xref: /llvm-project/llvm/lib/Transforms/Vectorize/VectorCombine.cpp (revision a5e129ccdedf5c269a8e0fcad5e21381a7f0342c)
1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/LoopUtils.h"
34 #include <numeric>
35 #include <queue>
36 
37 #define DEBUG_TYPE "vector-combine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42 
43 STATISTIC(NumVecLoad, "Number of vector loads formed");
44 STATISTIC(NumVecCmp, "Number of vector compares formed");
45 STATISTIC(NumVecBO, "Number of vector binops formed");
46 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
47 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
48 STATISTIC(NumScalarBO, "Number of scalar binops formed");
49 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
50 
51 static cl::opt<bool> DisableVectorCombine(
52     "disable-vector-combine", cl::init(false), cl::Hidden,
53     cl::desc("Disable all vector combine transforms"));
54 
55 static cl::opt<bool> DisableBinopExtractShuffle(
56     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
57     cl::desc("Disable binop extract to shuffle transforms"));
58 
59 static cl::opt<unsigned> MaxInstrsToScan(
60     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
61     cl::desc("Max number of instructions to scan for vector combining."));
62 
63 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
64 
65 namespace {
66 class VectorCombine {
67 public:
68   VectorCombine(Function &F, const TargetTransformInfo &TTI,
69                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
70                 const DataLayout *DL, TTI::TargetCostKind CostKind,
71                 bool TryEarlyFoldsOnly)
72       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL),
73         CostKind(CostKind), TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
74 
75   bool run();
76 
77 private:
78   Function &F;
79   IRBuilder<> Builder;
80   const TargetTransformInfo &TTI;
81   const DominatorTree &DT;
82   AAResults &AA;
83   AssumptionCache &AC;
84   const DataLayout *DL;
85   TTI::TargetCostKind CostKind;
86 
87   /// If true, only perform beneficial early IR transforms. Do not introduce new
88   /// vector operations.
89   bool TryEarlyFoldsOnly;
90 
91   InstructionWorklist Worklist;
92 
93   // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
94   //       parameter. That should be updated to specific sub-classes because the
95   //       run loop was changed to dispatch on opcode.
96   bool vectorizeLoadInsert(Instruction &I);
97   bool widenSubvectorLoad(Instruction &I);
98   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
99                                         ExtractElementInst *Ext1,
100                                         unsigned PreferredExtractIndex) const;
101   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
102                              const Instruction &I,
103                              ExtractElementInst *&ConvertToShuffle,
104                              unsigned PreferredExtractIndex);
105   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
106                      Instruction &I);
107   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
108                        Instruction &I);
109   bool foldExtractExtract(Instruction &I);
110   bool foldInsExtFNeg(Instruction &I);
111   bool foldInsExtVectorToShuffle(Instruction &I);
112   bool foldBitcastShuffle(Instruction &I);
113   bool scalarizeBinopOrCmp(Instruction &I);
114   bool scalarizeVPIntrinsic(Instruction &I);
115   bool foldExtractedCmps(Instruction &I);
116   bool foldSingleElementStore(Instruction &I);
117   bool scalarizeLoadExtract(Instruction &I);
118   bool foldConcatOfBoolMasks(Instruction &I);
119   bool foldPermuteOfBinops(Instruction &I);
120   bool foldShuffleOfBinops(Instruction &I);
121   bool foldShuffleOfCastops(Instruction &I);
122   bool foldShuffleOfShuffles(Instruction &I);
123   bool foldShuffleOfIntrinsics(Instruction &I);
124   bool foldShuffleToIdentity(Instruction &I);
125   bool foldShuffleFromReductions(Instruction &I);
126   bool foldCastFromReductions(Instruction &I);
127   bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
128   bool shrinkType(Instruction &I);
129 
130   void replaceValue(Value &Old, Value &New) {
131     LLVM_DEBUG(dbgs() << "VC: Replacing: " << Old << '\n');
132     LLVM_DEBUG(dbgs() << "         With: " << New << '\n');
133     Old.replaceAllUsesWith(&New);
134     if (auto *NewI = dyn_cast<Instruction>(&New)) {
135       New.takeName(&Old);
136       Worklist.pushUsersToWorkList(*NewI);
137       Worklist.pushValue(NewI);
138     }
139     Worklist.pushValue(&Old);
140   }
141 
142   void eraseInstruction(Instruction &I) {
143     LLVM_DEBUG(dbgs() << "VC: Erasing: " << I << '\n');
144     SmallVector<Value *> Ops(I.operands());
145     Worklist.remove(&I);
146     I.eraseFromParent();
147 
148     // Push remaining users of the operands and then the operand itself - allows
149     // further folds that were hindered by OneUse limits.
150     for (Value *Op : Ops)
151       if (auto *OpI = dyn_cast<Instruction>(Op)) {
152         Worklist.pushUsersToWorkList(*OpI);
153         Worklist.pushValue(OpI);
154       }
155   }
156 };
157 } // namespace
158 
159 /// Return the source operand of a potentially bitcasted value. If there is no
160 /// bitcast, return the input value itself.
161 static Value *peekThroughBitcasts(Value *V) {
162   while (auto *BitCast = dyn_cast<BitCastInst>(V))
163     V = BitCast->getOperand(0);
164   return V;
165 }
166 
167 static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
168   // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
169   // The widened load may load data from dirty regions or create data races
170   // non-existent in the source.
171   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
172       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
173       mustSuppressSpeculation(*Load))
174     return false;
175 
176   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
177   // sure we have all of our type-based constraints in place for this target.
178   Type *ScalarTy = Load->getType()->getScalarType();
179   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
180   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
181   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
182       ScalarSize % 8 != 0)
183     return false;
184 
185   return true;
186 }
187 
188 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
189   // Match insert into fixed vector of scalar value.
190   // TODO: Handle non-zero insert index.
191   Value *Scalar;
192   if (!match(&I,
193              m_InsertElt(m_Poison(), m_OneUse(m_Value(Scalar)), m_ZeroInt())))
194     return false;
195 
196   // Optionally match an extract from another vector.
197   Value *X;
198   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
199   if (!HasExtract)
200     X = Scalar;
201 
202   auto *Load = dyn_cast<LoadInst>(X);
203   if (!canWidenLoad(Load, TTI))
204     return false;
205 
206   Type *ScalarTy = Scalar->getType();
207   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
208   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
209 
210   // Check safety of replacing the scalar load with a larger vector load.
211   // We use minimal alignment (maximum flexibility) because we only care about
212   // the dereferenceable region. When calculating cost and creating a new op,
213   // we may use a larger value based on alignment attributes.
214   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
215   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
216 
217   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
218   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
219   unsigned OffsetEltIndex = 0;
220   Align Alignment = Load->getAlign();
221   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
222                                    &DT)) {
223     // It is not safe to load directly from the pointer, but we can still peek
224     // through gep offsets and check if it safe to load from a base address with
225     // updated alignment. If it is, we can shuffle the element(s) into place
226     // after loading.
227     unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(SrcPtr->getType());
228     APInt Offset(OffsetBitWidth, 0);
229     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
230 
231     // We want to shuffle the result down from a high element of a vector, so
232     // the offset must be positive.
233     if (Offset.isNegative())
234       return false;
235 
236     // The offset must be a multiple of the scalar element to shuffle cleanly
237     // in the element's size.
238     uint64_t ScalarSizeInBytes = ScalarSize / 8;
239     if (Offset.urem(ScalarSizeInBytes) != 0)
240       return false;
241 
242     // If we load MinVecNumElts, will our target element still be loaded?
243     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
244     if (OffsetEltIndex >= MinVecNumElts)
245       return false;
246 
247     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
248                                      &DT))
249       return false;
250 
251     // Update alignment with offset value. Note that the offset could be negated
252     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
253     // negation does not change the result of the alignment calculation.
254     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
255   }
256 
257   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
258   // Use the greater of the alignment on the load or its source pointer.
259   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
260   Type *LoadTy = Load->getType();
261   unsigned AS = Load->getPointerAddressSpace();
262   InstructionCost OldCost =
263       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
264   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
265   OldCost +=
266       TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
267                                    /* Insert */ true, HasExtract, CostKind);
268 
269   // New pattern: load VecPtr
270   InstructionCost NewCost =
271       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS, CostKind);
272   // Optionally, we are shuffling the loaded vector element(s) into place.
273   // For the mask set everything but element 0 to undef to prevent poison from
274   // propagating from the extra loaded memory. This will also optionally
275   // shrink/grow the vector from the loaded size to the output size.
276   // We assume this operation has no cost in codegen if there was no offset.
277   // Note that we could use freeze to avoid poison problems, but then we might
278   // still need a shuffle to change the vector size.
279   auto *Ty = cast<FixedVectorType>(I.getType());
280   unsigned OutputNumElts = Ty->getNumElements();
281   SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
282   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
283   Mask[0] = OffsetEltIndex;
284   if (OffsetEltIndex)
285     NewCost +=
286         TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask, CostKind);
287 
288   // We can aggressively convert to the vector form because the backend can
289   // invert this transform if it does not result in a performance win.
290   if (OldCost < NewCost || !NewCost.isValid())
291     return false;
292 
293   // It is safe and potentially profitable to load a vector directly:
294   // inselt undef, load Scalar, 0 --> load VecPtr
295   IRBuilder<> Builder(Load);
296   Value *CastedPtr =
297       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
298   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
299   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
300 
301   replaceValue(I, *VecLd);
302   ++NumVecLoad;
303   return true;
304 }
305 
306 /// If we are loading a vector and then inserting it into a larger vector with
307 /// undefined elements, try to load the larger vector and eliminate the insert.
308 /// This removes a shuffle in IR and may allow combining of other loaded values.
309 bool VectorCombine::widenSubvectorLoad(Instruction &I) {
310   // Match subvector insert of fixed vector.
311   auto *Shuf = cast<ShuffleVectorInst>(&I);
312   if (!Shuf->isIdentityWithPadding())
313     return false;
314 
315   // Allow a non-canonical shuffle mask that is choosing elements from op1.
316   unsigned NumOpElts =
317       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
318   unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
319     return M >= (int)(NumOpElts);
320   });
321 
322   auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
323   if (!canWidenLoad(Load, TTI))
324     return false;
325 
326   // We use minimal alignment (maximum flexibility) because we only care about
327   // the dereferenceable region. When calculating cost and creating a new op,
328   // we may use a larger value based on alignment attributes.
329   auto *Ty = cast<FixedVectorType>(I.getType());
330   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
331   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
332   Align Alignment = Load->getAlign();
333   if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), *DL, Load, &AC, &DT))
334     return false;
335 
336   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
337   Type *LoadTy = Load->getType();
338   unsigned AS = Load->getPointerAddressSpace();
339 
340   // Original pattern: insert_subvector (load PtrOp)
341   // This conservatively assumes that the cost of a subvector insert into an
342   // undef value is 0. We could add that cost if the cost model accurately
343   // reflects the real cost of that operation.
344   InstructionCost OldCost =
345       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
346 
347   // New pattern: load PtrOp
348   InstructionCost NewCost =
349       TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS, CostKind);
350 
351   // We can aggressively convert to the vector form because the backend can
352   // invert this transform if it does not result in a performance win.
353   if (OldCost < NewCost || !NewCost.isValid())
354     return false;
355 
356   IRBuilder<> Builder(Load);
357   Value *CastedPtr =
358       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
359   Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
360   replaceValue(I, *VecLd);
361   ++NumVecLoad;
362   return true;
363 }
364 
365 /// Determine which, if any, of the inputs should be replaced by a shuffle
366 /// followed by extract from a different index.
367 ExtractElementInst *VectorCombine::getShuffleExtract(
368     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
369     unsigned PreferredExtractIndex = InvalidIndex) const {
370   auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
371   auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
372   assert(Index0C && Index1C && "Expected constant extract indexes");
373 
374   unsigned Index0 = Index0C->getZExtValue();
375   unsigned Index1 = Index1C->getZExtValue();
376 
377   // If the extract indexes are identical, no shuffle is needed.
378   if (Index0 == Index1)
379     return nullptr;
380 
381   Type *VecTy = Ext0->getVectorOperand()->getType();
382   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
383   InstructionCost Cost0 =
384       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
385   InstructionCost Cost1 =
386       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
387 
388   // If both costs are invalid no shuffle is needed
389   if (!Cost0.isValid() && !Cost1.isValid())
390     return nullptr;
391 
392   // We are extracting from 2 different indexes, so one operand must be shuffled
393   // before performing a vector operation and/or extract. The more expensive
394   // extract will be replaced by a shuffle.
395   if (Cost0 > Cost1)
396     return Ext0;
397   if (Cost1 > Cost0)
398     return Ext1;
399 
400   // If the costs are equal and there is a preferred extract index, shuffle the
401   // opposite operand.
402   if (PreferredExtractIndex == Index0)
403     return Ext1;
404   if (PreferredExtractIndex == Index1)
405     return Ext0;
406 
407   // Otherwise, replace the extract with the higher index.
408   return Index0 > Index1 ? Ext0 : Ext1;
409 }
410 
411 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
412 /// vector operation(s) followed by extract. Return true if the existing
413 /// instructions are cheaper than a vector alternative. Otherwise, return false
414 /// and if one of the extracts should be transformed to a shufflevector, set
415 /// \p ConvertToShuffle to that extract instruction.
416 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
417                                           ExtractElementInst *Ext1,
418                                           const Instruction &I,
419                                           ExtractElementInst *&ConvertToShuffle,
420                                           unsigned PreferredExtractIndex) {
421   auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
422   auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
423   assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
424 
425   unsigned Opcode = I.getOpcode();
426   Value *Ext0Src = Ext0->getVectorOperand();
427   Value *Ext1Src = Ext1->getVectorOperand();
428   Type *ScalarTy = Ext0->getType();
429   auto *VecTy = cast<VectorType>(Ext0Src->getType());
430   InstructionCost ScalarOpCost, VectorOpCost;
431 
432   // Get cost estimates for scalar and vector versions of the operation.
433   bool IsBinOp = Instruction::isBinaryOp(Opcode);
434   if (IsBinOp) {
435     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
436     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
437   } else {
438     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
439            "Expected a compare");
440     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
441     ScalarOpCost = TTI.getCmpSelInstrCost(
442         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
443     VectorOpCost = TTI.getCmpSelInstrCost(
444         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
445   }
446 
447   // Get cost estimates for the extract elements. These costs will factor into
448   // both sequences.
449   unsigned Ext0Index = Ext0IndexC->getZExtValue();
450   unsigned Ext1Index = Ext1IndexC->getZExtValue();
451 
452   InstructionCost Extract0Cost =
453       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
454   InstructionCost Extract1Cost =
455       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
456 
457   // A more expensive extract will always be replaced by a splat shuffle.
458   // For example, if Ext0 is more expensive:
459   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
460   // extelt (opcode (splat V0, Ext0), V1), Ext1
461   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
462   //       check the cost of creating a broadcast shuffle and shuffling both
463   //       operands to element 0.
464   unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
465   unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
466   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
467 
468   // Extra uses of the extracts mean that we include those costs in the
469   // vector total because those instructions will not be eliminated.
470   InstructionCost OldCost, NewCost;
471   if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
472     // Handle a special case. If the 2 extracts are identical, adjust the
473     // formulas to account for that. The extra use charge allows for either the
474     // CSE'd pattern or an unoptimized form with identical values:
475     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
476     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
477                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
478     OldCost = CheapExtractCost + ScalarOpCost;
479     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
480   } else {
481     // Handle the general case. Each extract is actually a different value:
482     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
483     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
484     NewCost = VectorOpCost + CheapExtractCost +
485               !Ext0->hasOneUse() * Extract0Cost +
486               !Ext1->hasOneUse() * Extract1Cost;
487   }
488 
489   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
490   if (ConvertToShuffle) {
491     if (IsBinOp && DisableBinopExtractShuffle)
492       return true;
493 
494     // If we are extracting from 2 different indexes, then one operand must be
495     // shuffled before performing the vector operation. The shuffle mask is
496     // poison except for 1 lane that is being translated to the remaining
497     // extraction lane. Therefore, it is a splat shuffle. Ex:
498     // ShufMask = { poison, poison, 0, poison }
499     // TODO: The cost model has an option for a "broadcast" shuffle
500     //       (splat-from-element-0), but no option for a more general splat.
