xref: /llvm-project/llvm/lib/Transforms/Vectorize/VectorCombine.cpp (revision 054e7c59713c67ad7b65a92e4b8887076d3881b9)
1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/LoopUtils.h"
34 #include <numeric>
35 #include <queue>
36 
37 #define DEBUG_TYPE "vector-combine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42 
43 STATISTIC(NumVecLoad, "Number of vector loads formed");
44 STATISTIC(NumVecCmp, "Number of vector compares formed");
45 STATISTIC(NumVecBO, "Number of vector binops formed");
46 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
47 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
48 STATISTIC(NumScalarBO, "Number of scalar binops formed");
49 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
50 
51 static cl::opt<bool> DisableVectorCombine(
52     "disable-vector-combine", cl::init(false), cl::Hidden,
53     cl::desc("Disable all vector combine transforms"));
54 
55 static cl::opt<bool> DisableBinopExtractShuffle(
56     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
57     cl::desc("Disable binop extract to shuffle transforms"));
58 
59 static cl::opt<unsigned> MaxInstrsToScan(
60     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
61     cl::desc("Max number of instructions to scan for vector combining."));
62 
63 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
64 
65 namespace {
66 class VectorCombine {
67 public:
68   VectorCombine(Function &F, const TargetTransformInfo &TTI,
69                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
70                 const DataLayout *DL, TTI::TargetCostKind CostKind,
71                 bool TryEarlyFoldsOnly)
72       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL),
73         CostKind(CostKind), TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
74 
75   bool run();
76 
77 private:
78   Function &F;
79   IRBuilder<> Builder;
80   const TargetTransformInfo &TTI;
81   const DominatorTree &DT;
82   AAResults &AA;
83   AssumptionCache &AC;
84   const DataLayout *DL;
85   TTI::TargetCostKind CostKind;
86 
87   /// If true, only perform beneficial early IR transforms. Do not introduce new
88   /// vector operations.
89   bool TryEarlyFoldsOnly;
90 
91   InstructionWorklist Worklist;
92 
93   // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
94   //       parameter. That should be updated to specific sub-classes because the
95   //       run loop was changed to dispatch on opcode.
96   bool vectorizeLoadInsert(Instruction &I);
97   bool widenSubvectorLoad(Instruction &I);
98   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
99                                         ExtractElementInst *Ext1,
100                                         unsigned PreferredExtractIndex) const;
101   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
102                              const Instruction &I,
103                              ExtractElementInst *&ConvertToShuffle,
104                              unsigned PreferredExtractIndex);
105   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
106                      Instruction &I);
107   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
108                        Instruction &I);
109   bool foldExtractExtract(Instruction &I);
110   bool foldInsExtFNeg(Instruction &I);
111   bool foldInsExtVectorToShuffle(Instruction &I);
112   bool foldBitcastShuffle(Instruction &I);
113   bool scalarizeBinopOrCmp(Instruction &I);
114   bool scalarizeVPIntrinsic(Instruction &I);
115   bool foldExtractedCmps(Instruction &I);
116   bool foldSingleElementStore(Instruction &I);
117   bool scalarizeLoadExtract(Instruction &I);
118   bool foldConcatOfBoolMasks(Instruction &I);
119   bool foldPermuteOfBinops(Instruction &I);
120   bool foldShuffleOfBinops(Instruction &I);
121   bool foldShuffleOfCastops(Instruction &I);
122   bool foldShuffleOfShuffles(Instruction &I);
123   bool foldShuffleOfIntrinsics(Instruction &I);
124   bool foldShuffleToIdentity(Instruction &I);
125   bool foldShuffleFromReductions(Instruction &I);
126   bool foldCastFromReductions(Instruction &I);
127   bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
128   bool shrinkType(Instruction &I);
129 
130   void replaceValue(Value &Old, Value &New) {
131     LLVM_DEBUG(dbgs() << "VC: Replacing: " << Old << '\n');
132     LLVM_DEBUG(dbgs() << "         With: " << New << '\n');
133     Old.replaceAllUsesWith(&New);
134     if (auto *NewI = dyn_cast<Instruction>(&New)) {
135       New.takeName(&Old);
136       Worklist.pushUsersToWorkList(*NewI);
137       Worklist.pushValue(NewI);
138     }
139     Worklist.pushValue(&Old);
140   }
141 
142   void eraseInstruction(Instruction &I) {
143     LLVM_DEBUG(dbgs() << "VC: Erasing: " << I << '\n');
144     SmallVector<Value *> Ops(I.operands());
145     Worklist.remove(&I);
146     I.eraseFromParent();
147 
148     // Push remaining users of the operands and then the operand itself - allows
149     // further folds that were hindered by OneUse limits.
150     for (Value *Op : Ops)
151       if (auto *OpI = dyn_cast<Instruction>(Op)) {
152         Worklist.pushUsersToWorkList(*OpI);
153         Worklist.pushValue(OpI);
154       }
155   }
156 };
157 } // namespace
158 
159 /// Return the source operand of a potentially bitcasted value. If there is no
160 /// bitcast, return the input value itself.
161 static Value *peekThroughBitcasts(Value *V) {
162   while (auto *BitCast = dyn_cast<BitCastInst>(V))
163     V = BitCast->getOperand(0);
164   return V;
165 }
166 
167 static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
168   // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
169   // The widened load may load data from dirty regions or create data races
170   // non-existent in the source.
171   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
172       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
173       mustSuppressSpeculation(*Load))
174     return false;
175 
176   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
177   // sure we have all of our type-based constraints in place for this target.
178   Type *ScalarTy = Load->getType()->getScalarType();
179   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
180   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
181   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
182       ScalarSize % 8 != 0)
183     return false;
184 
185   return true;
186 }
187 
188 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
189   // Match insert into fixed vector of scalar value.
190   // TODO: Handle non-zero insert index.
191   Value *Scalar;
192   if (!match(&I,
193              m_InsertElt(m_Poison(), m_OneUse(m_Value(Scalar)), m_ZeroInt())))
194     return false;
195 
196   // Optionally match an extract from another vector.
197   Value *X;
198   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
199   if (!HasExtract)
200     X = Scalar;
201 
202   auto *Load = dyn_cast<LoadInst>(X);
203   if (!canWidenLoad(Load, TTI))
204     return false;
205 
206   Type *ScalarTy = Scalar->getType();
207   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
208   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
209 
210   // Check safety of replacing the scalar load with a larger vector load.
211   // We use minimal alignment (maximum flexibility) because we only care about
212   // the dereferenceable region. When calculating cost and creating a new op,
213   // we may use a larger value based on alignment attributes.
214   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
215   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
216 
217   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
218   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
219   unsigned OffsetEltIndex = 0;
220   Align Alignment = Load->getAlign();
221   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
222                                    &DT)) {
223     // It is not safe to load directly from the pointer, but we can still peek
224     // through gep offsets and check if it safe to load from a base address with
225     // updated alignment. If it is, we can shuffle the element(s) into place
226     // after loading.
227     unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(SrcPtr->getType());
228     APInt Offset(OffsetBitWidth, 0);
229     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
230 
231     // We want to shuffle the result down from a high element of a vector, so
232     // the offset must be positive.
233     if (Offset.isNegative())
234       return false;
235 
236     // The offset must be a multiple of the scalar element to shuffle cleanly
237     // in the element's size.
238     uint64_t ScalarSizeInBytes = ScalarSize / 8;
239     if (Offset.urem(ScalarSizeInBytes) != 0)
240       return false;
241 
242     // If we load MinVecNumElts, will our target element still be loaded?
243     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
244     if (OffsetEltIndex >= MinVecNumElts)
245       return false;
246 
247     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
248                                      &DT))
249       return false;
250 
251     // Update alignment with offset value. Note that the offset could be negated
252     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
253     // negation does not change the result of the alignment calculation.
254     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
255   }
256 
257   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
258   // Use the greater of the alignment on the load or its source pointer.
259   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
260   Type *LoadTy = Load->getType();
261   unsigned AS = Load->getPointerAddressSpace();
262   InstructionCost OldCost =
263       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
264   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
265   OldCost +=
266       TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
267                                    /* Insert */ true, HasExtract, CostKind);
268 
269   // New pattern: load VecPtr
270   InstructionCost NewCost =
271       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS, CostKind);
272   // Optionally, we are shuffling the loaded vector element(s) into place.
273   // For the mask set everything but element 0 to undef to prevent poison from
274   // propagating from the extra loaded memory. This will also optionally
275   // shrink/grow the vector from the loaded size to the output size.
276   // We assume this operation has no cost in codegen if there was no offset.
277   // Note that we could use freeze to avoid poison problems, but then we might
278   // still need a shuffle to change the vector size.
279   auto *Ty = cast<FixedVectorType>(I.getType());
280   unsigned OutputNumElts = Ty->getNumElements();
281   SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
282   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
283   Mask[0] = OffsetEltIndex;
284   if (OffsetEltIndex)
285     NewCost +=
286         TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask, CostKind);
287 
288   // We can aggressively convert to the vector form because the backend can
289   // invert this transform if it does not result in a performance win.
290   if (OldCost < NewCost || !NewCost.isValid())
291     return false;
292 
293   // It is safe and potentially profitable to load a vector directly:
294   // inselt undef, load Scalar, 0 --> load VecPtr
295   IRBuilder<> Builder(Load);
296   Value *CastedPtr =
297       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
298   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
299   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
300 
301   replaceValue(I, *VecLd);
302   ++NumVecLoad;
303   return true;
304 }
305 
306 /// If we are loading a vector and then inserting it into a larger vector with
307 /// undefined elements, try to load the larger vector and eliminate the insert.
308 /// This removes a shuffle in IR and may allow combining of other loaded values.
309 bool VectorCombine::widenSubvectorLoad(Instruction &I) {
310   // Match subvector insert of fixed vector.
311   auto *Shuf = cast<ShuffleVectorInst>(&I);
312   if (!Shuf->isIdentityWithPadding())
313     return false;
314 
315   // Allow a non-canonical shuffle mask that is choosing elements from op1.
316   unsigned NumOpElts =
317       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
318   unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
319     return M >= (int)(NumOpElts);
320   });
321 
322   auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
323   if (!canWidenLoad(Load, TTI))
324     return false;
325 
326   // We use minimal alignment (maximum flexibility) because we only care about
327   // the dereferenceable region. When calculating cost and creating a new op,
328   // we may use a larger value based on alignment attributes.
329   auto *Ty = cast<FixedVectorType>(I.getType());
330   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
331   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
332   Align Alignment = Load->getAlign();
333   if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), *DL, Load, &AC, &DT))
334     return false;
335 
336   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
337   Type *LoadTy = Load->getType();
338   unsigned AS = Load->getPointerAddressSpace();
339 
340   // Original pattern: insert_subvector (load PtrOp)
341   // This conservatively assumes that the cost of a subvector insert into an
342   // undef value is 0. We could add that cost if the cost model accurately
343   // reflects the real cost of that operation.
344   InstructionCost OldCost =
345       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
346 
347   // New pattern: load PtrOp
348   InstructionCost NewCost =
349       TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS, CostKind);
350 
351   // We can aggressively convert to the vector form because the backend can
352   // invert this transform if it does not result in a performance win.
353   if (OldCost < NewCost || !NewCost.isValid())
354     return false;
355 
356   IRBuilder<> Builder(Load);
357   Value *CastedPtr =
358       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
359   Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
360   replaceValue(I, *VecLd);
361   ++NumVecLoad;
362   return true;
363 }
364 
365 /// Determine which, if any, of the inputs should be replaced by a shuffle
366 /// followed by extract from a different index.
367 ExtractElementInst *VectorCombine::getShuffleExtract(
368     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
369     unsigned PreferredExtractIndex = InvalidIndex) const {
370   auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
371   auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
372   assert(Index0C && Index1C && "Expected constant extract indexes");
373 
374   unsigned Index0 = Index0C->getZExtValue();
375   unsigned Index1 = Index1C->getZExtValue();
376 
377   // If the extract indexes are identical, no shuffle is needed.
378   if (Index0 == Index1)
379     return nullptr;
380 
381   Type *VecTy = Ext0->getVectorOperand()->getType();
382   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
383   InstructionCost Cost0 =
384       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
385   InstructionCost Cost1 =
386       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
387 
388   // If both costs are invalid no shuffle is needed
389   if (!Cost0.isValid() && !Cost1.isValid())
390     return nullptr;
391 
392   // We are extracting from 2 different indexes, so one operand must be shuffled
393   // before performing a vector operation and/or extract. The more expensive
394   // extract will be replaced by a shuffle.
395   if (Cost0 > Cost1)
396     return Ext0;
397   if (Cost1 > Cost0)
398     return Ext1;
399 
400   // If the costs are equal and there is a preferred extract index, shuffle the
401   // opposite operand.
402   if (PreferredExtractIndex == Index0)
403     return Ext1;
404   if (PreferredExtractIndex == Index1)
405     return Ext0;
406 
407   // Otherwise, replace the extract with the higher index.
408   return Index0 > Index1 ? Ext0 : Ext1;
409 }
410 
411 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
412 /// vector operation(s) followed by extract. Return true if the existing
413 /// instructions are cheaper than a vector alternative. Otherwise, return false
414 /// and if one of the extracts should be transformed to a shufflevector, set
415 /// \p ConvertToShuffle to that extract instruction.
416 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
417                                           ExtractElementInst *Ext1,
418                                           const Instruction &I,
419                                           ExtractElementInst *&ConvertToShuffle,
420                                           unsigned PreferredExtractIndex) {
421   auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
422   auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
423   assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
424 
425   unsigned Opcode = I.getOpcode();
426   Value *Ext0Src = Ext0->getVectorOperand();
427   Value *Ext1Src = Ext1->getVectorOperand();
428   Type *ScalarTy = Ext0->getType();
429   auto *VecTy = cast<VectorType>(Ext0Src->getType());
430   InstructionCost ScalarOpCost, VectorOpCost;
431 
432   // Get cost estimates for scalar and vector versions of the operation.
433   bool IsBinOp = Instruction::isBinaryOp(Opcode);
434   if (IsBinOp) {
435     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
436     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
437   } else {
438     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
439            "Expected a compare");
440     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
441     ScalarOpCost = TTI.getCmpSelInstrCost(
442         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
443     VectorOpCost = TTI.getCmpSelInstrCost(
444         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
445   }
446 
447   // Get cost estimates for the extract elements. These costs will factor into
448   // both sequences.
449   unsigned Ext0Index = Ext0IndexC->getZExtValue();
450   unsigned Ext1Index = Ext1IndexC->getZExtValue();
451 
452   InstructionCost Extract0Cost =
453       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
454   InstructionCost Extract1Cost =
455       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
456 
457   // A more expensive extract will always be replaced by a splat shuffle.
458   // For example, if Ext0 is more expensive:
459   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
460   // extelt (opcode (splat V0, Ext0), V1), Ext1
461   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
462   //       check the cost of creating a broadcast shuffle and shuffling both
463   //       operands to element 0.
464   unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
465   unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
466   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
467 
468   // Extra uses of the extracts mean that we include those costs in the
469   // vector total because those instructions will not be eliminated.
470   InstructionCost OldCost, NewCost;
471   if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
472     // Handle a special case. If the 2 extracts are identical, adjust the
473     // formulas to account for that. The extra use charge allows for either the
474     // CSE'd pattern or an unoptimized form with identical values:
475     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
476     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
477                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
478     OldCost = CheapExtractCost + ScalarOpCost;
479     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
480   } else {
481     // Handle the general case. Each extract is actually a different value:
482     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
483     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
484     NewCost = VectorOpCost + CheapExtractCost +
485               !Ext0->hasOneUse() * Extract0Cost +
486               !Ext1->hasOneUse() * Extract1Cost;
487   }
488 
489   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
490   if (ConvertToShuffle) {
491     if (IsBinOp && DisableBinopExtractShuffle)
492       return true;
493 
494     // If we are extracting from 2 different indexes, then one operand must be
495     // shuffled before performing the vector operation. The shuffle mask is
496     // poison except for 1 lane that is being translated to the remaining
497     // extraction lane. Therefore, it is a splat shuffle. Ex:
498     // ShufMask = { poison, poison, 0, poison }
499     // TODO: The cost model has an option for a "broadcast" shuffle
500     //       (splat-from-element-0), but no option for a more general splat.
