1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "Analysis.h" 11 #include "BenchmarkResult.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/MC/MCAsmInfo.h" 14 #include "llvm/Support/FormatVariadic.h" 15 #include <unordered_set> 16 #include <vector> 17 18 namespace exegesis { 19 20 static const char kCsvSep = ','; 21 22 static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI, 23 unsigned SchedClassId, 24 const llvm::MCInst &MCI) { 25 const auto &SM = STI.getSchedModel(); 26 while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) 27 SchedClassId = 28 STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID()); 29 return SchedClassId; 30 } 31 32 namespace { 33 34 enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString }; 35 36 template <EscapeTag Tag> 37 void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S); 38 39 template <> 40 void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) { 41 if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) { 42 OS << S; 43 } else { 44 // Needs escaping. 45 OS << '"'; 46 for (const char C : S) { 47 if (C == '"') 48 OS << "\"\""; 49 else 50 OS << C; 51 } 52 OS << '"'; 53 } 54 } 55 56 template <> 57 void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) { 58 for (const char C : S) { 59 if (C == '<') 60 OS << "<"; 61 else if (C == '>') 62 OS << ">"; 63 else if (C == '&') 64 OS << "&"; 65 else 66 OS << C; 67 } 68 } 69 70 template <> 71 void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS, 72 const llvm::StringRef S) { 73 for (const char C : S) { 74 if (C == '"') 75 OS << "\\\""; 76 else 77 OS << C; 78 } 79 } 80 81 } // namespace 82 83 template <EscapeTag Tag> 84 static void 85 writeClusterId(llvm::raw_ostream &OS, 86 const InstructionBenchmarkClustering::ClusterId &CID) { 87 if (CID.isNoise()) 88 writeEscaped<Tag>(OS, "[noise]"); 89 else if (CID.isError()) 90 writeEscaped<Tag>(OS, "[error]"); 91 else 92 OS << CID.getId(); 93 } 94 95 template <EscapeTag Tag> 96 static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) { 97 writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str()); 98 } 99 100 template <typename EscapeTag, EscapeTag Tag> 101 void Analysis::writeSnippet(llvm::raw_ostream &OS, 102 llvm::ArrayRef<uint8_t> Bytes, 103 const char *Separator) const { 104 llvm::SmallVector<std::string, 3> Lines; 105 // Parse the asm snippet and print it. 106 while (!Bytes.empty()) { 107 llvm::MCInst MI; 108 uint64_t MISize = 0; 109 if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(), 110 llvm::nulls())) { 111 writeEscaped<Tag>(OS, llvm::join(Lines, Separator)); 112 writeEscaped<Tag>(OS, Separator); 113 writeEscaped<Tag>(OS, "[error decoding asm snippet]"); 114 return; 115 } 116 Lines.emplace_back(); 117 std::string &Line = Lines.back(); 118 llvm::raw_string_ostream OSS(Line); 119 InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_); 120 Bytes = Bytes.drop_front(MISize); 121 OSS.flush(); 122 Line = llvm::StringRef(Line).trim().str(); 123 } 124 writeEscaped<Tag>(OS, llvm::join(Lines, Separator)); 125 } 126 127 // Prints a row representing an instruction, along with scheduling info and 128 // point coordinates (measurements). 129 void Analysis::printInstructionRowCsv(const size_t PointId, 130 llvm::raw_ostream &OS) const { 131 const InstructionBenchmark &Point = Clustering_.getPoints()[PointId]; 132 writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId)); 133 OS << kCsvSep; 134 writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; "); 135 OS << kCsvSep; 136 writeEscaped<kEscapeCsv>(OS, Point.Key.Config); 137 OS << kCsvSep; 138 assert(!Point.Key.Instructions.empty()); 139 const llvm::MCInst &MCI = Point.Key.Instructions[0]; 140 const unsigned SchedClassId = resolveSchedClassId( 141 *SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI); 142 143 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 144 const llvm::MCSchedClassDesc *const SCDesc = 145 SchedModel.getSchedClassDesc(SchedClassId); 146 writeEscaped<kEscapeCsv>(OS, SCDesc->Name); 147 #else 148 OS << SchedClassId; 149 #endif 150 