501     if (auto *FixedVecTy = dyn_cast<FixedVectorType>(VecTy)) {
502       SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
503                                    PoisonMaskElem);
504       ShuffleMask[BestInsIndex] = BestExtIndex;
505       NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
506                                     VecTy, ShuffleMask, CostKind, 0, nullptr,
507                                     {ConvertToShuffle});
508     } else {
509       NewCost +=
510           TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
511                              {}, CostKind, 0, nullptr, {ConvertToShuffle});
512     }
513   }
514 
515   // Aggressively form a vector op if the cost is equal because the transform
516   // may enable further optimization.
517   // Codegen can reverse this transform (scalarize) if it was not profitable.
518   return OldCost < NewCost;
519 }
520 
521 /// Create a shuffle that translates (shifts) 1 element from the input vector
522 /// to a new element location.
523 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
524                                  unsigned NewIndex, IRBuilder<> &Builder) {
525   // The shuffle mask is poison except for 1 lane that is being translated
526   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
527   // ShufMask = { 2, poison, poison, poison }
528   auto *VecTy = cast<FixedVectorType>(Vec->getType());
529   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
530   ShufMask[NewIndex] = OldIndex;
531   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
532 }
533 
534 /// Given an extract element instruction with constant index operand, shuffle
535 /// the source vector (shift the scalar element) to a NewIndex for extraction.
536 /// Return null if the input can be constant folded, so that we are not creating
537 /// unnecessary instructions.
538 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
539                                             unsigned NewIndex,
540                                             IRBuilder<> &Builder) {
541   // Shufflevectors can only be created for fixed-width vectors.
542   Value *X = ExtElt->getVectorOperand();
543   if (!isa<FixedVectorType>(X->getType()))
544     return nullptr;
545 
546   // If the extract can be constant-folded, this code is unsimplified. Defer
547   // to other passes to handle that.
548   Value *C = ExtElt->getIndexOperand();
549   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
550   if (isa<Constant>(X))
551     return nullptr;
552 
553   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
554                                    NewIndex, Builder);
555   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
556 }
557 
558 /// Try to reduce extract element costs by converting scalar compares to vector
559 /// compares followed by extract.
560 /// cmp (ext0 V0, C), (ext1 V1, C)
561 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
562                                   ExtractElementInst *Ext1, Instruction &I) {
563   assert(isa<CmpInst>(&I) && "Expected a compare");
564   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
565              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
566          "Expected matching constant extract indexes");
567 
568   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
569   ++NumVecCmp;
570   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
571   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
572   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
573   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
574   replaceValue(I, *NewExt);
575 }
576 
577 /// Try to reduce extract element costs by converting scalar binops to vector
578 /// binops followed by extract.
579 /// bo (ext0 V0, C), (ext1 V1, C)
580 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
581                                     ExtractElementInst *Ext1, Instruction &I) {
582   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
583   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
584              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
585          "Expected matching constant extract indexes");
586 
587   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
588   ++NumVecBO;
589   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
590   Value *VecBO =
591       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
592 
593   // All IR flags are safe to back-propagate because any potential poison
594   // created in unused vector elements is discarded by the extract.
595   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
596     VecBOInst->copyIRFlags(&I);
597 
598   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
599   replaceValue(I, *NewExt);
600 }
601 
602 /// Match an instruction with extracted vector operands.
603 bool VectorCombine::foldExtractExtract(Instruction &I) {
604   // It is not safe to transform things like div, urem, etc. because we may
605   // create undefined behavior when executing those on unknown vector elements.
606   if (!isSafeToSpeculativelyExecute(&I))
607     return false;
608 
609   Instruction *I0, *I1;
610   CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE;
611   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
612       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
613     return false;
614 
615   Value *V0, *V1;
616   uint64_t C0, C1;
617   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
618       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
619       V0->getType() != V1->getType())
620     return false;
621 
622   // If the scalar value 'I' is going to be re-inserted into a vector, then try
623   // to create an extract to that same element. The extract/insert can be
624   // reduced to a "select shuffle".
625   // TODO: If we add a larger pattern match that starts from an insert, this
626   //       probably becomes unnecessary.
627   auto *Ext0 = cast<ExtractElementInst>(I0);
628   auto *Ext1 = cast<ExtractElementInst>(I1);
629   uint64_t InsertIndex = InvalidIndex;
630   if (I.hasOneUse())
631     match(I.user_back(),
632           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
633 
634   ExtractElementInst *ExtractToChange;
635   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
636     return false;
637 
638   if (ExtractToChange) {
639     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
640     ExtractElementInst *NewExtract =
641         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
642     if (!NewExtract)
643       return false;
644     if (ExtractToChange == Ext0)
645       Ext0 = NewExtract;
646     else
647       Ext1 = NewExtract;
648   }
649 
650   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
651     foldExtExtCmp(Ext0, Ext1, I);
652   else
653     foldExtExtBinop(Ext0, Ext1, I);
654 
655   Worklist.push(Ext0);
656   Worklist.push(Ext1);
657   return true;
658 }
659 
660 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
661 /// shuffle.
662 bool VectorCombine::foldInsExtFNeg(Instruction &I) {
663   // Match an insert (op (extract)) pattern.
664   Value *DestVec;
665   uint64_t Index;
666   Instruction *FNeg;
667   if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
668                              m_ConstantInt(Index))))
669     return false;
670 
671   // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
672   Value *SrcVec;
673   Instruction *Extract;
674   if (!match(FNeg, m_FNeg(m_CombineAnd(
675                        m_Instruction(Extract),
676                        m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
677     return false;
678 
679   auto *VecTy = cast<FixedVectorType>(I.getType());
680   auto *ScalarTy = VecTy->getScalarType();
681   auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcVec->getType());
682   if (!SrcVecTy || ScalarTy != SrcVecTy->getScalarType())
683     return false;
684 
685   // Ignore bogus insert/extract index.
686   unsigned NumElts = VecTy->getNumElements();
687   if (Index >= NumElts)
688     return false;
689 
690   // We are inserting the negated element into the same lane that we extracted
691   // from. This is equivalent to a select-shuffle that chooses all but the
692   // negated element from the destination vector.
693   SmallVector<int> Mask(NumElts);
694   std::iota(Mask.begin(), Mask.end(), 0);
695   Mask[Index] = Index + NumElts;
696   InstructionCost OldCost =
697       TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy, CostKind) +
698       TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
699 
700   // If the extract has one use, it will be eliminated, so count it in the
701   // original cost. If it has more than one use, ignore the cost because it will
702   // be the same before/after.
703   if (Extract->hasOneUse())
704     OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
705 
706   InstructionCost NewCost =
707       TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy, CostKind) +
708       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, VecTy, Mask,
709                          CostKind);
710 
711   bool NeedLenChg = SrcVecTy->getNumElements() != NumElts;
712   // If the lengths of the two vectors are not equal,
713   // we need to add a length-change vector. Add this cost.
714   SmallVector<int> SrcMask;
715   if (NeedLenChg) {
716     SrcMask.assign(NumElts, PoisonMaskElem);
717     SrcMask[Index] = Index;
718     NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
719                                   SrcVecTy, SrcMask, CostKind);
720   }
721 
722   if (NewCost > OldCost)
723     return false;
724 
725   Value *NewShuf;
726   // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index
727   Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
728   if (NeedLenChg) {
729     // shuffle DestVec, (shuffle (fneg SrcVec), poison, SrcMask), Mask
730     Value *LenChgShuf = Builder.CreateShuffleVector(VecFNeg, SrcMask);
731     NewShuf = Builder.CreateShuffleVector(DestVec, LenChgShuf, Mask);
732   } else {
733     // shuffle DestVec, (fneg SrcVec), Mask
734     NewShuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
735   }
736 
737   replaceValue(I, *NewShuf);
738   return true;
739 }
740 
741 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
742 /// destination type followed by shuffle. This can enable further transforms by
743 /// moving bitcasts or shuffles together.
744 bool VectorCombine::foldBitcastShuffle(Instruction &I) {
745   Value *V0, *V1;
746   ArrayRef<int> Mask;
747   if (!match(&I, m_BitCast(m_OneUse(
748                      m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(Mask))))))
749     return false;
750 
751   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
752   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
753   // mask for scalable type is a splat or not.
754   // 2) Disallow non-vector casts.
755   // TODO: We could allow any shuffle.
756   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
757   auto *SrcTy = dyn_cast<FixedVectorType>(V0->getType());
758   if (!DestTy || !SrcTy)
759     return false;
760 
761   unsigned DestEltSize = DestTy->getScalarSizeInBits();
762   unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
763   if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
764     return false;
765 
766   bool IsUnary = isa<UndefValue>(V1);
767 
768   // For binary shuffles, only fold bitcast(shuffle(X,Y))
769   // if it won't increase the number of bitcasts.
770   if (!IsUnary) {
771     auto *BCTy0 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V0)->getType());
772     auto *BCTy1 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V1)->getType());
773     if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
774         !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
775       return false;
776   }
777 
778   SmallVector<int, 16> NewMask;
779   if (DestEltSize <= SrcEltSize) {
780     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
781     // always be expanded to the equivalent form choosing narrower elements.
782     assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
783     unsigned ScaleFactor = SrcEltSize / DestEltSize;
784     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
785   } else {
786     // The bitcast is from narrow elements to wide elements. The shuffle mask
787     // must choose consecutive elements to allow casting first.
788     assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
789     unsigned ScaleFactor = DestEltSize / SrcEltSize;
790     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
791       return false;
792   }
793 
794   // Bitcast the shuffle src - keep its original width but using the destination
795   // scalar type.
796   unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
797   auto *NewShuffleTy =
798       FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
799   auto *OldShuffleTy =
800       FixedVectorType::get(SrcTy->getScalarType(), Mask.size());
801   unsigned NumOps = IsUnary ? 1 : 2;
802 
803   // The new shuffle must not cost more than the old shuffle.
804   TargetTransformInfo::ShuffleKind SK =
805       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
806               : TargetTransformInfo::SK_PermuteTwoSrc;
807 
808   InstructionCost NewCost =
809       TTI.getShuffleCost(SK, NewShuffleTy, NewMask, CostKind) +
810       (NumOps * TTI.getCastInstrCost(Instruction::BitCast, NewShuffleTy, SrcTy,
811                                      TargetTransformInfo::CastContextHint::None,
812                                      CostKind));
813   InstructionCost OldCost =
814       TTI.getShuffleCost(SK, SrcTy, Mask, CostKind) +
815       TTI.getCastInstrCost(Instruction::BitCast, DestTy, OldShuffleTy,
816                            TargetTransformInfo::CastContextHint::None,
817                            CostKind);
818 
819   LLVM_DEBUG(dbgs() << "Found a bitcasted shuffle: " << I << "\n  OldCost: "
820                     << OldCost << " vs NewCost: " << NewCost << "\n");
821 
822   if (NewCost > OldCost || !NewCost.isValid())
823     return false;
824 
825   // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC'
826   ++NumShufOfBitcast;
827   Value *CastV0 = Builder.CreateBitCast(peekThroughBitcasts(V0), NewShuffleTy);
828   Value *CastV1 = Builder.CreateBitCast(peekThroughBitcasts(V1), NewShuffleTy);
829   Value *Shuf = Builder.CreateShuffleVector(CastV0, CastV1, NewMask);
830   replaceValue(I, *Shuf);
831   return true;
832 }
833 
834 /// VP Intrinsics whose vector operands are both splat values may be simplified
835 /// into the scalar version of the operation and the result splatted. This
836 /// can lead to scalarization down the line.
837 bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
838   if (!isa<VPIntrinsic>(I))
839     return false;
840   VPIntrinsic &VPI = cast<VPIntrinsic>(I);
841   Value *Op0 = VPI.getArgOperand(0);
842   Value *Op1 = VPI.getArgOperand(1);
843 
844   if (!isSplatValue(Op0) || !isSplatValue(Op1))
845     return false;
846 
847   // Check getSplatValue early in this function, to avoid doing unnecessary
848   // work.
849   Value *ScalarOp0 = getSplatValue(Op0);
850   Value *ScalarOp1 = getSplatValue(Op1);
851   if (!ScalarOp0 || !ScalarOp1)
852     return false;
853 
854   // For the binary VP intrinsics supported here, the result on disabled lanes
855   // is a poison value. For now, only do this simplification if all lanes
856   // are active.
857   // TODO: Relax the condition that all lanes are active by using insertelement
858   // on inactive lanes.
859   auto IsAllTrueMask = [](Value *MaskVal) {
860     if (Value *SplattedVal = getSplatValue(MaskVal))
861       if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
862         return ConstValue->isAllOnesValue();
863     return false;
864   };
865   if (!IsAllTrueMask(VPI.getArgOperand(2)))
866     return false;
867 
868   // Check to make sure we support scalarization of the intrinsic
869   Intrinsic::ID IntrID = VPI.getIntrinsicID();
870   if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
871     return false;
872 
873   // Calculate cost of splatting both operands into vectors and the vector
874   // intrinsic
875   VectorType *VecTy = cast<VectorType>(VPI.getType());
876   SmallVector<int> Mask;
877   if (auto *FVTy = dyn_cast<FixedVectorType>(VecTy))
878     Mask.resize(FVTy->getNumElements(), 0);
879   InstructionCost SplatCost =
880       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
881       TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, Mask,
882                          CostKind);
883 
884   // Calculate the cost of the VP Intrinsic
885   SmallVector<Type *, 4> Args;
886   for (Value *V : VPI.args())
887     Args.push_back(V->getType());
888   IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
889   InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
890   InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
891 
892   // Determine scalar opcode
893   std::optional<unsigned> FunctionalOpcode =
894       VPI.getFunctionalOpcode();
895   std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
896   if (!FunctionalOpcode) {
897     ScalarIntrID = VPI.getFunctionalIntrinsicID();
898     if (!ScalarIntrID)
899       return false;
900   }
901 
902   // Calculate cost of scalarizing
903   InstructionCost ScalarOpCost = 0;
904   if (ScalarIntrID) {
905     IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
906     ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
907   } else {
908     ScalarOpCost = TTI.getArithmeticInstrCost(*FunctionalOpcode,
909                                               VecTy->getScalarType(), CostKind);
910   }
911 
912   // The existing splats may be kept around if other instructions use them.
913   InstructionCost CostToKeepSplats =
914       (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
915   InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
916 
917   LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
918                     << "\n");
919   LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
920                     << ", Cost of scalarizing:" << NewCost << "\n");
921 
922   // We want to scalarize unless the vector variant actually has lower cost.
923   if (OldCost < NewCost || !NewCost.isValid())
924     return false;
925 
926   // Scalarize the intrinsic
927   ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
928   Value *EVL = VPI.getArgOperand(3);
929 
930   // If the VP op might introduce UB or poison, we can scalarize it provided
931   // that we know the EVL > 0: If the EVL is zero, then the original VP op
932   // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
933   // scalarizing it.