501     if (auto *FixedVecTy = dyn_cast<FixedVectorType>(VecTy)) {
502       SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
503                                    PoisonMaskElem);
504       ShuffleMask[BestInsIndex] = BestExtIndex;
505       NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
506                                     VecTy, ShuffleMask, CostKind, 0, nullptr,
507                                     {ConvertToShuffle});
508     } else {
509       NewCost +=
510           TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
511                              {}, CostKind, 0, nullptr, {ConvertToShuffle});
512     }
513   }
514 
515   // Aggressively form a vector op if the cost is equal because the transform
516   // may enable further optimization.
517   // Codegen can reverse this transform (scalarize) if it was not profitable.
518   return OldCost < NewCost;
519 }
520 
521 /// Create a shuffle that translates (shifts) 1 element from the input vector
522 /// to a new element location.
523 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
524                                  unsigned NewIndex, IRBuilder<> &Builder) {
525   // The shuffle mask is poison except for 1 lane that is being translated
526   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
527   // ShufMask = { 2, poison, poison, poison }
528   auto *VecTy = cast<FixedVectorType>(Vec->getType());
529   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
530   ShufMask[NewIndex] = OldIndex;
531   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
532 }
533 
534 /// Given an extract element instruction with constant index operand, shuffle
535 /// the source vector (shift the scalar element) to a NewIndex for extraction.
536 /// Return null if the input can be constant folded, so that we are not creating
537 /// unnecessary instructions.
538 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
539                                             unsigned NewIndex,
540                                             IRBuilder<> &Builder) {
541   // Shufflevectors can only be created for fixed-width vectors.
542   Value *X = ExtElt->getVectorOperand();
543   if (!isa<FixedVectorType>(X->getType()))
544     return nullptr;
545 
546   // If the extract can be constant-folded, this code is unsimplified. Defer
547   // to other passes to handle that.
548   Value *C = ExtElt->getIndexOperand();
549   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
550   if (isa<Constant>(X))
551     return nullptr;
552 
553   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
554                                    NewIndex, Builder);
555   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
556 }
557 
558 /// Try to reduce extract element costs by converting scalar compares to vector
559 /// compares followed by extract.
560 /// cmp (ext0 V0, C), (ext1 V1, C)
561 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
562                                   ExtractElementInst *Ext1, Instruction &I) {
563   assert(isa<CmpInst>(&I) && "Expected a compare");
564   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
565              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
566          "Expected matching constant extract indexes");
567 
568   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
569   ++NumVecCmp;
570   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
571   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
572   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
573   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
574   replaceValue(I, *NewExt);
575 }
576 
577 /// Try to reduce extract element costs by converting scalar binops to vector
578 /// binops followed by extract.
579 /// bo (ext0 V0, C), (ext1 V1, C)
580 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
581                                     ExtractElementInst *Ext1, Instruction &I) {
582   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
583   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
584              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
585          "Expected matching constant extract indexes");
586 
587   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
588   ++NumVecBO;
589   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
590   Value *VecBO =
591       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
592 
593   // All IR flags are safe to back-propagate because any potential poison
594   // created in unused vector elements is discarded by the extract.
595   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
596     VecBOInst->copyIRFlags(&I);
597 
598   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
599   replaceValue(I, *NewExt);
600 }
601 
602 /// Match an instruction with extracted vector operands.
603 bool VectorCombine::foldExtractExtract(Instruction &I) {
604   // It is not safe to transform things like div, urem, etc. because we may
605   // create undefined behavior when executing those on unknown vector elements.
606   if (!isSafeToSpeculativelyExecute(&I))
607     return false;
608 
609   Instruction *I0, *I1;
610   CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE;
611   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
612       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
613     return false;
614 
615   Value *V0, *V1;
616   uint64_t C0, C1;
617   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
618       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
619       V0->getType() != V1->getType())
620     return false;
621 
622   // If the scalar value 'I' is going to be re-inserted into a vector, then try
623   // to create an extract to that same element. The extract/insert can be
624   // reduced to a "select shuffle".
625   // TODO: If we add a larger pattern match that starts from an insert, this
626   //       probably becomes unnecessary.
627   auto *Ext0 = cast<ExtractElementInst>(I0);
628   auto *Ext1 = cast<ExtractElementInst>(I1);
629   uint64_t InsertIndex = InvalidIndex;
630   if (I.hasOneUse())
631     match(I.user_back(),
632           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
633 
634   ExtractElementInst *ExtractToChange;
635   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
636     return false;
637 
638   if (ExtractToChange) {
639     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
640     ExtractElementInst *NewExtract =
641         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
642     if (!NewExtract)
643       return false;
644     if (ExtractToChange == Ext0)
645       Ext0 = NewExtract;
646     else
647       Ext1 = NewExtract;
648   }
649 
650   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
651     foldExtExtCmp(Ext0, Ext1, I);
652   else
653     foldExtExtBinop(Ext0, Ext1, I);
654 
655   Worklist.push(Ext0);
656   Worklist.push(Ext1);
657   return true;
658 }
659 
660 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
661 /// shuffle.
662 bool VectorCombine::foldInsExtFNeg(Instruction &I) {
663   // Match an insert (op (extract)) pattern.
664   Value *DestVec;
665   uint64_t Index;
666   Instruction *FNeg;
667   if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
668                              m_ConstantInt(Index))))
669     return false;
670 
671   // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
672   Value *SrcVec;
673   Instruction *Extract;
674   if (!match(FNeg, m_FNeg(m_CombineAnd(
675                        m_Instruction(Extract),
676                        m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
677     return false;
678 
679   auto *VecTy = cast<FixedVectorType>(I.getType());
680   auto *ScalarTy = VecTy->getScalarType();
681   auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcVec->getType());
682   if (!SrcVecTy || ScalarTy != SrcVecTy->getScalarType())
683     return false;
684 
685   // Ignore bogus insert/extract index.
686   unsigned NumElts = VecTy->getNumElements();
687   if (Index >= NumElts)
688     return false;
689 
690   // We are inserting the negated element into the same lane that we extracted
691   // from. This is equivalent to a select-shuffle that chooses all but the
692   // negated element from the destination vector.
693   SmallVector<int> Mask(NumElts);
694   std::iota(Mask.begin(), Mask.end(), 0);
695   Mask[Index] = Index + NumElts;
696   InstructionCost OldCost =
697       TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy, CostKind) +
698       TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
699 
700   // If the extract has one use, it will be eliminated, so count it in the
701   // original cost. If it has more than one use, ignore the cost because it will
702   // be the same before/after.
703   if (Extract->hasOneUse())
704     OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
705 
706   InstructionCost NewCost =
707       TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy, CostKind) +
708       TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, CostKind);
709 
710   bool NeedLenChg = SrcVecTy->getNumElements() != NumElts;
711   // If the lengths of the two vectors are not equal,
712   // we need to add a length-change vector. Add this cost.
713   SmallVector<int> SrcMask;
714   if (NeedLenChg) {
715     SrcMask.assign(NumElts, PoisonMaskElem);
716     SrcMask[Index] = Index;
717     NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
718                                   SrcVecTy, SrcMask, CostKind);
719   }
720 
721   if (NewCost > OldCost)
722     return false;
723 
724   Value *NewShuf;
725   // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index
726   Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
727   if (NeedLenChg) {
728     // shuffle DestVec, (shuffle (fneg SrcVec), poison, SrcMask), Mask
729     Value *LenChgShuf = Builder.CreateShuffleVector(VecFNeg, SrcMask);
730     NewShuf = Builder.CreateShuffleVector(DestVec, LenChgShuf, Mask);
731   } else {
732     // shuffle DestVec, (fneg SrcVec), Mask
733     NewShuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
734   }
735 
736   replaceValue(I, *NewShuf);
737   return true;
738 }
739 
740 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
741 /// destination type followed by shuffle. This can enable further transforms by
742 /// moving bitcasts or shuffles together.
743 bool VectorCombine::foldBitcastShuffle(Instruction &I) {
744   Value *V0, *V1;
745   ArrayRef<int> Mask;
746   if (!match(&I, m_BitCast(m_OneUse(
747                      m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(Mask))))))
748     return false;
749 
750   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
751   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
752   // mask for scalable type is a splat or not.
753   // 2) Disallow non-vector casts.
754   // TODO: We could allow any shuffle.
755   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
756   auto *SrcTy = dyn_cast<FixedVectorType>(V0->getType());
757   if (!DestTy || !SrcTy)
758     return false;
759 
760   unsigned DestEltSize = DestTy->getScalarSizeInBits();
761   unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
762   if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
763     return false;
764 
765   bool IsUnary = isa<UndefValue>(V1);
766 
767   // For binary shuffles, only fold bitcast(shuffle(X,Y))
768   // if it won't increase the number of bitcasts.
769   if (!IsUnary) {
770     auto *BCTy0 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V0)->getType());
771     auto *BCTy1 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V1)->getType());
772     if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
773         !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
774       return false;
775   }
776 
777   SmallVector<int, 16> NewMask;
778   if (DestEltSize <= SrcEltSize) {
779     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
780     // always be expanded to the equivalent form choosing narrower elements.
781     assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
782     unsigned ScaleFactor = SrcEltSize / DestEltSize;
783     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
784   } else {
785     // The bitcast is from narrow elements to wide elements. The shuffle mask
786     // must choose consecutive elements to allow casting first.
787     assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
788     unsigned ScaleFactor = DestEltSize / SrcEltSize;
789     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
790       return false;
791   }
792 
793   // Bitcast the shuffle src - keep its original width but using the destination
794   // scalar type.
795   unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
796   auto *NewShuffleTy =
797       FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
798   auto *OldShuffleTy =
799       FixedVectorType::get(SrcTy->getScalarType(), Mask.size());
800   unsigned NumOps = IsUnary ? 1 : 2;
801 
802   // The new shuffle must not cost more than the old shuffle.
803   TargetTransformInfo::ShuffleKind SK =
804       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
805               : TargetTransformInfo::SK_PermuteTwoSrc;
806 
807   InstructionCost NewCost =
808       TTI.getShuffleCost(SK, NewShuffleTy, NewMask, CostKind) +
809       (NumOps * TTI.getCastInstrCost(Instruction::BitCast, NewShuffleTy, SrcTy,
810                                      TargetTransformInfo::CastContextHint::None,
811                                      CostKind));
812   InstructionCost OldCost =
813       TTI.getShuffleCost(SK, SrcTy, Mask, CostKind) +
814       TTI.getCastInstrCost(Instruction::BitCast, DestTy, OldShuffleTy,
815                            TargetTransformInfo::CastContextHint::None,
816                            CostKind);
817 
818   LLVM_DEBUG(dbgs() << "Found a bitcasted shuffle: " << I << "\n  OldCost: "
819                     << OldCost << " vs NewCost: " << NewCost << "\n");
820 
821   if (NewCost > OldCost || !NewCost.isValid())
822     return false;
823 
824   // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC'
825   ++NumShufOfBitcast;
826   Value *CastV0 = Builder.CreateBitCast(peekThroughBitcasts(V0), NewShuffleTy);
827   Value *CastV1 = Builder.CreateBitCast(peekThroughBitcasts(V1), NewShuffleTy);
828   Value *Shuf = Builder.CreateShuffleVector(CastV0, CastV1, NewMask);
829   replaceValue(I, *Shuf);
830   return true;
831 }
832 
833 /// VP Intrinsics whose vector operands are both splat values may be simplified
834 /// into the scalar version of the operation and the result splatted. This
835 /// can lead to scalarization down the line.
836 bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
837   if (!isa<VPIntrinsic>(I))
838     return false;
839   VPIntrinsic &VPI = cast<VPIntrinsic>(I);
840   Value *Op0 = VPI.getArgOperand(0);
841   Value *Op1 = VPI.getArgOperand(1);
842 
843   if (!isSplatValue(Op0) || !isSplatValue(Op1))
844     return false;
845 
846   // Check getSplatValue early in this function, to avoid doing unnecessary
847   // work.
848   Value *ScalarOp0 = getSplatValue(Op0);
849   Value *ScalarOp1 = getSplatValue(Op1);
850   if (!ScalarOp0 || !ScalarOp1)
851     return false;
852 
853   // For the binary VP intrinsics supported here, the result on disabled lanes
854   // is a poison value. For now, only do this simplification if all lanes
855   // are active.
856   // TODO: Relax the condition that all lanes are active by using insertelement
857   // on inactive lanes.
858   auto IsAllTrueMask = [](Value *MaskVal) {
859     if (Value *SplattedVal = getSplatValue(MaskVal))
860       if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
861         return ConstValue->isAllOnesValue();
862     return false;
863   };
864   if (!IsAllTrueMask(VPI.getArgOperand(2)))
865     return false;
866 
867   // Check to make sure we support scalarization of the intrinsic
868   Intrinsic::ID IntrID = VPI.getIntrinsicID();
869   if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
870     return false;
871 
872   // Calculate cost of splatting both operands into vectors and the vector
873   // intrinsic
874   VectorType *VecTy = cast<VectorType>(VPI.getType());
875   SmallVector<int> Mask;
876   if (auto *FVTy = dyn_cast<FixedVectorType>(VecTy))
877     Mask.resize(FVTy->getNumElements(), 0);
878   InstructionCost SplatCost =
879       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
880       TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, Mask,
881                          CostKind);
882 
883   // Calculate the cost of the VP Intrinsic
884   SmallVector<Type *, 4> Args;
885   for (Value *V : VPI.args())
886     Args.push_back(V->getType());
887   IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
888   InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
889   InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
890 
891   // Determine scalar opcode
892   std::optional<unsigned> FunctionalOpcode =
893       VPI.getFunctionalOpcode();
894   std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
895   if (!FunctionalOpcode) {
896     ScalarIntrID = VPI.getFunctionalIntrinsicID();
897     if (!ScalarIntrID)
898       return false;
899   }
900 
901   // Calculate cost of scalarizing
902   InstructionCost ScalarOpCost = 0;
903   if (ScalarIntrID) {
904     IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
905     ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
906   } else {
907     ScalarOpCost = TTI.getArithmeticInstrCost(*FunctionalOpcode,
908                                               VecTy->getScalarType(), CostKind);
909   }
910 
911   // The existing splats may be kept around if other instructions use them.
912   InstructionCost CostToKeepSplats =
913       (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
914   InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
915 
916   LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
917                     << "\n");
918   LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
919                     << ", Cost of scalarizing:" << NewCost << "\n");
920 
921   // We want to scalarize unless the vector variant actually has lower cost.
922   if (OldCost < NewCost || !NewCost.isValid())
923     return false;
924 
925   // Scalarize the intrinsic
926   ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
927   Value *EVL = VPI.getArgOperand(3);
928 
929   // If the VP op might introduce UB or poison, we can scalarize it provided
930   // that we know the EVL > 0: If the EVL is zero, then the original VP op
931   // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
932   // scalarizing it.
