1 //===-- Clustering.cpp ------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Clustering.h" 10 #include "llvm/ADT/SetVector.h" 11 #include "llvm/ADT/SmallSet.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include <algorithm> 14 #include <string> 15 #include <vector> 16 17 namespace llvm { 18 namespace exegesis { 19 20 // The clustering problem has the following characteristics: 21 // (A) - Low dimension (dimensions are typically proc resource units, 22 // typically < 10). 23 // (B) - Number of points : ~thousands (points are measurements of an MCInst) 24 // (C) - Number of clusters: ~tens. 25 // (D) - The number of clusters is not known /a priory/. 26 // (E) - The amount of noise is relatively small. 27 // The problem is rather small. In terms of algorithms, (D) disqualifies 28 // k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable. 29 // 30 // We've used DBSCAN here because it's simple to implement. This is a pretty 31 // straightforward and inefficient implementation of the pseudocode in [2]. 32 // 33 // [1] https://en.wikipedia.org/wiki/DBSCAN 34 // [2] https://en.wikipedia.org/wiki/OPTICS_algorithm 35 36 // Finds the points at distance less than sqrt(EpsilonSquared) of Q (not 37 // including Q). 38 void InstructionBenchmarkClustering::rangeQuery( 39 const size_t Q, std::vector<size_t> &Neighbors) const { 40 Neighbors.clear(); 41 Neighbors.reserve(Points_.size() - 1); // The Q itself isn't a neighbor. 42 const auto &QMeasurements = Points_[Q].Measurements; 43 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) { 44 if (P == Q) 45 continue; 46 const auto &PMeasurements = Points_[P].Measurements; 47 if (PMeasurements.empty()) // Error point. 48 continue; 49 if (isNeighbour(PMeasurements, QMeasurements, 50 AnalysisClusteringEpsilonSquared_)) { 51 Neighbors.push_back(P); 52 } 53 } 54 } 55 56 // Given a set of points, checks that all the points are neighbours 57 // up to AnalysisClusteringEpsilon. This is O(2*N). 58 bool InstructionBenchmarkClustering::areAllNeighbours( 59 ArrayRef<size_t> Pts) const { 60 // First, get the centroid of this group of points. This is O(N). 61 SchedClassClusterCentroid G; 62 llvm::for_each(Pts, [this, &G](size_t P) { 63 assert(P < Points_.size()); 64 ArrayRef<BenchmarkMeasure> Measurements = Points_[P].Measurements; 65 if (Measurements.empty()) // Error point. 66 return; 67 G.addPoint(Measurements); 68 }); 69 const std::vector<BenchmarkMeasure> Centroid = G.getAsPoint(); 70 71 // Since we will be comparing with the centroid, we need to halve the epsilon. 72 double AnalysisClusteringEpsilonHalvedSquared = 73 AnalysisClusteringEpsilonSquared_ / 4.0; 74 75 // And now check that every point is a neighbour of the centroid. Also O(N). 76 return llvm::all_of( 77 Pts, [this, &Centroid, AnalysisClusteringEpsilonHalvedSquared](size_t P) { 78 assert(P < Points_.size()); 79 const auto &PMeasurements = Points_[P].Measurements; 80 if (PMeasurements.empty()) // Error point. 81 return true; // Pretend that error point is a neighbour. 82 return isNeighbour(PMeasurements, Centroid, 83 AnalysisClusteringEpsilonHalvedSquared); 84 }); 85 } 86 87 InstructionBenchmarkClustering::InstructionBenchmarkClustering( 88 const std::vector<InstructionBenchmark> &Points, 89 const double AnalysisClusteringEpsilonSquared) 90 : Points_(Points), 91 AnalysisClusteringEpsilonSquared_(AnalysisClusteringEpsilonSquared), 92 NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {} 93 94 llvm::Error InstructionBenchmarkClustering::validateAndSetup() { 95 ClusterIdForPoint_.resize(Points_.size()); 96 // Mark erroneous measurements out. 97 // All points must have the same number of dimensions, in the same order. 