xref: /llvm-project/llvm/tools/llvm-exegesis/lib/Analysis.cpp (revision d5a39553ff3eafaab675e581d973f700a4d7a6b5)
1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Analysis.h"
11 #include "BenchmarkResult.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/MC/MCAsmInfo.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <unordered_set>
16 #include <vector>
17 
18 namespace exegesis {
19 
20 static const char kCsvSep = ',';
21 
22 static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI,
23                                     unsigned SchedClassId,
24                                     const llvm::MCInst &MCI) {
25   const auto &SM = STI.getSchedModel();
26   while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
27     SchedClassId =
28         STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
29   return SchedClassId;
30 }
31 
32 namespace {
33 
34 enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
35 
36 template <EscapeTag Tag>
37 void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);
38 
39 template <>
40 void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
41   if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
42     OS << S;
43   } else {
44     // Needs escaping.
45     OS << '"';
46     for (const char C : S) {
47       if (C == '"')
48         OS << "\"\"";
49       else
50         OS << C;
51     }
52     OS << '"';
53   }
54 }
55 
56 template <>
57 void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
58   for (const char C : S) {
59     if (C == '<')
60       OS << "&lt;";
61     else if (C == '>')
62       OS << "&gt;";
63     else if (C == '&')
64       OS << "&amp;";
65     else
66       OS << C;
67   }
68 }
69 
70 template <>
71 void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS,
72                                      const llvm::StringRef S) {
73   for (const char C : S) {
74     if (C == '"')
75       OS << "\\\"";
76     else
77       OS << C;
78   }
79 }
80 
81 } // namespace
82 
83 template <EscapeTag Tag>
84 static void
85 writeClusterId(llvm::raw_ostream &OS,
86                const InstructionBenchmarkClustering::ClusterId &CID) {
87   if (CID.isNoise())
88     writeEscaped<Tag>(OS, "[noise]");
89   else if (CID.isError())
90     writeEscaped<Tag>(OS, "[error]");
91   else
92     OS << CID.getId();
93 }
94 
95 template <EscapeTag Tag>
96 static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
97   writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str());
98 }
99 
100 template <typename EscapeTag, EscapeTag Tag>
101 void Analysis::writeSnippet(llvm::raw_ostream &OS,
102                             llvm::ArrayRef<uint8_t> Bytes,
103                             const char *Separator) const {
104   llvm::SmallVector<std::string, 3> Lines;
105   // Parse the asm snippet and print it.
106   while (!Bytes.empty()) {
107     llvm::MCInst MI;
108     uint64_t MISize = 0;
109     if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(),
110                                  llvm::nulls())) {
111       writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
112       writeEscaped<Tag>(OS, Separator);
113       writeEscaped<Tag>(OS, "[error decoding asm snippet]");
114       return;
115     }
116     Lines.emplace_back();
117     std::string &Line = Lines.back();
118     llvm::raw_string_ostream OSS(Line);
119     InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_);
120     Bytes = Bytes.drop_front(MISize);
121     OSS.flush();
122     Line = llvm::StringRef(Line).trim().str();
123   }
124   writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
125 }
126 
127 // Prints a row representing an instruction, along with scheduling info and
128 // point coordinates (measurements).
129 void Analysis::printInstructionRowCsv(const size_t PointId,
130                                       llvm::raw_ostream &OS) const {
131   const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
132   writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
133   OS << kCsvSep;
134   writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
135   OS << kCsvSep;
136   writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
137   OS << kCsvSep;
138   assert(!Point.Key.Instructions.empty());
139   const auto &SchedModel = SubtargetInfo_->getSchedModel();
140   const llvm::MCInst &MCI = Point.Key.Instructions[0];
141   const unsigned SchedClassId = resolveSchedClassId(
142       *SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI);
143 
144 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
145   const llvm::MCSchedClassDesc *const SCDesc =
146       SchedModel.getSchedClassDesc(SchedClassId);
147   writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
148 #else
149   OS << SchedClassId;
150 #endif
151   for (const auto &Measurement : Point.Measurements) {
152     OS << kCsvSep;
153     writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
154   }
155   OS << "\n";
156 }
157 
158 Analysis::Analysis(const llvm::Target &Target,
159                    const InstructionBenchmarkClustering &Clustering)
160     : Clustering_(Clustering) {
161   if (Clustering.getPoints().empty())
162     return;
163 
164   const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
165   InstrInfo_.reset(Target.createMCInstrInfo());
166   RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
167   AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple));
168   SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
169                                                     FirstPoint.CpuName, ""));
170   InstPrinter_.reset(Target.createMCInstPrinter(
171       llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
172       *InstrInfo_, *RegInfo_));
173 
174   Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(),
175                                                 &ObjectFileInfo_);
176   Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
177   assert(Disasm_ && "cannot create MCDisassembler. missing call to "
178                     "InitializeXXXTargetDisassembler ?");
179 }
180 
181 template <>
182 llvm::Error
183 Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
184   if (Clustering_.getPoints().empty())
185     return llvm::Error::success();
186 
187   // Write the header.