933   bool SafeToSpeculate;
934   if (ScalarIntrID)
935     SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
936                           .hasFnAttr(Attribute::AttrKind::Speculatable);
937   else
938     SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
939         *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
940   if (!SafeToSpeculate &&
941       !isKnownNonZero(EVL, SimplifyQuery(*DL, &DT, &AC, &VPI)))
942     return false;
943 
944   Value *ScalarVal =
945       ScalarIntrID
946           ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
947                                     {ScalarOp0, ScalarOp1})
948           : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
949                                 ScalarOp0, ScalarOp1);
950 
951   replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
952   return true;
953 }
954 
955 /// Match a vector binop or compare instruction with at least one inserted
956 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
957 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
958   CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE;
959   Value *Ins0, *Ins1;
960   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
961       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
962     return false;
963 
964   // Do not convert the vector condition of a vector select into a scalar
965   // condition. That may cause problems for codegen because of differences in
966   // boolean formats and register-file transfers.
967   // TODO: Can we account for that in the cost model?
968   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
969   if (IsCmp)
970     for (User *U : I.users())
971       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
972         return false;
973 
974   // Match against one or both scalar values being inserted into constant
975   // vectors:
976   // vec_op VecC0, (inselt VecC1, V1, Index)
977   // vec_op (inselt VecC0, V0, Index), VecC1
978   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
979   // TODO: Deal with mismatched index constants and variable indexes?
980   Constant *VecC0 = nullptr, *VecC1 = nullptr;
981   Value *V0 = nullptr, *V1 = nullptr;
982   uint64_t Index0 = 0, Index1 = 0;
983   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
984                                m_ConstantInt(Index0))) &&
985       !match(Ins0, m_Constant(VecC0)))
986     return false;
987   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
988                                m_ConstantInt(Index1))) &&
989       !match(Ins1, m_Constant(VecC1)))
990     return false;
991 
992   bool IsConst0 = !V0;
993   bool IsConst1 = !V1;
994   if (IsConst0 && IsConst1)
995     return false;
996   if (!IsConst0 && !IsConst1 && Index0 != Index1)
997     return false;
998 
999   auto *VecTy0 = cast<VectorType>(Ins0->getType());
1000   auto *VecTy1 = cast<VectorType>(Ins1->getType());
1001   if (VecTy0->getElementCount().getKnownMinValue() <= Index0 ||
1002       VecTy1->getElementCount().getKnownMinValue() <= Index1)
1003     return false;
1004 
1005   // Bail for single insertion if it is a load.
1006   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
1007   auto *I0 = dyn_cast_or_null<Instruction>(V0);
1008   auto *I1 = dyn_cast_or_null<Instruction>(V1);
1009   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
1010       (IsConst1 && I0 && I0->mayReadFromMemory()))
1011     return false;
1012 
1013   uint64_t Index = IsConst0 ? Index1 : Index0;
1014   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
1015   Type *VecTy = I.getType();
1016   assert(VecTy->isVectorTy() &&
1017          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
1018          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
1019           ScalarTy->isPointerTy()) &&
1020          "Unexpected types for insert element into binop or cmp");
1021 
1022   unsigned Opcode = I.getOpcode();
1023   InstructionCost ScalarOpCost, VectorOpCost;
1024   if (IsCmp) {
1025     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
1026     ScalarOpCost = TTI.getCmpSelInstrCost(
1027         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
1028     VectorOpCost = TTI.getCmpSelInstrCost(
1029         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
1030   } else {
1031     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
1032     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
1033   }
1034 
1035   // Get cost estimate for the insert element. This cost will factor into
1036   // both sequences.
1037   InstructionCost InsertCost = TTI.getVectorInstrCost(
1038       Instruction::InsertElement, VecTy, CostKind, Index);
1039   InstructionCost OldCost =
1040       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
1041   InstructionCost NewCost = ScalarOpCost + InsertCost +
1042                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
1043                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
1044 
1045   // We want to scalarize unless the vector variant actually has lower cost.
1046   if (OldCost < NewCost || !NewCost.isValid())
1047     return false;
1048 
1049   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
1050   // inselt NewVecC, (scalar_op V0, V1), Index
1051   if (IsCmp)
1052     ++NumScalarCmp;
1053   else
1054     ++NumScalarBO;
1055 
1056   // For constant cases, extract the scalar element, this should constant fold.
1057   if (IsConst0)
1058     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
1059   if (IsConst1)
1060     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
1061 
1062   Value *Scalar =
1063       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
1064             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
1065 
1066   Scalar->setName(I.getName() + ".scalar");
1067 
1068   // All IR flags are safe to back-propagate. There is no potential for extra
1069   // poison to be created by the scalar instruction.
1070   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
1071     ScalarInst->copyIRFlags(&I);
1072 
1073   // Fold the vector constants in the original vectors into a new base vector.
1074   Value *NewVecC =
1075       IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
1076             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
1077   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
1078   replaceValue(I, *Insert);
1079   return true;
1080 }
1081 
1082 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
1083 /// a vector into vector operations followed by extract. Note: The SLP pass
1084 /// may miss this pattern because of implementation problems.
1085 bool VectorCombine::foldExtractedCmps(Instruction &I) {
1086   auto *BI = dyn_cast<BinaryOperator>(&I);
1087 
1088   // We are looking for a scalar binop of booleans.
1089   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
1090   if (!BI || !I.getType()->isIntegerTy(1))
1091     return false;
1092 
1093   // The compare predicates should match, and each compare should have a
1094   // constant operand.
1095   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
1096   Instruction *I0, *I1;
1097   Constant *C0, *C1;
1098   CmpPredicate P0, P1;
1099   // FIXME: Use CmpPredicate::getMatching here.
1100   if (!match(B0, m_Cmp(P0, m_Instruction(I0), m_Constant(C0))) ||
1101       !match(B1, m_Cmp(P1, m_Instruction(I1), m_Constant(C1))) ||
1102       P0 != static_cast<CmpInst::Predicate>(P1))
1103     return false;
1104 
1105   // The compare operands must be extracts of the same vector with constant
1106   // extract indexes.
1107   Value *X;
1108   uint64_t Index0, Index1;
1109   if (!match(I0, m_ExtractElt(m_Value(X), m_ConstantInt(Index0))) ||
1110       !match(I1, m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))
1111     return false;
1112 
1113   auto *Ext0 = cast<ExtractElementInst>(I0);
1114   auto *Ext1 = cast<ExtractElementInst>(I1);
1115   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1, CostKind);
1116   if (!ConvertToShuf)
1117     return false;
1118   assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1119          "Unknown ExtractElementInst");
1120 
1121   // The original scalar pattern is:
1122   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1123   CmpInst::Predicate Pred = P0;
1124   unsigned CmpOpcode =
1125       CmpInst::isFPPredicate(Pred) ? Instruction::FCmp : Instruction::ICmp;
1126   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1127   if (!VecTy)
1128     return false;
1129 
1130   InstructionCost Ext0Cost =
1131       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1132   InstructionCost Ext1Cost =
1133       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1134   InstructionCost CmpCost = TTI.getCmpSelInstrCost(
1135       CmpOpcode, I0->getType(), CmpInst::makeCmpResultType(I0->getType()), Pred,
1136       CostKind);
1137 
1138   InstructionCost OldCost =
1139       Ext0Cost + Ext1Cost + CmpCost * 2 +
1140       TTI.getArithmeticInstrCost(I.getOpcode(), I.getType(), CostKind);
1141 
1142   // The proposed vector pattern is:
1143   // vcmp = cmp Pred X, VecC
1144   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1145   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1146   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1147   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1148   InstructionCost NewCost = TTI.getCmpSelInstrCost(
1149       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred,
1150       CostKind);
1151   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1152   ShufMask[CheapIndex] = ExpensiveIndex;
1153   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
1154                                 ShufMask, CostKind);
1155   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy, CostKind);
1156   NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1157   NewCost += Ext0->hasOneUse() ? 0 : Ext0Cost;
1158   NewCost += Ext1->hasOneUse() ? 0 : Ext1Cost;
1159 
1160   // Aggressively form vector ops if the cost is equal because the transform
1161   // may enable further optimization.
1162   // Codegen can reverse this transform (scalarize) if it was not profitable.
1163   if (OldCost < NewCost || !NewCost.isValid())
1164     return false;
1165 
1166   // Create a vector constant from the 2 scalar constants.
1167   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1168                                    PoisonValue::get(VecTy->getElementType()));
1169   CmpC[Index0] = C0;
1170   CmpC[Index1] = C1;
1171   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1172   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1173   Value *LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1174   Value *RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1175   Value *VecLogic = Builder.CreateBinOp(BI->getOpcode(), LHS, RHS);
1176   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1177   replaceValue(I, *NewExt);
1178   ++NumVecCmpBO;
1179   return true;
1180 }
1181 
1182 // Check if memory loc modified between two instrs in the same BB
1183 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
1184                                  BasicBlock::iterator End,
1185                                  const MemoryLocation &Loc, AAResults &AA) {
1186   unsigned NumScanned = 0;
1187   return std::any_of(Begin, End, [&](const Instruction &Instr) {
1188     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1189            ++NumScanned > MaxInstrsToScan;
1190   });
1191 }
1192 
1193 namespace {
1194 /// Helper class to indicate whether a vector index can be safely scalarized and
1195 /// if a freeze needs to be inserted.
1196 class ScalarizationResult {
1197   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1198 
1199   StatusTy Status;
1200   Value *ToFreeze;
1201 
1202   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1203       : Status(Status), ToFreeze(ToFreeze) {}
1204 
1205 public:
1206   ScalarizationResult(const ScalarizationResult &Other) = default;
1207   ~ScalarizationResult() {
1208     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1209   }
1210 
1211   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
1212   static ScalarizationResult safe() { return {StatusTy::Safe}; }
1213   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1214     return {StatusTy::SafeWithFreeze, ToFreeze};
1215   }
1216 
1217   /// Returns true if the index can be scalarize without requiring a freeze.
1218   bool isSafe() const { return Status == StatusTy::Safe; }
1219   /// Returns true if the index cannot be scalarized.
1220   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1221   /// Returns true if the index can be scalarize, but requires inserting a
1222   /// freeze.
1223   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1224 
1225   /// Reset the state of Unsafe and clear ToFreze if set.
1226   void discard() {
1227     ToFreeze = nullptr;
1228     Status = StatusTy::Unsafe;
1229   }
1230 
1231   /// Freeze the ToFreeze and update the use in \p User to use it.
1232   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1233     assert(isSafeWithFreeze() &&
1234            "should only be used when freezing is required");
1235     assert(is_contained(ToFreeze->users(), &UserI) &&
1236            "UserI must be a user of ToFreeze");
1237     IRBuilder<>::InsertPointGuard Guard(Builder);
1238     Builder.SetInsertPoint(cast<Instruction>(&UserI));
1239     Value *Frozen =
1240         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1241     for (Use &U : make_early_inc_range((UserI.operands())))
1242       if (U.get() == ToFreeze)
1243         U.set(Frozen);
1244 
1245     ToFreeze = nullptr;
1246   }
1247 };
1248 } // namespace
1249 
1250 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1251 /// Idx. \p Idx must access a valid vector element.
1252 static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1253                                               Instruction *CtxI,
1254                                               AssumptionCache &AC,
1255                                               const DominatorTree &DT) {
1256   // We do checks for both fixed vector types and scalable vector types.
1257   // This is the number of elements of fixed vector types,
1258   // or the minimum number of elements of scalable vector types.
1259   uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1260 
1261   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1262     if (C->getValue().ult(NumElements))
1263       return ScalarizationResult::safe();
1264     return ScalarizationResult::unsafe();
1265   }
1266 
1267   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1268   APInt Zero(IntWidth, 0);
1269   APInt MaxElts(IntWidth, NumElements);
1270   ConstantRange ValidIndices(Zero, MaxElts);
1271   ConstantRange IdxRange(IntWidth, true);
1272 
1273   if (isGuaranteedNotToBePoison(Idx, &AC)) {
1274     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1275                                                    true, &AC, CtxI, &DT)))
1276       return ScalarizationResult::safe();
1277     return ScalarizationResult::unsafe();
1278   }
1279 
1280   // If the index may be poison, check if we can insert a freeze before the
1281   // range of the index is restricted.
1282   Value *IdxBase;
1283   ConstantInt *CI;
1284   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1285     IdxRange = IdxRange.binaryAnd(CI->getValue());
1286   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1287     IdxRange = IdxRange.urem(CI->getValue());
1288   }
1289 
1290   if (ValidIndices.contains(IdxRange))
1291     return ScalarizationResult::safeWithFreeze(IdxBase);
1292   return ScalarizationResult::unsafe();
1293 }
1294 
1295 /// The memory operation on a vector of \p ScalarType had alignment of
1296 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1297 /// alignment that will be valid for the memory operation on a single scalar
1298 /// element of the same type with index \p Idx.
1299 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
1300                                                 Type *ScalarType, Value *Idx,
1301                                                 const DataLayout &DL) {
1302   if (auto *C = dyn_cast<ConstantInt>(Idx))
1303     return commonAlignment(VectorAlignment,
1304                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1305   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1306 }
1307 
1308 // Combine patterns like:
1309 //   %0 = load <4 x i32>, <4 x i32>* %a
1310 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1311 //   store <4 x i32> %1, <4 x i32>* %a
1312 // to:
1313 //   %0 = bitcast <4 x i32>* %a to i32*
1314 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1315 //   store i32 %b, i32* %1
1316 bool VectorCombine::foldSingleElementStore(Instruction &I) {
1317   auto *SI = cast<StoreInst>(&I);
1318   if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1319     return false;
1320 
1321   // TODO: Combine more complicated patterns (multiple insert) by referencing
1322   // TargetTransformInfo.
1323   Instruction *Source;
1324   Value *NewElement;
1325   Value *Idx;
1326   if (!match(SI->getValueOperand(),
1327              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1328                          m_Value(Idx))))
1329     return false;
1330 
1331   if (auto *Load = dyn_cast<LoadInst>(Source)) {
1332     auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1333     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1334     // Don't optimize for atomic/volatile load or store. Ensure memory is not
1335     // modified between, vector type matches store size, and index is inbounds.
1336     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1337         !DL->typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1338         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1339       return false;
1340 
1341     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1342     if (ScalarizableIdx.isUnsafe() ||
1343         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1344                              MemoryLocation::get(SI), AA))
1345       return false;
1346 
1347     // Ensure we add the load back to the worklist BEFORE its users so they can
1348     // erased in the correct order.
1349     Worklist.push(Load);
1350 
1351     if (ScalarizableIdx.isSafeWithFreeze())
1352       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1353     Value *GEP = Builder.CreateInBoundsGEP(
1354         SI->getValueOperand()->getType(), SI->getPointerOperand(),
1355         {ConstantInt::get(Idx->getType(), 0), Idx});
1356     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1357     NSI->copyMetadata(*SI);
1358     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1359         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1360         *DL);
1361     NSI->setAlignment(ScalarOpAlignment);
1362     replaceValue(I, *NSI);
1363     eraseInstruction(I);
1364     return true;
1365   }
1366 
1367   return false;
1368 }
1369 
1370 /// Try to scalarize vector loads feeding extractelement instructions.
1371 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1372   Value *Ptr;
1373   if (!match(&I, m_Load(m_Value(Ptr))))
1374     return false;
1375 
1376   auto *LI = cast<LoadInst>(&I);
1377   auto *VecTy = cast<VectorType>(LI->getType());
1378   if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1379     return false;
1380 
1381   InstructionCost OriginalCost =
1382       TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1383                           LI->getPointerAddressSpace(), CostKind);
1384   InstructionCost ScalarizedCost = 0;
1385 
1386   Instruction *LastCheckedInst = LI;
1387   unsigned NumInstChecked = 0;
1388   DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1389   auto FailureGuard = make_scope_exit([&]() {
1390     // If the transform is aborted, discard the ScalarizationResults.
1391     for (auto &Pair : NeedFreeze)
1392       Pair.second.discard();
1393   });
1394 
1395   // Check if all users of the load are extracts with no memory modifications
1396   // between the load and the extract. Compute the cost of both the original
1397   // code and the scalarized version.
