xref: /llvm-project/llvm/lib/Transforms/Vectorize/VectorCombine.cpp (revision 035e64c0ec02b237a266ebc672718037fdd53eb2)
1 //===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass optimizes scalar/vector interactions using target cost models. The
10 // transforms implemented here may not fit in traditional loop-based or SLP
11 // vectorization passes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Vectorize/VectorCombine.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/GlobalsModRef.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/LoopUtils.h"
34 #include <numeric>
35 #include <queue>
36 
37 #define DEBUG_TYPE "vector-combine"
38 #include "llvm/Transforms/Utils/InstructionWorklist.h"
39 
40 using namespace llvm;
41 using namespace llvm::PatternMatch;
42 
43 STATISTIC(NumVecLoad, "Number of vector loads formed");
44 STATISTIC(NumVecCmp, "Number of vector compares formed");
45 STATISTIC(NumVecBO, "Number of vector binops formed");
46 STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
47 STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
48 STATISTIC(NumScalarBO, "Number of scalar binops formed");
49 STATISTIC(NumScalarCmp, "Number of scalar compares formed");
50 
51 static cl::opt<bool> DisableVectorCombine(
52     "disable-vector-combine", cl::init(false), cl::Hidden,
53     cl::desc("Disable all vector combine transforms"));
54 
55 static cl::opt<bool> DisableBinopExtractShuffle(
56     "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
57     cl::desc("Disable binop extract to shuffle transforms"));
58 
59 static cl::opt<unsigned> MaxInstrsToScan(
60     "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
61     cl::desc("Max number of instructions to scan for vector combining."));
62 
63 static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
64 
65 namespace {
66 class VectorCombine {
67 public:
68   VectorCombine(Function &F, const TargetTransformInfo &TTI,
69                 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
70                 const DataLayout *DL, TTI::TargetCostKind CostKind,
71                 bool TryEarlyFoldsOnly)
72       : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL),
73         CostKind(CostKind), TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
74 
75   bool run();
76 
77 private:
78   Function &F;
79   IRBuilder<> Builder;
80   const TargetTransformInfo &TTI;
81   const DominatorTree &DT;
82   AAResults &AA;
83   AssumptionCache &AC;
84   const DataLayout *DL;
85   TTI::TargetCostKind CostKind;
86 
87   /// If true, only perform beneficial early IR transforms. Do not introduce new
88   /// vector operations.
89   bool TryEarlyFoldsOnly;
90 
91   InstructionWorklist Worklist;
92 
93   // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
94   //       parameter. That should be updated to specific sub-classes because the
95   //       run loop was changed to dispatch on opcode.
96   bool vectorizeLoadInsert(Instruction &I);
97   bool widenSubvectorLoad(Instruction &I);
98   ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
99                                         ExtractElementInst *Ext1,
100                                         unsigned PreferredExtractIndex) const;
101   bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
102                              const Instruction &I,
103                              ExtractElementInst *&ConvertToShuffle,
104                              unsigned PreferredExtractIndex);
105   void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
106                      Instruction &I);
107   void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
108                        Instruction &I);
109   bool foldExtractExtract(Instruction &I);
110   bool foldInsExtFNeg(Instruction &I);
111   bool foldInsExtVectorToShuffle(Instruction &I);
112   bool foldBitcastShuffle(Instruction &I);
113   bool scalarizeBinopOrCmp(Instruction &I);
114   bool scalarizeVPIntrinsic(Instruction &I);
115   bool foldExtractedCmps(Instruction &I);
116   bool foldSingleElementStore(Instruction &I);
117   bool scalarizeLoadExtract(Instruction &I);
118   bool foldConcatOfBoolMasks(Instruction &I);
119   bool foldPermuteOfBinops(Instruction &I);
120   bool foldShuffleOfBinops(Instruction &I);
121   bool foldShuffleOfCastops(Instruction &I);
122   bool foldShuffleOfShuffles(Instruction &I);
123   bool foldShuffleOfIntrinsics(Instruction &I);
124   bool foldShuffleToIdentity(Instruction &I);
125   bool foldShuffleFromReductions(Instruction &I);
126   bool foldCastFromReductions(Instruction &I);
127   bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
128   bool shrinkType(Instruction &I);
129 
130   void replaceValue(Value &Old, Value &New) {
131     LLVM_DEBUG(dbgs() << "VC: Replacing: " << Old << '\n');
132     LLVM_DEBUG(dbgs() << "         With: " << New << '\n');
133     Old.replaceAllUsesWith(&New);
134     if (auto *NewI = dyn_cast<Instruction>(&New)) {
135       New.takeName(&Old);
136       Worklist.pushUsersToWorkList(*NewI);
137       Worklist.pushValue(NewI);
138     }
139     Worklist.pushValue(&Old);
140   }
141 
142   void eraseInstruction(Instruction &I) {
143     LLVM_DEBUG(dbgs() << "VC: Erasing: " << I << '\n');
144     SmallVector<Value *> Ops(I.operands());
145     Worklist.remove(&I);
146     I.eraseFromParent();
147 
148     // Push remaining users of the operands and then the operand itself - allows
149     // further folds that were hindered by OneUse limits.
150     for (Value *Op : Ops)
151       if (auto *OpI = dyn_cast<Instruction>(Op)) {
152         Worklist.pushUsersToWorkList(*OpI);
153         Worklist.pushValue(OpI);
154       }
155   }
156 };
157 } // namespace
158 
159 /// Return the source operand of a potentially bitcasted value. If there is no
160 /// bitcast, return the input value itself.
161 static Value *peekThroughBitcasts(Value *V) {
162   while (auto *BitCast = dyn_cast<BitCastInst>(V))
163     V = BitCast->getOperand(0);
164   return V;
165 }
166 
167 static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
168   // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
169   // The widened load may load data from dirty regions or create data races
170   // non-existent in the source.
171   if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
172       Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
173       mustSuppressSpeculation(*Load))
174     return false;
175 
176   // We are potentially transforming byte-sized (8-bit) memory accesses, so make
177   // sure we have all of our type-based constraints in place for this target.
178   Type *ScalarTy = Load->getType()->getScalarType();
179   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
180   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
181   if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
182       ScalarSize % 8 != 0)
183     return false;
184 
185   return true;
186 }
187 
188 bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
189   // Match insert into fixed vector of scalar value.
190   // TODO: Handle non-zero insert index.
191   Value *Scalar;
192   if (!match(&I,
193              m_InsertElt(m_Poison(), m_OneUse(m_Value(Scalar)), m_ZeroInt())))
194     return false;
195 
196   // Optionally match an extract from another vector.
197   Value *X;
198   bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
199   if (!HasExtract)
200     X = Scalar;
201 
202   auto *Load = dyn_cast<LoadInst>(X);
203   if (!canWidenLoad(Load, TTI))
204     return false;
205 
206   Type *ScalarTy = Scalar->getType();
207   uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
208   unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
209 
210   // Check safety of replacing the scalar load with a larger vector load.
211   // We use minimal alignment (maximum flexibility) because we only care about
212   // the dereferenceable region. When calculating cost and creating a new op,
213   // we may use a larger value based on alignment attributes.
214   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
215   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
216 
217   unsigned MinVecNumElts = MinVectorSize / ScalarSize;
218   auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
219   unsigned OffsetEltIndex = 0;
220   Align Alignment = Load->getAlign();
221   if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
222                                    &DT)) {
223     // It is not safe to load directly from the pointer, but we can still peek
224     // through gep offsets and check if it safe to load from a base address with
225     // updated alignment. If it is, we can shuffle the element(s) into place
226     // after loading.
227     unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(SrcPtr->getType());
228     APInt Offset(OffsetBitWidth, 0);
229     SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
230 
231     // We want to shuffle the result down from a high element of a vector, so
232     // the offset must be positive.
233     if (Offset.isNegative())
234       return false;
235 
236     // The offset must be a multiple of the scalar element to shuffle cleanly
237     // in the element's size.
238     uint64_t ScalarSizeInBytes = ScalarSize / 8;
239     if (Offset.urem(ScalarSizeInBytes) != 0)
240       return false;
241 
242     // If we load MinVecNumElts, will our target element still be loaded?
243     OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
244     if (OffsetEltIndex >= MinVecNumElts)
245       return false;
246 
247     if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
248                                      &DT))
249       return false;
250 
251     // Update alignment with offset value. Note that the offset could be negated
252     // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
253     // negation does not change the result of the alignment calculation.
254     Alignment = commonAlignment(Alignment, Offset.getZExtValue());
255   }
256 
257   // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
258   // Use the greater of the alignment on the load or its source pointer.
259   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
260   Type *LoadTy = Load->getType();
261   unsigned AS = Load->getPointerAddressSpace();
262   InstructionCost OldCost =
263       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
264   APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
265   OldCost +=
266       TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
267                                    /* Insert */ true, HasExtract, CostKind);
268 
269   // New pattern: load VecPtr
270   InstructionCost NewCost =
271       TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS, CostKind);
272   // Optionally, we are shuffling the loaded vector element(s) into place.
273   // For the mask set everything but element 0 to undef to prevent poison from
274   // propagating from the extra loaded memory. This will also optionally
275   // shrink/grow the vector from the loaded size to the output size.
276   // We assume this operation has no cost in codegen if there was no offset.
277   // Note that we could use freeze to avoid poison problems, but then we might
278   // still need a shuffle to change the vector size.
279   auto *Ty = cast<FixedVectorType>(I.getType());
280   unsigned OutputNumElts = Ty->getNumElements();
281   SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
282   assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
283   Mask[0] = OffsetEltIndex;
284   if (OffsetEltIndex)
285     NewCost +=
286         TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask, CostKind);
287 
288   // We can aggressively convert to the vector form because the backend can
289   // invert this transform if it does not result in a performance win.
290   if (OldCost < NewCost || !NewCost.isValid())
291     return false;
292 
293   // It is safe and potentially profitable to load a vector directly:
294   // inselt undef, load Scalar, 0 --> load VecPtr
295   IRBuilder<> Builder(Load);
296   Value *CastedPtr =
297       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
298   Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
299   VecLd = Builder.CreateShuffleVector(VecLd, Mask);
300 
301   replaceValue(I, *VecLd);
302   ++NumVecLoad;
303   return true;
304 }
305 
306 /// If we are loading a vector and then inserting it into a larger vector with
307 /// undefined elements, try to load the larger vector and eliminate the insert.
308 /// This removes a shuffle in IR and may allow combining of other loaded values.
309 bool VectorCombine::widenSubvectorLoad(Instruction &I) {
310   // Match subvector insert of fixed vector.
311   auto *Shuf = cast<ShuffleVectorInst>(&I);
312   if (!Shuf->isIdentityWithPadding())
313     return false;
314 
315   // Allow a non-canonical shuffle mask that is choosing elements from op1.
316   unsigned NumOpElts =
317       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
318   unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
319     return M >= (int)(NumOpElts);
320   });
321 
322   auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
323   if (!canWidenLoad(Load, TTI))
324     return false;
325 
326   // We use minimal alignment (maximum flexibility) because we only care about
327   // the dereferenceable region. When calculating cost and creating a new op,
328   // we may use a larger value based on alignment attributes.
329   auto *Ty = cast<FixedVectorType>(I.getType());
330   Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
331   assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
332   Align Alignment = Load->getAlign();
333   if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), *DL, Load, &AC, &DT))
334     return false;
335 
336   Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
337   Type *LoadTy = Load->getType();
338   unsigned AS = Load->getPointerAddressSpace();
339 
340   // Original pattern: insert_subvector (load PtrOp)
341   // This conservatively assumes that the cost of a subvector insert into an
342   // undef value is 0. We could add that cost if the cost model accurately
343   // reflects the real cost of that operation.
344   InstructionCost OldCost =
345       TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
346 
347   // New pattern: load PtrOp
348   InstructionCost NewCost =
349       TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS, CostKind);
350 
351   // We can aggressively convert to the vector form because the backend can
352   // invert this transform if it does not result in a performance win.
