 }
264 
265 } // namespace exegesis
266 } // namespace llvm
267