1398   for (User *U : LI->users()) {
1399     auto *UI = dyn_cast<ExtractElementInst>(U);
1400     if (!UI || UI->getParent() != LI->getParent())
1401       return false;
1402 
1403     // Check if any instruction between the load and the extract may modify
1404     // memory.
1405     if (LastCheckedInst->comesBefore(UI)) {
1406       for (Instruction &I :
1407            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1408         // Bail out if we reached the check limit or the instruction may write
1409         // to memory.
1410         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1411           return false;
1412         NumInstChecked++;
1413       }
1414       LastCheckedInst = UI;
1415     }
1416 
1417     auto ScalarIdx =
1418         canScalarizeAccess(VecTy, UI->getIndexOperand(), LI, AC, DT);
1419     if (ScalarIdx.isUnsafe())
1420       return false;
1421     if (ScalarIdx.isSafeWithFreeze()) {
1422       NeedFreeze.try_emplace(UI, ScalarIdx);
1423       ScalarIdx.discard();
1424     }
1425 
1426     auto *Index = dyn_cast<ConstantInt>(UI->getIndexOperand());
1427     OriginalCost +=
1428         TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1429                                Index ? Index->getZExtValue() : -1);
1430     ScalarizedCost +=
1431         TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1432                             Align(1), LI->getPointerAddressSpace(), CostKind);
1433     ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1434   }
1435 
1436   if (ScalarizedCost >= OriginalCost)
1437     return false;
1438 
1439   // Ensure we add the load back to the worklist BEFORE its users so they can
1440   // erased in the correct order.
1441   Worklist.push(LI);
1442 
1443   // Replace extracts with narrow scalar loads.
1444   for (User *U : LI->users()) {
1445     auto *EI = cast<ExtractElementInst>(U);
1446     Value *Idx = EI->getIndexOperand();
1447 
1448     // Insert 'freeze' for poison indexes.
1449     auto It = NeedFreeze.find(EI);
1450     if (It != NeedFreeze.end())
1451       It->second.freeze(Builder, *cast<Instruction>(Idx));
1452 
1453     Builder.SetInsertPoint(EI);
1454     Value *GEP =
1455         Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1456     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1457         VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1458 
1459     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1460         LI->getAlign(), VecTy->getElementType(), Idx, *DL);
1461     NewLoad->setAlignment(ScalarOpAlignment);
1462 
1463     replaceValue(*EI, *NewLoad);
1464   }
1465 
1466   FailureGuard.release();
1467   return true;
1468 }
1469 
1470 /// Try to fold "(or (zext (bitcast X)), (shl (zext (bitcast Y)), C))"
1471 /// to "(bitcast (concat X, Y))"
1472 /// where X/Y are bitcasted from i1 mask vectors.
1473 bool VectorCombine::foldConcatOfBoolMasks(Instruction &I) {
1474   Type *Ty = I.getType();
1475   if (!Ty->isIntegerTy())
1476     return false;
1477 
1478   // TODO: Add big endian test coverage
1479   if (DL->isBigEndian())
1480     return false;
1481 
1482   // Restrict to disjoint cases so the mask vectors aren't overlapping.
1483   Instruction *X, *Y;
1484   if (!match(&I, m_DisjointOr(m_Instruction(X), m_Instruction(Y))))
1485     return false;
1486 
1487   // Allow both sources to contain shl, to handle more generic pattern:
1488   // "(or (shl (zext (bitcast X)), C1), (shl (zext (bitcast Y)), C2))"
1489   Value *SrcX;
1490   uint64_t ShAmtX = 0;
1491   if (!match(X, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX)))))) &&
1492       !match(X, m_OneUse(
1493                     m_Shl(m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX))))),
1494                           m_ConstantInt(ShAmtX)))))
1495     return false;
1496 
1497   Value *SrcY;
1498   uint64_t ShAmtY = 0;
1499   if (!match(Y, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY)))))) &&
1500       !match(Y, m_OneUse(
1501                     m_Shl(m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY))))),
1502                           m_ConstantInt(ShAmtY)))))
1503     return false;
1504 
1505   // Canonicalize larger shift to the RHS.
1506   if (ShAmtX > ShAmtY) {
1507     std::swap(X, Y);
1508     std::swap(SrcX, SrcY);
1509     std::swap(ShAmtX, ShAmtY);
1510   }
1511 
1512   // Ensure both sources are matching vXi1 bool mask types, and that the shift
1513   // difference is the mask width so they can be easily concatenated together.
1514   uint64_t ShAmtDiff = ShAmtY - ShAmtX;
1515   unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
1516   unsigned BitWidth = Ty->getPrimitiveSizeInBits();
1517   auto *MaskTy = dyn_cast<FixedVectorType>(SrcX->getType());
1518   if (!MaskTy || SrcX->getType() != SrcY->getType() ||
1519       !MaskTy->getElementType()->isIntegerTy(1) ||
1520       MaskTy->getNumElements() != ShAmtDiff ||
1521       MaskTy->getNumElements() > (BitWidth / 2))
1522     return false;
1523 
1524   auto *ConcatTy = FixedVectorType::getDoubleElementsVectorType(MaskTy);
1525   auto *ConcatIntTy =
1526       Type::getIntNTy(Ty->getContext(), ConcatTy->getNumElements());
1527   auto *MaskIntTy = Type::getIntNTy(Ty->getContext(), ShAmtDiff);
1528 
1529   SmallVector<int, 32> ConcatMask(ConcatTy->getNumElements());
1530   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
1531 
1532   // TODO: Is it worth supporting multi use cases?
1533   InstructionCost OldCost = 0;
1534   OldCost += TTI.getArithmeticInstrCost(Instruction::Or, Ty, CostKind);
1535   OldCost +=
1536       NumSHL * TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1537   OldCost += 2 * TTI.getCastInstrCost(Instruction::ZExt, Ty, MaskIntTy,
1538                                       TTI::CastContextHint::None, CostKind);
1539   OldCost += 2 * TTI.getCastInstrCost(Instruction::BitCast, MaskIntTy, MaskTy,
1540                                       TTI::CastContextHint::None, CostKind);
1541 
1542   InstructionCost NewCost = 0;
1543   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, MaskTy,
1544                                 ConcatMask, CostKind);
1545   NewCost += TTI.getCastInstrCost(Instruction::BitCast, ConcatIntTy, ConcatTy,
1546                                   TTI::CastContextHint::None, CostKind);
1547   if (Ty != ConcatIntTy)
1548     NewCost += TTI.getCastInstrCost(Instruction::ZExt, Ty, ConcatIntTy,
1549                                     TTI::CastContextHint::None, CostKind);
1550   if (ShAmtX > 0)
1551     NewCost += TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1552 
1553   LLVM_DEBUG(dbgs() << "Found a concatenation of bitcasted bool masks: " << I
1554                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1555                     << "\n");
1556 
1557   if (NewCost > OldCost)
1558     return false;
1559 
1560   // Build bool mask concatenation, bitcast back to scalar integer, and perform
1561   // any residual zero-extension or shifting.
1562   Value *Concat = Builder.CreateShuffleVector(SrcX, SrcY, ConcatMask);
1563   Worklist.pushValue(Concat);
1564 
1565   Value *Result = Builder.CreateBitCast(Concat, ConcatIntTy);
1566 
1567   if (Ty != ConcatIntTy) {
1568     Worklist.pushValue(Result);
1569     Result = Builder.CreateZExt(Result, Ty);
1570   }
1571 
1572   if (ShAmtX > 0) {
1573     Worklist.pushValue(Result);
1574     Result = Builder.CreateShl(Result, ShAmtX);
1575   }
1576 
1577   replaceValue(I, *Result);
1578   return true;
1579 }
1580 
1581 /// Try to convert "shuffle (binop (shuffle, shuffle)), undef"
1582 ///           -->  "binop (shuffle), (shuffle)".
1583 bool VectorCombine::foldPermuteOfBinops(Instruction &I) {
1584   BinaryOperator *BinOp;
1585   ArrayRef<int> OuterMask;
1586   if (!match(&I,
1587              m_Shuffle(m_OneUse(m_BinOp(BinOp)), m_Undef(), m_Mask(OuterMask))))
1588     return false;
1589 
1590   // Don't introduce poison into div/rem.
1591   if (BinOp->isIntDivRem() && llvm::is_contained(OuterMask, PoisonMaskElem))
1592     return false;
1593 
1594   Value *Op00, *Op01;
1595   ArrayRef<int> Mask0;
1596   if (!match(BinOp->getOperand(0),
1597              m_OneUse(m_Shuffle(m_Value(Op00), m_Value(Op01), m_Mask(Mask0)))))
1598     return false;
1599 
1600   Value *Op10, *Op11;
1601   ArrayRef<int> Mask1;
1602   if (!match(BinOp->getOperand(1),
1603              m_OneUse(m_Shuffle(m_Value(Op10), m_Value(Op11), m_Mask(Mask1)))))
1604     return false;
1605 
1606   Instruction::BinaryOps Opcode = BinOp->getOpcode();
1607   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1608   auto *BinOpTy = dyn_cast<FixedVectorType>(BinOp->getType());
1609   auto *Op0Ty = dyn_cast<FixedVectorType>(Op00->getType());
1610   auto *Op1Ty = dyn_cast<FixedVectorType>(Op10->getType());
1611   if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
1612     return false;
1613 
1614   unsigned NumSrcElts = BinOpTy->getNumElements();
1615 
1616   // Don't accept shuffles that reference the second operand in
1617   // div/rem or if its an undef arg.
1618   if ((BinOp->isIntDivRem() || !isa<PoisonValue>(I.getOperand(1))) &&
1619       any_of(OuterMask, [NumSrcElts](int M) { return M >= (int)NumSrcElts; }))
1620     return false;
1621 
1622   // Merge outer / inner shuffles.
1623   SmallVector<int> NewMask0, NewMask1;
1624   for (int M : OuterMask) {
1625     if (M < 0 || M >= (int)NumSrcElts) {
1626       NewMask0.push_back(PoisonMaskElem);
1627       NewMask1.push_back(PoisonMaskElem);
1628     } else {
1629       NewMask0.push_back(Mask0[M]);
1630       NewMask1.push_back(Mask1[M]);
1631     }
1632   }
1633 
1634   // Try to merge shuffles across the binop if the new shuffles are not costly.
1635   InstructionCost OldCost =
1636       TTI.getArithmeticInstrCost(Opcode, BinOpTy, CostKind) +
1637       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, BinOpTy,
1638                          OuterMask, CostKind, 0, nullptr, {BinOp}, &I) +
1639       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op0Ty, Mask0,
1640                          CostKind, 0, nullptr, {Op00, Op01},
1641                          cast<Instruction>(BinOp->getOperand(0))) +
1642       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op1Ty, Mask1,
1643                          CostKind, 0, nullptr, {Op10, Op11},
1644                          cast<Instruction>(BinOp->getOperand(1)));
1645 
1646   InstructionCost NewCost =
1647       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op0Ty, NewMask0,
1648                          CostKind, 0, nullptr, {Op00, Op01}) +
1649       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op1Ty, NewMask1,
1650                          CostKind, 0, nullptr, {Op10, Op11}) +
1651       TTI.getArithmeticInstrCost(Opcode, ShuffleDstTy, CostKind);
1652 
1653   LLVM_DEBUG(dbgs() << "Found a shuffle feeding a shuffled binop: " << I
1654                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1655                     << "\n");
1656 
1657   // If costs are equal, still fold as we reduce instruction count.
1658   if (NewCost > OldCost)
1659     return false;
1660 
1661   Value *Shuf0 = Builder.CreateShuffleVector(Op00, Op01, NewMask0);
1662   Value *Shuf1 = Builder.CreateShuffleVector(Op10, Op11, NewMask1);
1663   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1664 
1665   // Intersect flags from the old binops.
1666   if (auto *NewInst = dyn_cast<Instruction>(NewBO))
1667     NewInst->copyIRFlags(BinOp);
1668 
1669   Worklist.pushValue(Shuf0);
1670   Worklist.pushValue(Shuf1);
1671   replaceValue(I, *NewBO);
1672   return true;
1673 }
1674 
1675 /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)".
1676 /// Try to convert "shuffle (cmpop), (cmpop)" into "cmpop (shuffle), (shuffle)".
1677 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1678   ArrayRef<int> OldMask;
1679   Instruction *LHS, *RHS;
1680   if (!match(&I, m_Shuffle(m_OneUse(m_Instruction(LHS)),
1681                            m_OneUse(m_Instruction(RHS)), m_Mask(OldMask))))
1682     return false;
1683 
1684   // TODO: Add support for addlike etc.
1685   if (LHS->getOpcode() != RHS->getOpcode())
1686     return false;
1687 
1688   Value *X, *Y, *Z, *W;
1689   bool IsCommutative = false;
1690   CmpPredicate PredLHS = CmpInst::BAD_ICMP_PREDICATE;
1691   CmpPredicate PredRHS = CmpInst::BAD_ICMP_PREDICATE;
1692   if (match(LHS, m_BinOp(m_Value(X), m_Value(Y))) &&
1693       match(RHS, m_BinOp(m_Value(Z), m_Value(W)))) {
1694     auto *BO = cast<BinaryOperator>(LHS);
1695     // Don't introduce poison into div/rem.
1696     if (llvm::is_contained(OldMask, PoisonMaskElem) && BO->isIntDivRem())
1697       return false;
1698     IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
1699   } else if (match(LHS, m_Cmp(PredLHS, m_Value(X), m_Value(Y))) &&
1700              match(RHS, m_Cmp(PredRHS, m_Value(Z), m_Value(W))) &&
1701              (CmpInst::Predicate)PredLHS == (CmpInst::Predicate)PredRHS) {
1702     IsCommutative = cast<CmpInst>(LHS)->isCommutative();
1703   } else
1704     return false;
1705 
1706   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1707   auto *BinResTy = dyn_cast<FixedVectorType>(LHS->getType());
1708   auto *BinOpTy = dyn_cast<FixedVectorType>(X->getType());
1709   if (!ShuffleDstTy || !BinResTy || !BinOpTy || X->getType() != Z->getType())
1710     return false;
1711 
1712   unsigned NumSrcElts = BinOpTy->getNumElements();
1713 
1714   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1715   if (IsCommutative && X != Z && Y != W && (X == W || Y == Z))
1716     std::swap(X, Y);
1717 
1718   auto ConvertToUnary = [NumSrcElts](int &M) {
1719     if (M >= (int)NumSrcElts)
1720       M -= NumSrcElts;
1721   };
1722 
1723   SmallVector<int> NewMask0(OldMask);
1724   TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc;
1725   if (X == Z) {
1726     llvm::for_each(NewMask0, ConvertToUnary);
1727     SK0 = TargetTransformInfo::SK_PermuteSingleSrc;
1728     Z = PoisonValue::get(BinOpTy);
1729   }
1730 
1731   SmallVector<int> NewMask1(OldMask);
1732   TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc;
1733   if (Y == W) {
1734     llvm::for_each(NewMask1, ConvertToUnary);
1735     SK1 = TargetTransformInfo::SK_PermuteSingleSrc;
1736     W = PoisonValue::get(BinOpTy);
1737   }
1738 
1739   // Try to replace a binop with a shuffle if the shuffle is not costly.
1740   InstructionCost OldCost =
1741       TTI.getInstructionCost(LHS, CostKind) +
1742       TTI.getInstructionCost(RHS, CostKind) +
1743       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, BinResTy,
1744                          OldMask, CostKind, 0, nullptr, {LHS, RHS}, &I);
1745 
1746   // Handle shuffle(binop(shuffle(x),y),binop(z,shuffle(w))) style patterns
1747   // where one use shuffles have gotten split across the binop/cmp. These
1748   // often allow a major reduction in total cost that wouldn't happen as
1749   // individual folds.