98 const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr; 99 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) { 100 const auto &Point = Points_[P]; 101 if (!Point.Error.empty()) { 102 ClusterIdForPoint_[P] = ClusterId::error(); 103 ErrorCluster_.PointIndices.push_back(P); 104 continue; 105 } 106 const auto *CurMeasurement = &Point.Measurements; 107 if (LastMeasurement) { 108 if (LastMeasurement->size() != CurMeasurement->size()) { 109 return llvm::make_error<llvm::StringError>( 110 "inconsistent measurement dimensions", 111 llvm::inconvertibleErrorCode()); 112 } 113 for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) { 114 if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) { 115 return llvm::make_error<llvm::StringError>( 116 "inconsistent measurement dimensions keys", 117 llvm::inconvertibleErrorCode()); 118 } 119 } 120 } 121 LastMeasurement = CurMeasurement; 122 } 123 if (LastMeasurement) { 124 NumDimensions_ = LastMeasurement->size(); 125 } 126 return llvm::Error::success(); 127 } 128 129 void InstructionBenchmarkClustering::clusterizeDbScan(const size_t MinPts) { 130 std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs. 131 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) { 132 if (!ClusterIdForPoint_[P].isUndef()) 133 continue; // Previously processed in inner loop. 134 rangeQuery(P, Neighbors); 135 if (Neighbors.size() + 1 < MinPts) { // Density check. 136 // The region around P is not dense enough to create a new cluster, mark 137 // as noise for now. 138 ClusterIdForPoint_[P] = ClusterId::noise(); 139 continue; 140 } 141 142 // Create a new cluster, add P. 143 Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size())); 144 Cluster &CurrentCluster = Clusters_.back(); 145 ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */ 146 CurrentCluster.PointIndices.push_back(P); 147 148 // Process P's neighbors. 149 llvm::SetVector<size_t, std::deque<size_t>> ToProcess; 150 ToProcess.insert(Neighbors.begin(), Neighbors.end()); 151 while (!ToProcess.empty()) { 152 // Retrieve a point from the set. 153 const size_t Q = *ToProcess.begin(); 154 ToProcess.erase(ToProcess.begin()); 155 156 if (ClusterIdForPoint_[Q].isNoise()) { 157 // Change noise point to border point. 158 ClusterIdForPoint_[Q] = CurrentCluster.Id; 159 CurrentCluster.PointIndices.push_back(Q); 160 continue; 161 } 162 if (!ClusterIdForPoint_[Q].isUndef()) { 163 continue; // Previously processed. 164 } 165 // Add Q to the current custer. 166 ClusterIdForPoint_[Q] = CurrentCluster.Id; 167 CurrentCluster.PointIndices.push_back(Q); 168 // And extend to the neighbors of Q if the region is dense enough. 169 rangeQuery(Q, Neighbors); 170 if (Neighbors.size() + 1 >= MinPts) { 171 ToProcess.insert(Neighbors.begin(), Neighbors.end()); 172 } 173 } 174 } 175 // assert(Neighbors.capacity() == (Points_.size() - 1)); 176 // ^ True, but it is not quaranteed to be true in all the cases. 177 178 // Add noisy points to noise cluster. 179 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) { 180 if (ClusterIdForPoint_[P].isNoise()) { 181 NoiseCluster_.PointIndices.push_back(P); 182 } 183 } 184 } 185 186 void InstructionBenchmarkClustering::clusterizeNaive(unsigned NumOpcodes) { 187 // Given an instruction Opcode, which are the benchmarks of this instruction? 188 std::vector<llvm::SmallVector<size_t, 1>> OpcodeToPoints; 189 OpcodeToPoints.resize(NumOpcodes); 190 size_t NumOpcodesSeen = 0; 191 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) { 192 const InstructionBenchmark &Point = Points_[P]; 193 const unsigned Opcode = Point.keyInstruction().getOpcode(); 194 assert(Opcode < NumOpcodes && "NumOpcodes is incorrect (too small)"); 195 llvm::SmallVectorImpl<size_t> &PointsOfOpcode = OpcodeToPoints[Opcode]; 196 if (PointsOfOpcode.empty()) // If we previously have not seen any points of 197 ++NumOpcodesSeen; // this opcode, then naturally this is the new opcode. 198 PointsOfOpcode.emplace_back(P); 199 } 200 assert(OpcodeToPoints.size() == NumOpcodes && "sanity check"); 201 assert(NumOpcodesSeen <= NumOpcodes && 202 "can't see more opcodes than there are total opcodes"); 203 assert(NumOpcodesSeen <= Points_.size() && 204 "can't see more opcodes than there are total points"); 205 206 Clusters_.reserve(NumOpcodesSeen); // One cluster per opcode. 207 for (ArrayRef<size_t> PointsOfOpcode : llvm::make_filter_range( 208 OpcodeToPoints, [](ArrayRef<size_t> PointsOfOpcode) { 209 return !PointsOfOpcode.empty(); // Ignore opcodes with no points. 210 })) { 211 // Create a new cluster. 