934   bool SafeToSpeculate;
935   if (ScalarIntrID)
936     SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
937                           .hasFnAttr(Attribute::AttrKind::Speculatable);
938   else
939     SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
940         *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
941   if (!SafeToSpeculate &&
942       !isKnownNonZero(EVL, SimplifyQuery(*DL, &DT, &AC, &VPI)))
943     return false;
944 
945   Value *ScalarVal =
946       ScalarIntrID
947           ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
948                                     {ScalarOp0, ScalarOp1})
949           : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
950                                 ScalarOp0, ScalarOp1);
951 
952   replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
953   return true;
954 }
955 
956 /// Match a vector binop or compare instruction with at least one inserted
957 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
958 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
959   CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE;
960   Value *Ins0, *Ins1;
961   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
962       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
963     return false;
964 
965   // Do not convert the vector condition of a vector select into a scalar
966   // condition. That may cause problems for codegen because of differences in
967   // boolean formats and register-file transfers.
968   // TODO: Can we account for that in the cost model?
969   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
970   if (IsCmp)
971     for (User *U : I.users())
972       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
973         return false;
974 
975   // Match against one or both scalar values being inserted into constant
976   // vectors:
977   // vec_op VecC0, (inselt VecC1, V1, Index)
978   // vec_op (inselt VecC0, V0, Index), VecC1
979   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
980   // TODO: Deal with mismatched index constants and variable indexes?
981   Constant *VecC0 = nullptr, *VecC1 = nullptr;
982   Value *V0 = nullptr, *V1 = nullptr;
983   uint64_t Index0 = 0, Index1 = 0;
984   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
985                                m_ConstantInt(Index0))) &&
986       !match(Ins0, m_Constant(VecC0)))
987     return false;
988   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
989                                m_ConstantInt(Index1))) &&
990       !match(Ins1, m_Constant(VecC1)))
991     return false;
992 
993   bool IsConst0 = !V0;
994   bool IsConst1 = !V1;
995   if (IsConst0 && IsConst1)
996     return false;
997   if (!IsConst0 && !IsConst1 && Index0 != Index1)
998     return false;
999 
1000   auto *VecTy0 = cast<VectorType>(Ins0->getType());
1001   auto *VecTy1 = cast<VectorType>(Ins1->getType());
1002   if (VecTy0->getElementCount().getKnownMinValue() <= Index0 ||
1003       VecTy1->getElementCount().getKnownMinValue() <= Index1)
1004     return false;
1005 
1006   // Bail for single insertion if it is a load.
1007   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
1008   auto *I0 = dyn_cast_or_null<Instruction>(V0);
1009   auto *I1 = dyn_cast_or_null<Instruction>(V1);
1010   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
1011       (IsConst1 && I0 && I0->mayReadFromMemory()))
1012     return false;
1013 
1014   uint64_t Index = IsConst0 ? Index1 : Index0;
1015   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
1016   Type *VecTy = I.getType();
1017   assert(VecTy->isVectorTy() &&
1018          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
1019          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
1020           ScalarTy->isPointerTy()) &&
1021          "Unexpected types for insert element into binop or cmp");
1022 
1023   unsigned Opcode = I.getOpcode();
1024   InstructionCost ScalarOpCost, VectorOpCost;
1025   if (IsCmp) {
1026     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
1027     ScalarOpCost = TTI.getCmpSelInstrCost(
1028         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
1029     VectorOpCost = TTI.getCmpSelInstrCost(
1030         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
1031   } else {
1032     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
1033     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
1034   }
1035 
1036   // Get cost estimate for the insert element. This cost will factor into
1037   // both sequences.
1038   InstructionCost InsertCost = TTI.getVectorInstrCost(
1039       Instruction::InsertElement, VecTy, CostKind, Index);
1040   InstructionCost OldCost =
1041       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
1042   InstructionCost NewCost = ScalarOpCost + InsertCost +
1043                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
1044                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
1045 
1046   // We want to scalarize unless the vector variant actually has lower cost.
1047   if (OldCost < NewCost || !NewCost.isValid())
1048     return false;
1049 
1050   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
1051   // inselt NewVecC, (scalar_op V0, V1), Index
1052   if (IsCmp)
1053     ++NumScalarCmp;
1054   else
1055     ++NumScalarBO;
1056 
1057   // For constant cases, extract the scalar element, this should constant fold.
1058   if (IsConst0)
1059     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
1060   if (IsConst1)
1061     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
1062 
1063   Value *Scalar =
1064       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
1065             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
1066 
1067   Scalar->setName(I.getName() + ".scalar");
1068 
1069   // All IR flags are safe to back-propagate. There is no potential for extra
1070   // poison to be created by the scalar instruction.
1071   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
1072     ScalarInst->copyIRFlags(&I);
1073 
1074   // Fold the vector constants in the original vectors into a new base vector.
1075   Value *NewVecC =
1076       IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
1077             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
1078   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
1079   replaceValue(I, *Insert);
1080   return true;
1081 }
1082 
1083 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
1084 /// a vector into vector operations followed by extract. Note: The SLP pass
1085 /// may miss this pattern because of implementation problems.
1086 bool VectorCombine::foldExtractedCmps(Instruction &I) {
1087   auto *BI = dyn_cast<BinaryOperator>(&I);
1088 
1089   // We are looking for a scalar binop of booleans.
1090   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
1091   if (!BI || !I.getType()->isIntegerTy(1))
1092     return false;
1093 
1094   // The compare predicates should match, and each compare should have a
1095   // constant operand.
1096   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
1097   Instruction *I0, *I1;
1098   Constant *C0, *C1;
1099   CmpPredicate P0, P1;
1100   // FIXME: Use CmpPredicate::getMatching here.
1101   if (!match(B0, m_Cmp(P0, m_Instruction(I0), m_Constant(C0))) ||
1102       !match(B1, m_Cmp(P1, m_Instruction(I1), m_Constant(C1))) ||
1103       P0 != static_cast<CmpInst::Predicate>(P1))
1104     return false;
1105 
1106   // The compare operands must be extracts of the same vector with constant
1107   // extract indexes.
1108   Value *X;
1109   uint64_t Index0, Index1;
1110   if (!match(I0, m_ExtractElt(m_Value(X), m_ConstantInt(Index0))) ||
1111       !match(I1, m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))
1112     return false;
1113 
1114   auto *Ext0 = cast<ExtractElementInst>(I0);
1115   auto *Ext1 = cast<ExtractElementInst>(I1);
1116   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1, CostKind);
1117   if (!ConvertToShuf)
1118     return false;
1119   assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1120          "Unknown ExtractElementInst");
1121 
1122   // The original scalar pattern is:
1123   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1124   CmpInst::Predicate Pred = P0;
1125   unsigned CmpOpcode =
1126       CmpInst::isFPPredicate(Pred) ? Instruction::FCmp : Instruction::ICmp;
1127   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1128   if (!VecTy)
1129     return false;
1130 
1131   InstructionCost Ext0Cost =
1132       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1133   InstructionCost Ext1Cost =
1134       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1135   InstructionCost CmpCost = TTI.getCmpSelInstrCost(
1136       CmpOpcode, I0->getType(), CmpInst::makeCmpResultType(I0->getType()), Pred,
1137       CostKind);
1138 
1139   InstructionCost OldCost =
1140       Ext0Cost + Ext1Cost + CmpCost * 2 +
1141       TTI.getArithmeticInstrCost(I.getOpcode(), I.getType(), CostKind);
1142 
1143   // The proposed vector pattern is:
1144   // vcmp = cmp Pred X, VecC
1145   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1146   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1147   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1148   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1149   InstructionCost NewCost = TTI.getCmpSelInstrCost(
1150       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred,
1151       CostKind);
1152   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1153   ShufMask[CheapIndex] = ExpensiveIndex;
1154   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
1155                                 ShufMask, CostKind);
1156   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy, CostKind);
1157   NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1158   NewCost += Ext0->hasOneUse() ? 0 : Ext0Cost;
1159   NewCost += Ext1->hasOneUse() ? 0 : Ext1Cost;
1160 
1161   // Aggressively form vector ops if the cost is equal because the transform
1162   // may enable further optimization.
1163   // Codegen can reverse this transform (scalarize) if it was not profitable.
1164   if (OldCost < NewCost || !NewCost.isValid())
1165     return false;
1166 
1167   // Create a vector constant from the 2 scalar constants.
1168   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1169                                    PoisonValue::get(VecTy->getElementType()));
1170   CmpC[Index0] = C0;
1171   CmpC[Index1] = C1;
1172   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1173   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1174   Value *LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1175   Value *RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1176   Value *VecLogic = Builder.CreateBinOp(BI->getOpcode(), LHS, RHS);
1177   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1178   replaceValue(I, *NewExt);
1179   ++NumVecCmpBO;
1180   return true;
1181 }
1182 
1183 // Check if memory loc modified between two instrs in the same BB
1184 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
1185                                  BasicBlock::iterator End,
1186                                  const MemoryLocation &Loc, AAResults &AA) {
1187   unsigned NumScanned = 0;
1188   return std::any_of(Begin, End, [&](const Instruction &Instr) {
1189     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1190            ++NumScanned > MaxInstrsToScan;
1191   });
1192 }
1193 
1194 namespace {
1195 /// Helper class to indicate whether a vector index can be safely scalarized and
1196 /// if a freeze needs to be inserted.
1197 class ScalarizationResult {
1198   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1199 
1200   StatusTy Status;
1201   Value *ToFreeze;
1202 
1203   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1204       : Status(Status), ToFreeze(ToFreeze) {}
1205 
1206 public:
1207   ScalarizationResult(const ScalarizationResult &Other) = default;
1208   ~ScalarizationResult() {
1209     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1210   }
1211 
1212   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
1213   static ScalarizationResult safe() { return {StatusTy::Safe}; }
1214   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1215     return {StatusTy::SafeWithFreeze, ToFreeze};
1216   }
1217 
1218   /// Returns true if the index can be scalarize without requiring a freeze.
1219   bool isSafe() const { return Status == StatusTy::Safe; }
1220   /// Returns true if the index cannot be scalarized.
1221   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1222   /// Returns true if the index can be scalarize, but requires inserting a
1223   /// freeze.
1224   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1225 
1226   /// Reset the state of Unsafe and clear ToFreze if set.
1227   void discard() {
1228     ToFreeze = nullptr;
1229     Status = StatusTy::Unsafe;
1230   }
1231 
1232   /// Freeze the ToFreeze and update the use in \p User to use it.
1233   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1234     assert(isSafeWithFreeze() &&
1235            "should only be used when freezing is required");
1236     assert(is_contained(ToFreeze->users(), &UserI) &&
1237            "UserI must be a user of ToFreeze");
1238     IRBuilder<>::InsertPointGuard Guard(Builder);
1239     Builder.SetInsertPoint(cast<Instruction>(&UserI));
1240     Value *Frozen =
1241         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1242     for (Use &U : make_early_inc_range((UserI.operands())))
1243       if (U.get() == ToFreeze)
1244         U.set(Frozen);
1245 
1246     ToFreeze = nullptr;
1247   }
1248 };
1249 } // namespace
1250 
1251 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1252 /// Idx. \p Idx must access a valid vector element.
1253 static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1254                                               Instruction *CtxI,
1255                                               AssumptionCache &AC,
1256                                               const DominatorTree &DT) {
1257   // We do checks for both fixed vector types and scalable vector types.
1258   // This is the number of elements of fixed vector types,
1259   // or the minimum number of elements of scalable vector types.
1260   uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1261 
1262   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1263     if (C->getValue().ult(NumElements))
1264       return ScalarizationResult::safe();
1265     return ScalarizationResult::unsafe();
1266   }
1267 
1268   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1269   APInt Zero(IntWidth, 0);
1270   APInt MaxElts(IntWidth, NumElements);
1271   ConstantRange ValidIndices(Zero, MaxElts);
1272   ConstantRange IdxRange(IntWidth, true);
1273 
1274   if (isGuaranteedNotToBePoison(Idx, &AC)) {
1275     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1276                                                    true, &AC, CtxI, &DT)))
1277       return ScalarizationResult::safe();
1278     return ScalarizationResult::unsafe();
1279   }
1280 
1281   // If the index may be poison, check if we can insert a freeze before the
1282   // range of the index is restricted.
1283   Value *IdxBase;
1284   ConstantInt *CI;
1285   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1286     IdxRange = IdxRange.binaryAnd(CI->getValue());
1287   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1288     IdxRange = IdxRange.urem(CI->getValue());
1289   }
1290 
1291   if (ValidIndices.contains(IdxRange))
1292     return ScalarizationResult::safeWithFreeze(IdxBase);
1293   return ScalarizationResult::unsafe();
1294 }
1295 
1296 /// The memory operation on a vector of \p ScalarType had alignment of
1297 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1298 /// alignment that will be valid for the memory operation on a single scalar
1299 /// element of the same type with index \p Idx.
1300 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
1301                                                 Type *ScalarType, Value *Idx,
1302                                                 const DataLayout &DL) {
1303   if (auto *C = dyn_cast<ConstantInt>(Idx))
1304     return commonAlignment(VectorAlignment,
1305                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1306   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1307 }
1308 
1309 // Combine patterns like:
1310 //   %0 = load <4 x i32>, <4 x i32>* %a
1311 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1312 //   store <4 x i32> %1, <4 x i32>* %a
1313 // to:
1314 //   %0 = bitcast <4 x i32>* %a to i32*
1315 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1316 //   store i32 %b, i32* %1
1317 bool VectorCombine::foldSingleElementStore(Instruction &I) {
1318   auto *SI = cast<StoreInst>(&I);
1319   if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1320     return false;
1321 
1322   // TODO: Combine more complicated patterns (multiple insert) by referencing
1323   // TargetTransformInfo.
1324   Instruction *Source;
1325   Value *NewElement;
1326   Value *Idx;
1327   if (!match(SI->getValueOperand(),
1328              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1329                          m_Value(Idx))))
1330     return false;
1331 
1332   if (auto *Load = dyn_cast<LoadInst>(Source)) {
1333     auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1334     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1335     // Don't optimize for atomic/volatile load or store. Ensure memory is not
1336     // modified between, vector type matches store size, and index is inbounds.
1337     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1338         !DL->typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1339         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1340       return false;
1341 
1342     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1343     if (ScalarizableIdx.isUnsafe() ||
1344         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1345                              MemoryLocation::get(SI), AA))
1346       return false;
1347 
1348     // Ensure we add the load back to the worklist BEFORE its users so they can
1349     // erased in the correct order.
1350     Worklist.push(Load);
1351 
1352     if (ScalarizableIdx.isSafeWithFreeze())
1353       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1354     Value *GEP = Builder.CreateInBoundsGEP(
1355         SI->getValueOperand()->getType(), SI->getPointerOperand(),
1356         {ConstantInt::get(Idx->getType(), 0), Idx});
1357     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1358     NSI->copyMetadata(*SI);
1359     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1360         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1361         *DL);
1362     NSI->setAlignment(ScalarOpAlignment);
1363     replaceValue(I, *NSI);
1364     eraseInstruction(I);
1365     return true;
1366   }
1367 
1368   return false;
1369 }
1370 
1371 /// Try to scalarize vector loads feeding extractelement instructions.
1372 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1373   Value *Ptr;
1374   if (!match(&I, m_Load(m_Value(Ptr))))
1375     return false;
1376 
1377   auto *LI = cast<LoadInst>(&I);
1378   auto *VecTy = cast<VectorType>(LI->getType());
1379   if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1380     return false;
1381 
1382   InstructionCost OriginalCost =
1383       TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1384                           LI->getPointerAddressSpace(), CostKind);
1385   InstructionCost ScalarizedCost = 0;
1386 
1387   Instruction *LastCheckedInst = LI;
1388   unsigned NumInstChecked = 0;
1389   DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1390   auto FailureGuard = make_scope_exit([&]() {
1391     // If the transform is aborted, discard the ScalarizationResults.
1392     for (auto &Pair : NeedFreeze)
1393       Pair.second.discard();
1394   });
1395 
1396   // Check if all users of the load are extracts with no memory modifications
1397   // between the load and the extract. Compute the cost of both the original
1398   // code and the scalarized version.