1750   auto MergeInner = [&](Value *&Op, int Offset, MutableArrayRef<int> Mask,
1751                         TTI::TargetCostKind CostKind) -> bool {
1752     Value *InnerOp;
1753     ArrayRef<int> InnerMask;
1754     if (match(Op, m_OneUse(m_Shuffle(m_Value(InnerOp), m_Undef(),
1755                                      m_Mask(InnerMask)))) &&
1756         InnerOp->getType() == Op->getType() &&
1757         all_of(InnerMask,
1758                [NumSrcElts](int M) { return M < (int)NumSrcElts; })) {
1759       for (int &M : Mask)
1760         if (Offset <= M && M < (int)(Offset + NumSrcElts)) {
1761           M = InnerMask[M - Offset];
1762           M = 0 <= M ? M + Offset : M;
1763         }
1764       OldCost += TTI.getInstructionCost(cast<Instruction>(Op), CostKind);
1765       Op = InnerOp;
1766       return true;
1767     }
1768     return false;
1769   };
1770   bool ReducedInstCount = false;
1771   ReducedInstCount |= MergeInner(X, 0, NewMask0, CostKind);
1772   ReducedInstCount |= MergeInner(Y, 0, NewMask1, CostKind);
1773   ReducedInstCount |= MergeInner(Z, NumSrcElts, NewMask0, CostKind);
1774   ReducedInstCount |= MergeInner(W, NumSrcElts, NewMask1, CostKind);
1775 
1776   InstructionCost NewCost =
1777       TTI.getShuffleCost(SK0, BinOpTy, NewMask0, CostKind, 0, nullptr, {X, Z}) +
1778       TTI.getShuffleCost(SK1, BinOpTy, NewMask1, CostKind, 0, nullptr, {Y, W});
1779 
1780   if (PredLHS == CmpInst::BAD_ICMP_PREDICATE) {
1781     NewCost +=
1782         TTI.getArithmeticInstrCost(LHS->getOpcode(), ShuffleDstTy, CostKind);
1783   } else {
1784     auto *ShuffleCmpTy =
1785         FixedVectorType::get(BinOpTy->getElementType(), ShuffleDstTy);
1786     NewCost += TTI.getCmpSelInstrCost(LHS->getOpcode(), ShuffleCmpTy,
1787                                       ShuffleDstTy, PredLHS, CostKind);
1788   }
1789 
1790   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I
1791                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1792                     << "\n");
1793 
1794   // If either shuffle will constant fold away, then fold for the same cost as
1795   // we will reduce the instruction count.
1796   ReducedInstCount |= (isa<Constant>(X) && isa<Constant>(Z)) ||
1797                       (isa<Constant>(Y) && isa<Constant>(W));
1798   if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
1799     return false;
1800 
1801   Value *Shuf0 = Builder.CreateShuffleVector(X, Z, NewMask0);
1802   Value *Shuf1 = Builder.CreateShuffleVector(Y, W, NewMask1);
1803   Value *NewBO = PredLHS == CmpInst::BAD_ICMP_PREDICATE
1804                      ? Builder.CreateBinOp(
1805                            cast<BinaryOperator>(LHS)->getOpcode(), Shuf0, Shuf1)
1806                      : Builder.CreateCmp(PredLHS, Shuf0, Shuf1);
1807 
1808   // Intersect flags from the old binops.
1809   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1810     NewInst->copyIRFlags(LHS);
1811     NewInst->andIRFlags(RHS);
1812   }
1813 
1814   Worklist.pushValue(Shuf0);
1815   Worklist.pushValue(Shuf1);
1816   replaceValue(I, *NewBO);
1817   return true;
1818 }
1819 
1820 /// Try to convert "shuffle (castop), (castop)" with a shared castop operand
1821 /// into "castop (shuffle)".
1822 bool VectorCombine::foldShuffleOfCastops(Instruction &I) {
1823   Value *V0, *V1;
1824   ArrayRef<int> OldMask;
1825   if (!match(&I, m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(OldMask))))
1826     return false;
1827 
1828   auto *C0 = dyn_cast<CastInst>(V0);
1829   auto *C1 = dyn_cast<CastInst>(V1);
1830   if (!C0 || !C1)
1831     return false;
1832 
1833   Instruction::CastOps Opcode = C0->getOpcode();
1834   if (C0->getSrcTy() != C1->getSrcTy())
1835     return false;
1836 
1837   // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds.
1838   if (Opcode != C1->getOpcode()) {
1839     if (match(C0, m_SExtLike(m_Value())) && match(C1, m_SExtLike(m_Value())))
1840       Opcode = Instruction::SExt;
1841     else
1842       return false;
1843   }
1844 
1845   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1846   auto *CastDstTy = dyn_cast<FixedVectorType>(C0->getDestTy());
1847   auto *CastSrcTy = dyn_cast<FixedVectorType>(C0->getSrcTy());
1848   if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
1849     return false;
1850 
1851   unsigned NumSrcElts = CastSrcTy->getNumElements();
1852   unsigned NumDstElts = CastDstTy->getNumElements();
1853   assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
1854          "Only bitcasts expected to alter src/dst element counts");
1855 
1856   // Check for bitcasting of unscalable vector types.
1857   // e.g. <32 x i40> -> <40 x i32>
1858   if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
1859       (NumDstElts % NumSrcElts) != 0)
1860     return false;
1861 
1862   SmallVector<int, 16> NewMask;
1863   if (NumSrcElts >= NumDstElts) {
1864     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
1865     // always be expanded to the equivalent form choosing narrower elements.
1866     assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask");
1867     unsigned ScaleFactor = NumSrcElts / NumDstElts;
1868     narrowShuffleMaskElts(ScaleFactor, OldMask, NewMask);
1869   } else {
1870     // The bitcast is from narrow elements to wide elements. The shuffle mask
1871     // must choose consecutive elements to allow casting first.
1872     assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask");
1873     unsigned ScaleFactor = NumDstElts / NumSrcElts;
1874     if (!widenShuffleMaskElts(ScaleFactor, OldMask, NewMask))
1875       return false;
1876   }
1877 
1878   auto *NewShuffleDstTy =
1879       FixedVectorType::get(CastSrcTy->getScalarType(), NewMask.size());
1880 
1881   // Try to replace a castop with a shuffle if the shuffle is not costly.
1882   InstructionCost CostC0 =
1883       TTI.getCastInstrCost(C0->getOpcode(), CastDstTy, CastSrcTy,
1884                            TTI::CastContextHint::None, CostKind);
1885   InstructionCost CostC1 =
1886       TTI.getCastInstrCost(C1->getOpcode(), CastDstTy, CastSrcTy,
1887                            TTI::CastContextHint::None, CostKind);
1888   InstructionCost OldCost = CostC0 + CostC1;
1889   OldCost +=
1890       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, CastDstTy,
1891                          OldMask, CostKind, 0, nullptr, {}, &I);
1892 
1893   InstructionCost NewCost = TTI.getShuffleCost(
1894       TargetTransformInfo::SK_PermuteTwoSrc, CastSrcTy, NewMask, CostKind);
1895   NewCost += TTI.getCastInstrCost(Opcode, ShuffleDstTy, NewShuffleDstTy,
1896                                   TTI::CastContextHint::None, CostKind);
1897   if (!C0->hasOneUse())
1898     NewCost += CostC0;
1899   if (!C1->hasOneUse())
1900     NewCost += CostC1;
1901 
1902   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I
1903                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1904                     << "\n");
1905   if (NewCost > OldCost)
1906     return false;
1907 
1908   Value *Shuf = Builder.CreateShuffleVector(C0->getOperand(0),
1909                                             C1->getOperand(0), NewMask);
1910   Value *Cast = Builder.CreateCast(Opcode, Shuf, ShuffleDstTy);
1911 
1912   // Intersect flags from the old casts.
1913   if (auto *NewInst = dyn_cast<Instruction>(Cast)) {
1914     NewInst->copyIRFlags(C0);
1915     NewInst->andIRFlags(C1);
1916   }
1917 
1918   Worklist.pushValue(Shuf);
1919   replaceValue(I, *Cast);
1920   return true;
1921 }
1922 
1923 /// Try to convert any of:
1924 /// "shuffle (shuffle x, y), (shuffle y, x)"
1925 /// "shuffle (shuffle x, undef), (shuffle y, undef)"
1926 /// "shuffle (shuffle x, undef), y"
1927 /// "shuffle x, (shuffle y, undef)"
1928 /// into "shuffle x, y".
1929 bool VectorCombine::foldShuffleOfShuffles(Instruction &I) {
1930   ArrayRef<int> OuterMask;
1931   Value *OuterV0, *OuterV1;
1932   if (!match(&I,
1933              m_Shuffle(m_Value(OuterV0), m_Value(OuterV1), m_Mask(OuterMask))))
1934     return false;
1935 
1936   ArrayRef<int> InnerMask0, InnerMask1;
1937   Value *X0, *X1, *Y0, *Y1;
1938   bool Match0 =
1939       match(OuterV0, m_Shuffle(m_Value(X0), m_Value(Y0), m_Mask(InnerMask0)));
1940   bool Match1 =
1941       match(OuterV1, m_Shuffle(m_Value(X1), m_Value(Y1), m_Mask(InnerMask1)));
1942   if (!Match0 && !Match1)
1943     return false;
1944 
1945   X0 = Match0 ? X0 : OuterV0;
1946   Y0 = Match0 ? Y0 : OuterV0;
1947   X1 = Match1 ? X1 : OuterV1;
1948   Y1 = Match1 ? Y1 : OuterV1;
1949   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1950   auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(X0->getType());
1951   auto *ShuffleImmTy = dyn_cast<FixedVectorType>(OuterV0->getType());
1952   if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
1953       X0->getType() != X1->getType())
1954     return false;
1955 
1956   unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
1957   unsigned NumImmElts = ShuffleImmTy->getNumElements();
1958 
1959   // Attempt to merge shuffles, matching upto 2 source operands.
1960   // Replace index to a poison arg with PoisonMaskElem.
1961   // Bail if either inner masks reference an undef arg.
1962   SmallVector<int, 16> NewMask(OuterMask);
1963   Value *NewX = nullptr, *NewY = nullptr;
1964   for (int &M : NewMask) {
1965     Value *Src = nullptr;
1966     if (0 <= M && M < (int)NumImmElts) {
1967       Src = OuterV0;
1968       if (Match0) {
1969         M = InnerMask0[M];
1970         Src = M >= (int)NumSrcElts ? Y0 : X0;
1971         M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M;
1972       }
1973     } else if (M >= (int)NumImmElts) {
1974       Src = OuterV1;
1975       M -= NumImmElts;
1976       if (Match1) {
1977         M = InnerMask1[M];
1978         Src = M >= (int)NumSrcElts ? Y1 : X1;
1979         M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M;
1980       }
1981     }
1982     if (Src && M != PoisonMaskElem) {
1983       assert(0 <= M && M < (int)NumSrcElts && "Unexpected shuffle mask index");
1984       if (isa<UndefValue>(Src)) {
1985         // We've referenced an undef element - if its poison, update the shuffle
1986         // mask, else bail.
1987         if (!isa<PoisonValue>(Src))
1988           return false;
1989         M = PoisonMaskElem;
1990         continue;
1991       }
1992       if (!NewX || NewX == Src) {
1993         NewX = Src;
1994         continue;
1995       }
1996       if (!NewY || NewY == Src) {
1997         M += NumSrcElts;
1998         NewY = Src;
1999         continue;
2000       }
2001       return false;
2002     }
2003   }
2004 
2005   if (!NewX)
2006     return PoisonValue::get(ShuffleDstTy);
2007   if (!NewY)
2008     NewY = PoisonValue::get(ShuffleSrcTy);
2009 
2010   // Have we folded to an Identity shuffle?
2011   if (ShuffleVectorInst::isIdentityMask(NewMask, NumSrcElts)) {
2012     replaceValue(I, *NewX);
2013     return true;
2014   }
2015 
2016   // Try to merge the shuffles if the new shuffle is not costly.
2017   InstructionCost InnerCost0 = 0;
2018   if (Match0)
2019     InnerCost0 = TTI.getInstructionCost(cast<Instruction>(OuterV0), CostKind);
2020 
2021   InstructionCost InnerCost1 = 0;
2022   if (Match1)
2023     InnerCost1 = TTI.getInstructionCost(cast<Instruction>(OuterV1), CostKind);
2024 
2025   InstructionCost OuterCost = TTI.getShuffleCost(
2026       TargetTransformInfo::SK_PermuteTwoSrc, ShuffleImmTy, OuterMask, CostKind,
2027       0, nullptr, {OuterV0, OuterV1}, &I);
2028 
2029   InstructionCost OldCost = InnerCost0 + InnerCost1 + OuterCost;
2030 
2031   bool IsUnary = all_of(NewMask, [&](int M) { return M < (int)NumSrcElts; });
2032   TargetTransformInfo::ShuffleKind SK =
2033       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
2034               : TargetTransformInfo::SK_PermuteTwoSrc;
2035   InstructionCost NewCost = TTI.getShuffleCost(
2036       SK, ShuffleSrcTy, NewMask, CostKind, 0, nullptr, {NewX, NewY});
2037   if (!OuterV0->hasOneUse())
2038     NewCost += InnerCost0;
2039   if (!OuterV1->hasOneUse())
2040     NewCost += InnerCost1;
2041 
2042   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I
2043                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
2044                     << "\n");
2045   if (NewCost > OldCost)
2046     return false;
2047 
2048   Value *Shuf = Builder.CreateShuffleVector(NewX, NewY, NewMask);
2049   replaceValue(I, *Shuf);
2050   return true;
2051 }
2052 
2053 /// Try to convert
2054 /// "shuffle (intrinsic), (intrinsic)" into "intrinsic (shuffle), (shuffle)".
2055 bool VectorCombine::foldShuffleOfIntrinsics(Instruction &I) {
2056   Value *V0, *V1;
2057   ArrayRef<int> OldMask;
2058   if (!match(&I, m_Shuffle(m_OneUse(m_Value(V0)), m_OneUse(m_Value(V1)),
2059                            m_Mask(OldMask))))
2060     return false;
2061 
2062   auto *II0 = dyn_cast<IntrinsicInst>(V0);
2063   auto *II1 = dyn_cast<IntrinsicInst>(V1);
2064   if (!II0 || !II1)
2065     return false;
2066 
2067   Intrinsic::ID IID = II0->getIntrinsicID();
2068   if (IID != II1->getIntrinsicID())
2069     return false;
2070 
2071   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
2072   auto *II0Ty = dyn_cast<FixedVectorType>(II0->getType());
2073   if (!ShuffleDstTy || !II0Ty)
2074     return false;
2075 
2076   if (!isTriviallyVectorizable(IID))
2077     return false;
2078 
2079   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2080     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI) &&
2081         II0->getArgOperand(I) != II1->getArgOperand(I))
2082       return false;
2083 
2084   InstructionCost OldCost =
2085       TTI.getIntrinsicInstrCost(IntrinsicCostAttributes(IID, *II0), CostKind) +
2086       TTI.getIntrinsicInstrCost(IntrinsicCostAttributes(IID, *II1), CostKind) +
2087       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, II0Ty, OldMask,
2088                          CostKind, 0, nullptr, {II0, II1}, &I);
2089 
2090   SmallVector<Type *> NewArgsTy;
2091   InstructionCost NewCost = 0;
2092   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2093     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI)) {
2094       NewArgsTy.push_back(II0->getArgOperand(I)->getType());
2095     } else {
2096       auto *VecTy = cast<FixedVectorType>(II0->getArgOperand(I)->getType());
2097       NewArgsTy.push_back(FixedVectorType::get(VecTy->getElementType(),
2098                                                VecTy->getNumElements() * 2));
2099       NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
2100                                     VecTy, OldMask, CostKind);
2101     }
2102   IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
2103   NewCost += TTI.getIntrinsicInstrCost(NewAttr, CostKind);
2104 
2105   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two intrinsics: " << I
2106                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
2107                     << "\n");
2108 
2109   if (NewCost > OldCost)
2110     return false;
2111 
2112   SmallVector<Value *> NewArgs;
2113   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2114     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI)) {
2115       NewArgs.push_back(II0->getArgOperand(I));
2116     } else {
2117       Value *Shuf = Builder.CreateShuffleVector(II0->getArgOperand(I),
2118                                                 II1->getArgOperand(I), OldMask);
2119       NewArgs.push_back(Shuf);
2120       Worklist.pushValue(Shuf);
2121     }
2122   Value *NewIntrinsic = Builder.CreateIntrinsic(ShuffleDstTy, IID, NewArgs);
2123 
2124   // Intersect flags from the old intrinsics.