212 Clusters_.emplace_back(ClusterId::makeValid( 213 Clusters_.size(), /*IsUnstable=*/!areAllNeighbours(PointsOfOpcode))); 214 Cluster &CurrentCluster = Clusters_.back(); 215 // Mark points as belonging to the new cluster. 216 llvm::for_each(PointsOfOpcode, [this, &CurrentCluster](size_t P) { 217 ClusterIdForPoint_[P] = CurrentCluster.Id; 218 }); 219 // And add all the points of this opcode to the new cluster. 220 CurrentCluster.PointIndices.reserve(PointsOfOpcode.size()); 221 CurrentCluster.PointIndices.assign(PointsOfOpcode.begin(), 222 PointsOfOpcode.end()); 223 assert(CurrentCluster.PointIndices.size() == PointsOfOpcode.size()); 224 } 225 assert(Clusters_.size() == NumOpcodesSeen); 226 } 227 228 // Given an instruction Opcode, we can make benchmarks (measurements) of the 229 // instruction characteristics/performance. Then, to facilitate further analysis 230 // we group the benchmarks with *similar* characteristics into clusters. 231 // Now, this is all not entirely deterministic. Some instructions have variable 232 // characteristics, depending on their arguments. And thus, if we do several 233 // benchmarks of the same instruction Opcode, we may end up with *different* 234 // performance characteristics measurements. And when we then do clustering, 235 // these several benchmarks of the same instruction Opcode may end up being 236 // clustered into *different* clusters. This is not great for further analysis. 237 // We shall find every opcode with benchmarks not in just one cluster, and move 238 // *all* the benchmarks of said Opcode into one new unstable cluster per Opcode. 239 void InstructionBenchmarkClustering::stabilize(unsigned NumOpcodes) { 240 // Given an instruction Opcode and Config, in which clusters do benchmarks of 241 // this instruction lie? Normally, they all should be in the same cluster. 242 struct OpcodeAndConfig { 243 explicit OpcodeAndConfig(const InstructionBenchmark &IB) 244 : Opcode(IB.keyInstruction().getOpcode()), Config(&IB.Key.Config) {} 245 unsigned Opcode; 246 const std::string *Config; 247 248 auto Tie() const -> auto { return std::tie(Opcode, *Config); } 249 250 bool operator<(const OpcodeAndConfig &O) const { return Tie() < O.Tie(); } 251 bool operator!=(const OpcodeAndConfig &O) const { return Tie() != O.Tie(); } 252 }; 253 std::map<OpcodeAndConfig, llvm::SmallSet<ClusterId, 1>> 254 OpcodeConfigToClusterIDs; 255 // Populate OpcodeConfigToClusterIDs and UnstableOpcodes data structures. 256 assert(ClusterIdForPoint_.size() == Points_.size() && "size mismatch"); 257 for (const auto &Point : zip(Points_, ClusterIdForPoint_)) { 258 const ClusterId &ClusterIdOfPoint = std::get<1>(Point); 259 if (!ClusterIdOfPoint.isValid()) 260 continue; // Only process fully valid clusters. 261 const OpcodeAndConfig Key(std::get<0>(Point)); 262 llvm::SmallSet<ClusterId, 1> &ClusterIDsOfOpcode = 263 OpcodeConfigToClusterIDs[Key]; 264 ClusterIDsOfOpcode.insert(ClusterIdOfPoint); 265 } 266 267 for (const auto &OpcodeConfigToClusterID : OpcodeConfigToClusterIDs) { 268 const llvm::SmallSet<ClusterId, 1> &ClusterIDs = 269 OpcodeConfigToClusterID.second; 270 const OpcodeAndConfig &Key = OpcodeConfigToClusterID.first; 271 // We only care about unstable instructions. 272 if (ClusterIDs.size() < 2) 273 continue; 274 275 // Create a new unstable cluster, one per Opcode. 276 Clusters_.emplace_back(ClusterId::makeValidUnstable(Clusters_.size())); 277 Cluster &UnstableCluster = Clusters_.back(); 278 // We will find *at least* one point in each of these clusters. 279 UnstableCluster.PointIndices.reserve(ClusterIDs.size()); 280 281 // Go through every cluster which we recorded as containing benchmarks 282 // of this UnstableOpcode. NOTE: we only recorded valid clusters. 283 for (const ClusterId &CID : ClusterIDs) { 284 assert(CID.isValid() && 285 "We only recorded valid clusters, not noise/error clusters."); 286 Cluster &OldCluster = Clusters_[CID.getId()]; // Valid clusters storage. 287 // Within each cluster, go through each point, and either move it to the 288 // new unstable cluster, or 'keep' it. 289 // In this case, we'll reshuffle OldCluster.PointIndices vector 290 // so that all the points that are *not* for UnstableOpcode are first, 291 // and the rest of the points is for the UnstableOpcode. 