353   if (OldCost < NewCost || !NewCost.isValid())
354     return false;
355 
356   IRBuilder<> Builder(Load);
357   Value *CastedPtr =
358       Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
359   Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
360   replaceValue(I, *VecLd);
361   ++NumVecLoad;
362   return true;
363 }
364 
365 /// Determine which, if any, of the inputs should be replaced by a shuffle
366 /// followed by extract from a different index.
367 ExtractElementInst *VectorCombine::getShuffleExtract(
368     ExtractElementInst *Ext0, ExtractElementInst *Ext1,
369     unsigned PreferredExtractIndex = InvalidIndex) const {
370   auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
371   auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
372   assert(Index0C && Index1C && "Expected constant extract indexes");
373 
374   unsigned Index0 = Index0C->getZExtValue();
375   unsigned Index1 = Index1C->getZExtValue();
376 
377   // If the extract indexes are identical, no shuffle is needed.
378   if (Index0 == Index1)
379     return nullptr;
380 
381   Type *VecTy = Ext0->getVectorOperand()->getType();
382   assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
383   InstructionCost Cost0 =
384       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
385   InstructionCost Cost1 =
386       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
387 
388   // If both costs are invalid no shuffle is needed
389   if (!Cost0.isValid() && !Cost1.isValid())
390     return nullptr;
391 
392   // We are extracting from 2 different indexes, so one operand must be shuffled
393   // before performing a vector operation and/or extract. The more expensive
394   // extract will be replaced by a shuffle.
395   if (Cost0 > Cost1)
396     return Ext0;
397   if (Cost1 > Cost0)
398     return Ext1;
399 
400   // If the costs are equal and there is a preferred extract index, shuffle the
401   // opposite operand.
402   if (PreferredExtractIndex == Index0)
403     return Ext1;
404   if (PreferredExtractIndex == Index1)
405     return Ext0;
406 
407   // Otherwise, replace the extract with the higher index.
408   return Index0 > Index1 ? Ext0 : Ext1;
409 }
410 
411 /// Compare the relative costs of 2 extracts followed by scalar operation vs.
412 /// vector operation(s) followed by extract. Return true if the existing
413 /// instructions are cheaper than a vector alternative. Otherwise, return false
414 /// and if one of the extracts should be transformed to a shufflevector, set
415 /// \p ConvertToShuffle to that extract instruction.
416 bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
417                                           ExtractElementInst *Ext1,
418                                           const Instruction &I,
419                                           ExtractElementInst *&ConvertToShuffle,
420                                           unsigned PreferredExtractIndex) {
421   auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
422   auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
423   assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
424 
425   unsigned Opcode = I.getOpcode();
426   Value *Ext0Src = Ext0->getVectorOperand();
427   Value *Ext1Src = Ext1->getVectorOperand();
428   Type *ScalarTy = Ext0->getType();
429   auto *VecTy = cast<VectorType>(Ext0Src->getType());
430   InstructionCost ScalarOpCost, VectorOpCost;
431 
432   // Get cost estimates for scalar and vector versions of the operation.
433   bool IsBinOp = Instruction::isBinaryOp(Opcode);
434   if (IsBinOp) {
435     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
436     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
437   } else {
438     assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
439            "Expected a compare");
440     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
441     ScalarOpCost = TTI.getCmpSelInstrCost(
442         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
443     VectorOpCost = TTI.getCmpSelInstrCost(
444         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
445   }
446 
447   // Get cost estimates for the extract elements. These costs will factor into
448   // both sequences.
449   unsigned Ext0Index = Ext0IndexC->getZExtValue();
450   unsigned Ext1Index = Ext1IndexC->getZExtValue();
451 
452   InstructionCost Extract0Cost =
453       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
454   InstructionCost Extract1Cost =
455       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
456 
457   // A more expensive extract will always be replaced by a splat shuffle.
458   // For example, if Ext0 is more expensive:
459   // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
460   // extelt (opcode (splat V0, Ext0), V1), Ext1
461   // TODO: Evaluate whether that always results in lowest cost. Alternatively,
462   //       check the cost of creating a broadcast shuffle and shuffling both
463   //       operands to element 0.
464   unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
465   unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
466   InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
467 
468   // Extra uses of the extracts mean that we include those costs in the
469   // vector total because those instructions will not be eliminated.
470   InstructionCost OldCost, NewCost;
471   if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
472     // Handle a special case. If the 2 extracts are identical, adjust the
473     // formulas to account for that. The extra use charge allows for either the
474     // CSE'd pattern or an unoptimized form with identical values:
475     // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
476     bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
477                                   : !Ext0->hasOneUse() || !Ext1->hasOneUse();
478     OldCost = CheapExtractCost + ScalarOpCost;
479     NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
480   } else {
481     // Handle the general case. Each extract is actually a different value:
482     // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
483     OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
484     NewCost = VectorOpCost + CheapExtractCost +
485               !Ext0->hasOneUse() * Extract0Cost +
486               !Ext1->hasOneUse() * Extract1Cost;
487   }
488 
489   ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
490   if (ConvertToShuffle) {
491     if (IsBinOp && DisableBinopExtractShuffle)
492       return true;
493 
494     // If we are extracting from 2 different indexes, then one operand must be
495     // shuffled before performing the vector operation. The shuffle mask is
496     // poison except for 1 lane that is being translated to the remaining
497     // extraction lane. Therefore, it is a splat shuffle. Ex:
498     // ShufMask = { poison, poison, 0, poison }
499     // TODO: The cost model has an option for a "broadcast" shuffle
500     //       (splat-from-element-0), but no option for a more general splat.
501     if (auto *FixedVecTy = dyn_cast<FixedVectorType>(VecTy)) {
502       SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
503                                    PoisonMaskElem);
504       ShuffleMask[BestInsIndex] = BestExtIndex;
505       NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
506                                     VecTy, ShuffleMask, CostKind, 0, nullptr,
507                                     {ConvertToShuffle});
508     } else {
509       NewCost +=
510           TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy,
511                              {}, CostKind, 0, nullptr, {ConvertToShuffle});
512     }
513   }
514 
515   // Aggressively form a vector op if the cost is equal because the transform
516   // may enable further optimization.
517   // Codegen can reverse this transform (scalarize) if it was not profitable.
518   return OldCost < NewCost;
519 }
520 
521 /// Create a shuffle that translates (shifts) 1 element from the input vector
522 /// to a new element location.
523 static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
524                                  unsigned NewIndex, IRBuilder<> &Builder) {
525   // The shuffle mask is poison except for 1 lane that is being translated
526   // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
527   // ShufMask = { 2, poison, poison, poison }
528   auto *VecTy = cast<FixedVectorType>(Vec->getType());
529   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
530   ShufMask[NewIndex] = OldIndex;
531   return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
532 }
533 
534 /// Given an extract element instruction with constant index operand, shuffle
535 /// the source vector (shift the scalar element) to a NewIndex for extraction.
536 /// Return null if the input can be constant folded, so that we are not creating
537 /// unnecessary instructions.
538 static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
539                                             unsigned NewIndex,
540                                             IRBuilder<> &Builder) {
541   // Shufflevectors can only be created for fixed-width vectors.
542   Value *X = ExtElt->getVectorOperand();
543   if (!isa<FixedVectorType>(X->getType()))
544     return nullptr;
545 
546   // If the extract can be constant-folded, this code is unsimplified. Defer
547   // to other passes to handle that.
548   Value *C = ExtElt->getIndexOperand();
549   assert(isa<ConstantInt>(C) && "Expected a constant index operand");
550   if (isa<Constant>(X))
551     return nullptr;
552 
553   Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
554                                    NewIndex, Builder);
555   return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
556 }
557 
558 /// Try to reduce extract element costs by converting scalar compares to vector
559 /// compares followed by extract.
560 /// cmp (ext0 V0, C), (ext1 V1, C)
561 void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
562                                   ExtractElementInst *Ext1, Instruction &I) {
563   assert(isa<CmpInst>(&I) && "Expected a compare");
564   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
565              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
566          "Expected matching constant extract indexes");
567 
568   // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
569   ++NumVecCmp;
570   CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
571   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
572   Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
573   Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
574   replaceValue(I, *NewExt);
575 }
576 
577 /// Try to reduce extract element costs by converting scalar binops to vector
578 /// binops followed by extract.
579 /// bo (ext0 V0, C), (ext1 V1, C)
580 void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
581                                     ExtractElementInst *Ext1, Instruction &I) {
582   assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
583   assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
584              cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
585          "Expected matching constant extract indexes");
586 
587   // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
588   ++NumVecBO;
589   Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
590   Value *VecBO =
591       Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
592 
593   // All IR flags are safe to back-propagate because any potential poison
594   // created in unused vector elements is discarded by the extract.
595   if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
596     VecBOInst->copyIRFlags(&I);
597 
598   Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
599   replaceValue(I, *NewExt);
600 }
601 
602 /// Match an instruction with extracted vector operands.
603 bool VectorCombine::foldExtractExtract(Instruction &I) {
604   // It is not safe to transform things like div, urem, etc. because we may
605   // create undefined behavior when executing those on unknown vector elements.
606   if (!isSafeToSpeculativelyExecute(&I))
607     return false;
608 
609   Instruction *I0, *I1;
610   CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE;
611   if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
612       !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
613     return false;
614 
615   Value *V0, *V1;
616   uint64_t C0, C1;
617   if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
618       !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
619       V0->getType() != V1->getType())
620     return false;
621 
622   // If the scalar value 'I' is going to be re-inserted into a vector, then try
623   // to create an extract to that same element. The extract/insert can be
624   // reduced to a "select shuffle".
625   // TODO: If we add a larger pattern match that starts from an insert, this
626   //       probably becomes unnecessary.
627   auto *Ext0 = cast<ExtractElementInst>(I0);
628   auto *Ext1 = cast<ExtractElementInst>(I1);
629   uint64_t InsertIndex = InvalidIndex;
630   if (I.hasOneUse())
631     match(I.user_back(),
632           m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
633 
634   ExtractElementInst *ExtractToChange;
635   if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
636     return false;
637 
638   if (ExtractToChange) {
639     unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
640     ExtractElementInst *NewExtract =
641         translateExtract(ExtractToChange, CheapExtractIdx, Builder);
642     if (!NewExtract)
643       return false;
644     if (ExtractToChange == Ext0)
645       Ext0 = NewExtract;
646     else
647       Ext1 = NewExtract;
648   }
649 
650   if (Pred != CmpInst::BAD_ICMP_PREDICATE)
651     foldExtExtCmp(Ext0, Ext1, I);
652   else
653     foldExtExtBinop(Ext0, Ext1, I);
654 
655   Worklist.push(Ext0);
656   Worklist.push(Ext1);
657   return true;
658 }
659 
660 /// Try to replace an extract + scalar fneg + insert with a vector fneg +
661 /// shuffle.
662 bool VectorCombine::foldInsExtFNeg(Instruction &I) {
663   // Match an insert (op (extract)) pattern.
664   Value *DestVec;
665   uint64_t Index;
666   Instruction *FNeg;
667   if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
668                              m_ConstantInt(Index))))
669     return false;
670 
671   // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
672   Value *SrcVec;
673   Instruction *Extract;
674   if (!match(FNeg, m_FNeg(m_CombineAnd(
675                        m_Instruction(Extract),
676                        m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
677     return false;
678 
679   auto *VecTy = cast<FixedVectorType>(I.getType());
680   auto *ScalarTy = VecTy->getScalarType();
681   auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcVec->getType());
682   if (!SrcVecTy || ScalarTy != SrcVecTy->getScalarType())
683     return false;
684 
685   // Ignore bogus insert/extract index.
686   unsigned NumElts = VecTy->getNumElements();
687   if (Index >= NumElts)
688     return false;
689 
690   // We are inserting the negated element into the same lane that we extracted
691   // from. This is equivalent to a select-shuffle that chooses all but the
692   // negated element from the destination vector.