2125   if (auto *NewInst = dyn_cast<Instruction>(NewIntrinsic)) {
2126     NewInst->copyIRFlags(II0);
2127     NewInst->andIRFlags(II1);
2128   }
2129 
2130   replaceValue(I, *NewIntrinsic);
2131   return true;
2132 }
2133 
2134 using InstLane = std::pair<Use *, int>;
2135 
2136 static InstLane lookThroughShuffles(Use *U, int Lane) {
2137   while (auto *SV = dyn_cast<ShuffleVectorInst>(U->get())) {
2138     unsigned NumElts =
2139         cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements();
2140     int M = SV->getMaskValue(Lane);
2141     if (M < 0)
2142       return {nullptr, PoisonMaskElem};
2143     if (static_cast<unsigned>(M) < NumElts) {
2144       U = &SV->getOperandUse(0);
2145       Lane = M;
2146     } else {
2147       U = &SV->getOperandUse(1);
2148       Lane = M - NumElts;
2149     }
2150   }
2151   return InstLane{U, Lane};
2152 }
2153 
2154 static SmallVector<InstLane>
2155 generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) {
2156   SmallVector<InstLane> NItem;
2157   for (InstLane IL : Item) {
2158     auto [U, Lane] = IL;
2159     InstLane OpLane =
2160         U ? lookThroughShuffles(&cast<Instruction>(U->get())->getOperandUse(Op),
2161                                 Lane)
2162           : InstLane{nullptr, PoisonMaskElem};
2163     NItem.emplace_back(OpLane);
2164   }
2165   return NItem;
2166 }
2167 
2168 /// Detect concat of multiple values into a vector
2169 static bool isFreeConcat(ArrayRef<InstLane> Item, TTI::TargetCostKind CostKind,
2170                          const TargetTransformInfo &TTI) {
2171   auto *Ty = cast<FixedVectorType>(Item.front().first->get()->getType());
2172   unsigned NumElts = Ty->getNumElements();
2173   if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0)
2174     return false;
2175 
2176   // Check that the concat is free, usually meaning that the type will be split
2177   // during legalization.
2178   SmallVector<int, 16> ConcatMask(NumElts * 2);
2179   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2180   if (TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, ConcatMask, CostKind) != 0)
2181     return false;
2182 
2183   unsigned NumSlices = Item.size() / NumElts;
2184   // Currently we generate a tree of shuffles for the concats, which limits us
2185   // to a power2.
2186   if (!isPowerOf2_32(NumSlices))
2187     return false;
2188   for (unsigned Slice = 0; Slice < NumSlices; ++Slice) {
2189     Use *SliceV = Item[Slice * NumElts].first;
2190     if (!SliceV || SliceV->get()->getType() != Ty)
2191       return false;
2192     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2193       auto [V, Lane] = Item[Slice * NumElts + Elt];
2194       if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get())
2195         return false;
2196     }
2197   }
2198   return true;
2199 }
2200 
2201 static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty,
2202                                   const SmallPtrSet<Use *, 4> &IdentityLeafs,
2203                                   const SmallPtrSet<Use *, 4> &SplatLeafs,
2204                                   const SmallPtrSet<Use *, 4> &ConcatLeafs,
2205                                   IRBuilder<> &Builder,
2206                                   const TargetTransformInfo *TTI) {
2207   auto [FrontU, FrontLane] = Item.front();
2208 
2209   if (IdentityLeafs.contains(FrontU)) {
2210     return FrontU->get();
2211   }
2212   if (SplatLeafs.contains(FrontU)) {
2213     SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane);
2214     return Builder.CreateShuffleVector(FrontU->get(), Mask);
2215   }
2216   if (ConcatLeafs.contains(FrontU)) {
2217     unsigned NumElts =
2218         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements();
2219     SmallVector<Value *> Values(Item.size() / NumElts, nullptr);
2220     for (unsigned S = 0; S < Values.size(); ++S)
2221       Values[S] = Item[S * NumElts].first->get();
2222 
2223     while (Values.size() > 1) {
2224       NumElts *= 2;
2225       SmallVector<int, 16> Mask(NumElts, 0);
2226       std::iota(Mask.begin(), Mask.end(), 0);
2227       SmallVector<Value *> NewValues(Values.size() / 2, nullptr);
2228       for (unsigned S = 0; S < NewValues.size(); ++S)
2229         NewValues[S] =
2230             Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
2231       Values = NewValues;
2232     }
2233     return Values[0];
2234   }
2235 
2236   auto *I = cast<Instruction>(FrontU->get());
2237   auto *II = dyn_cast<IntrinsicInst>(I);
2238   unsigned NumOps = I->getNumOperands() - (II ? 1 : 0);
2239   SmallVector<Value *> Ops(NumOps);
2240   for (unsigned Idx = 0; Idx < NumOps; Idx++) {
2241     if (II &&
2242         isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Idx, TTI)) {
2243       Ops[Idx] = II->getOperand(Idx);
2244       continue;
2245     }
2246     Ops[Idx] = generateNewInstTree(generateInstLaneVectorFromOperand(Item, Idx),
2247                                    Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
2248                                    Builder, TTI);
2249   }
2250 
2251   SmallVector<Value *, 8> ValueList;
2252   for (const auto &Lane : Item)
2253     if (Lane.first)
2254       ValueList.push_back(Lane.first->get());
2255 
2256   Type *DstTy =
2257       FixedVectorType::get(I->getType()->getScalarType(), Ty->getNumElements());
2258   if (auto *BI = dyn_cast<BinaryOperator>(I)) {
2259     auto *Value = Builder.CreateBinOp((Instruction::BinaryOps)BI->getOpcode(),
2260                                       Ops[0], Ops[1]);
2261     propagateIRFlags(Value, ValueList);
2262     return Value;
2263   }
2264   if (auto *CI = dyn_cast<CmpInst>(I)) {
2265     auto *Value = Builder.CreateCmp(CI->getPredicate(), Ops[0], Ops[1]);
2266     propagateIRFlags(Value, ValueList);
2267     return Value;
2268   }
2269   if (auto *SI = dyn_cast<SelectInst>(I)) {
2270     auto *Value = Builder.CreateSelect(Ops[0], Ops[1], Ops[2], "", SI);
2271     propagateIRFlags(Value, ValueList);
2272     return Value;
2273   }
2274   if (auto *CI = dyn_cast<CastInst>(I)) {
2275     auto *Value = Builder.CreateCast((Instruction::CastOps)CI->getOpcode(),
2276                                      Ops[0], DstTy);
2277     propagateIRFlags(Value, ValueList);
2278     return Value;
2279   }
2280   if (II) {
2281     auto *Value = Builder.CreateIntrinsic(DstTy, II->getIntrinsicID(), Ops);
2282     propagateIRFlags(Value, ValueList);
2283     return Value;
2284   }
2285   assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate");
2286   auto *Value =
2287       Builder.CreateUnOp((Instruction::UnaryOps)I->getOpcode(), Ops[0]);
2288   propagateIRFlags(Value, ValueList);
2289   return Value;
2290 }
2291 
2292 // Starting from a shuffle, look up through operands tracking the shuffled index
2293 // of each lane. If we can simplify away the shuffles to identities then
2294 // do so.
2295 bool VectorCombine::foldShuffleToIdentity(Instruction &I) {
2296   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
2297   if (!Ty || I.use_empty())
2298     return false;
2299 
2300   SmallVector<InstLane> Start(Ty->getNumElements());
2301   for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M)
2302     Start[M] = lookThroughShuffles(&*I.use_begin(), M);
2303 
2304   SmallVector<SmallVector<InstLane>> Worklist;
2305   Worklist.push_back(Start);
2306   SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
2307   unsigned NumVisited = 0;
2308 
2309   while (!Worklist.empty()) {
2310     if (++NumVisited > MaxInstrsToScan)
2311       return false;
2312 
2313     SmallVector<InstLane> Item = Worklist.pop_back_val();
2314     auto [FrontU, FrontLane] = Item.front();
2315 
2316     // If we found an undef first lane then bail out to keep things simple.
2317     if (!FrontU)
2318       return false;
2319 
2320     // Helper to peek through bitcasts to the same value.
2321     auto IsEquiv = [&](Value *X, Value *Y) {
2322       return X->getType() == Y->getType() &&
2323              peekThroughBitcasts(X) == peekThroughBitcasts(Y);
2324     };
2325 
2326     // Look for an identity value.
2327     if (FrontLane == 0 &&
2328         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements() ==
2329             Ty->getNumElements() &&
2330         all_of(drop_begin(enumerate(Item)), [IsEquiv, Item](const auto &E) {
2331           Value *FrontV = Item.front().first->get();
2332           return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) &&
2333                                       E.value().second == (int)E.index());
2334         })) {
2335       IdentityLeafs.insert(FrontU);
2336       continue;
2337     }
2338     // Look for constants, for the moment only supporting constant splats.
2339     if (auto *C = dyn_cast<Constant>(FrontU);
2340         C && C->getSplatValue() &&
2341         all_of(drop_begin(Item), [Item](InstLane &IL) {
2342           Value *FrontV = Item.front().first->get();
2343           Use *U = IL.first;
2344           return !U || (isa<Constant>(U->get()) &&
2345                         cast<Constant>(U->get())->getSplatValue() ==
2346                             cast<Constant>(FrontV)->getSplatValue());
2347         })) {
2348       SplatLeafs.insert(FrontU);
2349       continue;
2350     }
2351     // Look for a splat value.
2352     if (all_of(drop_begin(Item), [Item](InstLane &IL) {
2353           auto [FrontU, FrontLane] = Item.front();
2354           auto [U, Lane] = IL;
2355           return !U || (U->get() == FrontU->get() && Lane == FrontLane);
2356         })) {
2357       SplatLeafs.insert(FrontU);
2358       continue;
2359     }
2360 
2361     // We need each element to be the same type of value, and check that each
2362     // element has a single use.
2363     auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) {
2364       Value *FrontV = Item.front().first->get();
2365       if (!IL.first)
2366         return true;
2367       Value *V = IL.first->get();
2368       if (auto *I = dyn_cast<Instruction>(V); I && !I->hasOneUse())
2369         return false;
2370       if (V->getValueID() != FrontV->getValueID())
2371         return false;
2372       if (auto *CI = dyn_cast<CmpInst>(V))
2373         if (CI->getPredicate() != cast<CmpInst>(FrontV)->getPredicate())
2374           return false;
2375       if (auto *CI = dyn_cast<CastInst>(V))
2376         if (CI->getSrcTy()->getScalarType() !=
2377             cast<CastInst>(FrontV)->getSrcTy()->getScalarType())
2378           return false;
2379       if (auto *SI = dyn_cast<SelectInst>(V))
2380         if (!isa<VectorType>(SI->getOperand(0)->getType()) ||
2381             SI->getOperand(0)->getType() !=
2382                 cast<SelectInst>(FrontV)->getOperand(0)->getType())
2383           return false;
2384       if (isa<CallInst>(V) && !isa<IntrinsicInst>(V))
2385         return false;
2386       auto *II = dyn_cast<IntrinsicInst>(V);
2387       return !II || (isa<IntrinsicInst>(FrontV) &&
2388                      II->getIntrinsicID() ==
2389                          cast<IntrinsicInst>(FrontV)->getIntrinsicID() &&
2390                      !II->hasOperandBundles());
2391     };
2392     if (all_of(drop_begin(Item), CheckLaneIsEquivalentToFirst)) {
2393       // Check the operator is one that we support.
2394       if (isa<BinaryOperator, CmpInst>(FrontU)) {
2395         //  We exclude div/rem in case they hit UB from poison lanes.
2396         if (auto *BO = dyn_cast<BinaryOperator>(FrontU);
2397             BO && BO->isIntDivRem())
2398           return false;
2399         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2400         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
2401         continue;
2402       } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
2403                      FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
2404         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2405         continue;
2406       } else if (auto *BitCast = dyn_cast<BitCastInst>(FrontU)) {
2407         // TODO: Handle vector widening/narrowing bitcasts.
2408         auto *DstTy = dyn_cast<FixedVectorType>(BitCast->getDestTy());
2409         auto *SrcTy = dyn_cast<FixedVectorType>(BitCast->getSrcTy());
2410         if (DstTy && SrcTy &&
2411             SrcTy->getNumElements() == DstTy->getNumElements()) {
2412           Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2413           continue;
2414         }
2415       } else if (isa<SelectInst>(FrontU)) {
2416         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2417         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
2418         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 2));
2419         continue;
2420       } else if (auto *II = dyn_cast<IntrinsicInst>(FrontU);
2421                  II && isTriviallyVectorizable(II->getIntrinsicID()) &&
2422                  !II->hasOperandBundles()) {
2423         for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) {
2424           if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Op,
2425                                                  &TTI)) {
2426             if (!all_of(drop_begin(Item), [Item, Op](InstLane &IL) {
2427                   Value *FrontV = Item.front().first->get();
2428                   Use *U = IL.first;
2429                   return !U || (cast<Instruction>(U->get())->getOperand(Op) ==
2430                                 cast<Instruction>(FrontV)->getOperand(Op));
2431                 }))
2432               return false;
2433             continue;
2434           }
2435           Worklist.push_back(generateInstLaneVectorFromOperand(Item, Op));
2436         }
2437         continue;
2438       }
2439     }
2440 
2441     if (isFreeConcat(Item, CostKind, TTI)) {
2442       ConcatLeafs.insert(FrontU);
2443       continue;
2444     }
2445 
2446     return false;
2447   }
2448 
2449   if (NumVisited <= 1)
2450     return false;
2451 
2452   LLVM_DEBUG(dbgs() << "Found a superfluous identity shuffle: " << I << "\n");
2453 
2454   // If we got this far, we know the shuffles are superfluous and can be
2455   // removed. Scan through again and generate the new tree of instructions.
2456   Builder.SetInsertPoint(&I);
2457   Value *V = generateNewInstTree(Start, Ty, IdentityLeafs, SplatLeafs,
2458                                  ConcatLeafs, Builder, &TTI);
2459   replaceValue(I, *V);
2460   return true;
2461 }
2462 
2463 /// Given a commutative reduction, the order of the input lanes does not alter
2464 /// the results. We can use this to remove certain shuffles feeding the
2465 /// reduction, removing the need to shuffle at all.
2466 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
2467   auto *II = dyn_cast<IntrinsicInst>(&I);
2468   if (!II)
2469     return false;
2470   switch (II->getIntrinsicID()) {
2471   case Intrinsic::vector_reduce_add:
2472   case Intrinsic::vector_reduce_mul:
2473   case Intrinsic::vector_reduce_and:
2474   case Intrinsic::vector_reduce_or:
2475   case Intrinsic::vector_reduce_xor:
2476   case Intrinsic::vector_reduce_smin:
2477   case Intrinsic::vector_reduce_smax:
2478   case Intrinsic::vector_reduce_umin:
2479   case Intrinsic::vector_reduce_umax:
2480     break;
2481   default:
2482     return false;
2483   }
2484 
2485   // Find all the inputs when looking through operations that do not alter the
2486   // lane order (binops, for example). Currently we look for a single shuffle,
2487   // and can ignore splat values.