for (const auto &Measurement : Point.Measurements) { 151 OS << kCsvSep; 152 writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue); 153 } 154 OS << "\n"; 155 } 156 157 Analysis::Analysis(const llvm::Target &Target, 158 const InstructionBenchmarkClustering &Clustering) 159 : Clustering_(Clustering) { 160 if (Clustering.getPoints().empty()) 161 return; 162 163 const InstructionBenchmark &FirstPoint = Clustering.getPoints().front(); 164 InstrInfo_.reset(Target.createMCInstrInfo()); 165 RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple)); 166 AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple)); 167 SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple, 168 FirstPoint.CpuName, "")); 169 InstPrinter_.reset(Target.createMCInstPrinter( 170 llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_, 171 *InstrInfo_, *RegInfo_)); 172 173 Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(), 174 &ObjectFileInfo_); 175 Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_)); 176 assert(Disasm_ && "cannot create MCDisassembler. missing call to " 177 "InitializeXXXTargetDisassembler ?"); 178 } 179 180 template <> 181 llvm::Error 182 Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const { 183 if (Clustering_.getPoints().empty()) 184 return llvm::Error::success(); 185 186 // Write the header. 187 OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config" 188 << kCsvSep << "sched_class"; 189 for (const auto &Measurement : Clustering_.getPoints().front().Measurements) { 190 OS << kCsvSep; 191 writeEscaped<kEscapeCsv>(OS, Measurement.Key); 192 } 193 OS << "\n"; 194 195 // Write the points. 196 const auto &Clusters = Clustering_.getValidClusters(); 197 for (size_t I = 0, E = Clusters.size(); I < E; ++I) { 198 for (const size_t PointId : Clusters[I].PointIndices) { 199 printInstructionRowCsv(PointId, OS); 200 } 201 OS << "\n\n"; 202 } 203 return llvm::Error::success(); 204 } 205 206 Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints( 207 ResolvedSchedClass &&RSC) 208 : RSC(std::move(RSC)) {} 209 210 std::vector<Analysis::ResolvedSchedClassAndPoints> 211 Analysis::makePointsPerSchedClass() const { 212 std::vector<ResolvedSchedClassAndPoints> Entries; 213 // Maps SchedClassIds to index in result. 214 std::unordered_map<unsigned, size_t> SchedClassIdToIndex; 215 const auto &Points = Clustering_.getPoints(); 216 for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) { 217 const InstructionBenchmark &Point = Points[PointId]; 218 if (!Point.Error.empty()) 219 continue; 220 assert(!Point.Key.Instructions.empty()); 221 // FIXME: we should be using the tuple of classes for instructions in the 222 // snippet as key. 223 const llvm::MCInst &MCI = Point.Key.Instructions[0]; 224 unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass(); 225 const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel() 226 .getSchedClassDesc(SchedClassId) 227 ->isVariant(); 228 SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI); 229 const auto IndexIt = SchedClassIdToIndex.find(SchedClassId); 230 if (IndexIt == SchedClassIdToIndex.end()) { 231 // Create a new entry. 232 SchedClassIdToIndex.emplace(SchedClassId, Entries.size()); 233 ResolvedSchedClassAndPoints Entry( 234 ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant)); 235 Entry.PointIds.push_back(PointId); 236 Entries.push_back(std::move(Entry)); 237 } else { 238 // Append to the existing entry. 239 Entries[IndexIt->second].PointIds.push_back(PointId); 240 } 241 } 242 return Entries; 243 } 244 245 // Uops repeat the same opcode over again. Just show this opcode and show the 246 // whole snippet only on hover. 247 static void writeUopsSnippetHtml(llvm::raw_ostream &OS, 248 const std::vector<llvm::MCInst> &Instructions, 249 const llvm::MCInstrInfo &InstrInfo) { 250 if (Instructions.empty()) 251 return; 252 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode())); 253 if (Instructions.size() > 1) 254 OS << " (x" << Instructions.size() << ")"; 255 } 256 257 // Latency tries to find a serial path. Just show the opcode path and show the 258 // whole snippet only on hover. 