1399   for (User *U : LI->users()) {
1400     auto *UI = dyn_cast<ExtractElementInst>(U);
1401     if (!UI || UI->getParent() != LI->getParent())
1402       return false;
1403 
1404     // Check if any instruction between the load and the extract may modify
1405     // memory.
1406     if (LastCheckedInst->comesBefore(UI)) {
1407       for (Instruction &I :
1408            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1409         // Bail out if we reached the check limit or the instruction may write
1410         // to memory.
1411         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1412           return false;
1413         NumInstChecked++;
1414       }
1415       LastCheckedInst = UI;
1416     }
1417 
1418     auto ScalarIdx =
1419         canScalarizeAccess(VecTy, UI->getIndexOperand(), LI, AC, DT);
1420     if (ScalarIdx.isUnsafe())
1421       return false;
1422     if (ScalarIdx.isSafeWithFreeze()) {
1423       NeedFreeze.try_emplace(UI, ScalarIdx);
1424       ScalarIdx.discard();
1425     }
1426 
1427     auto *Index = dyn_cast<ConstantInt>(UI->getIndexOperand());
1428     OriginalCost +=
1429         TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1430                                Index ? Index->getZExtValue() : -1);
1431     ScalarizedCost +=
1432         TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1433                             Align(1), LI->getPointerAddressSpace(), CostKind);
1434     ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1435   }
1436 
1437   if (ScalarizedCost >= OriginalCost)
1438     return false;
1439 
1440   // Ensure we add the load back to the worklist BEFORE its users so they can
1441   // erased in the correct order.
1442   Worklist.push(LI);
1443 
1444   // Replace extracts with narrow scalar loads.
1445   for (User *U : LI->users()) {
1446     auto *EI = cast<ExtractElementInst>(U);
1447     Value *Idx = EI->getIndexOperand();
1448 
1449     // Insert 'freeze' for poison indexes.
1450     auto It = NeedFreeze.find(EI);
1451     if (It != NeedFreeze.end())
1452       It->second.freeze(Builder, *cast<Instruction>(Idx));
1453 
1454     Builder.SetInsertPoint(EI);
1455     Value *GEP =
1456         Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1457     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1458         VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1459 
1460     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1461         LI->getAlign(), VecTy->getElementType(), Idx, *DL);
1462     NewLoad->setAlignment(ScalarOpAlignment);
1463 
1464     replaceValue(*EI, *NewLoad);
1465   }
1466 
1467   FailureGuard.release();
1468   return true;
1469 }
1470 
1471 /// Try to fold "(or (zext (bitcast X)), (shl (zext (bitcast Y)), C))"
1472 /// to "(bitcast (concat X, Y))"
1473 /// where X/Y are bitcasted from i1 mask vectors.
1474 bool VectorCombine::foldConcatOfBoolMasks(Instruction &I) {
1475   Type *Ty = I.getType();
1476   if (!Ty->isIntegerTy())
1477     return false;
1478 
1479   // TODO: Add big endian test coverage
1480   if (DL->isBigEndian())
1481     return false;
1482 
1483   // Restrict to disjoint cases so the mask vectors aren't overlapping.
1484   Instruction *X, *Y;
1485   if (!match(&I, m_DisjointOr(m_Instruction(X), m_Instruction(Y))))
1486     return false;
1487 
1488   // Allow both sources to contain shl, to handle more generic pattern:
1489   // "(or (shl (zext (bitcast X)), C1), (shl (zext (bitcast Y)), C2))"
1490   Value *SrcX;
1491   uint64_t ShAmtX = 0;
1492   if (!match(X, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX)))))) &&
1493       !match(X, m_OneUse(
1494                     m_Shl(m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX))))),
1495                           m_ConstantInt(ShAmtX)))))
1496     return false;
1497 
1498   Value *SrcY;
1499   uint64_t ShAmtY = 0;
1500   if (!match(Y, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY)))))) &&
1501       !match(Y, m_OneUse(
1502                     m_Shl(m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY))))),
1503                           m_ConstantInt(ShAmtY)))))
1504     return false;
1505 
1506   // Canonicalize larger shift to the RHS.
1507   if (ShAmtX > ShAmtY) {
1508     std::swap(X, Y);
1509     std::swap(SrcX, SrcY);
1510     std::swap(ShAmtX, ShAmtY);
1511   }
1512 
1513   // Ensure both sources are matching vXi1 bool mask types, and that the shift
1514   // difference is the mask width so they can be easily concatenated together.
1515   uint64_t ShAmtDiff = ShAmtY - ShAmtX;
1516   unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
1517   unsigned BitWidth = Ty->getPrimitiveSizeInBits();
1518   auto *MaskTy = dyn_cast<FixedVectorType>(SrcX->getType());
1519   if (!MaskTy || SrcX->getType() != SrcY->getType() ||
1520       !MaskTy->getElementType()->isIntegerTy(1) ||
1521       MaskTy->getNumElements() != ShAmtDiff ||
1522       MaskTy->getNumElements() > (BitWidth / 2))
1523     return false;
1524 
1525   auto *ConcatTy = FixedVectorType::getDoubleElementsVectorType(MaskTy);
1526   auto *ConcatIntTy =
1527       Type::getIntNTy(Ty->getContext(), ConcatTy->getNumElements());
1528   auto *MaskIntTy = Type::getIntNTy(Ty->getContext(), ShAmtDiff);
1529 
1530   SmallVector<int, 32> ConcatMask(ConcatTy->getNumElements());
1531   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
1532 
1533   // TODO: Is it worth supporting multi use cases?
1534   InstructionCost OldCost = 0;
1535   OldCost += TTI.getArithmeticInstrCost(Instruction::Or, Ty, CostKind);
1536   OldCost +=
1537       NumSHL * TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1538   OldCost += 2 * TTI.getCastInstrCost(Instruction::ZExt, Ty, MaskIntTy,
1539                                       TTI::CastContextHint::None, CostKind);
1540   OldCost += 2 * TTI.getCastInstrCost(Instruction::BitCast, MaskIntTy, MaskTy,
1541                                       TTI::CastContextHint::None, CostKind);
1542 
1543   InstructionCost NewCost = 0;
1544   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, MaskTy,
1545                                 ConcatMask, CostKind);
1546   NewCost += TTI.getCastInstrCost(Instruction::BitCast, ConcatIntTy, ConcatTy,
1547                                   TTI::CastContextHint::None, CostKind);
1548   if (Ty != ConcatIntTy)
1549     NewCost += TTI.getCastInstrCost(Instruction::ZExt, Ty, ConcatIntTy,
1550                                     TTI::CastContextHint::None, CostKind);
1551   if (ShAmtX > 0)
1552     NewCost += TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1553 
1554   LLVM_DEBUG(dbgs() << "Found a concatenation of bitcasted bool masks: " << I
1555                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1556                     << "\n");
1557 
1558   if (NewCost > OldCost)
1559     return false;
1560 
1561   // Build bool mask concatenation, bitcast back to scalar integer, and perform
1562   // any residual zero-extension or shifting.
1563   Value *Concat = Builder.CreateShuffleVector(SrcX, SrcY, ConcatMask);
1564   Worklist.pushValue(Concat);
1565 
1566   Value *Result = Builder.CreateBitCast(Concat, ConcatIntTy);
1567 
1568   if (Ty != ConcatIntTy) {
1569     Worklist.pushValue(Result);
1570     Result = Builder.CreateZExt(Result, Ty);
1571   }
1572 
1573   if (ShAmtX > 0) {
1574     Worklist.pushValue(Result);
1575     Result = Builder.CreateShl(Result, ShAmtX);
1576   }
1577 
1578   replaceValue(I, *Result);
1579   return true;
1580 }
1581 
1582 /// Try to convert "shuffle (binop (shuffle, shuffle)), undef"
1583 ///           -->  "binop (shuffle), (shuffle)".
1584 bool VectorCombine::foldPermuteOfBinops(Instruction &I) {
1585   BinaryOperator *BinOp;
1586   ArrayRef<int> OuterMask;
1587   if (!match(&I,
1588              m_Shuffle(m_OneUse(m_BinOp(BinOp)), m_Undef(), m_Mask(OuterMask))))
1589     return false;
1590 
1591   // Don't introduce poison into div/rem.
1592   if (BinOp->isIntDivRem() && llvm::is_contained(OuterMask, PoisonMaskElem))
1593     return false;
1594 
1595   Value *Op00, *Op01;
1596   ArrayRef<int> Mask0;
1597   if (!match(BinOp->getOperand(0),
1598              m_OneUse(m_Shuffle(m_Value(Op00), m_Value(Op01), m_Mask(Mask0)))))
1599     return false;
1600 
1601   Value *Op10, *Op11;
1602   ArrayRef<int> Mask1;
1603   if (!match(BinOp->getOperand(1),
1604              m_OneUse(m_Shuffle(m_Value(Op10), m_Value(Op11), m_Mask(Mask1)))))
1605     return false;
1606 
1607   Instruction::BinaryOps Opcode = BinOp->getOpcode();
1608   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1609   auto *BinOpTy = dyn_cast<FixedVectorType>(BinOp->getType());
1610   auto *Op0Ty = dyn_cast<FixedVectorType>(Op00->getType());
1611   auto *Op1Ty = dyn_cast<FixedVectorType>(Op10->getType());
1612   if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
1613     return false;
1614 
1615   unsigned NumSrcElts = BinOpTy->getNumElements();
1616 
1617   // Don't accept shuffles that reference the second operand in
1618   // div/rem or if its an undef arg.
1619   if ((BinOp->isIntDivRem() || !isa<PoisonValue>(I.getOperand(1))) &&
1620       any_of(OuterMask, [NumSrcElts](int M) { return M >= (int)NumSrcElts; }))
1621     return false;
1622 
1623   // Merge outer / inner shuffles.
1624   SmallVector<int> NewMask0, NewMask1;
1625   for (int M : OuterMask) {
1626     if (M < 0 || M >= (int)NumSrcElts) {
1627       NewMask0.push_back(PoisonMaskElem);
1628       NewMask1.push_back(PoisonMaskElem);
1629     } else {
1630       NewMask0.push_back(Mask0[M]);
1631       NewMask1.push_back(Mask1[M]);
1632     }
1633   }
1634 
1635   // Try to merge shuffles across the binop if the new shuffles are not costly.
1636   InstructionCost OldCost =
1637       TTI.getArithmeticInstrCost(Opcode, BinOpTy, CostKind) +
1638       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, BinOpTy,
1639                          OuterMask, CostKind, 0, nullptr, {BinOp}, &I) +
1640       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op0Ty, Mask0,
1641                          CostKind, 0, nullptr, {Op00, Op01},
1642                          cast<Instruction>(BinOp->getOperand(0))) +
1643       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op1Ty, Mask1,
1644                          CostKind, 0, nullptr, {Op10, Op11},
1645                          cast<Instruction>(BinOp->getOperand(1)));
1646 
1647   InstructionCost NewCost =
1648       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op0Ty, NewMask0,
1649                          CostKind, 0, nullptr, {Op00, Op01}) +
1650       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op1Ty, NewMask1,
1651                          CostKind, 0, nullptr, {Op10, Op11}) +
1652       TTI.getArithmeticInstrCost(Opcode, ShuffleDstTy, CostKind);
1653 
1654   LLVM_DEBUG(dbgs() << "Found a shuffle feeding a shuffled binop: " << I
1655                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1656                     << "\n");
1657 
1658   // If costs are equal, still fold as we reduce instruction count.
1659   if (NewCost > OldCost)
1660     return false;
1661 
1662   Value *Shuf0 = Builder.CreateShuffleVector(Op00, Op01, NewMask0);
1663   Value *Shuf1 = Builder.CreateShuffleVector(Op10, Op11, NewMask1);
1664   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1665 
1666   // Intersect flags from the old binops.
1667   if (auto *NewInst = dyn_cast<Instruction>(NewBO))
1668     NewInst->copyIRFlags(BinOp);
1669 
1670   Worklist.pushValue(Shuf0);
1671   Worklist.pushValue(Shuf1);
1672   replaceValue(I, *NewBO);
1673   return true;
1674 }
1675 
1676 /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)".
1677 /// Try to convert "shuffle (cmpop), (cmpop)" into "cmpop (shuffle), (shuffle)".
1678 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1679   ArrayRef<int> OldMask;
1680   Instruction *LHS, *RHS;
1681   if (!match(&I, m_Shuffle(m_OneUse(m_Instruction(LHS)),
1682                            m_OneUse(m_Instruction(RHS)), m_Mask(OldMask))))
1683     return false;
1684 
1685   // TODO: Add support for addlike etc.
1686   if (LHS->getOpcode() != RHS->getOpcode())
1687     return false;
1688 
1689   Value *X, *Y, *Z, *W;
1690   bool IsCommutative = false;
1691   CmpPredicate PredLHS = CmpInst::BAD_ICMP_PREDICATE;
1692   CmpPredicate PredRHS = CmpInst::BAD_ICMP_PREDICATE;
1693   if (match(LHS, m_BinOp(m_Value(X), m_Value(Y))) &&
1694       match(RHS, m_BinOp(m_Value(Z), m_Value(W)))) {
1695     auto *BO = cast<BinaryOperator>(LHS);
1696     // Don't introduce poison into div/rem.
1697     if (llvm::is_contained(OldMask, PoisonMaskElem) && BO->isIntDivRem())
1698       return false;
1699     IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
1700   } else if (match(LHS, m_Cmp(PredLHS, m_Value(X), m_Value(Y))) &&
1701              match(RHS, m_Cmp(PredRHS, m_Value(Z), m_Value(W))) &&
1702              (CmpInst::Predicate)PredLHS == (CmpInst::Predicate)PredRHS) {
1703     IsCommutative = cast<CmpInst>(LHS)->isCommutative();
1704   } else
1705     return false;
1706 
1707   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1708   auto *BinResTy = dyn_cast<FixedVectorType>(LHS->getType());
1709   auto *BinOpTy = dyn_cast<FixedVectorType>(X->getType());
1710   if (!ShuffleDstTy || !BinResTy || !BinOpTy || X->getType() != Z->getType())
1711     return false;
1712 
1713   unsigned NumSrcElts = BinOpTy->getNumElements();
1714 
1715   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1716   if (IsCommutative && X != Z && Y != W && (X == W || Y == Z))
1717     std::swap(X, Y);
1718 
1719   auto ConvertToUnary = [NumSrcElts](int &M) {
1720     if (M >= (int)NumSrcElts)
1721       M -= NumSrcElts;
1722   };
1723 
1724   SmallVector<int> NewMask0(OldMask);
1725   TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc;
1726   if (X == Z) {
1727     llvm::for_each(NewMask0, ConvertToUnary);
1728     SK0 = TargetTransformInfo::SK_PermuteSingleSrc;
1729     Z = PoisonValue::get(BinOpTy);
1730   }
1731 
1732   SmallVector<int> NewMask1(OldMask);
1733   TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc;
1734   if (Y == W) {
1735     llvm::for_each(NewMask1, ConvertToUnary);
1736     SK1 = TargetTransformInfo::SK_PermuteSingleSrc;
1737     W = PoisonValue::get(BinOpTy);
1738   }
1739 
1740   // Try to replace a binop with a shuffle if the shuffle is not costly.
1741   InstructionCost OldCost =
1742       TTI.getInstructionCost(LHS, CostKind) +
1743       TTI.getInstructionCost(RHS, CostKind) +
1744       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, BinResTy,
1745                          OldMask, CostKind, 0, nullptr, {LHS, RHS}, &I);
1746 
1747   // Handle shuffle(binop(shuffle(x),y),binop(z,shuffle(w))) style patterns
1748   // where one use shuffles have gotten split across the binop/cmp. These
1749   // often allow a major reduction in total cost that wouldn't happen as
1750   // individual folds.