693   SmallVector<int> Mask(NumElts);
694   std::iota(Mask.begin(), Mask.end(), 0);
695   Mask[Index] = Index + NumElts;
696   InstructionCost OldCost =
697       TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy, CostKind) +
698       TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
699 
700   // If the extract has one use, it will be eliminated, so count it in the
701   // original cost. If it has more than one use, ignore the cost because it will
702   // be the same before/after.
703   if (Extract->hasOneUse())
704     OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
705 
706   InstructionCost NewCost =
707       TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy, CostKind) +
708       TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask, CostKind);
709 
710   bool NeedLenChg = SrcVecTy->getNumElements() != NumElts;
711   // If the lengths of the two vectors are not equal,
712   // we need to add a length-change vector. Add this cost.
713   SmallVector<int> SrcMask;
714   if (NeedLenChg) {
715     SrcMask.assign(NumElts, PoisonMaskElem);
716     SrcMask[Index] = Index;
717     NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
718                                   SrcVecTy, SrcMask, CostKind);
719   }
720 
721   if (NewCost > OldCost)
722     return false;
723 
724   Value *NewShuf;
725   // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index
726   Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
727   if (NeedLenChg) {
728     // shuffle DestVec, (shuffle (fneg SrcVec), poison, SrcMask), Mask
729     Value *LenChgShuf = Builder.CreateShuffleVector(VecFNeg, SrcMask);
730     NewShuf = Builder.CreateShuffleVector(DestVec, LenChgShuf, Mask);
731   } else {
732     // shuffle DestVec, (fneg SrcVec), Mask
733     NewShuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
734   }
735 
736   replaceValue(I, *NewShuf);
737   return true;
738 }
739 
740 /// If this is a bitcast of a shuffle, try to bitcast the source vector to the
741 /// destination type followed by shuffle. This can enable further transforms by
742 /// moving bitcasts or shuffles together.
743 bool VectorCombine::foldBitcastShuffle(Instruction &I) {
744   Value *V0, *V1;
745   ArrayRef<int> Mask;
746   if (!match(&I, m_BitCast(m_OneUse(
747                      m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(Mask))))))
748     return false;
749 
750   // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
751   // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
752   // mask for scalable type is a splat or not.
753   // 2) Disallow non-vector casts.
754   // TODO: We could allow any shuffle.
755   auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
756   auto *SrcTy = dyn_cast<FixedVectorType>(V0->getType());
757   if (!DestTy || !SrcTy)
758     return false;
759 
760   unsigned DestEltSize = DestTy->getScalarSizeInBits();
761   unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
762   if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
763     return false;
764 
765   bool IsUnary = isa<UndefValue>(V1);
766 
767   // For binary shuffles, only fold bitcast(shuffle(X,Y))
768   // if it won't increase the number of bitcasts.
769   if (!IsUnary) {
770     auto *BCTy0 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V0)->getType());
771     auto *BCTy1 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V1)->getType());
772     if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
773         !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
774       return false;
775   }
776 
777   SmallVector<int, 16> NewMask;
778   if (DestEltSize <= SrcEltSize) {
779     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
780     // always be expanded to the equivalent form choosing narrower elements.
781     assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
782     unsigned ScaleFactor = SrcEltSize / DestEltSize;
783     narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
784   } else {
785     // The bitcast is from narrow elements to wide elements. The shuffle mask
786     // must choose consecutive elements to allow casting first.
787     assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
788     unsigned ScaleFactor = DestEltSize / SrcEltSize;
789     if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
790       return false;
791   }
792 
793   // Bitcast the shuffle src - keep its original width but using the destination
794   // scalar type.
795   unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
796   auto *NewShuffleTy =
797       FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
798   auto *OldShuffleTy =
799       FixedVectorType::get(SrcTy->getScalarType(), Mask.size());
800   unsigned NumOps = IsUnary ? 1 : 2;
801 
802   // The new shuffle must not cost more than the old shuffle.
803   TargetTransformInfo::ShuffleKind SK =
804       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
805               : TargetTransformInfo::SK_PermuteTwoSrc;
806 
807   InstructionCost NewCost =
808       TTI.getShuffleCost(SK, NewShuffleTy, NewMask, CostKind) +
809       (NumOps * TTI.getCastInstrCost(Instruction::BitCast, NewShuffleTy, SrcTy,
810                                      TargetTransformInfo::CastContextHint::None,
811                                      CostKind));
812   InstructionCost OldCost =
813       TTI.getShuffleCost(SK, SrcTy, Mask, CostKind) +
814       TTI.getCastInstrCost(Instruction::BitCast, DestTy, OldShuffleTy,
815                            TargetTransformInfo::CastContextHint::None,
816                            CostKind);
817 
818   LLVM_DEBUG(dbgs() << "Found a bitcasted shuffle: " << I << "\n  OldCost: "
819                     << OldCost << " vs NewCost: " << NewCost << "\n");
820 
821   if (NewCost > OldCost || !NewCost.isValid())
822     return false;
823 
824   // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC'
825   ++NumShufOfBitcast;
826   Value *CastV0 = Builder.CreateBitCast(peekThroughBitcasts(V0), NewShuffleTy);
827   Value *CastV1 = Builder.CreateBitCast(peekThroughBitcasts(V1), NewShuffleTy);
828   Value *Shuf = Builder.CreateShuffleVector(CastV0, CastV1, NewMask);
829   replaceValue(I, *Shuf);
830   return true;
831 }
832 
833 /// VP Intrinsics whose vector operands are both splat values may be simplified
834 /// into the scalar version of the operation and the result splatted. This
835 /// can lead to scalarization down the line.
836 bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
837   if (!isa<VPIntrinsic>(I))
838     return false;
839   VPIntrinsic &VPI = cast<VPIntrinsic>(I);
840   Value *Op0 = VPI.getArgOperand(0);
841   Value *Op1 = VPI.getArgOperand(1);
842 
843   if (!isSplatValue(Op0) || !isSplatValue(Op1))
844     return false;
845 
846   // Check getSplatValue early in this function, to avoid doing unnecessary
847   // work.
848   Value *ScalarOp0 = getSplatValue(Op0);
849   Value *ScalarOp1 = getSplatValue(Op1);
850   if (!ScalarOp0 || !ScalarOp1)
851     return false;
852 
853   // For the binary VP intrinsics supported here, the result on disabled lanes
854   // is a poison value. For now, only do this simplification if all lanes
855   // are active.
856   // TODO: Relax the condition that all lanes are active by using insertelement
857   // on inactive lanes.
858   auto IsAllTrueMask = [](Value *MaskVal) {
859     if (Value *SplattedVal = getSplatValue(MaskVal))
860       if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
861         return ConstValue->isAllOnesValue();
862     return false;
863   };
864   if (!IsAllTrueMask(VPI.getArgOperand(2)))
865     return false;
866 
867   // Check to make sure we support scalarization of the intrinsic
868   Intrinsic::ID IntrID = VPI.getIntrinsicID();
869   if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
870     return false;
871 
872   // Calculate cost of splatting both operands into vectors and the vector
873   // intrinsic
874   VectorType *VecTy = cast<VectorType>(VPI.getType());
875   SmallVector<int> Mask;
876   if (auto *FVTy = dyn_cast<FixedVectorType>(VecTy))
877     Mask.resize(FVTy->getNumElements(), 0);
878   InstructionCost SplatCost =
879       TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
880       TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, Mask,
881                          CostKind);
882 
883   // Calculate the cost of the VP Intrinsic
884   SmallVector<Type *, 4> Args;
885   for (Value *V : VPI.args())
886     Args.push_back(V->getType());
887   IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
888   InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
889   InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
890 
891   // Determine scalar opcode
892   std::optional<unsigned> FunctionalOpcode =
893       VPI.getFunctionalOpcode();
894   std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
895   if (!FunctionalOpcode) {
896     ScalarIntrID = VPI.getFunctionalIntrinsicID();
897     if (!ScalarIntrID)
898       return false;
899   }
900 
901   // Calculate cost of scalarizing
902   InstructionCost ScalarOpCost = 0;
903   if (ScalarIntrID) {
904     IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
905     ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
906   } else {
907     ScalarOpCost = TTI.getArithmeticInstrCost(*FunctionalOpcode,
908                                               VecTy->getScalarType(), CostKind);
909   }
910 
911   // The existing splats may be kept around if other instructions use them.
912   InstructionCost CostToKeepSplats =
913       (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
914   InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
915 
916   LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
917                     << "\n");
918   LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
919                     << ", Cost of scalarizing:" << NewCost << "\n");
920 
921   // We want to scalarize unless the vector variant actually has lower cost.
922   if (OldCost < NewCost || !NewCost.isValid())
923     return false;
924 
925   // Scalarize the intrinsic
926   ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
927   Value *EVL = VPI.getArgOperand(3);
928 
929   // If the VP op might introduce UB or poison, we can scalarize it provided
930   // that we know the EVL > 0: If the EVL is zero, then the original VP op
931   // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
932   // scalarizing it.
933   bool SafeToSpeculate;
934   if (ScalarIntrID)
935     SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
936                           .hasFnAttr(Attribute::AttrKind::Speculatable);
937   else
938     SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
939         *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
940   if (!SafeToSpeculate &&
941       !isKnownNonZero(EVL, SimplifyQuery(*DL, &DT, &AC, &VPI)))
942     return false;
943 
944   Value *ScalarVal =
945       ScalarIntrID
946           ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
947                                     {ScalarOp0, ScalarOp1})
948           : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
949                                 ScalarOp0, ScalarOp1);
950 
951   replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
952   return true;
953 }
954 
955 /// Match a vector binop or compare instruction with at least one inserted
956 /// scalar operand and convert to scalar binop/cmp followed by insertelement.
957 bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
958   CmpPredicate Pred = CmpInst::BAD_ICMP_PREDICATE;
959   Value *Ins0, *Ins1;
960   if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
961       !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
962     return false;
963 
964   // Do not convert the vector condition of a vector select into a scalar
965   // condition. That may cause problems for codegen because of differences in
966   // boolean formats and register-file transfers.
967   // TODO: Can we account for that in the cost model?
968   bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
969   if (IsCmp)
970     for (User *U : I.users())
971       if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
972         return false;
973 
974   // Match against one or both scalar values being inserted into constant
975   // vectors:
976   // vec_op VecC0, (inselt VecC1, V1, Index)
977   // vec_op (inselt VecC0, V0, Index), VecC1
978   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
979   // TODO: Deal with mismatched index constants and variable indexes?
980   Constant *VecC0 = nullptr, *VecC1 = nullptr;
981   Value *V0 = nullptr, *V1 = nullptr;
982   uint64_t Index0 = 0, Index1 = 0;
983   if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
984                                m_ConstantInt(Index0))) &&
985       !match(Ins0, m_Constant(VecC0)))
986     return false;
987   if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
988                                m_ConstantInt(Index1))) &&
989       !match(Ins1, m_Constant(VecC1)))
990     return false;
991 
992   bool IsConst0 = !V0;
993   bool IsConst1 = !V1;
994   if (IsConst0 && IsConst1)
995     return false;
996   if (!IsConst0 && !IsConst1 && Index0 != Index1)
997     return false;
998 
999   auto *VecTy0 = cast<VectorType>(Ins0->getType());
1000   auto *VecTy1 = cast<VectorType>(Ins1->getType());
1001   if (VecTy0->getElementCount().getKnownMinValue() <= Index0 ||
1002       VecTy1->getElementCount().getKnownMinValue() <= Index1)
1003     return false;
1004 
1005   // Bail for single insertion if it is a load.
1006   // TODO: Handle this once getVectorInstrCost can cost for load/stores.