259 static void 260 writeLatencySnippetHtml(llvm::raw_ostream &OS, 261 const std::vector<llvm::MCInst> &Instructions, 262 const llvm::MCInstrInfo &InstrInfo) { 263 bool First = true; 264 for (const llvm::MCInst &Instr : Instructions) { 265 if (First) 266 First = false; 267 else 268 OS << " → "; 269 writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode())); 270 } 271 } 272 273 void Analysis::printSchedClassClustersHtml( 274 const std::vector<SchedClassCluster> &Clusters, 275 const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const { 276 const auto &Points = Clustering_.getPoints(); 277 OS << "<table class=\"sched-class-clusters\">"; 278 OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>"; 279 assert(!Clusters.empty()); 280 for (const auto &Measurement : 281 Points[Clusters[0].getPointIds()[0]].Measurements) { 282 OS << "<th>"; 283 writeEscaped<kEscapeHtml>(OS, Measurement.Key); 284 OS << "</th>"; 285 } 286 OS << "</tr>"; 287 for (const SchedClassCluster &Cluster : Clusters) { 288 OS << "<tr class=\"" 289 << (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_) 290 ? "good-cluster" 291 : "bad-cluster") 292 << "\"><td>"; 293 writeClusterId<kEscapeHtml>(OS, Cluster.id()); 294 OS << "</td><td><ul>"; 295 for (const size_t PointId : Cluster.getPointIds()) { 296 const auto &Point = Points[PointId]; 297 OS << "<li><span class=\"mono\" title=\""; 298 writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet, 299 "\n"); 300 OS << "\">"; 301 switch (Point.Mode) { 302 case InstructionBenchmark::Latency: 303 writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_); 304 break; 305 case InstructionBenchmark::Uops: 306 writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_); 307 break; 308 default: 309 llvm_unreachable("invalid mode"); 310 } 311 OS << "</span> <span class=\"mono\">"; 312 writeEscaped<kEscapeHtml>(OS, Point.Key.Config); 313 OS << "</span></li>"; 314 } 315 OS << "</ul></td>"; 316 for (const auto &Stats : Cluster.getRepresentative()) { 317 OS << "<td class=\"measurement\">"; 318 writeMeasurementValue<kEscapeHtml>(OS, Stats.avg()); 319 OS << "<br><span class=\"minmax\">["; 320 writeMeasurementValue<kEscapeHtml>(OS, Stats.min()); 321 OS << ";"; 322 writeMeasurementValue<kEscapeHtml>(OS, Stats.max()); 323 OS << "]</span></td>"; 324 } 325 OS << "</tr>"; 326 } 327 OS << "</table>"; 328 } 329 330 // Return the non-redundant list of WriteProcRes used by the given sched class. 331 // The scheduling model for LLVM is such that each instruction has a certain 332 // number of uops which consume resources which are described by WriteProcRes 333 // entries. Each entry describe how many cycles are spent on a specific ProcRes 334 // kind. 335 // For example, an instruction might have 3 uOps, one dispatching on P0 336 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). 337 // Note that LLVM additionally denormalizes resource consumption to include 338 // usage of super resources by subresources. So in practice if there exists a 339 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by 340 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed 341 // by P06 are also consumed by P016. In the figure below, parenthesized cycles 342 // denote implied usage of superresources by subresources: 343 // P0 P06 P016 344 // uOp1 1 (1) (1) 345 // uOp2 1 (1) 346 // uOp3 1 (1) 347 // ============================= 348 // 1 3 3 349 // Eventually we end up with three entries for the WriteProcRes of the 350 // instruction: 351 // {ProcResIdx=1, Cycles=1} // P0 352 // {ProcResIdx=7, Cycles=3} // P06 353 // {ProcResIdx=10, Cycles=3} // P016 354 // 355 // Note that in this case, P016 does not contribute any cycles, so it would 356 // be removed by this function. 357 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. 