188   OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
189      << kCsvSep << "sched_class";
190   for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
191     OS << kCsvSep;
192     writeEscaped<kEscapeCsv>(OS, Measurement.Key);
193   }
194   OS << "\n";
195 
196   // Write the points.
197   const auto &Clusters = Clustering_.getValidClusters();
198   for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
199     for (const size_t PointId : Clusters[I].PointIndices) {
200       printInstructionRowCsv(PointId, OS);
201     }
202     OS << "\n\n";
203   }
204   return llvm::Error::success();
205 }
206 
207 Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
208     ResolvedSchedClass &&RSC)
209     : RSC(std::move(RSC)) {}
210 
211 std::vector<Analysis::ResolvedSchedClassAndPoints>
212 Analysis::makePointsPerSchedClass() const {
213   std::vector<ResolvedSchedClassAndPoints> Entries;
214   // Maps SchedClassIds to index in result.
215   std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
216   const auto &Points = Clustering_.getPoints();
217   for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
218     const InstructionBenchmark &Point = Points[PointId];
219     if (!Point.Error.empty())
220       continue;
221     assert(!Point.Key.Instructions.empty());
222     // FIXME: we should be using the tuple of classes for instructions in the
223     // snippet as key.
224     const llvm::MCInst &MCI = Point.Key.Instructions[0];
225     unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass();
226     const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel()
227                                                 .getSchedClassDesc(SchedClassId)
228                                                 ->isVariant();
229     SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI);
230     const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
231     if (IndexIt == SchedClassIdToIndex.end()) {
232       // Create a new entry.
233       SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
234       ResolvedSchedClassAndPoints Entry(
235           ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
236       Entry.PointIds.push_back(PointId);
237       Entries.push_back(std::move(Entry));
238     } else {
239       // Append to the existing entry.
240       Entries[IndexIt->second].PointIds.push_back(PointId);
241     }
242   }
243   return Entries;
244 }
245 
246 // Uops repeat the same opcode over again. Just show this opcode and show the
247 // whole snippet only on hover.
248 static void writeUopsSnippetHtml(llvm::raw_ostream &OS,
249                                  const std::vector<llvm::MCInst> &Instructions,
250                                  const llvm::MCInstrInfo &InstrInfo) {
251   if (Instructions.empty())
252     return;
253   writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
254   if (Instructions.size() > 1)
255     OS << " (x" << Instructions.size() << ")";
256 }
257 
258 // Latency tries to find a serial path. Just show the opcode path and show the
259 // whole snippet only on hover.