1007   auto *I0 = dyn_cast_or_null<Instruction>(V0);
1008   auto *I1 = dyn_cast_or_null<Instruction>(V1);
1009   if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
1010       (IsConst1 && I0 && I0->mayReadFromMemory()))
1011     return false;
1012 
1013   uint64_t Index = IsConst0 ? Index1 : Index0;
1014   Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
1015   Type *VecTy = I.getType();
1016   assert(VecTy->isVectorTy() &&
1017          (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
1018          (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
1019           ScalarTy->isPointerTy()) &&
1020          "Unexpected types for insert element into binop or cmp");
1021 
1022   unsigned Opcode = I.getOpcode();
1023   InstructionCost ScalarOpCost, VectorOpCost;
1024   if (IsCmp) {
1025     CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
1026     ScalarOpCost = TTI.getCmpSelInstrCost(
1027         Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
1028     VectorOpCost = TTI.getCmpSelInstrCost(
1029         Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
1030   } else {
1031     ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
1032     VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
1033   }
1034 
1035   // Get cost estimate for the insert element. This cost will factor into
1036   // both sequences.
1037   InstructionCost InsertCost = TTI.getVectorInstrCost(
1038       Instruction::InsertElement, VecTy, CostKind, Index);
1039   InstructionCost OldCost =
1040       (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
1041   InstructionCost NewCost = ScalarOpCost + InsertCost +
1042                             (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
1043                             (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
1044 
1045   // We want to scalarize unless the vector variant actually has lower cost.
1046   if (OldCost < NewCost || !NewCost.isValid())
1047     return false;
1048 
1049   // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
1050   // inselt NewVecC, (scalar_op V0, V1), Index
1051   if (IsCmp)
1052     ++NumScalarCmp;
1053   else
1054     ++NumScalarBO;
1055 
1056   // For constant cases, extract the scalar element, this should constant fold.
1057   if (IsConst0)
1058     V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
1059   if (IsConst1)
1060     V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
1061 
1062   Value *Scalar =
1063       IsCmp ? Builder.CreateCmp(Pred, V0, V1)
1064             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
1065 
1066   Scalar->setName(I.getName() + ".scalar");
1067 
1068   // All IR flags are safe to back-propagate. There is no potential for extra
1069   // poison to be created by the scalar instruction.
1070   if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
1071     ScalarInst->copyIRFlags(&I);
1072 
1073   // Fold the vector constants in the original vectors into a new base vector.
1074   Value *NewVecC =
1075       IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
1076             : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
1077   Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
1078   replaceValue(I, *Insert);
1079   return true;
1080 }
1081 
1082 /// Try to combine a scalar binop + 2 scalar compares of extracted elements of
1083 /// a vector into vector operations followed by extract. Note: The SLP pass
1084 /// may miss this pattern because of implementation problems.
1085 bool VectorCombine::foldExtractedCmps(Instruction &I) {
1086   auto *BI = dyn_cast<BinaryOperator>(&I);
1087 
1088   // We are looking for a scalar binop of booleans.
1089   // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
1090   if (!BI || !I.getType()->isIntegerTy(1))
1091     return false;
1092 
1093   // The compare predicates should match, and each compare should have a
1094   // constant operand.
1095   Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
1096   Instruction *I0, *I1;
1097   Constant *C0, *C1;
1098   CmpPredicate P0, P1;
1099   // FIXME: Use CmpPredicate::getMatching here.
1100   if (!match(B0, m_Cmp(P0, m_Instruction(I0), m_Constant(C0))) ||
1101       !match(B1, m_Cmp(P1, m_Instruction(I1), m_Constant(C1))) ||
1102       P0 != static_cast<CmpInst::Predicate>(P1))
1103     return false;
1104 
1105   // The compare operands must be extracts of the same vector with constant
1106   // extract indexes.
1107   Value *X;
1108   uint64_t Index0, Index1;
1109   if (!match(I0, m_ExtractElt(m_Value(X), m_ConstantInt(Index0))) ||
1110       !match(I1, m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))
1111     return false;
1112 
1113   auto *Ext0 = cast<ExtractElementInst>(I0);
1114   auto *Ext1 = cast<ExtractElementInst>(I1);
1115   ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1, CostKind);
1116   if (!ConvertToShuf)
1117     return false;
1118   assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1119          "Unknown ExtractElementInst");
1120 
1121   // The original scalar pattern is:
1122   // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1123   CmpInst::Predicate Pred = P0;
1124   unsigned CmpOpcode =
1125       CmpInst::isFPPredicate(Pred) ? Instruction::FCmp : Instruction::ICmp;
1126   auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1127   if (!VecTy)
1128     return false;
1129 
1130   InstructionCost Ext0Cost =
1131       TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1132   InstructionCost Ext1Cost =
1133       TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1134   InstructionCost CmpCost = TTI.getCmpSelInstrCost(
1135       CmpOpcode, I0->getType(), CmpInst::makeCmpResultType(I0->getType()), Pred,
1136       CostKind);
1137 
1138   InstructionCost OldCost =
1139       Ext0Cost + Ext1Cost + CmpCost * 2 +
1140       TTI.getArithmeticInstrCost(I.getOpcode(), I.getType(), CostKind);
1141 
1142   // The proposed vector pattern is:
1143   // vcmp = cmp Pred X, VecC
1144   // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1145   int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1146   int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1147   auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1148   InstructionCost NewCost = TTI.getCmpSelInstrCost(
1149       CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred,
1150       CostKind);
1151   SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1152   ShufMask[CheapIndex] = ExpensiveIndex;
1153   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
1154                                 ShufMask, CostKind);
1155   NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy, CostKind);
1156   NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1157   NewCost += Ext0->hasOneUse() ? 0 : Ext0Cost;
1158   NewCost += Ext1->hasOneUse() ? 0 : Ext1Cost;
1159 
1160   // Aggressively form vector ops if the cost is equal because the transform
1161   // may enable further optimization.
1162   // Codegen can reverse this transform (scalarize) if it was not profitable.
1163   if (OldCost < NewCost || !NewCost.isValid())
1164     return false;
1165 
1166   // Create a vector constant from the 2 scalar constants.
1167   SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1168                                    PoisonValue::get(VecTy->getElementType()));
1169   CmpC[Index0] = C0;
1170   CmpC[Index1] = C1;
1171   Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1172   Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1173   Value *LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1174   Value *RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1175   Value *VecLogic = Builder.CreateBinOp(BI->getOpcode(), LHS, RHS);
1176   Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1177   replaceValue(I, *NewExt);
1178   ++NumVecCmpBO;
1179   return true;
1180 }
1181 
1182 // Check if memory loc modified between two instrs in the same BB
1183 static bool isMemModifiedBetween(BasicBlock::iterator Begin,
1184                                  BasicBlock::iterator End,
1185                                  const MemoryLocation &Loc, AAResults &AA) {
1186   unsigned NumScanned = 0;
1187   return std::any_of(Begin, End, [&](const Instruction &Instr) {
1188     return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1189            ++NumScanned > MaxInstrsToScan;
1190   });
1191 }
1192 
1193 namespace {
1194 /// Helper class to indicate whether a vector index can be safely scalarized and
1195 /// if a freeze needs to be inserted.
1196 class ScalarizationResult {
1197   enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1198 
1199   StatusTy Status;
1200   Value *ToFreeze;
1201 
1202   ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1203       : Status(Status), ToFreeze(ToFreeze) {}
1204 
1205 public:
1206   ScalarizationResult(const ScalarizationResult &Other) = default;
1207   ~ScalarizationResult() {
1208     assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1209   }
1210 
1211   static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
1212   static ScalarizationResult safe() { return {StatusTy::Safe}; }
1213   static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1214     return {StatusTy::SafeWithFreeze, ToFreeze};
1215   }
1216 
1217   /// Returns true if the index can be scalarize without requiring a freeze.
1218   bool isSafe() const { return Status == StatusTy::Safe; }
1219   /// Returns true if the index cannot be scalarized.
1220   bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1221   /// Returns true if the index can be scalarize, but requires inserting a
1222   /// freeze.
1223   bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1224 
1225   /// Reset the state of Unsafe and clear ToFreze if set.
1226   void discard() {
1227     ToFreeze = nullptr;
1228     Status = StatusTy::Unsafe;
1229   }
1230 
1231   /// Freeze the ToFreeze and update the use in \p User to use it.
1232   void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1233     assert(isSafeWithFreeze() &&
1234            "should only be used when freezing is required");
1235     assert(is_contained(ToFreeze->users(), &UserI) &&
1236            "UserI must be a user of ToFreeze");
1237     IRBuilder<>::InsertPointGuard Guard(Builder);
1238     Builder.SetInsertPoint(cast<Instruction>(&UserI));
1239     Value *Frozen =
1240         Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1241     for (Use &U : make_early_inc_range((UserI.operands())))
1242       if (U.get() == ToFreeze)
1243         U.set(Frozen);
1244 
1245     ToFreeze = nullptr;
1246   }
1247 };
1248 } // namespace
1249 
1250 /// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1251 /// Idx. \p Idx must access a valid vector element.
1252 static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1253                                               Instruction *CtxI,
1254                                               AssumptionCache &AC,
1255                                               const DominatorTree &DT) {
1256   // We do checks for both fixed vector types and scalable vector types.
1257   // This is the number of elements of fixed vector types,
1258   // or the minimum number of elements of scalable vector types.
1259   uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1260 
1261   if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1262     if (C->getValue().ult(NumElements))
1263       return ScalarizationResult::safe();
1264     return ScalarizationResult::unsafe();
1265   }
1266 
1267   unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1268   APInt Zero(IntWidth, 0);
1269   APInt MaxElts(IntWidth, NumElements);
1270   ConstantRange ValidIndices(Zero, MaxElts);
1271   ConstantRange IdxRange(IntWidth, true);
1272 
1273   if (isGuaranteedNotToBePoison(Idx, &AC)) {
1274     if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1275                                                    true, &AC, CtxI, &DT)))
1276       return ScalarizationResult::safe();
1277     return ScalarizationResult::unsafe();
1278   }
1279 
1280   // If the index may be poison, check if we can insert a freeze before the
1281   // range of the index is restricted.
1282   Value *IdxBase;
1283   ConstantInt *CI;
1284   if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1285     IdxRange = IdxRange.binaryAnd(CI->getValue());
1286   } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1287     IdxRange = IdxRange.urem(CI->getValue());
1288   }
1289 
1290   if (ValidIndices.contains(IdxRange))
1291     return ScalarizationResult::safeWithFreeze(IdxBase);
1292   return ScalarizationResult::unsafe();
1293 }
1294 
1295 /// The memory operation on a vector of \p ScalarType had alignment of
1296 /// \p VectorAlignment. Compute the maximal, but conservatively correct,
1297 /// alignment that will be valid for the memory operation on a single scalar
1298 /// element of the same type with index \p Idx.
1299 static Align computeAlignmentAfterScalarization(Align VectorAlignment,
1300                                                 Type *ScalarType, Value *Idx,
1301                                                 const DataLayout &DL) {
1302   if (auto *C = dyn_cast<ConstantInt>(Idx))
1303     return commonAlignment(VectorAlignment,
1304                            C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1305   return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1306 }
1307 
1308 // Combine patterns like:
1309 //   %0 = load <4 x i32>, <4 x i32>* %a
1310 //   %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1311 //   store <4 x i32> %1, <4 x i32>* %a
1312 // to:
1313 //   %0 = bitcast <4 x i32>* %a to i32*
1314 //   %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1315 //   store i32 %b, i32* %1
1316 bool VectorCombine::foldSingleElementStore(Instruction &I) {
1317   auto *SI = cast<StoreInst>(&I);
1318   if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1319     return false;
1320 
1321   // TODO: Combine more complicated patterns (multiple insert) by referencing
1322   // TargetTransformInfo.