358 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8> 359 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc, 360 const llvm::MCSubtargetInfo &STI) { 361 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result; 362 const auto &SM = STI.getSchedModel(); 363 const unsigned NumProcRes = SM.getNumProcResourceKinds(); 364 365 // This assumes that the ProcResDescs are sorted in topological order, which 366 // is guaranteed by the tablegen backend. 367 llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes); 368 for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), 369 *const WPREnd = STI.getWriteProcResEnd(&SCDesc); 370 WPR != WPREnd; ++WPR) { 371 const llvm::MCProcResourceDesc *const ProcResDesc = 372 SM.getProcResource(WPR->ProcResourceIdx); 373 if (ProcResDesc->SubUnitsIdxBegin == nullptr) { 374 // This is a ProcResUnit. 375 Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); 376 ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; 377 } else { 378 // This is a ProcResGroup. First see if it contributes any cycles or if 379 // it has cycles just from subunits. 380 float RemainingCycles = WPR->Cycles; 381 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; 382 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; 383 ++SubResIdx) { 384 RemainingCycles -= ProcResUnitUsage[*SubResIdx]; 385 } 386 if (RemainingCycles < 0.01f) { 387 // The ProcResGroup contributes no cycles of its own. 388 continue; 389 } 390 // The ProcResGroup contributes `RemainingCycles` cycles of its own. 391 Result.push_back({WPR->ProcResourceIdx, 392 static_cast<uint16_t>(std::round(RemainingCycles))}); 393 // Spread the remaining cycles over all subunits. 394 for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; 395 SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; 396 ++SubResIdx) { 397 ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; 398 } 399 } 400 } 401 return Result; 402 } 403 404 Analysis::ResolvedSchedClass::ResolvedSchedClass( 405 const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId, 406 bool WasVariant) 407 : SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)), 408 WasVariant(WasVariant), 409 NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)), 410 IdealizedProcResPressure(computeIdealizedProcResPressure( 411 STI.getSchedModel(), NonRedundantWriteProcRes)) { 412 assert((SCDesc == nullptr || !SCDesc->isVariant()) && 413 "ResolvedSchedClass should never be variant"); 414 } 415 416 void Analysis::SchedClassCluster::addPoint( 417 size_t PointId, const InstructionBenchmarkClustering &Clustering) { 418 PointIds.push_back(PointId); 419 const auto &Point = Clustering.getPoints()[PointId]; 420 if (ClusterId.isUndef()) { 421 ClusterId = Clustering.getClusterIdForPoint(PointId); 422 Representative.resize(Point.Measurements.size()); 423 } 424 for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) { 425 Representative[I].push(Point.Measurements[I]); 426 } 427 assert(ClusterId == Clustering.getClusterIdForPoint(PointId)); 428 } 429 430 // Returns a ProxResIdx by id or name. 431 static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI, 432 const llvm::StringRef NameOrId) { 433 // Interpret the key as an ProcResIdx. 434 unsigned ProcResIdx = 0; 435 if (llvm::to_integer(NameOrId, ProcResIdx, 10)) 436 return ProcResIdx; 437 // Interpret the key as a ProcRes name. 438 const auto &SchedModel = STI.getSchedModel(); 439 for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { 440 if (NameOrId == SchedModel.getProcResource(I)->Name) 441 return I; 442 } 443 return 0; 444 } 445 446 bool Analysis::SchedClassCluster::measurementsMatch( 447 const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC, 448 const InstructionBenchmarkClustering &Clustering) const { 449 const size_t NumMeasurements = Representative.size(); 450 std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements); 451 std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); 452 // Latency case. 453 assert(!Clustering.getPoints().empty()); 454 const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode; 455 if (Mode == InstructionBenchmark::Latency) { 456 if (NumMeasurements != 1) { 457 llvm::errs() 458 << "invalid number of measurements in latency mode: expected 1, got " 459 << NumMeasurements << "\n"; 460 return false; 461 } 462 // Find the latency. 