260 static void
261 writeLatencySnippetHtml(llvm::raw_ostream &OS,
262                         const std::vector<llvm::MCInst> &Instructions,
263                         const llvm::MCInstrInfo &InstrInfo) {
264   bool First = true;
265   for (const llvm::MCInst &Instr : Instructions) {
266     if (First)
267       First = false;
268     else
269       OS << " &rarr; ";
270     writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
271   }
272 }
273 
274 void Analysis::printSchedClassClustersHtml(
275     const std::vector<SchedClassCluster> &Clusters,
276     const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const {
277   const auto &Points = Clustering_.getPoints();
278   OS << "<table class=\"sched-class-clusters\">";
279   OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
280   assert(!Clusters.empty());
281   for (const auto &Measurement :
282        Points[Clusters[0].getPointIds()[0]].Measurements) {
283     OS << "<th>";
284     writeEscaped<kEscapeHtml>(OS, Measurement.Key);
285     OS << "</th>";
286   }
287   OS << "</tr>";
288   for (const SchedClassCluster &Cluster : Clusters) {
289     OS << "<tr class=\""
290        << (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_)
291                ? "good-cluster"
292                : "bad-cluster")
293        << "\"><td>";
294     writeClusterId<kEscapeHtml>(OS, Cluster.id());
295     OS << "</td><td><ul>";
296     for (const size_t PointId : Cluster.getPointIds()) {
297       const auto &Point = Points[PointId];
298       OS << "<li><span class=\"mono\" title=\"";
299       writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet,
300                                                  "\n");
301       OS << "\">";
302       switch (Point.Mode) {
303       case InstructionBenchmark::Latency:
304         writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
305         break;
306       case InstructionBenchmark::Uops:
307         writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
308         break;
309       default:
310         llvm_unreachable("invalid mode");
311       }
312       OS << "</span> <span class=\"mono\">";
313       writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
314       OS << "</span></li>";
315     }
316     OS << "</ul></td>";
317     for (const auto &Stats : Cluster.getRepresentative()) {
318       OS << "<td class=\"measurement\">";
319       writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
320       OS << "<br><span class=\"minmax\">[";
321       writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
322       OS << ";";
323       writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
324       OS << "]</span></td>";
325     }
326     OS << "</tr>";
327   }
328   OS << "</table>";
329 }
330 
331 // Return the non-redundant list of WriteProcRes used by the given sched class.
332 // The scheduling model for LLVM is such that each instruction has a certain
333 // number of uops which consume resources which are described by WriteProcRes
334 // entries. Each entry describe how many cycles are spent on a specific ProcRes
335 // kind.
336 // For example, an instruction might have 3 uOps, one dispatching on P0
337 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
338 // Note that LLVM additionally denormalizes resource consumption to include
339 // usage of super resources by subresources. So in practice if there exists a
340 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
341 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
342 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
343 // denote implied usage of superresources by subresources:
344 //            P0      P06    P016
345 //     uOp1    1      (1)     (1)
346 //     uOp2            1      (1)
347 //     uOp3            1      (1)
348 //     =============================
349 //             1       3       3
350 // Eventually we end up with three entries for the WriteProcRes of the
351 // instruction:
352 //    {ProcResIdx=1,  Cycles=1}  // P0
353 //    {ProcResIdx=7,  Cycles=3}  // P06
354 //    {ProcResIdx=10, Cycles=3}  // P016
355 //
356 // Note that in this case, P016 does not contribute any cycles, so it would
357 // be removed by this function.
358 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
359 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
360 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
361                             const llvm::MCSubtargetInfo &STI) {
362   llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
363   const auto &SM = STI.getSchedModel();
364   const unsigned NumProcRes = SM.getNumProcResourceKinds();
365 
366   // This assumes that the ProcResDescs are sorted in topological order, which
367   // is guaranteed by the tablegen backend.
368   llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
369   for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
370                   *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
371        WPR != WPREnd; ++WPR) {
372     const llvm::MCProcResourceDesc *const ProcResDesc =
373         SM.getProcResource(WPR->ProcResourceIdx);
374     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
375       // This is a ProcResUnit.
376       Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
377       ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
378     } else {
379       // This is a ProcResGroup. First see if it contributes any cycles or if
380       // it has cycles just from subunits.
381       float RemainingCycles = WPR->Cycles;
382       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
383            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
384            ++SubResIdx) {
385         RemainingCycles -= ProcResUnitUsage[*SubResIdx];
386       }
387       if (RemainingCycles < 0.01f) {
388         // The ProcResGroup contributes no cycles of its own.
389         continue;
390       }
391       // The ProcResGroup contributes `RemainingCycles` cycles of its own.
392       Result.push_back({WPR->ProcResourceIdx,
393                         static_cast<uint16_t>(std::round(RemainingCycles))});
394       // Spread the remaining cycles over all subunits.