1323   Instruction *Source;
1324   Value *NewElement;
1325   Value *Idx;
1326   if (!match(SI->getValueOperand(),
1327              m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1328                          m_Value(Idx))))
1329     return false;
1330 
1331   if (auto *Load = dyn_cast<LoadInst>(Source)) {
1332     auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1333     Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1334     // Don't optimize for atomic/volatile load or store. Ensure memory is not
1335     // modified between, vector type matches store size, and index is inbounds.
1336     if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1337         !DL->typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1338         SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1339       return false;
1340 
1341     auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1342     if (ScalarizableIdx.isUnsafe() ||
1343         isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1344                              MemoryLocation::get(SI), AA))
1345       return false;
1346 
1347     // Ensure we add the load back to the worklist BEFORE its users so they can
1348     // erased in the correct order.
1349     Worklist.push(Load);
1350 
1351     if (ScalarizableIdx.isSafeWithFreeze())
1352       ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1353     Value *GEP = Builder.CreateInBoundsGEP(
1354         SI->getValueOperand()->getType(), SI->getPointerOperand(),
1355         {ConstantInt::get(Idx->getType(), 0), Idx});
1356     StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1357     NSI->copyMetadata(*SI);
1358     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1359         std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1360         *DL);
1361     NSI->setAlignment(ScalarOpAlignment);
1362     replaceValue(I, *NSI);
1363     eraseInstruction(I);
1364     return true;
1365   }
1366 
1367   return false;
1368 }
1369 
1370 /// Try to scalarize vector loads feeding extractelement instructions.
1371 bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1372   Value *Ptr;
1373   if (!match(&I, m_Load(m_Value(Ptr))))
1374     return false;
1375 
1376   auto *LI = cast<LoadInst>(&I);
1377   auto *VecTy = cast<VectorType>(LI->getType());
1378   if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1379     return false;
1380 
1381   InstructionCost OriginalCost =
1382       TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1383                           LI->getPointerAddressSpace(), CostKind);
1384   InstructionCost ScalarizedCost = 0;
1385 
1386   Instruction *LastCheckedInst = LI;
1387   unsigned NumInstChecked = 0;
1388   DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
1389   auto FailureGuard = make_scope_exit([&]() {
1390     // If the transform is aborted, discard the ScalarizationResults.
1391     for (auto &Pair : NeedFreeze)
1392       Pair.second.discard();
1393   });
1394 
1395   // Check if all users of the load are extracts with no memory modifications
1396   // between the load and the extract. Compute the cost of both the original
1397   // code and the scalarized version.
1398   for (User *U : LI->users()) {
1399     auto *UI = dyn_cast<ExtractElementInst>(U);
1400     if (!UI || UI->getParent() != LI->getParent())
1401       return false;
1402 
1403     // Check if any instruction between the load and the extract may modify
1404     // memory.
1405     if (LastCheckedInst->comesBefore(UI)) {
1406       for (Instruction &I :
1407            make_range(std::next(LI->getIterator()), UI->getIterator())) {
1408         // Bail out if we reached the check limit or the instruction may write
1409         // to memory.
1410         if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1411           return false;
1412         NumInstChecked++;
1413       }
1414       LastCheckedInst = UI;
1415     }
1416 
1417     auto ScalarIdx =
1418         canScalarizeAccess(VecTy, UI->getIndexOperand(), LI, AC, DT);
1419     if (ScalarIdx.isUnsafe())
1420       return false;
1421     if (ScalarIdx.isSafeWithFreeze()) {
1422       NeedFreeze.try_emplace(UI, ScalarIdx);
1423       ScalarIdx.discard();
1424     }
1425 
1426     auto *Index = dyn_cast<ConstantInt>(UI->getIndexOperand());
1427     OriginalCost +=
1428         TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1429                                Index ? Index->getZExtValue() : -1);
1430     ScalarizedCost +=
1431         TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1432                             Align(1), LI->getPointerAddressSpace(), CostKind);
1433     ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1434   }
1435 
1436   if (ScalarizedCost >= OriginalCost)
1437     return false;
1438 
1439   // Ensure we add the load back to the worklist BEFORE its users so they can
1440   // erased in the correct order.
1441   Worklist.push(LI);
1442 
1443   // Replace extracts with narrow scalar loads.
1444   for (User *U : LI->users()) {
1445     auto *EI = cast<ExtractElementInst>(U);
1446     Value *Idx = EI->getIndexOperand();
1447 
1448     // Insert 'freeze' for poison indexes.
1449     auto It = NeedFreeze.find(EI);
1450     if (It != NeedFreeze.end())
1451       It->second.freeze(Builder, *cast<Instruction>(Idx));
1452 
1453     Builder.SetInsertPoint(EI);
1454     Value *GEP =
1455         Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1456     auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1457         VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1458 
1459     Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1460         LI->getAlign(), VecTy->getElementType(), Idx, *DL);
1461     NewLoad->setAlignment(ScalarOpAlignment);
1462 
1463     replaceValue(*EI, *NewLoad);
1464   }
1465 
1466   FailureGuard.release();
1467   return true;
1468 }
1469 
1470 /// Try to fold "(or (zext (bitcast X)), (shl (zext (bitcast Y)), C))"
1471 /// to "(bitcast (concat X, Y))"
1472 /// where X/Y are bitcasted from i1 mask vectors.
1473 bool VectorCombine::foldConcatOfBoolMasks(Instruction &I) {
1474   Type *Ty = I.getType();
1475   if (!Ty->isIntegerTy())
1476     return false;
1477 
1478   // TODO: Add big endian test coverage
1479   if (DL->isBigEndian())
1480     return false;
1481 
1482   // Restrict to disjoint cases so the mask vectors aren't overlapping.
1483   Instruction *X, *Y;
1484   if (!match(&I, m_DisjointOr(m_Instruction(X), m_Instruction(Y))))
1485     return false;
1486 
1487   // Allow both sources to contain shl, to handle more generic pattern:
1488   // "(or (shl (zext (bitcast X)), C1), (shl (zext (bitcast Y)), C2))"
1489   Value *SrcX;
1490   uint64_t ShAmtX = 0;
1491   if (!match(X, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX)))))) &&
1492       !match(X, m_OneUse(
1493                     m_Shl(m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX))))),
1494                           m_ConstantInt(ShAmtX)))))
1495     return false;
1496 
1497   Value *SrcY;
1498   uint64_t ShAmtY = 0;
1499   if (!match(Y, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY)))))) &&
1500       !match(Y, m_OneUse(
1501                     m_Shl(m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY))))),
1502                           m_ConstantInt(ShAmtY)))))
1503     return false;
1504 
1505   // Canonicalize larger shift to the RHS.
1506   if (ShAmtX > ShAmtY) {
1507     std::swap(X, Y);
1508     std::swap(SrcX, SrcY);
1509     std::swap(ShAmtX, ShAmtY);
1510   }
1511 
1512   // Ensure both sources are matching vXi1 bool mask types, and that the shift
1513   // difference is the mask width so they can be easily concatenated together.
1514   uint64_t ShAmtDiff = ShAmtY - ShAmtX;
1515   unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
1516   unsigned BitWidth = Ty->getPrimitiveSizeInBits();
1517   auto *MaskTy = dyn_cast<FixedVectorType>(SrcX->getType());
1518   if (!MaskTy || SrcX->getType() != SrcY->getType() ||
1519       !MaskTy->getElementType()->isIntegerTy(1) ||
1520       MaskTy->getNumElements() != ShAmtDiff ||
1521       MaskTy->getNumElements() > (BitWidth / 2))
1522     return false;
1523 
1524   auto *ConcatTy = FixedVectorType::getDoubleElementsVectorType(MaskTy);
1525   auto *ConcatIntTy =
1526       Type::getIntNTy(Ty->getContext(), ConcatTy->getNumElements());
1527   auto *MaskIntTy = Type::getIntNTy(Ty->getContext(), ShAmtDiff);
1528 
1529   SmallVector<int, 32> ConcatMask(ConcatTy->getNumElements());
1530   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
1531 
1532   // TODO: Is it worth supporting multi use cases?
1533   InstructionCost OldCost = 0;
1534   OldCost += TTI.getArithmeticInstrCost(Instruction::Or, Ty, CostKind);
1535   OldCost +=
1536       NumSHL * TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1537   OldCost += 2 * TTI.getCastInstrCost(Instruction::ZExt, Ty, MaskIntTy,
1538                                       TTI::CastContextHint::None, CostKind);
1539   OldCost += 2 * TTI.getCastInstrCost(Instruction::BitCast, MaskIntTy, MaskTy,
1540                                       TTI::CastContextHint::None, CostKind);
1541 
1542   InstructionCost NewCost = 0;
1543   NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, MaskTy,
1544                                 ConcatMask, CostKind);
1545   NewCost += TTI.getCastInstrCost(Instruction::BitCast, ConcatIntTy, ConcatTy,
1546                                   TTI::CastContextHint::None, CostKind);
1547   if (Ty != ConcatIntTy)
1548     NewCost += TTI.getCastInstrCost(Instruction::ZExt, Ty, ConcatIntTy,
1549                                     TTI::CastContextHint::None, CostKind);
1550   if (ShAmtX > 0)
1551     NewCost += TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1552 
1553   LLVM_DEBUG(dbgs() << "Found a concatenation of bitcasted bool masks: " << I
1554                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1555                     << "\n");
1556 
1557   if (NewCost > OldCost)
1558     return false;
1559 
1560   // Build bool mask concatenation, bitcast back to scalar integer, and perform
1561   // any residual zero-extension or shifting.
1562   Value *Concat = Builder.CreateShuffleVector(SrcX, SrcY, ConcatMask);
1563   Worklist.pushValue(Concat);
1564 
1565   Value *Result = Builder.CreateBitCast(Concat, ConcatIntTy);
1566 
1567   if (Ty != ConcatIntTy) {
1568     Worklist.pushValue(Result);
1569     Result = Builder.CreateZExt(Result, Ty);
1570   }
1571 
1572   if (ShAmtX > 0) {
1573     Worklist.pushValue(Result);
1574     Result = Builder.CreateShl(Result, ShAmtX);
1575   }
1576 
1577   replaceValue(I, *Result);
1578   return true;
1579 }
1580 
1581 /// Try to convert "shuffle (binop (shuffle, shuffle)), undef"
1582 ///           -->  "binop (shuffle), (shuffle)".
1583 bool VectorCombine::foldPermuteOfBinops(Instruction &I) {
1584   BinaryOperator *BinOp;
1585   ArrayRef<int> OuterMask;
1586   if (!match(&I,
1587              m_Shuffle(m_OneUse(m_BinOp(BinOp)), m_Undef(), m_Mask(OuterMask))))
1588     return false;
1589 
1590   // Don't introduce poison into div/rem.
1591   if (BinOp->isIntDivRem() && llvm::is_contained(OuterMask, PoisonMaskElem))
1592     return false;
1593 
1594   Value *Op00, *Op01;
1595   ArrayRef<int> Mask0;
1596   if (!match(BinOp->getOperand(0),
1597              m_OneUse(m_Shuffle(m_Value(Op00), m_Value(Op01), m_Mask(Mask0)))))
1598     return false;
1599 
1600   Value *Op10, *Op11;
1601   ArrayRef<int> Mask1;
1602   if (!match(BinOp->getOperand(1),
1603              m_OneUse(m_Shuffle(m_Value(Op10), m_Value(Op11), m_Mask(Mask1)))))
1604     return false;
1605 
1606   Instruction::BinaryOps Opcode = BinOp->getOpcode();
1607   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1608   auto *BinOpTy = dyn_cast<FixedVectorType>(BinOp->getType());
1609   auto *Op0Ty = dyn_cast<FixedVectorType>(Op00->getType());
1610   auto *Op1Ty = dyn_cast<FixedVectorType>(Op10->getType());
1611   if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
1612     return false;
1613 
1614   unsigned NumSrcElts = BinOpTy->getNumElements();
1615 
1616   // Don't accept shuffles that reference the second operand in
1617   // div/rem or if its an undef arg.