2488   std::queue<Value *> Worklist;
2489   SmallPtrSet<Value *, 4> Visited;
2490   ShuffleVectorInst *Shuffle = nullptr;
2491   if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
2492     Worklist.push(Op);
2493 
2494   while (!Worklist.empty()) {
2495     Value *CV = Worklist.front();
2496     Worklist.pop();
2497     if (Visited.contains(CV))
2498       continue;
2499 
2500     // Splats don't change the order, so can be safely ignored.
2501     if (isSplatValue(CV))
2502       continue;
2503 
2504     Visited.insert(CV);
2505 
2506     if (auto *CI = dyn_cast<Instruction>(CV)) {
2507       if (CI->isBinaryOp()) {
2508         for (auto *Op : CI->operand_values())
2509           Worklist.push(Op);
2510         continue;
2511       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
2512         if (Shuffle && Shuffle != SV)
2513           return false;
2514         Shuffle = SV;
2515         continue;
2516       }
2517     }
2518 
2519     // Anything else is currently an unknown node.
2520     return false;
2521   }
2522 
2523   if (!Shuffle)
2524     return false;
2525 
2526   // Check all uses of the binary ops and shuffles are also included in the
2527   // lane-invariant operations (Visited should be the list of lanewise
2528   // instructions, including the shuffle that we found).
2529   for (auto *V : Visited)
2530     for (auto *U : V->users())
2531       if (!Visited.contains(U) && U != &I)
2532         return false;
2533 
2534   FixedVectorType *VecType =
2535       dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
2536   if (!VecType)
2537     return false;
2538   FixedVectorType *ShuffleInputType =
2539       dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
2540   if (!ShuffleInputType)
2541     return false;
2542   unsigned NumInputElts = ShuffleInputType->getNumElements();
2543 
2544   // Find the mask from sorting the lanes into order. This is most likely to
2545   // become a identity or concat mask. Undef elements are pushed to the end.
2546   SmallVector<int> ConcatMask;
2547   Shuffle->getShuffleMask(ConcatMask);
2548   sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
2549   // In the case of a truncating shuffle it's possible for the mask
2550   // to have an index greater than the size of the resulting vector.
2551   // This requires special handling.
2552   bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
2553   bool UsesSecondVec =
2554       any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
2555 
2556   FixedVectorType *VecTyForCost =
2557       (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
2558   InstructionCost OldCost = TTI.getShuffleCost(
2559       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2560       VecTyForCost, Shuffle->getShuffleMask(), CostKind);
2561   InstructionCost NewCost = TTI.getShuffleCost(
2562       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2563       VecTyForCost, ConcatMask, CostKind);
2564 
2565   LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
2566                     << "\n");
2567   LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
2568                     << "\n");
2569   if (NewCost < OldCost) {
2570     Builder.SetInsertPoint(Shuffle);
2571     Value *NewShuffle = Builder.CreateShuffleVector(
2572         Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
2573     LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
2574     replaceValue(*Shuffle, *NewShuffle);
2575   }
2576 
2577   // See if we can re-use foldSelectShuffle, getting it to reduce the size of
2578   // the shuffle into a nicer order, as it can ignore the order of the shuffles.
2579   return foldSelectShuffle(*Shuffle, true);
2580 }
2581 
2582 /// Determine if its more efficient to fold:
2583 ///   reduce(trunc(x)) -> trunc(reduce(x)).
2584 ///   reduce(sext(x))  -> sext(reduce(x)).
2585 ///   reduce(zext(x))  -> zext(reduce(x)).
2586 bool VectorCombine::foldCastFromReductions(Instruction &I) {
2587   auto *II = dyn_cast<IntrinsicInst>(&I);
2588   if (!II)
2589     return false;
2590 
2591   bool TruncOnly = false;
2592   Intrinsic::ID IID = II->getIntrinsicID();
2593   switch (IID) {
2594   case Intrinsic::vector_reduce_add:
2595   case Intrinsic::vector_reduce_mul:
2596     TruncOnly = true;
2597     break;
2598   case Intrinsic::vector_reduce_and:
2599   case Intrinsic::vector_reduce_or:
2600   case Intrinsic::vector_reduce_xor:
2601     break;
2602   default:
2603     return false;
2604   }
2605 
2606   unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
2607   Value *ReductionSrc = I.getOperand(0);
2608 
2609   Value *Src;
2610   if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(Src)))) &&
2611       (TruncOnly || !match(ReductionSrc, m_OneUse(m_ZExtOrSExt(m_Value(Src))))))
2612     return false;
2613 
2614   auto CastOpc =
2615       (Instruction::CastOps)cast<Instruction>(ReductionSrc)->getOpcode();
2616 
2617   auto *SrcTy = cast<VectorType>(Src->getType());
2618   auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
2619   Type *ResultTy = I.getType();
2620 
2621   InstructionCost OldCost = TTI.getArithmeticReductionCost(
2622       ReductionOpc, ReductionSrcTy, std::nullopt, CostKind);
2623   OldCost += TTI.getCastInstrCost(CastOpc, ReductionSrcTy, SrcTy,
2624                                   TTI::CastContextHint::None, CostKind,
2625                                   cast<CastInst>(ReductionSrc));
2626   InstructionCost NewCost =
2627       TTI.getArithmeticReductionCost(ReductionOpc, SrcTy, std::nullopt,
2628                                      CostKind) +
2629       TTI.getCastInstrCost(CastOpc, ResultTy, ReductionSrcTy->getScalarType(),
2630                            TTI::CastContextHint::None, CostKind);
2631 
2632   if (OldCost <= NewCost || !NewCost.isValid())
2633     return false;
2634 
2635   Value *NewReduction = Builder.CreateIntrinsic(SrcTy->getScalarType(),
2636                                                 II->getIntrinsicID(), {Src});
2637   Value *NewCast = Builder.CreateCast(CastOpc, NewReduction, ResultTy);
2638   replaceValue(I, *NewCast);
2639   return true;
2640 }
2641 
2642 /// This method looks for groups of shuffles acting on binops, of the form:
2643 ///  %x = shuffle ...
2644 ///  %y = shuffle ...
2645 ///  %a = binop %x, %y
2646 ///  %b = binop %x, %y
2647 ///  shuffle %a, %b, selectmask
2648 /// We may, especially if the shuffle is wider than legal, be able to convert
2649 /// the shuffle to a form where only parts of a and b need to be computed. On
2650 /// architectures with no obvious "select" shuffle, this can reduce the total
2651 /// number of operations if the target reports them as cheaper.
2652 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
2653   auto *SVI = cast<ShuffleVectorInst>(&I);
2654   auto *VT = cast<FixedVectorType>(I.getType());
2655   auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
2656   auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
2657   if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
2658       VT != Op0->getType())
2659     return false;
2660 
2661   auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
2662   auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
2663   auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
2664   auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
2665   SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
2666   auto checkSVNonOpUses = [&](Instruction *I) {
2667     if (!I || I->getOperand(0)->getType() != VT)
2668       return true;
2669     return any_of(I->users(), [&](User *U) {
2670       return U != Op0 && U != Op1 &&
2671              !(isa<ShuffleVectorInst>(U) &&
2672                (InputShuffles.contains(cast<Instruction>(U)) ||
2673                 isInstructionTriviallyDead(cast<Instruction>(U))));
2674     });
2675   };
2676   if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
2677       checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
2678     return false;
2679 
2680   // Collect all the uses that are shuffles that we can transform together. We
2681   // may not have a single shuffle, but a group that can all be transformed
2682   // together profitably.
2683   SmallVector<ShuffleVectorInst *> Shuffles;
2684   auto collectShuffles = [&](Instruction *I) {
2685     for (auto *U : I->users()) {
2686       auto *SV = dyn_cast<ShuffleVectorInst>(U);
2687       if (!SV || SV->getType() != VT)
2688         return false;
2689       if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
2690           (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
2691         return false;
2692       if (!llvm::is_contained(Shuffles, SV))
2693         Shuffles.push_back(SV);
2694     }
2695     return true;
2696   };
2697   if (!collectShuffles(Op0) || !collectShuffles(Op1))
2698     return false;
2699   // From a reduction, we need to be processing a single shuffle, otherwise the
2700   // other uses will not be lane-invariant.
2701   if (FromReduction && Shuffles.size() > 1)
2702     return false;
2703 
2704   // Add any shuffle uses for the shuffles we have found, to include them in our
2705   // cost calculations.
2706   if (!FromReduction) {
2707     for (ShuffleVectorInst *SV : Shuffles) {
2708       for (auto *U : SV->users()) {
2709         ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
2710         if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
2711           Shuffles.push_back(SSV);
2712       }
2713     }
2714   }
2715 
2716   // For each of the output shuffles, we try to sort all the first vector
2717   // elements to the beginning, followed by the second array elements at the
2718   // end. If the binops are legalized to smaller vectors, this may reduce total
2719   // number of binops. We compute the ReconstructMask mask needed to convert
2720   // back to the original lane order.
2721   SmallVector<std::pair<int, int>> V1, V2;
2722   SmallVector<SmallVector<int>> OrigReconstructMasks;
2723   int MaxV1Elt = 0, MaxV2Elt = 0;
2724   unsigned NumElts = VT->getNumElements();
2725   for (ShuffleVectorInst *SVN : Shuffles) {
2726     SmallVector<int> Mask;
2727     SVN->getShuffleMask(Mask);
2728 
2729     // Check the operands are the same as the original, or reversed (in which
2730     // case we need to commute the mask).
2731     Value *SVOp0 = SVN->getOperand(0);
2732     Value *SVOp1 = SVN->getOperand(1);
2733     if (isa<UndefValue>(SVOp1)) {
2734       auto *SSV = cast<ShuffleVectorInst>(SVOp0);
2735       SVOp0 = SSV->getOperand(0);
2736       SVOp1 = SSV->getOperand(1);
2737       for (unsigned I = 0, E = Mask.size(); I != E; I++) {
2738         if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
2739           return false;
2740         Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
2741       }
2742     }
2743     if (SVOp0 == Op1 && SVOp1 == Op0) {
2744       std::swap(SVOp0, SVOp1);
2745       ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2746     }
2747     if (SVOp0 != Op0 || SVOp1 != Op1)
2748       return false;
2749 
2750     // Calculate the reconstruction mask for this shuffle, as the mask needed to
2751     // take the packed values from Op0/Op1 and reconstructing to the original
2752     // order.
2753     SmallVector<int> ReconstructMask;
2754     for (unsigned I = 0; I < Mask.size(); I++) {
2755       if (Mask[I] < 0) {
2756         ReconstructMask.push_back(-1);
2757       } else if (Mask[I] < static_cast<int>(NumElts)) {
2758         MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
2759         auto It = find_if(V1, [&](const std::pair<int, int> &A) {
2760           return Mask[I] == A.first;
2761         });
2762         if (It != V1.end())
2763           ReconstructMask.push_back(It - V1.begin());
2764         else {
2765           ReconstructMask.push_back(V1.size());
2766           V1.emplace_back(Mask[I], V1.size());
2767         }
2768       } else {
2769         MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
2770         auto It = find_if(V2, [&](const std::pair<int, int> &A) {
2771           return Mask[I] - static_cast<int>(NumElts) == A.first;
2772         });
2773         if (It != V2.end())
2774           ReconstructMask.push_back(NumElts + It - V2.begin());
2775         else {
2776           ReconstructMask.push_back(NumElts + V2.size());
2777           V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
2778         }
2779       }
2780     }
2781 
2782     // For reductions, we know that the lane ordering out doesn't alter the
2783     // result. In-order can help simplify the shuffle away.
2784     if (FromReduction)
2785       sort(ReconstructMask);
2786     OrigReconstructMasks.push_back(std::move(ReconstructMask));
2787   }
2788 
2789   // If the Maximum element used from V1 and V2 are not larger than the new
2790   // vectors, the vectors are already packes and performing the optimization
2791   // again will likely not help any further. This also prevents us from getting
2792   // stuck in a cycle in case the costs do not also rule it out.
2793   if (V1.empty() || V2.empty() ||
2794       (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
2795        MaxV2Elt == static_cast<int>(V2.size()) - 1))
2796     return false;
2797 
2798   // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
2799   // shuffle of another shuffle, or not a shuffle (that is treated like a
2800   // identity shuffle).
2801   auto GetBaseMaskValue = [&](Instruction *I, int M) {
2802     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2803     if (!SV)
2804       return M;
2805     if (isa<UndefValue>(SV->getOperand(1)))
2806       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2807         if (InputShuffles.contains(SSV))
2808           return SSV->getMaskValue(SV->getMaskValue(M));
2809     return SV->getMaskValue(M);
2810   };
2811 
2812   // Attempt to sort the inputs my ascending mask values to make simpler input
2813   // shuffles and push complex shuffles down to the uses. We sort on the first
2814   // of the two input shuffle orders, to try and get at least one input into a
2815   // nice order.
2816   auto SortBase = [&](Instruction *A, std::pair<int, int> X,
2817                       std::pair<int, int> Y) {
2818     int MXA = GetBaseMaskValue(A, X.first);
2819     int MYA = GetBaseMaskValue(A, Y.first);
2820     return MXA < MYA;
2821   };
2822   stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
2823     return SortBase(SVI0A, A, B);
2824   });
2825   stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
2826     return SortBase(SVI1A, A, B);
2827   });
2828   // Calculate our ReconstructMasks from the OrigReconstructMasks and the
2829   // modified order of the input shuffles.
2830   SmallVector<SmallVector<int>> ReconstructMasks;
2831   for (const auto &Mask : OrigReconstructMasks) {
2832     SmallVector<int> ReconstructMask;
2833     for (int M : Mask) {
2834       auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
2835         auto It = find_if(V, [M](auto A) { return A.second == M; });
2836         assert(It != V.end() && "Expected all entries in Mask");
2837         return std::distance(V.begin(), It);
2838       };
2839       if (M < 0)
2840         ReconstructMask.push_back(-1);
2841       else if (M < static_cast<int>(NumElts)) {
2842         ReconstructMask.push_back(FindIndex(V1, M));
2843       } else {
2844         ReconstructMask.push_back(NumElts + FindIndex(V2, M));
2845       }
2846     }
2847     ReconstructMasks.push_back(std::move(ReconstructMask));
2848   }
2849 
2850   // Calculate the masks needed for the new input shuffles, which get padded
2851   // with undef
2852   SmallVector<int> V1A, V1B, V2A, V2B;
2853   for (unsigned I = 0; I < V1.size(); I++) {
2854     V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
2855     V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
2856   }
2857   for (unsigned I = 0; I < V2.size(); I++) {
2858     V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
2859     V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
2860   }
2861   while (V1A.size() < NumElts) {
2862     V1A.push_back(PoisonMaskElem);
2863     V1B.push_back(PoisonMaskElem);
2864   }
2865   while (V2A.size() < NumElts) {
2866     V2A.push_back(PoisonMaskElem);
2867     V2B.push_back(PoisonMaskElem);
2868   }
2869 
2870   auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
2871     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2872     if (!SV)
2873       return C;
2874     return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
2875                                       ? TTI::SK_PermuteSingleSrc
2876                                       : TTI::SK_PermuteTwoSrc,
2877                                   VT, SV->getShuffleMask(), CostKind);
2878   };
2879   auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
2880     return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask, CostKind);
2881   };
2882 
2883   // Get the costs of the shuffles + binops before and after with the new
2884   // shuffle masks.