1751   auto MergeInner = [&](Value *&Op, int Offset, MutableArrayRef<int> Mask,
1752                         TTI::TargetCostKind CostKind) -> bool {
1753     Value *InnerOp;
1754     ArrayRef<int> InnerMask;
1755     if (match(Op, m_OneUse(m_Shuffle(m_Value(InnerOp), m_Undef(),
1756                                      m_Mask(InnerMask)))) &&
1757         InnerOp->getType() == Op->getType() &&
1758         all_of(InnerMask,
1759                [NumSrcElts](int M) { return M < (int)NumSrcElts; })) {
1760       for (int &M : Mask)
1761         if (Offset <= M && M < (int)(Offset + NumSrcElts)) {
1762           M = InnerMask[M - Offset];
1763           M = 0 <= M ? M + Offset : M;
1764         }
1765       OldCost += TTI.getInstructionCost(cast<Instruction>(Op), CostKind);
1766       Op = InnerOp;
1767       return true;
1768     }
1769     return false;
1770   };
1771   bool ReducedInstCount = false;
1772   ReducedInstCount |= MergeInner(X, 0, NewMask0, CostKind);
1773   ReducedInstCount |= MergeInner(Y, 0, NewMask1, CostKind);
1774   ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0, CostKind);
1775   ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1, CostKind);
1776 
1777   InstructionCost NewCost =
1778       TTI.getShuffleCost(SK0, BinOpTy, NewMask0, CostKind, 0, nullptr, {X, Z}) +
1779       TTI.getShuffleCost(SK1, BinOpTy, NewMask1, CostKind, 0, nullptr, {Y, W});
1780 
1781   if (PredLHS == CmpInst::BAD_ICMP_PREDICATE) {
1782     NewCost +=
1783         TTI.getArithmeticInstrCost(LHS->getOpcode(), ShuffleDstTy, CostKind);
1784   } else {
1785     auto *ShuffleCmpTy =
1786         FixedVectorType::get(BinOpTy->getElementType(), ShuffleDstTy);
1787     NewCost += TTI.getCmpSelInstrCost(LHS->getOpcode(), ShuffleCmpTy,
1788                                       ShuffleDstTy, PredLHS, CostKind);
1789   }
1790 
1791   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I
1792                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1793                     << "\n");
1794 
1795   // If either shuffle will constant fold away, then fold for the same cost as
1796   // we will reduce the instruction count.
1797   ReducedInstCount |= (isa<Constant>(X) && isa<Constant>(Z)) ||
1798                       (isa<Constant>(Y) && isa<Constant>(W));
1799   if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
1800     return false;
1801 
1802   Value *Shuf0 = Builder.CreateShuffleVector(X, Z, NewMask0);
1803   Value *Shuf1 = Builder.CreateShuffleVector(Y, W, NewMask1);
1804   Value *NewBO = PredLHS == CmpInst::BAD_ICMP_PREDICATE
1805                      ? Builder.CreateBinOp(
1806                            cast<BinaryOperator>(LHS)->getOpcode(), Shuf0, Shuf1)
1807                      : Builder.CreateCmp(PredLHS, Shuf0, Shuf1);
1808 
1809   // Intersect flags from the old binops.
1810   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1811     NewInst->copyIRFlags(LHS);
1812     NewInst->andIRFlags(RHS);
1813   }
1814 
1815   Worklist.pushValue(Shuf0);
1816   Worklist.pushValue(Shuf1);
1817   replaceValue(I, *NewBO);
1818   return true;
1819 }
1820 
1821 /// Try to convert "shuffle (castop), (castop)" with a shared castop operand
1822 /// into "castop (shuffle)".
1823 bool VectorCombine::foldShuffleOfCastops(Instruction &I) {
1824   Value *V0, *V1;
1825   ArrayRef<int> OldMask;
1826   if (!match(&I, m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(OldMask))))
1827     return false;
1828 
1829   auto *C0 = dyn_cast<CastInst>(V0);
1830   auto *C1 = dyn_cast<CastInst>(V1);
1831   if (!C0 || !C1)
1832     return false;
1833 
1834   Instruction::CastOps Opcode = C0->getOpcode();
1835   if (C0->getSrcTy() != C1->getSrcTy())
1836     return false;
1837 
1838   // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds.
1839   if (Opcode != C1->getOpcode()) {
1840     if (match(C0, m_SExtLike(m_Value())) && match(C1, m_SExtLike(m_Value())))
1841       Opcode = Instruction::SExt;
1842     else
1843       return false;
1844   }
1845 
1846   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1847   auto *CastDstTy = dyn_cast<FixedVectorType>(C0->getDestTy());
1848   auto *CastSrcTy = dyn_cast<FixedVectorType>(C0->getSrcTy());
1849   if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
1850     return false;
1851 
1852   unsigned NumSrcElts = CastSrcTy->getNumElements();
1853   unsigned NumDstElts = CastDstTy->getNumElements();
1854   assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
1855          "Only bitcasts expected to alter src/dst element counts");
1856 
1857   // Check for bitcasting of unscalable vector types.
1858   // e.g. <32 x i40> -> <40 x i32>
1859   if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
1860       (NumDstElts % NumSrcElts) != 0)
1861     return false;
1862 
1863   SmallVector<int, 16> NewMask;
1864   if (NumSrcElts >= NumDstElts) {
1865     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
1866     // always be expanded to the equivalent form choosing narrower elements.
1867     assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask");
1868     unsigned ScaleFactor = NumSrcElts / NumDstElts;
1869     narrowShuffleMaskElts(ScaleFactor, OldMask, NewMask);
1870   } else {
1871     // The bitcast is from narrow elements to wide elements. The shuffle mask
1872     // must choose consecutive elements to allow casting first.
1873     assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask");
1874     unsigned ScaleFactor = NumDstElts / NumSrcElts;
1875     if (!widenShuffleMaskElts(ScaleFactor, OldMask, NewMask))
1876       return false;
1877   }
1878 
1879   auto *NewShuffleDstTy =
1880       FixedVectorType::get(CastSrcTy->getScalarType(), NewMask.size());
1881 
1882   // Try to replace a castop with a shuffle if the shuffle is not costly.
1883   InstructionCost CostC0 =
1884       TTI.getCastInstrCost(C0->getOpcode(), CastDstTy, CastSrcTy,
1885                            TTI::CastContextHint::None, CostKind);
1886   InstructionCost CostC1 =
1887       TTI.getCastInstrCost(C1->getOpcode(), CastDstTy, CastSrcTy,
1888                            TTI::CastContextHint::None, CostKind);
1889   InstructionCost OldCost = CostC0 + CostC1;
1890   OldCost +=
1891       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, CastDstTy,
1892                          OldMask, CostKind, 0, nullptr, {}, &I);
1893 
1894   InstructionCost NewCost = TTI.getShuffleCost(
1895       TargetTransformInfo::SK_PermuteTwoSrc, CastSrcTy, NewMask, CostKind);
1896   NewCost += TTI.getCastInstrCost(Opcode, ShuffleDstTy, NewShuffleDstTy,
1897                                   TTI::CastContextHint::None, CostKind);
1898   if (!C0->hasOneUse())
1899     NewCost += CostC0;
1900   if (!C1->hasOneUse())
1901     NewCost += CostC1;
1902 
1903   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I
1904                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1905                     << "\n");
1906   if (NewCost > OldCost)
1907     return false;
1908 
1909   Value *Shuf = Builder.CreateShuffleVector(C0->getOperand(0),
1910                                             C1->getOperand(0), NewMask);
1911   Value *Cast = Builder.CreateCast(Opcode, Shuf, ShuffleDstTy);
1912 
1913   // Intersect flags from the old casts.
1914   if (auto *NewInst = dyn_cast<Instruction>(Cast)) {
1915     NewInst->copyIRFlags(C0);
1916     NewInst->andIRFlags(C1);
1917   }
1918 
1919   Worklist.pushValue(Shuf);
1920   replaceValue(I, *Cast);
1921   return true;
1922 }
1923 
1924 /// Try to convert any of:
1925 /// "shuffle (shuffle x, y), (shuffle y, x)"
1926 /// "shuffle (shuffle x, undef), (shuffle y, undef)"
1927 /// "shuffle (shuffle x, undef), y"
1928 /// "shuffle x, (shuffle y, undef)"
1929 /// into "shuffle x, y".
1930 bool VectorCombine::foldShuffleOfShuffles(Instruction &I) {
1931   ArrayRef<int> OuterMask;
1932   Value *OuterV0, *OuterV1;
1933   if (!match(&I,
1934              m_Shuffle(m_Value(OuterV0), m_Value(OuterV1), m_Mask(OuterMask))))
1935     return false;
1936 
1937   ArrayRef<int> InnerMask0, InnerMask1;
1938   Value *X0, *X1, *Y0, *Y1;
1939   bool Match0 =
1940       match(OuterV0, m_Shuffle(m_Value(X0), m_Value(Y0), m_Mask(InnerMask0)));
1941   bool Match1 =
1942       match(OuterV1, m_Shuffle(m_Value(X1), m_Value(Y1), m_Mask(InnerMask1)));
1943   if (!Match0 && !Match1)
1944     return false;
1945 
1946   X0 = Match0 ? X0 : OuterV0;
1947   Y0 = Match0 ? Y0 : OuterV0;
1948   X1 = Match1 ? X1 : OuterV1;
1949   Y1 = Match1 ? Y1 : OuterV1;
1950   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1951   auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(X0->getType());
1952   auto *ShuffleImmTy = dyn_cast<FixedVectorType>(OuterV0->getType());
1953   if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
1954       X0->getType() != X1->getType())
1955     return false;
1956 
1957   unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
1958   unsigned NumImmElts = ShuffleImmTy->getNumElements();
1959 
1960   // Attempt to merge shuffles, matching upto 2 source operands.
1961   // Replace index to a poison arg with PoisonMaskElem.
1962   // Bail if either inner masks reference an undef arg.
1963   SmallVector<int, 16> NewMask(OuterMask);
1964   Value *NewX = nullptr, *NewY = nullptr;
1965   for (int &M : NewMask) {
1966     Value *Src = nullptr;
1967     if (0 <= M && M < (int)NumImmElts) {
1968       Src = OuterV0;
1969       if (Match0) {
1970         M = InnerMask0[M];
1971         Src = M >= (int)NumSrcElts ? Y0 : X0;
1972         M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M;
1973       }
1974     } else if (M >= (int)NumImmElts) {
1975       Src = OuterV1;
1976       M -= NumImmElts;
1977       if (Match1) {
1978         M = InnerMask1[M];
1979         Src = M >= (int)NumSrcElts ? Y1 : X1;
1980         M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M;
1981       }
1982     }
1983     if (Src && M != PoisonMaskElem) {
1984       assert(0 <= M && M < (int)NumSrcElts && "Unexpected shuffle mask index");
1985       if (isa<UndefValue>(Src)) {
1986         // We've referenced an undef element - if its poison, update the shuffle
1987         // mask, else bail.
1988         if (!isa<PoisonValue>(Src))
1989           return false;
1990         M = PoisonMaskElem;
1991         continue;
1992       }
1993       if (!NewX || NewX == Src) {
1994         NewX = Src;
1995         continue;
1996       }
1997       if (!NewY || NewY == Src) {
1998         M += NumSrcElts;
1999         NewY = Src;
2000         continue;
2001       }
2002       return false;
2003     }
2004   }
2005 
2006   if (!NewX)
2007     return PoisonValue::get(ShuffleDstTy);
2008   if (!NewY)
2009     NewY = PoisonValue::get(ShuffleSrcTy);
2010 
2011   // Have we folded to an Identity shuffle?
2012   if (ShuffleVectorInst::isIdentityMask(NewMask, NumSrcElts)) {
2013     replaceValue(I, *NewX);
2014     return true;
2015   }
2016 
2017   // Try to merge the shuffles if the new shuffle is not costly.
2018   InstructionCost InnerCost0 = 0;
2019   if (Match0)
2020     InnerCost0 = TTI.getInstructionCost(cast<Instruction>(OuterV0), CostKind);
2021 
2022   InstructionCost InnerCost1 = 0;
2023   if (Match1)
2024     InnerCost1 = TTI.getInstructionCost(cast<Instruction>(OuterV1), CostKind);
2025 
2026   InstructionCost OuterCost = TTI.getShuffleCost(
2027       TargetTransformInfo::SK_PermuteTwoSrc, ShuffleImmTy, OuterMask, CostKind,
2028       0, nullptr, {OuterV0, OuterV1}, &I);
2029 
2030   InstructionCost OldCost = InnerCost0 + InnerCost1 + OuterCost;
2031 
2032   bool IsUnary = all_of(NewMask, [&](int M) { return M < (int)NumSrcElts; });
2033   TargetTransformInfo::ShuffleKind SK =
2034       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
2035               : TargetTransformInfo::SK_PermuteTwoSrc;
2036   InstructionCost NewCost = TTI.getShuffleCost(
2037       SK, ShuffleSrcTy, NewMask, CostKind, 0, nullptr, {NewX, NewY});
2038   if (!OuterV0->hasOneUse())
2039     NewCost += InnerCost0;
2040   if (!OuterV1->hasOneUse())
2041     NewCost += InnerCost1;
2042 
2043   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I
2044                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
2045                     << "\n");
2046   if (NewCost > OldCost)
2047     return false;
2048 
2049   Value *Shuf = Builder.CreateShuffleVector(NewX, NewY, NewMask);
2050   replaceValue(I, *Shuf);
2051   return true;
2052 }
2053 
2054 /// Try to convert
2055 /// "shuffle (intrinsic), (intrinsic)" into "intrinsic (shuffle), (shuffle)".
2056 bool VectorCombine::foldShuffleOfIntrinsics(Instruction &I) {
2057   Value *V0, *V1;
2058   ArrayRef<int> OldMask;
2059   if (!match(&I, m_Shuffle(m_OneUse(m_Value(V0)), m_OneUse(m_Value(V1)),
2060                            m_Mask(OldMask))))
2061     return false;
2062 
2063   auto *II0 = dyn_cast<IntrinsicInst>(V0);
2064   auto *II1 = dyn_cast<IntrinsicInst>(V1);
2065   if (!II0 || !II1)
2066     return false;
2067 
2068   Intrinsic::ID IID = II0->getIntrinsicID();
2069   if (IID != II1->getIntrinsicID())
2070     return false;
2071 
2072   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
2073   auto *II0Ty = dyn_cast<FixedVectorType>(II0->getType());
2074   if (!ShuffleDstTy || !II0Ty)
2075     return false;
2076 
2077   if (!isTriviallyVectorizable(IID))
2078     return false;
2079 
2080   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2081     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI) &&
2082         II0->getArgOperand(I) != II1->getArgOperand(I))
2083       return false;
2084 
2085   InstructionCost OldCost =
2086       TTI.getIntrinsicInstrCost(IntrinsicCostAttributes(IID, *II0), CostKind) +
2087       TTI.getIntrinsicInstrCost(IntrinsicCostAttributes(IID, *II1), CostKind) +
2088       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, II0Ty, OldMask,
2089                          CostKind, 0, nullptr, {II0, II1}, &I);
2090 
2091   SmallVector<Type *> NewArgsTy;
2092   InstructionCost NewCost = 0;
2093   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2094     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI)) {
2095       NewArgsTy.push_back(II0->getArgOperand(I)->getType());
2096     } else {
2097       auto *VecTy = cast<FixedVectorType>(II0->getArgOperand(I)->getType());
2098       NewArgsTy.push_back(FixedVectorType::get(VecTy->getElementType(),
2099                                                VecTy->getNumElements() * 2));
2100       NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
2101                                     VecTy, OldMask, CostKind);
2102     }
2103   IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
2104   NewCost += TTI.getIntrinsicInstrCost(NewAttr, CostKind);
2105 
2106   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two intrinsics: " << I
2107                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
2108                     << "\n");
2109 
2110   if (NewCost > OldCost)
2111     return false;
2112 
2113   SmallVector<Value *> NewArgs;
2114   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2115     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI)) {
2116       NewArgs.push_back(II0->getArgOperand(I));
2117     } else {
2118       Value *Shuf = Builder.CreateShuffleVector(II0->getArgOperand(I),
2119                                                 II1->getArgOperand(I), OldMask);
2120       NewArgs.push_back(Shuf);
2121       Worklist.pushValue(Shuf);
2122     }
2123   Value *NewIntrinsic = Builder.CreateIntrinsic(ShuffleDstTy, IID, NewArgs);
2124 
2125   // Intersect flags from the old intrinsics.