1618   if ((BinOp->isIntDivRem() || !isa<PoisonValue>(I.getOperand(1))) &&
1619       any_of(OuterMask, [NumSrcElts](int M) { return M >= (int)NumSrcElts; }))
1620     return false;
1621 
1622   // Merge outer / inner shuffles.
1623   SmallVector<int> NewMask0, NewMask1;
1624   for (int M : OuterMask) {
1625     if (M < 0 || M >= (int)NumSrcElts) {
1626       NewMask0.push_back(PoisonMaskElem);
1627       NewMask1.push_back(PoisonMaskElem);
1628     } else {
1629       NewMask0.push_back(Mask0[M]);
1630       NewMask1.push_back(Mask1[M]);
1631     }
1632   }
1633 
1634   // Try to merge shuffles across the binop if the new shuffles are not costly.
1635   InstructionCost OldCost =
1636       TTI.getArithmeticInstrCost(Opcode, BinOpTy, CostKind) +
1637       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, BinOpTy,
1638                          OuterMask, CostKind, 0, nullptr, {BinOp}, &I) +
1639       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op0Ty, Mask0,
1640                          CostKind, 0, nullptr, {Op00, Op01},
1641                          cast<Instruction>(BinOp->getOperand(0))) +
1642       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op1Ty, Mask1,
1643                          CostKind, 0, nullptr, {Op10, Op11},
1644                          cast<Instruction>(BinOp->getOperand(1)));
1645 
1646   InstructionCost NewCost =
1647       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op0Ty, NewMask0,
1648                          CostKind, 0, nullptr, {Op00, Op01}) +
1649       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, Op1Ty, NewMask1,
1650                          CostKind, 0, nullptr, {Op10, Op11}) +
1651       TTI.getArithmeticInstrCost(Opcode, ShuffleDstTy, CostKind);
1652 
1653   LLVM_DEBUG(dbgs() << "Found a shuffle feeding a shuffled binop: " << I
1654                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1655                     << "\n");
1656 
1657   // If costs are equal, still fold as we reduce instruction count.
1658   if (NewCost > OldCost)
1659     return false;
1660 
1661   Value *Shuf0 = Builder.CreateShuffleVector(Op00, Op01, NewMask0);
1662   Value *Shuf1 = Builder.CreateShuffleVector(Op10, Op11, NewMask1);
1663   Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1664 
1665   // Intersect flags from the old binops.
1666   if (auto *NewInst = dyn_cast<Instruction>(NewBO))
1667     NewInst->copyIRFlags(BinOp);
1668 
1669   Worklist.pushValue(Shuf0);
1670   Worklist.pushValue(Shuf1);
1671   replaceValue(I, *NewBO);
1672   return true;
1673 }
1674 
1675 /// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)".
1676 /// Try to convert "shuffle (cmpop), (cmpop)" into "cmpop (shuffle), (shuffle)".
1677 bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1678   ArrayRef<int> OldMask;
1679   Instruction *LHS, *RHS;
1680   if (!match(&I, m_Shuffle(m_OneUse(m_Instruction(LHS)),
1681                            m_OneUse(m_Instruction(RHS)), m_Mask(OldMask))))
1682     return false;
1683 
1684   // TODO: Add support for addlike etc.
1685   if (LHS->getOpcode() != RHS->getOpcode())
1686     return false;
1687 
1688   Value *X, *Y, *Z, *W;
1689   bool IsCommutative = false;
1690   CmpPredicate PredLHS = CmpInst::BAD_ICMP_PREDICATE;
1691   CmpPredicate PredRHS = CmpInst::BAD_ICMP_PREDICATE;
1692   if (match(LHS, m_BinOp(m_Value(X), m_Value(Y))) &&
1693       match(RHS, m_BinOp(m_Value(Z), m_Value(W)))) {
1694     auto *BO = cast<BinaryOperator>(LHS);
1695     // Don't introduce poison into div/rem.
1696     if (llvm::is_contained(OldMask, PoisonMaskElem) && BO->isIntDivRem())
1697       return false;
1698     IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
1699   } else if (match(LHS, m_Cmp(PredLHS, m_Value(X), m_Value(Y))) &&
1700              match(RHS, m_Cmp(PredRHS, m_Value(Z), m_Value(W))) &&
1701              (CmpInst::Predicate)PredLHS == (CmpInst::Predicate)PredRHS) {
1702     IsCommutative = cast<CmpInst>(LHS)->isCommutative();
1703   } else
1704     return false;
1705 
1706   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1707   auto *BinResTy = dyn_cast<FixedVectorType>(LHS->getType());
1708   auto *BinOpTy = dyn_cast<FixedVectorType>(X->getType());
1709   if (!ShuffleDstTy || !BinResTy || !BinOpTy || X->getType() != Z->getType())
1710     return false;
1711 
1712   unsigned NumSrcElts = BinOpTy->getNumElements();
1713 
1714   // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1715   if (IsCommutative && X != Z && Y != W && (X == W || Y == Z))
1716     std::swap(X, Y);
1717 
1718   auto ConvertToUnary = [NumSrcElts](int &M) {
1719     if (M >= (int)NumSrcElts)
1720       M -= NumSrcElts;
1721   };
1722 
1723   SmallVector<int> NewMask0(OldMask);
1724   TargetTransformInfo::ShuffleKind SK0 = TargetTransformInfo::SK_PermuteTwoSrc;
1725   if (X == Z) {
1726     llvm::for_each(NewMask0, ConvertToUnary);
1727     SK0 = TargetTransformInfo::SK_PermuteSingleSrc;
1728     Z = PoisonValue::get(BinOpTy);
1729   }
1730 
1731   SmallVector<int> NewMask1(OldMask);
1732   TargetTransformInfo::ShuffleKind SK1 = TargetTransformInfo::SK_PermuteTwoSrc;
1733   if (Y == W) {
1734     llvm::for_each(NewMask1, ConvertToUnary);
1735     SK1 = TargetTransformInfo::SK_PermuteSingleSrc;
1736     W = PoisonValue::get(BinOpTy);
1737   }
1738 
1739   // Try to replace a binop with a shuffle if the shuffle is not costly.
1740   InstructionCost OldCost =
1741       TTI.getInstructionCost(LHS, CostKind) +
1742       TTI.getInstructionCost(RHS, CostKind) +
1743       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, BinResTy,
1744                          OldMask, CostKind, 0, nullptr, {LHS, RHS}, &I);
1745 
1746   InstructionCost NewCost =
1747       TTI.getShuffleCost(SK0, BinOpTy, NewMask0, CostKind, 0, nullptr, {X, Z}) +
1748       TTI.getShuffleCost(SK1, BinOpTy, NewMask1, CostKind, 0, nullptr, {Y, W});
1749 
1750   if (PredLHS == CmpInst::BAD_ICMP_PREDICATE) {
1751     NewCost +=
1752         TTI.getArithmeticInstrCost(LHS->getOpcode(), ShuffleDstTy, CostKind);
1753   } else {
1754     auto *ShuffleCmpTy =
1755         FixedVectorType::get(BinOpTy->getElementType(), ShuffleDstTy);
1756     NewCost += TTI.getCmpSelInstrCost(LHS->getOpcode(), ShuffleCmpTy,
1757                                       ShuffleDstTy, PredLHS, CostKind);
1758   }
1759 
1760   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I
1761                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1762                     << "\n");
1763 
1764   // If either shuffle will constant fold away, then fold for the same cost as
1765   // we will reduce the instruction count.
1766   bool ReducedInstCount = (isa<Constant>(X) && isa<Constant>(Z)) ||
1767                           (isa<Constant>(Y) && isa<Constant>(W));
1768   if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
1769     return false;
1770 
1771   Value *Shuf0 = Builder.CreateShuffleVector(X, Z, NewMask0);
1772   Value *Shuf1 = Builder.CreateShuffleVector(Y, W, NewMask1);
1773   Value *NewBO = PredLHS == CmpInst::BAD_ICMP_PREDICATE
1774                      ? Builder.CreateBinOp(
1775                            cast<BinaryOperator>(LHS)->getOpcode(), Shuf0, Shuf1)
1776                      : Builder.CreateCmp(PredLHS, Shuf0, Shuf1);
1777 
1778   // Intersect flags from the old binops.
1779   if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1780     NewInst->copyIRFlags(LHS);
1781     NewInst->andIRFlags(RHS);
1782   }
1783 
1784   Worklist.pushValue(Shuf0);
1785   Worklist.pushValue(Shuf1);
1786   replaceValue(I, *NewBO);
1787   return true;
1788 }
1789 
1790 /// Try to convert "shuffle (castop), (castop)" with a shared castop operand
1791 /// into "castop (shuffle)".
1792 bool VectorCombine::foldShuffleOfCastops(Instruction &I) {
1793   Value *V0, *V1;
1794   ArrayRef<int> OldMask;
1795   if (!match(&I, m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(OldMask))))
1796     return false;
1797 
1798   auto *C0 = dyn_cast<CastInst>(V0);
1799   auto *C1 = dyn_cast<CastInst>(V1);
1800   if (!C0 || !C1)
1801     return false;
1802 
1803   Instruction::CastOps Opcode = C0->getOpcode();
1804   if (C0->getSrcTy() != C1->getSrcTy())
1805     return false;
1806 
1807   // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds.
1808   if (Opcode != C1->getOpcode()) {
1809     if (match(C0, m_SExtLike(m_Value())) && match(C1, m_SExtLike(m_Value())))
1810       Opcode = Instruction::SExt;
1811     else
1812       return false;
1813   }
1814 
1815   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1816   auto *CastDstTy = dyn_cast<FixedVectorType>(C0->getDestTy());
1817   auto *CastSrcTy = dyn_cast<FixedVectorType>(C0->getSrcTy());
1818   if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
1819     return false;
1820 
1821   unsigned NumSrcElts = CastSrcTy->getNumElements();
1822   unsigned NumDstElts = CastDstTy->getNumElements();
1823   assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
1824          "Only bitcasts expected to alter src/dst element counts");
1825 
1826   // Check for bitcasting of unscalable vector types.
1827   // e.g. <32 x i40> -> <40 x i32>
1828   if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
1829       (NumDstElts % NumSrcElts) != 0)
1830     return false;
1831 
1832   SmallVector<int, 16> NewMask;
1833   if (NumSrcElts >= NumDstElts) {
1834     // The bitcast is from wide to narrow/equal elements. The shuffle mask can
1835     // always be expanded to the equivalent form choosing narrower elements.
1836     assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask");
1837     unsigned ScaleFactor = NumSrcElts / NumDstElts;
1838     narrowShuffleMaskElts(ScaleFactor, OldMask, NewMask);
1839   } else {
1840     // The bitcast is from narrow elements to wide elements. The shuffle mask
1841     // must choose consecutive elements to allow casting first.
1842     assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask");
1843     unsigned ScaleFactor = NumDstElts / NumSrcElts;
1844     if (!widenShuffleMaskElts(ScaleFactor, OldMask, NewMask))
1845       return false;
1846   }
1847 
1848   auto *NewShuffleDstTy =
1849       FixedVectorType::get(CastSrcTy->getScalarType(), NewMask.size());
1850 
1851   // Try to replace a castop with a shuffle if the shuffle is not costly.