395       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
396            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
397            ++SubResIdx) {
398         ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
399       }
400     }
401   }
402   return Result;
403 }
404 
405 Analysis::ResolvedSchedClass::ResolvedSchedClass(
406     const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId,
407     bool WasVariant)
408     : SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
409       WasVariant(WasVariant),
410       NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
411       IdealizedProcResPressure(computeIdealizedProcResPressure(
412           STI.getSchedModel(), NonRedundantWriteProcRes)) {
413   assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
414          "ResolvedSchedClass should never be variant");
415 }
416 
417 void Analysis::SchedClassCluster::addPoint(
418     size_t PointId, const InstructionBenchmarkClustering &Clustering) {
419   PointIds.push_back(PointId);
420   const auto &Point = Clustering.getPoints()[PointId];
421   if (ClusterId.isUndef()) {
422     ClusterId = Clustering.getClusterIdForPoint(PointId);
423     Representative.resize(Point.Measurements.size());
424   }
425   for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) {
426     Representative[I].push(Point.Measurements[I]);
427   }
428   assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
429 }
430 
431 // Returns a ProxResIdx by id or name.
432 static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI,
433                                const llvm::StringRef NameOrId) {
434   // Interpret the key as an ProcResIdx.
435   unsigned ProcResIdx = 0;
436   if (llvm::to_integer(NameOrId, ProcResIdx, 10))
437     return ProcResIdx;
438   // Interpret the key as a ProcRes name.
439   const auto &SchedModel = STI.getSchedModel();
440   for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
441     if (NameOrId == SchedModel.getProcResource(I)->Name)
442       return I;
443   }
444   return 0;
445 }
446 
447 bool Analysis::SchedClassCluster::measurementsMatch(
448     const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
449     const InstructionBenchmarkClustering &Clustering) const {
450   const size_t NumMeasurements = Representative.size();
451   std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements);
452   std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
453   // Latency case.
454   assert(!Clustering.getPoints().empty());
455   const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
456   if (Mode == InstructionBenchmark::Latency) {
457     if (NumMeasurements != 1) {
458       llvm::errs()
459           << "invalid number of measurements in latency mode: expected 1, got "
460           << NumMeasurements << "\n";
461       return false;
462     }
463     // Find the latency.
464     SchedClassPoint[0].PerInstructionValue = 0.0;
465     for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) {
466       const llvm::MCWriteLatencyEntry *const WLE =
467           STI.getWriteLatencyEntry(RSC.SCDesc, I);
468       SchedClassPoint[0].PerInstructionValue =
469           std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles);
470     }
471     ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg();
472   } else if (Mode == InstructionBenchmark::Uops) {
473     for (int I = 0, E = Representative.size(); I < E; ++I) {
474       const auto Key = Representative[I].key();
475       uint16_t ProcResIdx = findProcResIdx(STI, Key);
476       if (ProcResIdx > 0) {
477         // Find the pressure on ProcResIdx `Key`.
478         const auto ProcResPressureIt =
479             std::find_if(RSC.IdealizedProcResPressure.begin(),
480                          RSC.IdealizedProcResPressure.end(),
481                          [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
482                            return WPR.first == ProcResIdx;
483                          });
484         SchedClassPoint[I].PerInstructionValue =
485             ProcResPressureIt == RSC.IdealizedProcResPressure.end()
486                 ? 0.0
487                 : ProcResPressureIt->second;
488       } else if (Key == "NumMicroOps") {
489         SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps;
490       } else {
491         llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
492                         "name, got "
493                      << Key << "\n";
494         return false;
495       }
496       ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg();
497     }
498   } else {
499     llvm::errs() << "unimplemented measurement matching for mode " << Mode
500                  << "\n";
501     return false;
502   }
503   return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint);
504 }
505 
506 void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
507                                        llvm::raw_ostream &OS) const {
508   OS << "<table class=\"sched-class-desc\">";
509   OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
510         "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
511         "resource (port) pressure assuming ideal distribution\">Idealized "
512         "Resource Pressure</th></tr>";
513   if (RSC.SCDesc->isValid()) {
514     const auto &SM = SubtargetInfo_->getSchedModel();
515     OS << "<tr><td>&#10004;</td>";
516     OS << "<td>" << (RSC.WasVariant ? "&#10004;" : "&#10005;") << "</td>";
517     OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
518     // Latencies.
519     OS << "<td><ul>";
520     for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
521       const auto *const Entry =
522           SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
523       OS << "<li>" << Entry->Cycles;
524       if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
525         // Dismabiguate if more than 1 latency.
526         OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
527       }
528       OS << "</li>";
529     }
530     OS << "</ul></td>";
531     // WriteProcRes.