2126   if (auto *NewInst = dyn_cast<Instruction>(NewIntrinsic)) {
2127     NewInst->copyIRFlags(II0);
2128     NewInst->andIRFlags(II1);
2129   }
2130 
2131   replaceValue(I, *NewIntrinsic);
2132   return true;
2133 }
2134 
2135 using InstLane = std::pair<Use *, int>;
2136 
2137 static InstLane lookThroughShuffles(Use *U, int Lane) {
2138   while (auto *SV = dyn_cast<ShuffleVectorInst>(U->get())) {
2139     unsigned NumElts =
2140         cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements();
2141     int M = SV->getMaskValue(Lane);
2142     if (M < 0)
2143       return {nullptr, PoisonMaskElem};
2144     if (static_cast<unsigned>(M) < NumElts) {
2145       U = &SV->getOperandUse(0);
2146       Lane = M;
2147     } else {
2148       U = &SV->getOperandUse(1);
2149       Lane = M - NumElts;
2150     }
2151   }
2152   return InstLane{U, Lane};
2153 }
2154 
2155 static SmallVector<InstLane>
2156 generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) {
2157   SmallVector<InstLane> NItem;
2158   for (InstLane IL : Item) {
2159     auto [U, Lane] = IL;
2160     InstLane OpLane =
2161         U ? lookThroughShuffles(&cast<Instruction>(U->get())->getOperandUse(Op),
2162                                 Lane)
2163           : InstLane{nullptr, PoisonMaskElem};
2164     NItem.emplace_back(OpLane);
2165   }
2166   return NItem;
2167 }
2168 
2169 /// Detect concat of multiple values into a vector
2170 static bool isFreeConcat(ArrayRef<InstLane> Item, TTI::TargetCostKind CostKind,
2171                          const TargetTransformInfo &TTI) {
2172   auto *Ty = cast<FixedVectorType>(Item.front().first->get()->getType());
2173   unsigned NumElts = Ty->getNumElements();
2174   if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0)
2175     return false;
2176 
2177   // Check that the concat is free, usually meaning that the type will be split
2178   // during legalization.
2179   SmallVector<int, 16> ConcatMask(NumElts * 2);
2180   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2181   if (TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, ConcatMask, CostKind) != 0)
2182     return false;
2183 
2184   unsigned NumSlices = Item.size() / NumElts;
2185   // Currently we generate a tree of shuffles for the concats, which limits us
2186   // to a power2.
2187   if (!isPowerOf2_32(NumSlices))
2188     return false;
2189   for (unsigned Slice = 0; Slice < NumSlices; ++Slice) {
2190     Use *SliceV = Item[Slice * NumElts].first;
2191     if (!SliceV || SliceV->get()->getType() != Ty)
2192       return false;
2193     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2194       auto [V, Lane] = Item[Slice * NumElts + Elt];
2195       if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get())
2196         return false;
2197     }
2198   }
2199   return true;
2200 }
2201 
2202 static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty,
2203                                   const SmallPtrSet<Use *, 4> &IdentityLeafs,
2204                                   const SmallPtrSet<Use *, 4> &SplatLeafs,
2205                                   const SmallPtrSet<Use *, 4> &ConcatLeafs,
2206                                   IRBuilder<> &Builder,
2207                                   const TargetTransformInfo *TTI) {
2208   auto [FrontU, FrontLane] = Item.front();
2209 
2210   if (IdentityLeafs.contains(FrontU)) {
2211     return FrontU->get();
2212   }
2213   if (SplatLeafs.contains(FrontU)) {
2214     SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane);
2215     return Builder.CreateShuffleVector(FrontU->get(), Mask);
2216   }
2217   if (ConcatLeafs.contains(FrontU)) {
2218     unsigned NumElts =
2219         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements();
2220     SmallVector<Value *> Values(Item.size() / NumElts, nullptr);
2221     for (unsigned S = 0; S < Values.size(); ++S)
2222       Values[S] = Item[S * NumElts].first->get();
2223 
2224     while (Values.size() > 1) {
2225       NumElts *= 2;
2226       SmallVector<int, 16> Mask(NumElts, 0);
2227       std::iota(Mask.begin(), Mask.end(), 0);
2228       SmallVector<Value *> NewValues(Values.size() / 2, nullptr);
2229       for (unsigned S = 0; S < NewValues.size(); ++S)
2230         NewValues[S] =
2231             Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
2232       Values = NewValues;
2233     }
2234     return Values[0];
2235   }
2236 
2237   auto *I = cast<Instruction>(FrontU->get());
2238   auto *II = dyn_cast<IntrinsicInst>(I);
2239   unsigned NumOps = I->getNumOperands() - (II ? 1 : 0);
2240   SmallVector<Value *> Ops(NumOps);
2241   for (unsigned Idx = 0; Idx < NumOps; Idx++) {
2242     if (II &&
2243         isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Idx, TTI)) {
2244       Ops[Idx] = II->getOperand(Idx);
2245       continue;
2246     }
2247     Ops[Idx] = generateNewInstTree(generateInstLaneVectorFromOperand(Item, Idx),
2248                                    Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
2249                                    Builder, TTI);
2250   }
2251 
2252   SmallVector<Value *, 8> ValueList;
2253   for (const auto &Lane : Item)
2254     if (Lane.first)
2255       ValueList.push_back(Lane.first->get());
2256 
2257   Type *DstTy =
2258       FixedVectorType::get(I->getType()->getScalarType(), Ty->getNumElements());
2259   if (auto *BI = dyn_cast<BinaryOperator>(I)) {
2260     auto *Value = Builder.CreateBinOp((Instruction::BinaryOps)BI->getOpcode(),
2261                                       Ops[0], Ops[1]);
2262     propagateIRFlags(Value, ValueList);
2263     return Value;
2264   }
2265   if (auto *CI = dyn_cast<CmpInst>(I)) {
2266     auto *Value = Builder.CreateCmp(CI->getPredicate(), Ops[0], Ops[1]);
2267     propagateIRFlags(Value, ValueList);
2268     return Value;
2269   }
2270   if (auto *SI = dyn_cast<SelectInst>(I)) {
2271     auto *Value = Builder.CreateSelect(Ops[0], Ops[1], Ops[2], "", SI);
2272     propagateIRFlags(Value, ValueList);
2273     return Value;
2274   }
2275   if (auto *CI = dyn_cast<CastInst>(I)) {
2276     auto *Value = Builder.CreateCast((Instruction::CastOps)CI->getOpcode(),
2277                                      Ops[0], DstTy);
2278     propagateIRFlags(Value, ValueList);
2279     return Value;
2280   }
2281   if (II) {
2282     auto *Value = Builder.CreateIntrinsic(DstTy, II->getIntrinsicID(), Ops);
2283     propagateIRFlags(Value, ValueList);
2284     return Value;
2285   }
2286   assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate");
2287   auto *Value =
2288       Builder.CreateUnOp((Instruction::UnaryOps)I->getOpcode(), Ops[0]);
2289   propagateIRFlags(Value, ValueList);
2290   return Value;
2291 }
2292 
2293 // Starting from a shuffle, look up through operands tracking the shuffled index
2294 // of each lane. If we can simplify away the shuffles to identities then
2295 // do so.
2296 bool VectorCombine::foldShuffleToIdentity(Instruction &I) {
2297   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
2298   if (!Ty || I.use_empty())
2299     return false;
2300 
2301   SmallVector<InstLane> Start(Ty->getNumElements());
2302   for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M)
2303     Start[M] = lookThroughShuffles(&*I.use_begin(), M);
2304 
2305   SmallVector<SmallVector<InstLane>> Worklist;
2306   Worklist.push_back(Start);
2307   SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
2308   unsigned NumVisited = 0;
2309 
2310   while (!Worklist.empty()) {
2311     if (++NumVisited > MaxInstrsToScan)
2312       return false;
2313 
2314     SmallVector<InstLane> Item = Worklist.pop_back_val();
2315     auto [FrontU, FrontLane] = Item.front();
2316 
2317     // If we found an undef first lane then bail out to keep things simple.
2318     if (!FrontU)
2319       return false;
2320 
2321     // Helper to peek through bitcasts to the same value.
2322     auto IsEquiv = [&](Value *X, Value *Y) {
2323       return X->getType() == Y->getType() &&
2324              peekThroughBitcasts(X) == peekThroughBitcasts(Y);
2325     };
2326 
2327     // Look for an identity value.
2328     if (FrontLane == 0 &&
2329         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements() ==
2330             Ty->getNumElements() &&
2331         all_of(drop_begin(enumerate(Item)), [IsEquiv, Item](const auto &E) {
2332           Value *FrontV = Item.front().first->get();
2333           return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) &&
2334                                       E.value().second == (int)E.index());
2335         })) {
2336       IdentityLeafs.insert(FrontU);
2337       continue;
2338     }
2339     // Look for constants, for the moment only supporting constant splats.
2340     if (auto *C = dyn_cast<Constant>(FrontU);
2341         C && C->getSplatValue() &&
2342         all_of(drop_begin(Item), [Item](InstLane &IL) {
2343           Value *FrontV = Item.front().first->get();
2344           Use *U = IL.first;
2345           return !U || (isa<Constant>(U->get()) &&
2346                         cast<Constant>(U->get())->getSplatValue() ==
2347                             cast<Constant>(FrontV)->getSplatValue());
2348         })) {
2349       SplatLeafs.insert(FrontU);
2350       continue;
2351     }
2352     // Look for a splat value.
2353     if (all_of(drop_begin(Item), [Item](InstLane &IL) {
2354           auto [FrontU, FrontLane] = Item.front();
2355           auto [U, Lane] = IL;
2356           return !U || (U->get() == FrontU->get() && Lane == FrontLane);
2357         })) {
2358       SplatLeafs.insert(FrontU);
2359       continue;
2360     }
2361 
2362     // We need each element to be the same type of value, and check that each
2363     // element has a single use.
2364     auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) {
2365       Value *FrontV = Item.front().first->get();
2366       if (!IL.first)
2367         return true;
2368       Value *V = IL.first->get();
2369       if (auto *I = dyn_cast<Instruction>(V); I && !I->hasOneUse())
2370         return false;
2371       if (V->getValueID() != FrontV->getValueID())
2372         return false;
2373       if (auto *CI = dyn_cast<CmpInst>(V))
2374         if (CI->getPredicate() != cast<CmpInst>(FrontV)->getPredicate())
2375           return false;
2376       if (auto *CI = dyn_cast<CastInst>(V))
2377         if (CI->getSrcTy()->getScalarType() !=
2378             cast<CastInst>(FrontV)->getSrcTy()->getScalarType())
2379           return false;
2380       if (auto *SI = dyn_cast<SelectInst>(V))
2381         if (!isa<VectorType>(SI->getOperand(0)->getType()) ||
2382             SI->getOperand(0)->getType() !=
2383                 cast<SelectInst>(FrontV)->getOperand(0)->getType())
2384           return false;
2385       if (isa<CallInst>(V) && !isa<IntrinsicInst>(V))
2386         return false;
2387       auto *II = dyn_cast<IntrinsicInst>(V);
2388       return !II || (isa<IntrinsicInst>(FrontV) &&
2389                      II->getIntrinsicID() ==
2390                          cast<IntrinsicInst>(FrontV)->getIntrinsicID() &&
2391                      !II->hasOperandBundles());
2392     };
2393     if (all_of(drop_begin(Item), CheckLaneIsEquivalentToFirst)) {
2394       // Check the operator is one that we support.
2395       if (isa<BinaryOperator, CmpInst>(FrontU)) {
2396         //  We exclude div/rem in case they hit UB from poison lanes.
2397         if (auto *BO = dyn_cast<BinaryOperator>(FrontU);
2398             BO && BO->isIntDivRem())
2399           return false;
2400         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2401         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
2402         continue;
2403       } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
2404                      FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
2405         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2406         continue;
2407       } else if (auto *BitCast = dyn_cast<BitCastInst>(FrontU)) {
2408         // TODO: Handle vector widening/narrowing bitcasts.
2409         auto *DstTy = dyn_cast<FixedVectorType>(BitCast->getDestTy());
2410         auto *SrcTy = dyn_cast<FixedVectorType>(BitCast->getSrcTy());
2411         if (DstTy && SrcTy &&
2412             SrcTy->getNumElements() == DstTy->getNumElements()) {
2413           Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2414           continue;
2415         }
2416       } else if (isa<SelectInst>(FrontU)) {
2417         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2418         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
2419         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 2));
2420         continue;
2421       } else if (auto *II = dyn_cast<IntrinsicInst>(FrontU);
2422                  II && isTriviallyVectorizable(II->getIntrinsicID()) &&
2423                  !II->hasOperandBundles()) {
2424         for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) {
2425           if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Op,
2426                                                  &TTI)) {
2427             if (!all_of(drop_begin(Item), [Item, Op](InstLane &IL) {
2428                   Value *FrontV = Item.front().first->get();
2429                   Use *U = IL.first;
2430                   return !U || (cast<Instruction>(U->get())->getOperand(Op) ==
2431                                 cast<Instruction>(FrontV)->getOperand(Op));
2432                 }))
2433               return false;
2434             continue;
2435           }
2436           Worklist.push_back(generateInstLaneVectorFromOperand(Item, Op));
2437         }
2438         continue;
2439       }
2440     }
2441 
2442     if (isFreeConcat(Item, CostKind, TTI)) {
2443       ConcatLeafs.insert(FrontU);
2444       continue;
2445     }
2446 
2447     return false;
2448   }
2449 
2450   if (NumVisited <= 1)
2451     return false;
2452 
2453   LLVM_DEBUG(dbgs() << "Found a superfluous identity shuffle: " << I << "\n");
2454 
2455   // If we got this far, we know the shuffles are superfluous and can be
2456   // removed. Scan through again and generate the new tree of instructions.
2457   Builder.SetInsertPoint(&I);
2458   Value *V = generateNewInstTree(Start, Ty, IdentityLeafs, SplatLeafs,
2459                                  ConcatLeafs, Builder, &TTI);
2460   replaceValue(I, *V);
2461   return true;
2462 }
2463 
2464 /// Given a commutative reduction, the order of the input lanes does not alter
2465 /// the results. We can use this to remove certain shuffles feeding the
2466 /// reduction, removing the need to shuffle at all.
2467 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
2468   auto *II = dyn_cast<IntrinsicInst>(&I);
2469   if (!II)
2470     return false;
2471   switch (II->getIntrinsicID()) {
2472   case Intrinsic::vector_reduce_add:
2473   case Intrinsic::vector_reduce_mul:
2474   case Intrinsic::vector_reduce_and:
2475   case Intrinsic::vector_reduce_or:
2476   case Intrinsic::vector_reduce_xor:
2477   case Intrinsic::vector_reduce_smin:
2478   case Intrinsic::vector_reduce_smax:
2479   case Intrinsic::vector_reduce_umin:
2480   case Intrinsic::vector_reduce_umax:
2481     break;
2482   default:
2483     return false;
2484   }
2485 
2486   // Find all the inputs when looking through operations that do not alter the
2487   // lane order (binops, for example). Currently we look for a single shuffle,
2488   // and can ignore splat values.