292 const auto it = std::stable_partition( 293 OldCluster.PointIndices.begin(), OldCluster.PointIndices.end(), 294 [this, &Key](size_t P) { 295 return OpcodeAndConfig(Points_[P]) != Key; 296 }); 297 assert(std::distance(it, OldCluster.PointIndices.end()) > 0 && 298 "Should have found at least one bad point"); 299 // Mark to-be-moved points as belonging to the new cluster. 300 std::for_each(it, OldCluster.PointIndices.end(), 301 [this, &UnstableCluster](size_t P) { 302 ClusterIdForPoint_[P] = UnstableCluster.Id; 303 }); 304 // Actually append to-be-moved points to the new cluster. 305 UnstableCluster.PointIndices.insert(UnstableCluster.PointIndices.end(), 306 it, OldCluster.PointIndices.end()); 307 // And finally, remove "to-be-moved" points form the old cluster. 308 OldCluster.PointIndices.erase(it, OldCluster.PointIndices.end()); 309 // Now, the old cluster may end up being empty, but let's just keep it 310 // in whatever state it ended up. Purging empty clusters isn't worth it. 311 }; 312 assert(UnstableCluster.PointIndices.size() > 1 && 313 "New unstable cluster should end up with more than one point."); 314 assert(UnstableCluster.PointIndices.size() >= ClusterIDs.size() && 315 "New unstable cluster should end up with no less points than there " 316 "was clusters"); 317 } 318 } 319 320 llvm::Expected<InstructionBenchmarkClustering> 321 InstructionBenchmarkClustering::create( 322 const std::vector<InstructionBenchmark> &Points, const ModeE Mode, 323 const size_t DbscanMinPts, const double AnalysisClusteringEpsilon, 324 llvm::Optional<unsigned> NumOpcodes) { 325 InstructionBenchmarkClustering Clustering( 326 Points, AnalysisClusteringEpsilon * AnalysisClusteringEpsilon); 327 if (auto Error = Clustering.validateAndSetup()) { 328 return std::move(Error); 329 } 330 if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) { 331 return Clustering; // Nothing to cluster. 332 } 333 334 if (Mode == ModeE::Dbscan) { 335 Clustering.clusterizeDbScan(DbscanMinPts); 336 337 if (NumOpcodes.hasValue()) 338 Clustering.stabilize(NumOpcodes.getValue()); 339 } else /*if(Mode == ModeE::Naive)*/ { 340 if (!NumOpcodes.hasValue()) 341 llvm::report_fatal_error( 342 "'naive' clustering mode requires opcode count to be specified"); 343 Clustering.clusterizeNaive(NumOpcodes.getValue()); 344 } 345 346 return Clustering; 347 } 348 349 void SchedClassClusterCentroid::addPoint(ArrayRef<BenchmarkMeasure> Point) { 350 if (Representative.empty()) 351 Representative.resize(Point.size()); 352 assert(Representative.size() == Point.size() && 353 "All points should have identical dimensions."); 354 355 for (const auto &I : llvm::zip(Representative, Point)) 356 std::get<0>(I).push(std::get<1>(I)); 357 } 358 359 std::vector<BenchmarkMeasure> SchedClassClusterCentroid::getAsPoint() const { 360 std::vector<BenchmarkMeasure> ClusterCenterPoint(Representative.size()); 361 for (const auto &I : llvm::zip(ClusterCenterPoint, Representative)) 362 std::get<0>(I).PerInstructionValue = std::get<1>(I).avg(); 363 return ClusterCenterPoint; 364 } 365 366 bool SchedClassClusterCentroid::validate( 367 InstructionBenchmark::ModeE Mode) const { 368 size_t NumMeasurements = Representative.size(); 369 switch (Mode) { 370 case InstructionBenchmark::Latency: 371 if (NumMeasurements != 1) { 372 llvm::errs() 373 << "invalid number of measurements in latency mode: expected 1, got " 374 << NumMeasurements << "\n"; 375 return false; 376 } 377 break; 378 case InstructionBenchmark::Uops: 379 // Can have many measurements. 380 break; 381 case InstructionBenchmark::InverseThroughput: 382 if (NumMeasurements != 1) { 383 llvm::errs() << "invalid number of measurements in inverse throughput " 384 "mode: expected 1, got " 385 << NumMeasurements << "\n"; 386 return false; 387 } 388 break; 389 default: 390 llvm_unreachable("unimplemented measurement matching mode"); 391 return false; 392 } 393 394 return true; // All good. 395 } 396 397 } // namespace exegesis 398 } // namespace llvm 399