1852   InstructionCost CostC0 =
1853       TTI.getCastInstrCost(C0->getOpcode(), CastDstTy, CastSrcTy,
1854                            TTI::CastContextHint::None, CostKind);
1855   InstructionCost CostC1 =
1856       TTI.getCastInstrCost(C1->getOpcode(), CastDstTy, CastSrcTy,
1857                            TTI::CastContextHint::None, CostKind);
1858   InstructionCost OldCost = CostC0 + CostC1;
1859   OldCost +=
1860       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, CastDstTy,
1861                          OldMask, CostKind, 0, nullptr, {}, &I);
1862 
1863   InstructionCost NewCost = TTI.getShuffleCost(
1864       TargetTransformInfo::SK_PermuteTwoSrc, CastSrcTy, NewMask, CostKind);
1865   NewCost += TTI.getCastInstrCost(Opcode, ShuffleDstTy, NewShuffleDstTy,
1866                                   TTI::CastContextHint::None, CostKind);
1867   if (!C0->hasOneUse())
1868     NewCost += CostC0;
1869   if (!C1->hasOneUse())
1870     NewCost += CostC1;
1871 
1872   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I
1873                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
1874                     << "\n");
1875   if (NewCost > OldCost)
1876     return false;
1877 
1878   Value *Shuf = Builder.CreateShuffleVector(C0->getOperand(0),
1879                                             C1->getOperand(0), NewMask);
1880   Value *Cast = Builder.CreateCast(Opcode, Shuf, ShuffleDstTy);
1881 
1882   // Intersect flags from the old casts.
1883   if (auto *NewInst = dyn_cast<Instruction>(Cast)) {
1884     NewInst->copyIRFlags(C0);
1885     NewInst->andIRFlags(C1);
1886   }
1887 
1888   Worklist.pushValue(Shuf);
1889   replaceValue(I, *Cast);
1890   return true;
1891 }
1892 
1893 /// Try to convert any of:
1894 /// "shuffle (shuffle x, y), (shuffle y, x)"
1895 /// "shuffle (shuffle x, undef), (shuffle y, undef)"
1896 /// "shuffle (shuffle x, undef), y"
1897 /// "shuffle x, (shuffle y, undef)"
1898 /// into "shuffle x, y".
1899 bool VectorCombine::foldShuffleOfShuffles(Instruction &I) {
1900   ArrayRef<int> OuterMask;
1901   Value *OuterV0, *OuterV1;
1902   if (!match(&I,
1903              m_Shuffle(m_Value(OuterV0), m_Value(OuterV1), m_Mask(OuterMask))))
1904     return false;
1905 
1906   ArrayRef<int> InnerMask0, InnerMask1;
1907   Value *X0, *X1, *Y0, *Y1;
1908   bool Match0 =
1909       match(OuterV0, m_Shuffle(m_Value(X0), m_Value(Y0), m_Mask(InnerMask0)));
1910   bool Match1 =
1911       match(OuterV1, m_Shuffle(m_Value(X1), m_Value(Y1), m_Mask(InnerMask1)));
1912   if (!Match0 && !Match1)
1913     return false;
1914 
1915   X0 = Match0 ? X0 : OuterV0;
1916   Y0 = Match0 ? Y0 : OuterV0;
1917   X1 = Match1 ? X1 : OuterV1;
1918   Y1 = Match1 ? Y1 : OuterV1;
1919   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1920   auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(X0->getType());
1921   auto *ShuffleImmTy = dyn_cast<FixedVectorType>(OuterV0->getType());
1922   if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
1923       X0->getType() != X1->getType())
1924     return false;
1925 
1926   unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
1927   unsigned NumImmElts = ShuffleImmTy->getNumElements();
1928 
1929   // Attempt to merge shuffles, matching upto 2 source operands.
1930   // Replace index to a poison arg with PoisonMaskElem.
1931   // Bail if either inner masks reference an undef arg.
1932   SmallVector<int, 16> NewMask(OuterMask);
1933   Value *NewX = nullptr, *NewY = nullptr;
1934   for (int &M : NewMask) {
1935     Value *Src = nullptr;
1936     if (0 <= M && M < (int)NumImmElts) {
1937       Src = OuterV0;
1938       if (Match0) {
1939         M = InnerMask0[M];
1940         Src = M >= (int)NumSrcElts ? Y0 : X0;
1941         M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M;
1942       }
1943     } else if (M >= (int)NumImmElts) {
1944       Src = OuterV1;
1945       M -= NumImmElts;
1946       if (Match1) {
1947         M = InnerMask1[M];
1948         Src = M >= (int)NumSrcElts ? Y1 : X1;
1949         M = M >= (int)NumSrcElts ? (M - NumSrcElts) : M;
1950       }
1951     }
1952     if (Src && M != PoisonMaskElem) {
1953       assert(0 <= M && M < (int)NumSrcElts && "Unexpected shuffle mask index");
1954       if (isa<UndefValue>(Src)) {
1955         // We've referenced an undef element - if its poison, update the shuffle
1956         // mask, else bail.
1957         if (!isa<PoisonValue>(Src))
1958           return false;
1959         M = PoisonMaskElem;
1960         continue;
1961       }
1962       if (!NewX || NewX == Src) {
1963         NewX = Src;
1964         continue;
1965       }
1966       if (!NewY || NewY == Src) {
1967         M += NumSrcElts;
1968         NewY = Src;
1969         continue;
1970       }
1971       return false;
1972     }
1973   }
1974 
1975   if (!NewX)
1976     return PoisonValue::get(ShuffleDstTy);
1977   if (!NewY)
1978     NewY = PoisonValue::get(ShuffleSrcTy);
1979 
1980   // Have we folded to an Identity shuffle?
1981   if (ShuffleVectorInst::isIdentityMask(NewMask, NumSrcElts)) {
1982     replaceValue(I, *NewX);
1983     return true;
1984   }
1985 
1986   // Try to merge the shuffles if the new shuffle is not costly.
1987   InstructionCost InnerCost0 = 0;
1988   if (Match0)
1989     InnerCost0 = TTI.getInstructionCost(cast<Instruction>(OuterV0), CostKind);
1990 
1991   InstructionCost InnerCost1 = 0;
1992   if (Match1)
1993     InnerCost1 = TTI.getInstructionCost(cast<Instruction>(OuterV1), CostKind);
1994 
1995   InstructionCost OuterCost = TTI.getShuffleCost(
1996       TargetTransformInfo::SK_PermuteTwoSrc, ShuffleImmTy, OuterMask, CostKind,
1997       0, nullptr, {OuterV0, OuterV1}, &I);
1998 
1999   InstructionCost OldCost = InnerCost0 + InnerCost1 + OuterCost;
2000 
2001   bool IsUnary = all_of(NewMask, [&](int M) { return M < (int)NumSrcElts; });
2002   TargetTransformInfo::ShuffleKind SK =
2003       IsUnary ? TargetTransformInfo::SK_PermuteSingleSrc
2004               : TargetTransformInfo::SK_PermuteTwoSrc;
2005   InstructionCost NewCost = TTI.getShuffleCost(
2006       SK, ShuffleSrcTy, NewMask, CostKind, 0, nullptr, {NewX, NewY});
2007   if (!OuterV0->hasOneUse())
2008     NewCost += InnerCost0;
2009   if (!OuterV1->hasOneUse())
2010     NewCost += InnerCost1;
2011 
2012   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I
2013                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
2014                     << "\n");
2015   if (NewCost > OldCost)
2016     return false;
2017 
2018   Value *Shuf = Builder.CreateShuffleVector(NewX, NewY, NewMask);
2019   replaceValue(I, *Shuf);
2020   return true;
2021 }
2022 
2023 /// Try to convert
2024 /// "shuffle (intrinsic), (intrinsic)" into "intrinsic (shuffle), (shuffle)".
2025 bool VectorCombine::foldShuffleOfIntrinsics(Instruction &I) {
2026   Value *V0, *V1;
2027   ArrayRef<int> OldMask;
2028   if (!match(&I, m_Shuffle(m_OneUse(m_Value(V0)), m_OneUse(m_Value(V1)),
2029                            m_Mask(OldMask))))
2030     return false;
2031 
2032   auto *II0 = dyn_cast<IntrinsicInst>(V0);
2033   auto *II1 = dyn_cast<IntrinsicInst>(V1);
2034   if (!II0 || !II1)
2035     return false;
2036 
2037   Intrinsic::ID IID = II0->getIntrinsicID();
2038   if (IID != II1->getIntrinsicID())
2039     return false;
2040 
2041   auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
2042   auto *II0Ty = dyn_cast<FixedVectorType>(II0->getType());
2043   if (!ShuffleDstTy || !II0Ty)
2044     return false;
2045 
2046   if (!isTriviallyVectorizable(IID))
2047     return false;
2048 
2049   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2050     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI) &&
2051         II0->getArgOperand(I) != II1->getArgOperand(I))
2052       return false;
2053 
2054   InstructionCost OldCost =
2055       TTI.getIntrinsicInstrCost(IntrinsicCostAttributes(IID, *II0), CostKind) +
2056       TTI.getIntrinsicInstrCost(IntrinsicCostAttributes(IID, *II1), CostKind) +
2057       TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, II0Ty, OldMask,
2058                          CostKind, 0, nullptr, {II0, II1}, &I);
2059 
2060   SmallVector<Type *> NewArgsTy;
2061   InstructionCost NewCost = 0;
2062   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2063     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI)) {
2064       NewArgsTy.push_back(II0->getArgOperand(I)->getType());
2065     } else {
2066       auto *VecTy = cast<FixedVectorType>(II0->getArgOperand(I)->getType());
2067       NewArgsTy.push_back(FixedVectorType::get(VecTy->getElementType(),
2068                                                VecTy->getNumElements() * 2));
2069       NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
2070                                     VecTy, OldMask, CostKind);
2071     }
2072   IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
2073   NewCost += TTI.getIntrinsicInstrCost(NewAttr, CostKind);
2074 
2075   LLVM_DEBUG(dbgs() << "Found a shuffle feeding two intrinsics: " << I
2076                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
2077                     << "\n");
2078 
2079   if (NewCost > OldCost)
2080     return false;
2081 
2082   SmallVector<Value *> NewArgs;
2083   for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2084     if (isVectorIntrinsicWithScalarOpAtArg(IID, I, &TTI)) {
2085       NewArgs.push_back(II0->getArgOperand(I));
2086     } else {
2087       Value *Shuf = Builder.CreateShuffleVector(II0->getArgOperand(I),
2088                                                 II1->getArgOperand(I), OldMask);
2089       NewArgs.push_back(Shuf);
2090       Worklist.pushValue(Shuf);
2091     }
2092   Value *NewIntrinsic = Builder.CreateIntrinsic(ShuffleDstTy, IID, NewArgs);
2093 
2094   // Intersect flags from the old intrinsics.
2095   if (auto *NewInst = dyn_cast<Instruction>(NewIntrinsic)) {
2096     NewInst->copyIRFlags(II0);
2097     NewInst->andIRFlags(II1);
2098   }
2099 
2100   replaceValue(I, *NewIntrinsic);
2101   return true;
2102 }
2103 
2104 using InstLane = std::pair<Use *, int>;
2105 
2106 static InstLane lookThroughShuffles(Use *U, int Lane) {
2107   while (auto *SV = dyn_cast<ShuffleVectorInst>(U->get())) {
2108     unsigned NumElts =
2109         cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements();
2110     int M = SV->getMaskValue(Lane);
2111     if (M < 0)
2112       return {nullptr, PoisonMaskElem};
2113     if (static_cast<unsigned>(M) < NumElts) {
2114       U = &SV->getOperandUse(0);
2115       Lane = M;
2116     } else {
2117       U = &SV->getOperandUse(1);
2118       Lane = M - NumElts;
2119     }
2120   }
2121   return InstLane{U, Lane};
2122 }
2123 
2124 static SmallVector<InstLane>
2125 generateInstLaneVectorFromOperand(ArrayRef<InstLane> Item, int Op) {
2126   SmallVector<InstLane> NItem;
2127   for (InstLane IL : Item) {
2128     auto [U, Lane] = IL;
2129     InstLane OpLane =
2130         U ? lookThroughShuffles(&cast<Instruction>(U->get())->getOperandUse(Op),
2131                                 Lane)
2132           : InstLane{nullptr, PoisonMaskElem};
2133     NItem.emplace_back(OpLane);
2134   }
2135   return NItem;
2136 }
2137 
2138 /// Detect concat of multiple values into a vector
2139 static bool isFreeConcat(ArrayRef<InstLane> Item, TTI::TargetCostKind CostKind,
2140                          const TargetTransformInfo &TTI) {
2141   auto *Ty = cast<FixedVectorType>(Item.front().first->get()->getType());
2142   unsigned NumElts = Ty->getNumElements();
2143   if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0)
2144     return false;
2145 
2146   // Check that the concat is free, usually meaning that the type will be split
2147   // during legalization.