2489   std::queue<Value *> Worklist;
2490   SmallPtrSet<Value *, 4> Visited;
2491   ShuffleVectorInst *Shuffle = nullptr;
2492   if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
2493     Worklist.push(Op);
2494 
2495   while (!Worklist.empty()) {
2496     Value *CV = Worklist.front();
2497     Worklist.pop();
2498     if (Visited.contains(CV))
2499       continue;
2500 
2501     // Splats don't change the order, so can be safely ignored.
2502     if (isSplatValue(CV))
2503       continue;
2504 
2505     Visited.insert(CV);
2506 
2507     if (auto *CI = dyn_cast<Instruction>(CV)) {
2508       if (CI->isBinaryOp()) {
2509         for (auto *Op : CI->operand_values())
2510           Worklist.push(Op);
2511         continue;
2512       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
2513         if (Shuffle && Shuffle != SV)
2514           return false;
2515         Shuffle = SV;
2516         continue;
2517       }
2518     }
2519 
2520     // Anything else is currently an unknown node.
2521     return false;
2522   }
2523 
2524   if (!Shuffle)
2525     return false;
2526 
2527   // Check all uses of the binary ops and shuffles are also included in the
2528   // lane-invariant operations (Visited should be the list of lanewise
2529   // instructions, including the shuffle that we found).
2530   for (auto *V : Visited)
2531     for (auto *U : V->users())
2532       if (!Visited.contains(U) && U != &I)
2533         return false;
2534 
2535   FixedVectorType *VecType =
2536       dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
2537   if (!VecType)
2538     return false;
2539   FixedVectorType *ShuffleInputType =
2540       dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
2541   if (!ShuffleInputType)
2542     return false;
2543   unsigned NumInputElts = ShuffleInputType->getNumElements();
2544 
2545   // Find the mask from sorting the lanes into order. This is most likely to
2546   // become a identity or concat mask. Undef elements are pushed to the end.
2547   SmallVector<int> ConcatMask;
2548   Shuffle->getShuffleMask(ConcatMask);
2549   sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
2550   // In the case of a truncating shuffle it's possible for the mask
2551   // to have an index greater than the size of the resulting vector.
2552   // This requires special handling.
2553   bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
2554   bool UsesSecondVec =
2555       any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
2556 
2557   FixedVectorType *VecTyForCost =
2558       (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
2559   InstructionCost OldCost = TTI.getShuffleCost(
2560       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2561       VecTyForCost, Shuffle->getShuffleMask(), CostKind);
2562   InstructionCost NewCost = TTI.getShuffleCost(
2563       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2564       VecTyForCost, ConcatMask, CostKind);
2565 
2566   LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
2567                     << "\n");
2568   LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
2569                     << "\n");
2570   if (NewCost < OldCost) {
2571     Builder.SetInsertPoint(Shuffle);
2572     Value *NewShuffle = Builder.CreateShuffleVector(
2573         Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
2574     LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
2575     replaceValue(*Shuffle, *NewShuffle);
2576   }
2577 
2578   // See if we can re-use foldSelectShuffle, getting it to reduce the size of
2579   // the shuffle into a nicer order, as it can ignore the order of the shuffles.
2580   return foldSelectShuffle(*Shuffle, true);
2581 }
2582 
2583 /// Determine if its more efficient to fold:
2584 ///   reduce(trunc(x)) -> trunc(reduce(x)).
2585 ///   reduce(sext(x))  -> sext(reduce(x)).
2586 ///   reduce(zext(x))  -> zext(reduce(x)).
2587 bool VectorCombine::foldCastFromReductions(Instruction &I) {
2588   auto *II = dyn_cast<IntrinsicInst>(&I);
2589   if (!II)
2590     return false;
2591 
2592   bool TruncOnly = false;
2593   Intrinsic::ID IID = II->getIntrinsicID();
2594   switch (IID) {
2595   case Intrinsic::vector_reduce_add:
2596   case Intrinsic::vector_reduce_mul:
2597     TruncOnly = true;
2598     break;
2599   case Intrinsic::vector_reduce_and:
2600   case Intrinsic::vector_reduce_or:
2601   case Intrinsic::vector_reduce_xor:
2602     break;
2603   default:
2604     return false;
2605   }
2606 
2607   unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
2608   Value *ReductionSrc = I.getOperand(0);
2609 
2610   Value *Src;
2611   if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(Src)))) &&
2612       (TruncOnly || !match(ReductionSrc, m_OneUse(m_ZExtOrSExt(m_Value(Src))))))
2613     return false;
2614 
2615   auto CastOpc =
2616       (Instruction::CastOps)cast<Instruction>(ReductionSrc)->getOpcode();
2617 
2618   auto *SrcTy = cast<VectorType>(Src->getType());
2619   auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
2620   Type *ResultTy = I.getType();
2621 
2622   InstructionCost OldCost = TTI.getArithmeticReductionCost(
2623       ReductionOpc, ReductionSrcTy, std::nullopt, CostKind);
2624   OldCost += TTI.getCastInstrCost(CastOpc, ReductionSrcTy, SrcTy,
2625                                   TTI::CastContextHint::None, CostKind,
2626                                   cast<CastInst>(ReductionSrc));
2627   InstructionCost NewCost =
2628       TTI.getArithmeticReductionCost(ReductionOpc, SrcTy, std::nullopt,
2629                                      CostKind) +
2630       TTI.getCastInstrCost(CastOpc, ResultTy, ReductionSrcTy->getScalarType(),
2631                            TTI::CastContextHint::None, CostKind);
2632 
2633   if (OldCost <= NewCost || !NewCost.isValid())
2634     return false;
2635 
2636   Value *NewReduction = Builder.CreateIntrinsic(SrcTy->getScalarType(),
2637                                                 II->getIntrinsicID(), {Src});
2638   Value *NewCast = Builder.CreateCast(CastOpc, NewReduction, ResultTy);
2639   replaceValue(I, *NewCast);
2640   return true;
2641 }
2642 
2643 /// This method looks for groups of shuffles acting on binops, of the form:
2644 ///  %x = shuffle ...
2645 ///  %y = shuffle ...
2646 ///  %a = binop %x, %y
2647 ///  %b = binop %x, %y
2648 ///  shuffle %a, %b, selectmask
2649 /// We may, especially if the shuffle is wider than legal, be able to convert
2650 /// the shuffle to a form where only parts of a and b need to be computed. On
2651 /// architectures with no obvious "select" shuffle, this can reduce the total
2652 /// number of operations if the target reports them as cheaper.
2653 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
2654   auto *SVI = cast<ShuffleVectorInst>(&I);
2655   auto *VT = cast<FixedVectorType>(I.getType());
2656   auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
2657   auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
2658   if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
2659       VT != Op0->getType())
2660     return false;
2661 
2662   auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
2663   auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
2664   auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
2665   auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
2666   SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
2667   auto checkSVNonOpUses = [&](Instruction *I) {
2668     if (!I || I->getOperand(0)->getType() != VT)
2669       return true;
2670     return any_of(I->users(), [&](User *U) {
2671       return U != Op0 && U != Op1 &&
2672              !(isa<ShuffleVectorInst>(U) &&
2673                (InputShuffles.contains(cast<Instruction>(U)) ||
2674                 isInstructionTriviallyDead(cast<Instruction>(U))));
2675     });
2676   };
2677   if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
2678       checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
2679     return false;
2680 
2681   // Collect all the uses that are shuffles that we can transform together. We
2682   // may not have a single shuffle, but a group that can all be transformed
2683   // together profitably.
2684   SmallVector<ShuffleVectorInst *> Shuffles;
2685   auto collectShuffles = [&](Instruction *I) {
2686     for (auto *U : I->users()) {
2687       auto *SV = dyn_cast<ShuffleVectorInst>(U);
2688       if (!SV || SV->getType() != VT)
2689         return false;
2690       if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
2691           (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
2692         return false;
2693       if (!llvm::is_contained(Shuffles, SV))
2694         Shuffles.push_back(SV);
2695     }
2696     return true;
2697   };
2698   if (!collectShuffles(Op0) || !collectShuffles(Op1))
2699     return false;
2700   // From a reduction, we need to be processing a single shuffle, otherwise the
2701   // other uses will not be lane-invariant.
2702   if (FromReduction && Shuffles.size() > 1)
2703     return false;
2704 
2705   // Add any shuffle uses for the shuffles we have found, to include them in our
2706   // cost calculations.
2707   if (!FromReduction) {
2708     for (ShuffleVectorInst *SV : Shuffles) {
2709       for (auto *U : SV->users()) {
2710         ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
2711         if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
2712           Shuffles.push_back(SSV);
2713       }
2714     }
2715   }
2716 
2717   // For each of the output shuffles, we try to sort all the first vector
2718   // elements to the beginning, followed by the second array elements at the
2719   // end. If the binops are legalized to smaller vectors, this may reduce total
2720   // number of binops. We compute the ReconstructMask mask needed to convert
2721   // back to the original lane order.
2722   SmallVector<std::pair<int, int>> V1, V2;
2723   SmallVector<SmallVector<int>> OrigReconstructMasks;
2724   int MaxV1Elt = 0, MaxV2Elt = 0;
2725   unsigned NumElts = VT->getNumElements();
2726   for (ShuffleVectorInst *SVN : Shuffles) {
2727     SmallVector<int> Mask;
2728     SVN->getShuffleMask(Mask);
2729 
2730     // Check the operands are the same as the original, or reversed (in which
2731     // case we need to commute the mask).
2732     Value *SVOp0 = SVN->getOperand(0);
2733     Value *SVOp1 = SVN->getOperand(1);
2734     if (isa<UndefValue>(SVOp1)) {
2735       auto *SSV = cast<ShuffleVectorInst>(SVOp0);
2736       SVOp0 = SSV->getOperand(0);
2737       SVOp1 = SSV->getOperand(1);
2738       for (unsigned I = 0, E = Mask.size(); I != E; I++) {
2739         if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
2740           return false;
2741         Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
2742       }
2743     }
2744     if (SVOp0 == Op1 && SVOp1 == Op0) {
2745       std::swap(SVOp0, SVOp1);
2746       ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2747     }
2748     if (SVOp0 != Op0 || SVOp1 != Op1)
2749       return false;
2750 
2751     // Calculate the reconstruction mask for this shuffle, as the mask needed to
2752     // take the packed values from Op0/Op1 and reconstructing to the original
2753     // order.
2754     SmallVector<int> ReconstructMask;
2755     for (unsigned I = 0; I < Mask.size(); I++) {
2756       if (Mask[I] < 0) {
2757         ReconstructMask.push_back(-1);
2758       } else if (Mask[I] < static_cast<int>(NumElts)) {
2759         MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
2760         auto It = find_if(V1, [&](const std::pair<int, int> &A) {
2761           return Mask[I] == A.first;
2762         });
2763         if (It != V1.end())
2764           ReconstructMask.push_back(It - V1.begin());
2765         else {
2766           ReconstructMask.push_back(V1.size());
2767           V1.emplace_back(Mask[I], V1.size());
2768         }
2769       } else {
2770         MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
2771         auto It = find_if(V2, [&](const std::pair<int, int> &A) {
2772           return Mask[I] - static_cast<int>(NumElts) == A.first;
2773         });
2774         if (It != V2.end())
2775           ReconstructMask.push_back(NumElts + It - V2.begin());
2776         else {
2777           ReconstructMask.push_back(NumElts + V2.size());
2778           V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
2779         }
2780       }
2781     }
2782 
2783     // For reductions, we know that the lane ordering out doesn't alter the
2784     // result. In-order can help simplify the shuffle away.
2785     if (FromReduction)
2786       sort(ReconstructMask);
2787     OrigReconstructMasks.push_back(std::move(ReconstructMask));
2788   }
2789 
2790   // If the Maximum element used from V1 and V2 are not larger than the new
2791   // vectors, the vectors are already packes and performing the optimization
2792   // again will likely not help any further. This also prevents us from getting
2793   // stuck in a cycle in case the costs do not also rule it out.
2794   if (V1.empty() || V2.empty() ||
2795       (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
2796        MaxV2Elt == static_cast<int>(V2.size()) - 1))
2797     return false;
2798 
2799   // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
2800   // shuffle of another shuffle, or not a shuffle (that is treated like a
2801   // identity shuffle).
2802   auto GetBaseMaskValue = [&](Instruction *I, int M) {
2803     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2804     if (!SV)
2805       return M;
2806     if (isa<UndefValue>(SV->getOperand(1)))
2807       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2808         if (InputShuffles.contains(SSV))
2809           return SSV->getMaskValue(SV->getMaskValue(M));
2810     return SV->getMaskValue(M);
2811   };
2812 
2813   // Attempt to sort the inputs my ascending mask values to make simpler input
2814   // shuffles and push complex shuffles down to the uses. We sort on the first
2815   // of the two input shuffle orders, to try and get at least one input into a
2816   // nice order.
2817   auto SortBase = [&](Instruction *A, std::pair<int, int> X,
2818                       std::pair<int, int> Y) {
2819     int MXA = GetBaseMaskValue(A, X.first);
2820     int MYA = GetBaseMaskValue(A, Y.first);
2821     return MXA < MYA;
2822   };
2823   stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
2824     return SortBase(SVI0A, A, B);
2825   });
2826   stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
2827     return SortBase(SVI1A, A, B);
2828   });
2829   // Calculate our ReconstructMasks from the OrigReconstructMasks and the
2830   // modified order of the input shuffles.
2831   SmallVector<SmallVector<int>> ReconstructMasks;
2832   for (const auto &Mask : OrigReconstructMasks) {
2833     SmallVector<int> ReconstructMask;
2834     for (int M : Mask) {
2835       auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
2836         auto It = find_if(V, [M](auto A) { return A.second == M; });
2837         assert(It != V.end() && "Expected all entries in Mask");
2838         return std::distance(V.begin(), It);
2839       };
2840       if (M < 0)
2841         ReconstructMask.push_back(-1);
2842       else if (M < static_cast<int>(NumElts)) {
2843         ReconstructMask.push_back(FindIndex(V1, M));
2844       } else {
2845         ReconstructMask.push_back(NumElts + FindIndex(V2, M));
2846       }
2847     }
2848     ReconstructMasks.push_back(std::move(ReconstructMask));
2849   }
2850 
2851   // Calculate the masks needed for the new input shuffles, which get padded
2852   // with undef
2853   SmallVector<int> V1A, V1B, V2A, V2B;
2854   for (unsigned I = 0; I < V1.size(); I++) {
2855     V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
2856     V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
2857   }
2858   for (unsigned I = 0; I < V2.size(); I++) {
2859     V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
2860     V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
2861   }
2862   while (V1A.size() < NumElts) {
2863     V1A.push_back(PoisonMaskElem);
2864     V1B.push_back(PoisonMaskElem);
2865   }
2866   while (V2A.size() < NumElts) {
2867     V2A.push_back(PoisonMaskElem);
2868     V2B.push_back(PoisonMaskElem);
2869   }
2870 
2871   auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
2872     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2873     if (!SV)
2874       return C;
2875     return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
2876                                       ? TTI::SK_PermuteSingleSrc
2877                                       : TTI::SK_PermuteTwoSrc,
2878                                   VT, SV->getShuffleMask(), CostKind);
2879   };
2880   auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
2881     return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask, CostKind);
2882   };
2883 
2884   // Get the costs of the shuffles + binops before and after with the new
2885   // shuffle masks.