532     OS << "<td><ul>";
533     for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
534       OS << "<li><span class=\"mono\">";
535       writeEscaped<kEscapeHtml>(OS,
536                                 SM.getProcResource(WPR.ProcResourceIdx)->Name);
537       OS << "</span>: " << WPR.Cycles << "</li>";
538     }
539     OS << "</ul></td>";
540     // Idealized port pressure.
541     OS << "<td><ul>";
542     for (const auto &Pressure : RSC.IdealizedProcResPressure) {
543       OS << "<li><span class=\"mono\">";
544       writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
545                                         .getProcResource(Pressure.first)
546                                         ->Name);
547       OS << "</span>: ";
548       writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
549       OS << "</li>";
550     }
551     OS << "</ul></td>";
552     OS << "</tr>";
553   } else {
554     OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
555   }
556   OS << "</table>";
557 }
558 
559 static constexpr const char kHtmlHead[] = R"(
560 <head>
561 <title>llvm-exegesis Analysis Results</title>
562 <style>
563 body {
564   font-family: sans-serif
565 }
566 span.sched-class-name {
567   font-weight: bold;
568   font-family: monospace;
569 }
570 span.opcode {
571   font-family: monospace;
572 }
573 span.config {
574   font-family: monospace;
575 }
576 div.inconsistency {
577   margin-top: 50px;
578 }
579 table {
580   margin-left: 50px;
581   border-collapse: collapse;
582 }
583 table, table tr,td,th {
584   border: 1px solid #444;
585 }
586 table ul {
587   padding-left: 0px;
588   margin: 0px;
589   list-style-type: none;
590 }
591 table.sched-class-clusters td {
592   padding-left: 10px;
593   padding-right: 10px;
594   padding-top: 10px;
595   padding-bottom: 10px;
596 }
597 table.sched-class-desc td {
598   padding-left: 10px;
599   padding-right: 10px;
600   padding-top: 2px;
601   padding-bottom: 2px;
602 }
603 span.mono {
604   font-family: monospace;
605 }
606 td.measurement {
607   text-align: center;
608 }
609 tr.good-cluster td.measurement {
610   color: #292
611 }
612 tr.bad-cluster td.measurement {
613   color: #922
614 }
615 tr.good-cluster td.measurement span.minmax {
616   color: #888;
617 }
618 tr.bad-cluster td.measurement span.minmax {
619   color: #888;
620 }
621 </style>
622 </head>
623 )";
624 
625 template <>
626 llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
627     llvm::raw_ostream &OS) const {
628   const auto &FirstPoint = Clustering_.getPoints()[0];
629   // Print the header.
630   OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
631   OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
632   OS << "<h3>Triple: <span class=\"mono\">";
633   writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
634   OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
635   writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
636   OS << "</span></h3>";
637 
638   for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
639     if (!RSCAndPoints.RSC.SCDesc)
640       continue;
641     // Bucket sched class points into sched class clusters.
642     std::vector<SchedClassCluster> SchedClassClusters;
643     for (const size_t PointId : RSCAndPoints.PointIds) {
644       const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
645       if (!ClusterId.isValid())
646         continue; // Ignore noise and errors. FIXME: take noise into account ?
647       auto SchedClassClusterIt =
648           std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
649                        [ClusterId](const SchedClassCluster &C) {
650                          return C.id() == ClusterId;
651                        });
652       if (SchedClassClusterIt == SchedClassClusters.end()) {
653         SchedClassClusters.emplace_back();
654         SchedClassClusterIt = std::prev(SchedClassClusters.end());
655       }
656       SchedClassClusterIt->addPoint(PointId, Clustering_);
657     }
658 
659     // Print any scheduling class that has at least one cluster that does not
660     // match the checked-in data.
661     if (std::all_of(SchedClassClusters.begin(), SchedClassClusters.end(),
662                     [this, &RSCAndPoints](const SchedClassCluster &C) {
663                       return C.measurementsMatch(*SubtargetInfo_,
664                                                  RSCAndPoints.RSC, Clustering_);
665                     }))
666       continue; // Nothing weird.
667 
668     OS << "<div class=\"inconsistency\"><p>Sched Class <span "
669           "class=\"sched-class-name\">";
670 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
671     writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
672 #else
673     OS << SchedClassId;
674 #endif
675     OS << "</span> contains instructions whose performance characteristics do"
676           " not match that of LLVM:</p>";
677     printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
678     OS << "<p>llvm SchedModel data:</p>";
679     printSchedClassDescHtml(RSCAndPoints.RSC, OS);
680     OS << "</div>";
681   }
682 
683   OS << "</body></html>";
684   return llvm::Error::success();
685 }
686 
687 // Distributes a pressure budget as evenly as possible on the provided subunits
688 // given the already existing port pressure distribution.