2885   InstructionCost CostBefore =
2886       TTI.getArithmeticInstrCost(Op0->getOpcode(), VT, CostKind) +
2887       TTI.getArithmeticInstrCost(Op1->getOpcode(), VT, CostKind);
2888   CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
2889                                 InstructionCost(0), AddShuffleCost);
2890   CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
2891                                 InstructionCost(0), AddShuffleCost);
2892 
2893   // The new binops will be unused for lanes past the used shuffle lengths.
2894   // These types attempt to get the correct cost for that from the target.
2895   FixedVectorType *Op0SmallVT =
2896       FixedVectorType::get(VT->getScalarType(), V1.size());
2897   FixedVectorType *Op1SmallVT =
2898       FixedVectorType::get(VT->getScalarType(), V2.size());
2899   InstructionCost CostAfter =
2900       TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT, CostKind) +
2901       TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT, CostKind);
2902   CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
2903                                InstructionCost(0), AddShuffleMaskCost);
2904   std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
2905   CostAfter +=
2906       std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
2907                       InstructionCost(0), AddShuffleMaskCost);
2908 
2909   LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
2910   LLVM_DEBUG(dbgs() << "  CostBefore: " << CostBefore
2911                     << " vs CostAfter: " << CostAfter << "\n");
2912   if (CostBefore <= CostAfter)
2913     return false;
2914 
2915   // The cost model has passed, create the new instructions.
2916   auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
2917     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2918     if (!SV)
2919       return I;
2920     if (isa<UndefValue>(SV->getOperand(1)))
2921       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2922         if (InputShuffles.contains(SSV))
2923           return SSV->getOperand(Op);
2924     return SV->getOperand(Op);
2925   };
2926   Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
2927   Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
2928                                              GetShuffleOperand(SVI0A, 1), V1A);
2929   Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
2930   Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
2931                                              GetShuffleOperand(SVI0B, 1), V1B);
2932   Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
2933   Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
2934                                              GetShuffleOperand(SVI1A, 1), V2A);
2935   Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
2936   Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
2937                                              GetShuffleOperand(SVI1B, 1), V2B);
2938   Builder.SetInsertPoint(Op0);
2939   Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
2940                                     NSV0A, NSV0B);
2941   if (auto *I = dyn_cast<Instruction>(NOp0))
2942     I->copyIRFlags(Op0, true);
2943   Builder.SetInsertPoint(Op1);
2944   Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
2945                                     NSV1A, NSV1B);
2946   if (auto *I = dyn_cast<Instruction>(NOp1))
2947     I->copyIRFlags(Op1, true);
2948 
2949   for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
2950     Builder.SetInsertPoint(Shuffles[S]);
2951     Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
2952     replaceValue(*Shuffles[S], *NSV);
2953   }
2954 
2955   Worklist.pushValue(NSV0A);
2956   Worklist.pushValue(NSV0B);
2957   Worklist.pushValue(NSV1A);
2958   Worklist.pushValue(NSV1B);
2959   for (auto *S : Shuffles)
2960     Worklist.add(S);
2961   return true;
2962 }
2963 
2964 /// Check if instruction depends on ZExt and this ZExt can be moved after the
2965 /// instruction. Move ZExt if it is profitable. For example:
2966 ///     logic(zext(x),y) -> zext(logic(x,trunc(y)))
2967 ///     lshr((zext(x),y) -> zext(lshr(x,trunc(y)))
2968 /// Cost model calculations takes into account if zext(x) has other users and
2969 /// whether it can be propagated through them too.
2970 bool VectorCombine::shrinkType(Instruction &I) {
2971   Value *ZExted, *OtherOperand;
2972   if (!match(&I, m_c_BitwiseLogic(m_ZExt(m_Value(ZExted)),
2973                                   m_Value(OtherOperand))) &&
2974       !match(&I, m_LShr(m_ZExt(m_Value(ZExted)), m_Value(OtherOperand))))
2975     return false;
2976 
2977   Value *ZExtOperand = I.getOperand(I.getOperand(0) == OtherOperand ? 1 : 0);
2978 
2979   auto *BigTy = cast<FixedVectorType>(I.getType());
2980   auto *SmallTy = cast<FixedVectorType>(ZExted->getType());
2981   unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
2982 
2983   if (I.getOpcode() == Instruction::LShr) {
2984     // Check that the shift amount is less than the number of bits in the
2985     // smaller type. Otherwise, the smaller lshr will return a poison value.
2986     KnownBits ShAmtKB = computeKnownBits(I.getOperand(1), *DL);
2987     if (ShAmtKB.getMaxValue().uge(BW))
2988       return false;
2989   } else {
2990     // Check that the expression overall uses at most the same number of bits as
2991     // ZExted
2992     KnownBits KB = computeKnownBits(&I, *DL);
2993     if (KB.countMaxActiveBits() > BW)
2994       return false;
2995   }
2996 
2997   // Calculate costs of leaving current IR as it is and moving ZExt operation
2998   // later, along with adding truncates if needed
2999   InstructionCost ZExtCost = TTI.getCastInstrCost(
3000       Instruction::ZExt, BigTy, SmallTy,
3001       TargetTransformInfo::CastContextHint::None, CostKind);
3002   InstructionCost CurrentCost = ZExtCost;
3003   InstructionCost ShrinkCost = 0;
3004 
3005   // Calculate total cost and check that we can propagate through all ZExt users
3006   for (User *U : ZExtOperand->users()) {
3007     auto *UI = cast<Instruction>(U);
3008     if (UI == &I) {
3009       CurrentCost +=
3010           TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
3011       ShrinkCost +=
3012           TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
3013       ShrinkCost += ZExtCost;
3014       continue;
3015     }
3016 
3017     if (!Instruction::isBinaryOp(UI->getOpcode()))
3018       return false;
3019 
3020     // Check if we can propagate ZExt through its other users
3021     KnownBits KB = computeKnownBits(UI, *DL);
3022     if (KB.countMaxActiveBits() > BW)
3023       return false;
3024 
3025     CurrentCost += TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
3026     ShrinkCost +=
3027         TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
3028     ShrinkCost += ZExtCost;
3029   }
3030 
3031   // If the other instruction operand is not a constant, we'll need to
3032   // generate a truncate instruction. So we have to adjust cost
3033   if (!isa<Constant>(OtherOperand))
3034     ShrinkCost += TTI.getCastInstrCost(
3035         Instruction::Trunc, SmallTy, BigTy,
3036         TargetTransformInfo::CastContextHint::None, CostKind);
3037 
3038   // If the cost of shrinking types and leaving the IR is the same, we'll lean
3039   // towards modifying the IR because shrinking opens opportunities for other
3040   // shrinking optimisations.
3041   if (ShrinkCost > CurrentCost)
3042     return false;
3043 
3044   Builder.SetInsertPoint(&I);
3045   Value *Op0 = ZExted;
3046   Value *Op1 = Builder.CreateTrunc(OtherOperand, SmallTy);
3047   // Keep the order of operands the same
3048   if (I.getOperand(0) == OtherOperand)
3049     std::swap(Op0, Op1);
3050   Value *NewBinOp =
3051       Builder.CreateBinOp((Instruction::BinaryOps)I.getOpcode(), Op0, Op1);
3052   cast<Instruction>(NewBinOp)->copyIRFlags(&I);
3053   cast<Instruction>(NewBinOp)->copyMetadata(I);
3054   Value *NewZExtr = Builder.CreateZExt(NewBinOp, BigTy);
3055   replaceValue(I, *NewZExtr);
3056   return true;
3057 }
3058 
3059 /// insert (DstVec, (extract SrcVec, ExtIdx), InsIdx) -->
3060 /// shuffle (DstVec, SrcVec, Mask)
3061 bool VectorCombine::foldInsExtVectorToShuffle(Instruction &I) {
3062   Value *DstVec, *SrcVec;
3063   uint64_t ExtIdx, InsIdx;
3064   if (!match(&I,
3065              m_InsertElt(m_Value(DstVec),
3066                          m_ExtractElt(m_Value(SrcVec), m_ConstantInt(ExtIdx)),
3067                          m_ConstantInt(InsIdx))))
3068     return false;
3069 
3070   auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
3071   if (!VecTy || SrcVec->getType() != VecTy)
3072     return false;
3073 
3074   unsigned NumElts = VecTy->getNumElements();
3075   if (ExtIdx >= NumElts || InsIdx >= NumElts)
3076     return false;
3077 
3078   // Insertion into poison is a cheaper single operand shuffle.
3079   TargetTransformInfo::ShuffleKind SK;
3080   SmallVector<int> Mask(NumElts, PoisonMaskElem);
3081   if (isa<PoisonValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3082     SK = TargetTransformInfo::SK_PermuteSingleSrc;
3083     Mask[InsIdx] = ExtIdx;
3084     std::swap(DstVec, SrcVec);
3085   } else {
3086     SK = TargetTransformInfo::SK_PermuteTwoSrc;
3087     std::iota(Mask.begin(), Mask.end(), 0);
3088     Mask[InsIdx] = ExtIdx + NumElts;
3089   }
3090 
3091   // Cost
3092   auto *Ins = cast<InsertElementInst>(&I);
3093   auto *Ext = cast<ExtractElementInst>(I.getOperand(1));
3094   InstructionCost InsCost =
3095       TTI.getVectorInstrCost(*Ins, VecTy, CostKind, InsIdx);
3096   InstructionCost ExtCost =
3097       TTI.getVectorInstrCost(*Ext, VecTy, CostKind, ExtIdx);
3098   InstructionCost OldCost = ExtCost + InsCost;
3099 
3100   // Ignore 'free' identity insertion shuffle.
3101   // TODO: getShuffleCost should return TCC_Free for Identity shuffles.
3102   InstructionCost NewCost = 0;
3103   if (!ShuffleVectorInst::isIdentityMask(Mask, NumElts))
3104     NewCost += TTI.getShuffleCost(SK, VecTy, Mask, CostKind, 0, nullptr,
3105                                   {DstVec, SrcVec});
3106   if (!Ext->hasOneUse())
3107     NewCost += ExtCost;
3108 
3109   LLVM_DEBUG(dbgs() << "Found a insert/extract shuffle-like pair : " << I
3110                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
3111                     << "\n");
3112 
3113   if (OldCost < NewCost)
3114     return false;
3115 
3116   // Canonicalize undef param to RHS to help further folds.
3117   if (isa<UndefValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3118     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
3119     std::swap(DstVec, SrcVec);
3120   }
3121 
3122   Value *Shuf = Builder.CreateShuffleVector(DstVec, SrcVec, Mask);
3123   replaceValue(I, *Shuf);
3124 
3125   return true;
3126 }
3127 
3128 /// This is the entry point for all transforms. Pass manager differences are
3129 /// handled in the callers of this function.
3130 bool VectorCombine::run() {
3131   if (DisableVectorCombine)
3132     return false;
3133 
3134   // Don't attempt vectorization if the target does not support vectors.
3135   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
3136     return false;
3137 
3138   LLVM_DEBUG(dbgs() << "\n\nVECTORCOMBINE on " << F.getName() << "\n");
3139 
3140   bool MadeChange = false;
3141   auto FoldInst = [this, &MadeChange](Instruction &I) {
3142     Builder.SetInsertPoint(&I);
3143     bool IsVectorType = isa<VectorType>(I.getType());
3144     bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
3145     auto Opcode = I.getOpcode();
3146 
3147     LLVM_DEBUG(dbgs() << "VC: Visiting: " << I << '\n');
3148 
3149     // These folds should be beneficial regardless of when this pass is run
3150     // in the optimization pipeline.
3151     // The type checking is for run-time efficiency. We can avoid wasting time
3152     // dispatching to folding functions if there's no chance of matching.
3153     if (IsFixedVectorType) {
3154       switch (Opcode) {
3155       case Instruction::InsertElement:
3156         MadeChange |= vectorizeLoadInsert(I);
3157         break;
3158       case Instruction::ShuffleVector:
3159         MadeChange |= widenSubvectorLoad(I);
3160         break;
3161       default:
3162         break;
3163       }
3164     }
3165 
3166     // This transform works with scalable and fixed vectors
3167     // TODO: Identify and allow other scalable transforms
3168     if (IsVectorType) {
3169       MadeChange |= scalarizeBinopOrCmp(I);
3170       MadeChange |= scalarizeLoadExtract(I);
3171       MadeChange |= scalarizeVPIntrinsic(I);
3172     }
3173 
3174     if (Opcode == Instruction::Store)
3175       MadeChange |= foldSingleElementStore(I);
3176 
3177     // If this is an early pipeline invocation of this pass, we are done.
3178     if (TryEarlyFoldsOnly)
3179       return;
3180 
3181     // Otherwise, try folds that improve codegen but may interfere with
3182     // early IR canonicalizations.
3183     // The type checking is for run-time efficiency. We can avoid wasting time
3184     // dispatching to folding functions if there's no chance of matching.
3185     if (IsFixedVectorType) {
3186       switch (Opcode) {
3187       case Instruction::InsertElement:
3188         MadeChange |= foldInsExtFNeg(I);
3189         MadeChange |= foldInsExtVectorToShuffle(I);
3190         break;
3191       case Instruction::ShuffleVector:
3192         MadeChange |= foldPermuteOfBinops(I);
3193         MadeChange |= foldShuffleOfBinops(I);
3194         MadeChange |= foldShuffleOfCastops(I);
3195         MadeChange |= foldShuffleOfShuffles(I);
3196         MadeChange |= foldShuffleOfIntrinsics(I);
3197         MadeChange |= foldSelectShuffle(I);
3198         MadeChange |= foldShuffleToIdentity(I);
3199         break;
3200       case Instruction::BitCast:
3201         MadeChange |= foldBitcastShuffle(I);
3202         break;
3203       default:
3204         MadeChange |= shrinkType(I);
3205         break;
3206       }
3207     } else {
3208       switch (Opcode) {
3209       case Instruction::Call:
3210         MadeChange |= foldShuffleFromReductions(I);
3211         MadeChange |= foldCastFromReductions(I);
3212         break;
3213       case Instruction::ICmp:
3214       case Instruction::FCmp:
3215         MadeChange |= foldExtractExtract(I);
3216         break;
3217       case Instruction::Or:
3218         MadeChange |= foldConcatOfBoolMasks(I);
3219         [[fallthrough]];
3220       default:
3221         if (Instruction::isBinaryOp(Opcode)) {
3222           MadeChange |= foldExtractExtract(I);
3223           MadeChange |= foldExtractedCmps(I);
3224         }
3225         break;
3226       }
3227     }
3228   };
3229 
3230   for (BasicBlock &BB : F) {
3231     // Ignore unreachable basic blocks.
3232     if (!DT.isReachableFromEntry(&BB))
3233       continue;
3234     // Use early increment range so that we can erase instructions in loop.
3235     for (Instruction &I : make_early_inc_range(BB)) {
3236       if (I.isDebugOrPseudoInst())
3237         continue;
3238       FoldInst(I);
3239     }
3240   }
3241 
3242   while (!Worklist.isEmpty()) {
3243     Instruction *I = Worklist.removeOne();
3244     if (!I)
3245       continue;
3246 
3247     if (isInstructionTriviallyDead(I)) {
3248       eraseInstruction(*I);
3249       continue;
3250     }
3251 
3252     FoldInst(*I);
3253   }
3254 
3255   return MadeChange;
3256 }
3257 
3258 PreservedAnalyses VectorCombinePass::run(Function &F,
3259                                          FunctionAnalysisManager &FAM) {
3260   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
3261   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
3262   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3263   AAResults &AA = FAM.getResult<AAManager>(F);
3264   const DataLayout *DL = &F.getDataLayout();
3265   VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TTI::TCK_RecipThroughput,
3266                          TryEarlyFoldsOnly);
3267   if (!Combiner.run())
3268     return PreservedAnalyses::all();
3269   PreservedAnalyses PA;
3270   PA.preserveSet<CFGAnalyses>();
3271   return PA;
3272 }
3273