2886   InstructionCost CostBefore =
2887       TTI.getArithmeticInstrCost(Op0->getOpcode(), VT, CostKind) +
2888       TTI.getArithmeticInstrCost(Op1->getOpcode(), VT, CostKind);
2889   CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
2890                                 InstructionCost(0), AddShuffleCost);
2891   CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
2892                                 InstructionCost(0), AddShuffleCost);
2893 
2894   // The new binops will be unused for lanes past the used shuffle lengths.
2895   // These types attempt to get the correct cost for that from the target.
2896   FixedVectorType *Op0SmallVT =
2897       FixedVectorType::get(VT->getScalarType(), V1.size());
2898   FixedVectorType *Op1SmallVT =
2899       FixedVectorType::get(VT->getScalarType(), V2.size());
2900   InstructionCost CostAfter =
2901       TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT, CostKind) +
2902       TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT, CostKind);
2903   CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
2904                                InstructionCost(0), AddShuffleMaskCost);
2905   std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
2906   CostAfter +=
2907       std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
2908                       InstructionCost(0), AddShuffleMaskCost);
2909 
2910   LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
2911   LLVM_DEBUG(dbgs() << "  CostBefore: " << CostBefore
2912                     << " vs CostAfter: " << CostAfter << "\n");
2913   if (CostBefore <= CostAfter)
2914     return false;
2915 
2916   // The cost model has passed, create the new instructions.
2917   auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
2918     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2919     if (!SV)
2920       return I;
2921     if (isa<UndefValue>(SV->getOperand(1)))
2922       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2923         if (InputShuffles.contains(SSV))
2924           return SSV->getOperand(Op);
2925     return SV->getOperand(Op);
2926   };
2927   Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
2928   Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
2929                                              GetShuffleOperand(SVI0A, 1), V1A);
2930   Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
2931   Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
2932                                              GetShuffleOperand(SVI0B, 1), V1B);
2933   Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
2934   Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
2935                                              GetShuffleOperand(SVI1A, 1), V2A);
2936   Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
2937   Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
2938                                              GetShuffleOperand(SVI1B, 1), V2B);
2939   Builder.SetInsertPoint(Op0);
2940   Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
2941                                     NSV0A, NSV0B);
2942   if (auto *I = dyn_cast<Instruction>(NOp0))
2943     I->copyIRFlags(Op0, true);
2944   Builder.SetInsertPoint(Op1);
2945   Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
2946                                     NSV1A, NSV1B);
2947   if (auto *I = dyn_cast<Instruction>(NOp1))
2948     I->copyIRFlags(Op1, true);
2949 
2950   for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
2951     Builder.SetInsertPoint(Shuffles[S]);
2952     Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
2953     replaceValue(*Shuffles[S], *NSV);
2954   }
2955 
2956   Worklist.pushValue(NSV0A);
2957   Worklist.pushValue(NSV0B);
2958   Worklist.pushValue(NSV1A);
2959   Worklist.pushValue(NSV1B);
2960   for (auto *S : Shuffles)
2961     Worklist.add(S);
2962   return true;
2963 }
2964 
2965 /// Check if instruction depends on ZExt and this ZExt can be moved after the
2966 /// instruction. Move ZExt if it is profitable. For example:
2967 ///     logic(zext(x),y) -> zext(logic(x,trunc(y)))
2968 ///     lshr((zext(x),y) -> zext(lshr(x,trunc(y)))
2969 /// Cost model calculations takes into account if zext(x) has other users and
2970 /// whether it can be propagated through them too.
2971 bool VectorCombine::shrinkType(Instruction &I) {
2972   Value *ZExted, *OtherOperand;
2973   if (!match(&I, m_c_BitwiseLogic(m_ZExt(m_Value(ZExted)),
2974                                   m_Value(OtherOperand))) &&
2975       !match(&I, m_LShr(m_ZExt(m_Value(ZExted)), m_Value(OtherOperand))))
2976     return false;
2977 
2978   Value *ZExtOperand = I.getOperand(I.getOperand(0) == OtherOperand ? 1 : 0);
2979 
2980   auto *BigTy = cast<FixedVectorType>(I.getType());
2981   auto *SmallTy = cast<FixedVectorType>(ZExted->getType());
2982   unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
2983 
2984   if (I.getOpcode() == Instruction::LShr) {
2985     // Check that the shift amount is less than the number of bits in the
2986     // smaller type. Otherwise, the smaller lshr will return a poison value.
2987     KnownBits ShAmtKB = computeKnownBits(I.getOperand(1), *DL);
2988     if (ShAmtKB.getMaxValue().uge(BW))
2989       return false;
2990   } else {
2991     // Check that the expression overall uses at most the same number of bits as
2992     // ZExted
2993     KnownBits KB = computeKnownBits(&I, *DL);
2994     if (KB.countMaxActiveBits() > BW)
2995       return false;
2996   }
2997 
2998   // Calculate costs of leaving current IR as it is and moving ZExt operation
2999   // later, along with adding truncates if needed
3000   InstructionCost ZExtCost = TTI.getCastInstrCost(
3001       Instruction::ZExt, BigTy, SmallTy,
3002       TargetTransformInfo::CastContextHint::None, CostKind);
3003   InstructionCost CurrentCost = ZExtCost;
3004   InstructionCost ShrinkCost = 0;
3005 
3006   // Calculate total cost and check that we can propagate through all ZExt users
3007   for (User *U : ZExtOperand->users()) {
3008     auto *UI = cast<Instruction>(U);
3009     if (UI == &I) {
3010       CurrentCost +=
3011           TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
3012       ShrinkCost +=
3013           TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
3014       ShrinkCost += ZExtCost;
3015       continue;
3016     }
3017 
3018     if (!Instruction::isBinaryOp(UI->getOpcode()))
3019       return false;
3020 
3021     // Check if we can propagate ZExt through its other users
3022     KnownBits KB = computeKnownBits(UI, *DL);
3023     if (KB.countMaxActiveBits() > BW)
3024       return false;
3025 
3026     CurrentCost += TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
3027     ShrinkCost +=
3028         TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
3029     ShrinkCost += ZExtCost;
3030   }
3031 
3032   // If the other instruction operand is not a constant, we'll need to
3033   // generate a truncate instruction. So we have to adjust cost
3034   if (!isa<Constant>(OtherOperand))
3035     ShrinkCost += TTI.getCastInstrCost(
3036         Instruction::Trunc, SmallTy, BigTy,
3037         TargetTransformInfo::CastContextHint::None, CostKind);
3038 
3039   // If the cost of shrinking types and leaving the IR is the same, we'll lean
3040   // towards modifying the IR because shrinking opens opportunities for other
3041   // shrinking optimisations.
3042   if (ShrinkCost > CurrentCost)
3043     return false;
3044 
3045   Builder.SetInsertPoint(&I);
3046   Value *Op0 = ZExted;
3047   Value *Op1 = Builder.CreateTrunc(OtherOperand, SmallTy);
3048   // Keep the order of operands the same
3049   if (I.getOperand(0) == OtherOperand)
3050     std::swap(Op0, Op1);
3051   Value *NewBinOp =
3052       Builder.CreateBinOp((Instruction::BinaryOps)I.getOpcode(), Op0, Op1);
3053   cast<Instruction>(NewBinOp)->copyIRFlags(&I);
3054   cast<Instruction>(NewBinOp)->copyMetadata(I);
3055   Value *NewZExtr = Builder.CreateZExt(NewBinOp, BigTy);
3056   replaceValue(I, *NewZExtr);
3057   return true;
3058 }
3059 
3060 /// insert (DstVec, (extract SrcVec, ExtIdx), InsIdx) -->
3061 /// shuffle (DstVec, SrcVec, Mask)
3062 bool VectorCombine::foldInsExtVectorToShuffle(Instruction &I) {
3063   Value *DstVec, *SrcVec;
3064   uint64_t ExtIdx, InsIdx;
3065   if (!match(&I,
3066              m_InsertElt(m_Value(DstVec),
3067                          m_ExtractElt(m_Value(SrcVec), m_ConstantInt(ExtIdx)),
3068                          m_ConstantInt(InsIdx))))
3069     return false;
3070 
3071   auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
3072   if (!VecTy || SrcVec->getType() != VecTy)
3073     return false;
3074 
3075   unsigned NumElts = VecTy->getNumElements();
3076   if (ExtIdx >= NumElts || InsIdx >= NumElts)
3077     return false;
3078 
3079   // Insertion into poison is a cheaper single operand shuffle.
3080   TargetTransformInfo::ShuffleKind SK;
3081   SmallVector<int> Mask(NumElts, PoisonMaskElem);
3082   if (isa<PoisonValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3083     SK = TargetTransformInfo::SK_PermuteSingleSrc;
3084     Mask[InsIdx] = ExtIdx;
3085     std::swap(DstVec, SrcVec);
3086   } else {
3087     SK = TargetTransformInfo::SK_PermuteTwoSrc;
3088     std::iota(Mask.begin(), Mask.end(), 0);
3089     Mask[InsIdx] = ExtIdx + NumElts;
3090   }
3091 
3092   // Cost
3093   auto *Ins = cast<InsertElementInst>(&I);
3094   auto *Ext = cast<ExtractElementInst>(I.getOperand(1));
3095   InstructionCost InsCost =
3096       TTI.getVectorInstrCost(*Ins, VecTy, CostKind, InsIdx);
3097   InstructionCost ExtCost =
3098       TTI.getVectorInstrCost(*Ext, VecTy, CostKind, ExtIdx);
3099   InstructionCost OldCost = ExtCost + InsCost;
3100 
3101   // Ignore 'free' identity insertion shuffle.
3102   // TODO: getShuffleCost should return TCC_Free for Identity shuffles.
3103   InstructionCost NewCost = 0;
3104   if (!ShuffleVectorInst::isIdentityMask(Mask, NumElts))
3105     NewCost += TTI.getShuffleCost(SK, VecTy, Mask, CostKind, 0, nullptr,
3106                                   {DstVec, SrcVec});
3107   if (!Ext->hasOneUse())
3108     NewCost += ExtCost;
3109 
3110   LLVM_DEBUG(dbgs() << "Found a insert/extract shuffle-like pair: " << I
3111                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
3112                     << "\n");
3113 
3114   if (OldCost < NewCost)
3115     return false;
3116 
3117   // Canonicalize undef param to RHS to help further folds.
3118   if (isa<UndefValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3119     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
3120     std::swap(DstVec, SrcVec);
3121   }
3122 
3123   Value *Shuf = Builder.CreateShuffleVector(DstVec, SrcVec, Mask);
3124   replaceValue(I, *Shuf);
3125 
3126   return true;
3127 }
3128 
3129 /// This is the entry point for all transforms. Pass manager differences are
3130 /// handled in the callers of this function.
3131 bool VectorCombine::run() {
3132   if (DisableVectorCombine)
3133     return false;
3134 
3135   // Don't attempt vectorization if the target does not support vectors.
3136   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
3137     return false;
3138 
3139   LLVM_DEBUG(dbgs() << "\n\nVECTORCOMBINE on " << F.getName() << "\n");
3140 
3141   bool MadeChange = false;
3142   auto FoldInst = [this, &MadeChange](Instruction &I) {
3143     Builder.SetInsertPoint(&I);
3144     bool IsVectorType = isa<VectorType>(I.getType());
3145     bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
3146     auto Opcode = I.getOpcode();
3147 
3148     LLVM_DEBUG(dbgs() << "VC: Visiting: " << I << '\n');
3149 
3150     // These folds should be beneficial regardless of when this pass is run
3151     // in the optimization pipeline.
3152     // The type checking is for run-time efficiency. We can avoid wasting time
3153     // dispatching to folding functions if there's no chance of matching.
3154     if (IsFixedVectorType) {
3155       switch (Opcode) {
3156       case Instruction::InsertElement:
3157         MadeChange |= vectorizeLoadInsert(I);
3158         break;
3159       case Instruction::ShuffleVector:
3160         MadeChange |= widenSubvectorLoad(I);
3161         break;
3162       default:
3163         break;
3164       }
3165     }
3166 
3167     // This transform works with scalable and fixed vectors
3168     // TODO: Identify and allow other scalable transforms
3169     if (IsVectorType) {
3170       MadeChange |= scalarizeBinopOrCmp(I);
3171       MadeChange |= scalarizeLoadExtract(I);
3172       MadeChange |= scalarizeVPIntrinsic(I);
3173     }
3174 
3175     if (Opcode == Instruction::Store)
3176       MadeChange |= foldSingleElementStore(I);
3177 
3178     // If this is an early pipeline invocation of this pass, we are done.
3179     if (TryEarlyFoldsOnly)
3180       return;
3181 
3182     // Otherwise, try folds that improve codegen but may interfere with
3183     // early IR canonicalizations.
3184     // The type checking is for run-time efficiency. We can avoid wasting time
3185     // dispatching to folding functions if there's no chance of matching.
3186     if (IsFixedVectorType) {
3187       switch (Opcode) {
3188       case Instruction::InsertElement:
3189         MadeChange |= foldInsExtFNeg(I);
3190         MadeChange |= foldInsExtVectorToShuffle(I);
3191         break;
3192       case Instruction::ShuffleVector:
3193         MadeChange |= foldPermuteOfBinops(I);
3194         MadeChange |= foldShuffleOfBinops(I);
3195         MadeChange |= foldShuffleOfCastops(I);
3196         MadeChange |= foldShuffleOfShuffles(I);
3197         MadeChange |= foldShuffleOfIntrinsics(I);
3198         MadeChange |= foldSelectShuffle(I);
3199         MadeChange |= foldShuffleToIdentity(I);
3200         break;
3201       case Instruction::BitCast:
3202         MadeChange |= foldBitcastShuffle(I);
3203         break;
3204       default:
3205         MadeChange |= shrinkType(I);
3206         break;
3207       }
3208     } else {
3209       switch (Opcode) {
3210       case Instruction::Call:
3211         MadeChange |= foldShuffleFromReductions(I);
3212         MadeChange |= foldCastFromReductions(I);
3213         break;
3214       case Instruction::ICmp:
3215       case Instruction::FCmp:
3216         MadeChange |= foldExtractExtract(I);
3217         break;
3218       case Instruction::Or:
3219         MadeChange |= foldConcatOfBoolMasks(I);
3220         [[fallthrough]];
3221       default:
3222         if (Instruction::isBinaryOp(Opcode)) {
3223           MadeChange |= foldExtractExtract(I);
3224           MadeChange |= foldExtractedCmps(I);
3225         }
3226         break;
3227       }
3228     }
3229   };
3230 
3231   for (BasicBlock &BB : F) {
3232     // Ignore unreachable basic blocks.
3233     if (!DT.isReachableFromEntry(&BB))
3234       continue;
3235     // Use early increment range so that we can erase instructions in loop.
3236     for (Instruction &I : make_early_inc_range(BB)) {
3237       if (I.isDebugOrPseudoInst())
3238         continue;
3239       FoldInst(I);
3240     }
3241   }
3242 
3243   while (!Worklist.isEmpty()) {
3244     Instruction *I = Worklist.removeOne();
3245     if (!I)
3246       continue;
3247 
3248     if (isInstructionTriviallyDead(I)) {
3249       eraseInstruction(*I);
3250       continue;
3251     }
3252 
3253     FoldInst(*I);
3254   }
3255 
3256   return MadeChange;
3257 }
3258 
3259 PreservedAnalyses VectorCombinePass::run(Function &F,
3260                                          FunctionAnalysisManager &FAM) {
3261   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
3262   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
3263   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3264   AAResults &AA = FAM.getResult<AAManager>(F);
3265   const DataLayout *DL = &F.getDataLayout();
3266   VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TTI::TCK_RecipThroughput,
3267                          TryEarlyFoldsOnly);
3268   if (!Combiner.run())
3269     return PreservedAnalyses::all();
3270   PreservedAnalyses PA;
3271   PA.preserveSet<CFGAnalyses>();
3272   return PA;
3273 }
3274