463 SchedClassPoint[0].PerInstructionValue = 0.0; 464 for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) { 465 const llvm::MCWriteLatencyEntry *const WLE = 466 STI.getWriteLatencyEntry(RSC.SCDesc, I); 467 SchedClassPoint[0].PerInstructionValue = 468 std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles); 469 } 470 ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg(); 471 } else if (Mode == InstructionBenchmark::Uops) { 472 for (int I = 0, E = Representative.size(); I < E; ++I) { 473 const auto Key = Representative[I].key(); 474 uint16_t ProcResIdx = findProcResIdx(STI, Key); 475 if (ProcResIdx > 0) { 476 // Find the pressure on ProcResIdx `Key`. 477 const auto ProcResPressureIt = 478 std::find_if(RSC.IdealizedProcResPressure.begin(), 479 RSC.IdealizedProcResPressure.end(), 480 [ProcResIdx](const std::pair<uint16_t, float> &WPR) { 481 return WPR.first == ProcResIdx; 482 }); 483 SchedClassPoint[I].PerInstructionValue = 484 ProcResPressureIt == RSC.IdealizedProcResPressure.end() 485 ? 0.0 486 : ProcResPressureIt->second; 487 } else if (Key == "NumMicroOps") { 488 SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps; 489 } else { 490 llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes " 491 "name, got " 492 << Key << "\n"; 493 return false; 494 } 495 ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg(); 496 } 497 } else { 498 llvm::errs() << "unimplemented measurement matching for mode " << Mode 499 << "\n"; 500 return false; 501 } 502 return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint); 503 } 504 505 void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC, 506 llvm::raw_ostream &OS) const { 507 OS << "<table class=\"sched-class-desc\">"; 508 OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</" 509 "th><th>WriteProcRes</th><th title=\"This is the idealized unit " 510 "resource (port) pressure assuming ideal distribution\">Idealized " 511 "Resource Pressure</th></tr>"; 512 if (RSC.SCDesc->isValid()) { 513 const auto &SM = SubtargetInfo_->getSchedModel(); 514 OS << "<tr><td>✔</td>"; 515 OS << "<td>" << (RSC.WasVariant ? "✔" : "✕") << "</td>"; 516 OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>"; 517 // Latencies. 518 OS << "<td><ul>"; 519 for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) { 520 const auto *const Entry = 521 SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I); 522 OS << "<li>" << Entry->Cycles; 523 if (RSC.SCDesc->NumWriteLatencyEntries > 1) { 524 // Dismabiguate if more than 1 latency. 525 OS << " (WriteResourceID " << Entry->WriteResourceID << ")"; 526 } 527 OS << "</li>"; 528 } 529 OS << "</ul></td>"; 530 // WriteProcRes. 531 OS << "<td><ul>"; 532 for (const auto &WPR : RSC.NonRedundantWriteProcRes) { 533 OS << "<li><span class=\"mono\">"; 534 writeEscaped<kEscapeHtml>(OS, 535 SM.getProcResource(WPR.ProcResourceIdx)->Name); 536 OS << "</span>: " << WPR.Cycles << "</li>"; 537 } 538 OS << "</ul></td>"; 539 // Idealized port pressure. 540 OS << "<td><ul>"; 541 for (const auto &Pressure : RSC.IdealizedProcResPressure) { 542 OS << "<li><span class=\"mono\">"; 543 writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel() 544 .getProcResource(Pressure.first) 545 ->Name); 546 OS << "</span>: "; 547 writeMeasurementValue<kEscapeHtml>(OS, Pressure.second); 548 OS << "</li>"; 549 } 550 OS << "</ul></td>"; 551 OS << "</tr>"; 552 } else { 553 OS << "<tr><td>✕</td><td></td><td></td></tr>"; 554 } 555 OS << "</table>"; 556 } 557 558 static constexpr const char kHtmlHead[] = R"( 559 <head> 560 <title>llvm-exegesis Analysis Results</title> 561 <style> 562 body { 563 font-family: sans-serif 564 } 565 span.sched-class-name { 566 font-weight: bold; 567 font-family: monospace; 568 } 569 span.opcode { 570 font-family: monospace; 571 } 572 span.config { 573 font-family: monospace; 574 } 575 div.inconsistency { 576 margin-top: 50px; 577 } 578 table { 579 margin-left: 50px; 580 border-collapse: collapse; 581 } 582 table, table tr,td,th { 583 border: 1px solid #444; 584 } 585 table