689 //
690 // The algorithm is as follows: while there is remaining pressure to
691 // distribute, find the subunits with minimal pressure, and distribute
692 // remaining pressure equally up to the pressure of the unit with
693 // second-to-minimal pressure.
694 // For example, let's assume we want to distribute 2*P1256
695 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
696 //     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7
697 //                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5
698 //     RemainingPressure = 2.0
699 // We sort the subunits by pressure:
700 //     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
701 // We'll first start by the subunits with minimal pressure, which are at
702 // the beginning of the sorted array. In this example there is one (P2).
703 // The subunit with second-to-minimal pressure is the next one in the
704 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
705 // from the budget.
706 //     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
707 //     RemainingPressure = 1.9
708 // We repeat this process: distribute 0.2 pressure on each of the minimal
709 // P2 and P1, decrease budget by 2*0.2:
710 //     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
711 //     RemainingPressure = 1.5
712 // There are no second-to-minimal subunits so we just share the remaining
713 // budget (1.5 cycles) equally:
714 //     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
715 //     RemainingPressure = 0.0
716 // We stop as there is no remaining budget to distribute.
717 void distributePressure(float RemainingPressure,
718                         llvm::SmallVector<uint16_t, 32> Subunits,
719                         llvm::SmallVector<float, 32> &DensePressure) {
720   // Find the number of subunits with minimal pressure (they are at the
721   // front).
722   llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
723     return DensePressure[A] < DensePressure[B];
724   });
725   const auto getPressureForSubunit = [&DensePressure,
726                                       &Subunits](size_t I) -> float & {
727     return DensePressure[Subunits[I]];
728   };
729   size_t NumMinimalSU = 1;
730   while (NumMinimalSU < Subunits.size() &&
731          getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
732     ++NumMinimalSU;
733   }
734   while (RemainingPressure > 0.0f) {
735     if (NumMinimalSU == Subunits.size()) {
736       // All units are minimal, just distribute evenly and be done.
737       for (size_t I = 0; I < NumMinimalSU; ++I) {
738         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
739       }
740       return;
741     }
742     // Distribute the remaining pressure equally.
743     const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
744     const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
745     assert(MinimalPressure < SecondToMinimalPressure);
746     const float Increment = SecondToMinimalPressure - MinimalPressure;
747     if (RemainingPressure <= NumMinimalSU * Increment) {
748       // There is not enough remaining pressure.
749       for (size_t I = 0; I < NumMinimalSU; ++I) {
750         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
751       }
752       return;
753     }
754     // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
755     for (size_t I = 0; I < NumMinimalSU; ++I) {
756       getPressureForSubunit(I) = SecondToMinimalPressure;
757       RemainingPressure -= SecondToMinimalPressure;
758     }
759     while (NumMinimalSU < Subunits.size() &&
760            getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
761       ++NumMinimalSU;
762     }
763   }
764 }
765 
766 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
767     const llvm::MCSchedModel &SM,
768     llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
769   // DensePressure[I] is the port pressure for Proc Resource I.
770   llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
771   llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
772                       const llvm::MCWriteProcResEntry &B) {
773     return A.ProcResourceIdx < B.ProcResourceIdx;
774   });
775   for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
776     // Get units for the entry.
777     const llvm::MCProcResourceDesc *const ProcResDesc =
778         SM.getProcResource(WPR.ProcResourceIdx);
779     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
780       // This is a ProcResUnit.
781       DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
782     } else {
783       // This is a ProcResGroup.
784       llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
785                                                ProcResDesc->SubUnitsIdxBegin +
786                                                    ProcResDesc->NumUnits);
787       distributePressure(WPR.Cycles, Subunits, DensePressure);
788     }
789   }
790   // Turn dense pressure into sparse pressure by removing zero entries.
791   std::vector<std::pair<uint16_t, float>> Pressure;
792   for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
793     if (DensePressure[I] > 0.0f)
794       Pressure.emplace_back(I, DensePressure[I]);
795   }
796   return Pressure;
797 }
798 
799 } // namespace exegesis
800