ul { 586 padding-left: 0px; 587 margin: 0px; 588 list-style-type: none; 589 } 590 table.sched-class-clusters td { 591 padding-left: 10px; 592 padding-right: 10px; 593 padding-top: 10px; 594 padding-bottom: 10px; 595 } 596 table.sched-class-desc td { 597 padding-left: 10px; 598 padding-right: 10px; 599 padding-top: 2px; 600 padding-bottom: 2px; 601 } 602 span.mono { 603 font-family: monospace; 604 } 605 td.measurement { 606 text-align: center; 607 } 608 tr.good-cluster td.measurement { 609 color: #292 610 } 611 tr.bad-cluster td.measurement { 612 color: #922 613 } 614 tr.good-cluster td.measurement span.minmax { 615 color: #888; 616 } 617 tr.bad-cluster td.measurement span.minmax { 618 color: #888; 619 } 620 </style> 621 </head> 622 )"; 623 624 template <> 625 llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>( 626 llvm::raw_ostream &OS) const { 627 const auto &FirstPoint = Clustering_.getPoints()[0]; 628 // Print the header. 629 OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>"; 630 OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>"; 631 OS << "<h3>Triple: <span class=\"mono\">"; 632 writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple); 633 OS << "</span></h3><h3>Cpu: <span class=\"mono\">"; 634 writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName); 635 OS << "</span></h3>"; 636 637 for (const auto &RSCAndPoints : makePointsPerSchedClass()) { 638 if (!RSCAndPoints.RSC.SCDesc) 639 continue; 640 // Bucket sched class points into sched class clusters. 641 std::vector<SchedClassCluster> SchedClassClusters; 642 for (const size_t PointId : RSCAndPoints.PointIds) { 643 const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId); 644 if (!ClusterId.isValid()) 645 continue; // Ignore noise and errors. FIXME: take noise into account ? 646 auto SchedClassClusterIt = 647 std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(), 648 [ClusterId](const SchedClassCluster &C) { 649 return C.id() == ClusterId; 650 }); 651 if (SchedClassClusterIt == SchedClassClusters.end()) { 652 SchedClassClusters.emplace_back(); 653 SchedClassClusterIt = std::prev(SchedClassClusters.end()); 654 } 655 SchedClassClusterIt->addPoint(PointId, Clustering_); 656 } 657 658 // Print any scheduling class that has at least one cluster that does not 659 // match the checked-in data. 660 if (std::all_of(SchedClassClusters.begin(), SchedClassClusters.end(), 661 [this, &RSCAndPoints](const SchedClassCluster &C) { 662 return C.measurementsMatch(*SubtargetInfo_, 663 RSCAndPoints.RSC, Clustering_); 664 })) 665 continue; // Nothing weird. 666 667 OS << "<div class=\"inconsistency\"><p>Sched Class <span " 668 "class=\"sched-class-name\">"; 669 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 670 writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name); 671 #else 672 OS << SchedClassId; 673 #endif 674 OS << "</span> contains instructions whose performance characteristics do" 675 " not match that of LLVM:</p>"; 676 printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS); 677 OS << "<p>llvm SchedModel data:</p>"; 678 printSchedClassDescHtml(RSCAndPoints.RSC, OS); 679 OS << "</div>"; 680 } 681 682 OS << "</body></html>"; 683 return llvm::Error::success(); 684 } 685 686 // Distributes a pressure budget as evenly as possible on the provided subunits 687 // given the already existing port pressure distribution. 688 // 689 // The algorithm is as follows: while there is remaining pressure to 690 // distribute, find the subunits with minimal pressure, and distribute 691 // remaining pressure equally up to the pressure of the unit with 692 // second-to-minimal pressure. 693 // For example, let's assume we want to distribute 2*P1256 694 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: 695 // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 696 // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 697 // RemainingPressure = 2.0 698 // We sort the subunits by pressure: 699 // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] 700 // We'll first start by the subunits with minimal pressure, which are at 701 // the beginning of the sorted array. In this example there is one (P2). 702 // The subunit with second-to-minimal pressure is the next one in the 703 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles 704 // from the budget. 705 // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] 706 // RemainingPressure = 1.9 707 // We repeat this process: distribute 0.2 pressure on each of the minimal 708 // P2 and P1, decrease budget by 2*0.2: 709 // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] 710 // RemainingPressure = 1.5 711 // There are no second-to-minimal subunits so we just share the remaining 712 // budget (1.5 cycles) equally: 713 // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] 714 // RemainingPressure = 0.0 715 // We stop as there is no remaining budget to distribute. 716 void distributePressure(float RemainingPressure, 717 llvm::SmallVector<uint16_t, 32> Subunits, 718 llvm::SmallVector<float, 32> &DensePressure) { 719 // Find the number of subunits with minimal pressure (they are at the 720 // front). 721 llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) { 722 return DensePressure[A] < DensePressure[B]; 723 }); 724 const auto getPressureForSubunit = [&DensePressure, 725 &Subunits](size_t I) -> float & { 726 return DensePressure[Subunits[I]]; 727 }; 728 size_t NumMinimalSU = 1; 729 while (NumMinimalSU < Subunits.size() && 730 getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { 731 ++NumMinimalSU; 732 } 733 while (RemainingPressure > 0.0f) { 734 if (NumMinimalSU == Subunits.size()) { 735 // All units are minimal, just distribute evenly and be done. 736 for (size_t I = 0; I < NumMinimalSU; ++I) { 737 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; 738 } 739 return; 740 } 741 // Distribute the remaining pressure equally. 742 const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); 743 const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); 744 assert(MinimalPressure < SecondToMinimalPressure); 745 const float Increment = SecondToMinimalPressure - MinimalPressure; 746 if (RemainingPressure <= NumMinimalSU * Increment) { 747 // There is not enough remaining pressure. 748 for (size_t I = 0; I < NumMinimalSU; ++I) { 749 getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; 750 } 751 return; 752 } 753 // Bump all minimal pressure subunits to `SecondToMinimalPressure`. 754 for (size_t I = 0; I < NumMinimalSU; ++I) { 755 getPressureForSubunit(I) = SecondToMinimalPressure; 756 RemainingPressure -= SecondToMinimalPressure; 757 } 758 while (NumMinimalSU < Subunits.size() && 759 getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { 760 ++NumMinimalSU; 761 } 762 } 763 } 764 765 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure( 766 const llvm::MCSchedModel &SM, 767 llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) { 768 // DensePressure[I] is the port pressure for Proc Resource I. 769 llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); 770 llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A, 771 const llvm::MCWriteProcResEntry &B) { 772 return A.ProcResourceIdx < B.ProcResourceIdx; 773 }); 774 for (const llvm::MCWriteProcResEntry &WPR : WPRS) { 775 // Get units for the entry. 776 const llvm::MCProcResourceDesc *const ProcResDesc = 777 SM.getProcResource(WPR.ProcResourceIdx); 778 if (ProcResDesc->SubUnitsIdxBegin == nullptr) { 779 // This is a ProcResUnit. 780 DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; 781 } else { 782 // This is a ProcResGroup. 783 llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, 784 ProcResDesc->SubUnitsIdxBegin + 785 ProcResDesc->NumUnits); 786 distributePressure(WPR.Cycles, Subunits, DensePressure); 787 } 788 } 789 // Turn dense pressure into sparse pressure by removing zero entries. 790 std::vector<std::pair<uint16_t, float>> Pressure; 791 for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { 792 if (DensePressure[I] > 0.0f) 793 Pressure.emplace_back(I, DensePressure[I]); 794 } 795 return Pressure; 796 } 797 798 } // namespace exegesis 799