2148   SmallVector<int, 16> ConcatMask(NumElts * 2);
2149   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2150   if (TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, ConcatMask, CostKind) != 0)
2151     return false;
2152 
2153   unsigned NumSlices = Item.size() / NumElts;
2154   // Currently we generate a tree of shuffles for the concats, which limits us
2155   // to a power2.
2156   if (!isPowerOf2_32(NumSlices))
2157     return false;
2158   for (unsigned Slice = 0; Slice < NumSlices; ++Slice) {
2159     Use *SliceV = Item[Slice * NumElts].first;
2160     if (!SliceV || SliceV->get()->getType() != Ty)
2161       return false;
2162     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2163       auto [V, Lane] = Item[Slice * NumElts + Elt];
2164       if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get())
2165         return false;
2166     }
2167   }
2168   return true;
2169 }
2170 
2171 static Value *generateNewInstTree(ArrayRef<InstLane> Item, FixedVectorType *Ty,
2172                                   const SmallPtrSet<Use *, 4> &IdentityLeafs,
2173                                   const SmallPtrSet<Use *, 4> &SplatLeafs,
2174                                   const SmallPtrSet<Use *, 4> &ConcatLeafs,
2175                                   IRBuilder<> &Builder,
2176                                   const TargetTransformInfo *TTI) {
2177   auto [FrontU, FrontLane] = Item.front();
2178 
2179   if (IdentityLeafs.contains(FrontU)) {
2180     return FrontU->get();
2181   }
2182   if (SplatLeafs.contains(FrontU)) {
2183     SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane);
2184     return Builder.CreateShuffleVector(FrontU->get(), Mask);
2185   }
2186   if (ConcatLeafs.contains(FrontU)) {
2187     unsigned NumElts =
2188         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements();
2189     SmallVector<Value *> Values(Item.size() / NumElts, nullptr);
2190     for (unsigned S = 0; S < Values.size(); ++S)
2191       Values[S] = Item[S * NumElts].first->get();
2192 
2193     while (Values.size() > 1) {
2194       NumElts *= 2;
2195       SmallVector<int, 16> Mask(NumElts, 0);
2196       std::iota(Mask.begin(), Mask.end(), 0);
2197       SmallVector<Value *> NewValues(Values.size() / 2, nullptr);
2198       for (unsigned S = 0; S < NewValues.size(); ++S)
2199         NewValues[S] =
2200             Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
2201       Values = NewValues;
2202     }
2203     return Values[0];
2204   }
2205 
2206   auto *I = cast<Instruction>(FrontU->get());
2207   auto *II = dyn_cast<IntrinsicInst>(I);
2208   unsigned NumOps = I->getNumOperands() - (II ? 1 : 0);
2209   SmallVector<Value *> Ops(NumOps);
2210   for (unsigned Idx = 0; Idx < NumOps; Idx++) {
2211     if (II &&
2212         isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Idx, TTI)) {
2213       Ops[Idx] = II->getOperand(Idx);
2214       continue;
2215     }
2216     Ops[Idx] = generateNewInstTree(generateInstLaneVectorFromOperand(Item, Idx),
2217                                    Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
2218                                    Builder, TTI);
2219   }
2220 
2221   SmallVector<Value *, 8> ValueList;
2222   for (const auto &Lane : Item)
2223     if (Lane.first)
2224       ValueList.push_back(Lane.first->get());
2225 
2226   Type *DstTy =
2227       FixedVectorType::get(I->getType()->getScalarType(), Ty->getNumElements());
2228   if (auto *BI = dyn_cast<BinaryOperator>(I)) {
2229     auto *Value = Builder.CreateBinOp((Instruction::BinaryOps)BI->getOpcode(),
2230                                       Ops[0], Ops[1]);
2231     propagateIRFlags(Value, ValueList);
2232     return Value;
2233   }
2234   if (auto *CI = dyn_cast<CmpInst>(I)) {
2235     auto *Value = Builder.CreateCmp(CI->getPredicate(), Ops[0], Ops[1]);
2236     propagateIRFlags(Value, ValueList);
2237     return Value;
2238   }
2239   if (auto *SI = dyn_cast<SelectInst>(I)) {
2240     auto *Value = Builder.CreateSelect(Ops[0], Ops[1], Ops[2], "", SI);
2241     propagateIRFlags(Value, ValueList);
2242     return Value;
2243   }
2244   if (auto *CI = dyn_cast<CastInst>(I)) {
2245     auto *Value = Builder.CreateCast((Instruction::CastOps)CI->getOpcode(),
2246                                      Ops[0], DstTy);
2247     propagateIRFlags(Value, ValueList);
2248     return Value;
2249   }
2250   if (II) {
2251     auto *Value = Builder.CreateIntrinsic(DstTy, II->getIntrinsicID(), Ops);
2252     propagateIRFlags(Value, ValueList);
2253     return Value;
2254   }
2255   assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate");
2256   auto *Value =
2257       Builder.CreateUnOp((Instruction::UnaryOps)I->getOpcode(), Ops[0]);
2258   propagateIRFlags(Value, ValueList);
2259   return Value;
2260 }
2261 
2262 // Starting from a shuffle, look up through operands tracking the shuffled index
2263 // of each lane. If we can simplify away the shuffles to identities then
2264 // do so.
2265 bool VectorCombine::foldShuffleToIdentity(Instruction &I) {
2266   auto *Ty = dyn_cast<FixedVectorType>(I.getType());
2267   if (!Ty || I.use_empty())
2268     return false;
2269 
2270   SmallVector<InstLane> Start(Ty->getNumElements());
2271   for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M)
2272     Start[M] = lookThroughShuffles(&*I.use_begin(), M);
2273 
2274   SmallVector<SmallVector<InstLane>> Worklist;
2275   Worklist.push_back(Start);
2276   SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
2277   unsigned NumVisited = 0;
2278 
2279   while (!Worklist.empty()) {
2280     if (++NumVisited > MaxInstrsToScan)
2281       return false;
2282 
2283     SmallVector<InstLane> Item = Worklist.pop_back_val();
2284     auto [FrontU, FrontLane] = Item.front();
2285 
2286     // If we found an undef first lane then bail out to keep things simple.
2287     if (!FrontU)
2288       return false;
2289 
2290     // Helper to peek through bitcasts to the same value.
2291     auto IsEquiv = [&](Value *X, Value *Y) {
2292       return X->getType() == Y->getType() &&
2293              peekThroughBitcasts(X) == peekThroughBitcasts(Y);
2294     };
2295 
2296     // Look for an identity value.
2297     if (FrontLane == 0 &&
2298         cast<FixedVectorType>(FrontU->get()->getType())->getNumElements() ==
2299             Ty->getNumElements() &&
2300         all_of(drop_begin(enumerate(Item)), [IsEquiv, Item](const auto &E) {
2301           Value *FrontV = Item.front().first->get();
2302           return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) &&
2303                                       E.value().second == (int)E.index());
2304         })) {
2305       IdentityLeafs.insert(FrontU);
2306       continue;
2307     }
2308     // Look for constants, for the moment only supporting constant splats.
2309     if (auto *C = dyn_cast<Constant>(FrontU);
2310         C && C->getSplatValue() &&
2311         all_of(drop_begin(Item), [Item](InstLane &IL) {
2312           Value *FrontV = Item.front().first->get();
2313           Use *U = IL.first;
2314           return !U || (isa<Constant>(U->get()) &&
2315                         cast<Constant>(U->get())->getSplatValue() ==
2316                             cast<Constant>(FrontV)->getSplatValue());
2317         })) {
2318       SplatLeafs.insert(FrontU);
2319       continue;
2320     }
2321     // Look for a splat value.
2322     if (all_of(drop_begin(Item), [Item](InstLane &IL) {
2323           auto [FrontU, FrontLane] = Item.front();
2324           auto [U, Lane] = IL;
2325           return !U || (U->get() == FrontU->get() && Lane == FrontLane);
2326         })) {
2327       SplatLeafs.insert(FrontU);
2328       continue;
2329     }
2330 
2331     // We need each element to be the same type of value, and check that each
2332     // element has a single use.
2333     auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) {
2334       Value *FrontV = Item.front().first->get();
2335       if (!IL.first)
2336         return true;
2337       Value *V = IL.first->get();
2338       if (auto *I = dyn_cast<Instruction>(V); I && !I->hasOneUse())
2339         return false;
2340       if (V->getValueID() != FrontV->getValueID())
2341         return false;
2342       if (auto *CI = dyn_cast<CmpInst>(V))
2343         if (CI->getPredicate() != cast<CmpInst>(FrontV)->getPredicate())
2344           return false;
2345       if (auto *CI = dyn_cast<CastInst>(V))
2346         if (CI->getSrcTy()->getScalarType() !=
2347             cast<CastInst>(FrontV)->getSrcTy()->getScalarType())
2348           return false;
2349       if (auto *SI = dyn_cast<SelectInst>(V))
2350         if (!isa<VectorType>(SI->getOperand(0)->getType()) ||
2351             SI->getOperand(0)->getType() !=
2352                 cast<SelectInst>(FrontV)->getOperand(0)->getType())
2353           return false;
2354       if (isa<CallInst>(V) && !isa<IntrinsicInst>(V))
2355         return false;
2356       auto *II = dyn_cast<IntrinsicInst>(V);
2357       return !II || (isa<IntrinsicInst>(FrontV) &&
2358                      II->getIntrinsicID() ==
2359                          cast<IntrinsicInst>(FrontV)->getIntrinsicID() &&
2360                      !II->hasOperandBundles());
2361     };
2362     if (all_of(drop_begin(Item), CheckLaneIsEquivalentToFirst)) {
2363       // Check the operator is one that we support.
2364       if (isa<BinaryOperator, CmpInst>(FrontU)) {
2365         //  We exclude div/rem in case they hit UB from poison lanes.
2366         if (auto *BO = dyn_cast<BinaryOperator>(FrontU);
2367             BO && BO->isIntDivRem())
2368           return false;
2369         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2370         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
2371         continue;
2372       } else if (isa<UnaryOperator, TruncInst, ZExtInst, SExtInst, FPToSIInst,
2373                      FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
2374         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2375         continue;
2376       } else if (auto *BitCast = dyn_cast<BitCastInst>(FrontU)) {
2377         // TODO: Handle vector widening/narrowing bitcasts.
2378         auto *DstTy = dyn_cast<FixedVectorType>(BitCast->getDestTy());
2379         auto *SrcTy = dyn_cast<FixedVectorType>(BitCast->getSrcTy());
2380         if (DstTy && SrcTy &&
2381             SrcTy->getNumElements() == DstTy->getNumElements()) {
2382           Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2383           continue;
2384         }
2385       } else if (isa<SelectInst>(FrontU)) {
2386         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 0));
2387         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 1));
2388         Worklist.push_back(generateInstLaneVectorFromOperand(Item, 2));
2389         continue;
2390       } else if (auto *II = dyn_cast<IntrinsicInst>(FrontU);
2391                  II && isTriviallyVectorizable(II->getIntrinsicID()) &&
2392                  !II->hasOperandBundles()) {
2393         for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) {
2394           if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Op,
2395                                                  &TTI)) {
2396             if (!all_of(drop_begin(Item), [Item, Op](InstLane &IL) {
2397                   Value *FrontV = Item.front().first->get();
2398                   Use *U = IL.first;
2399                   return !U || (cast<Instruction>(U->get())->getOperand(Op) ==
2400                                 cast<Instruction>(FrontV)->getOperand(Op));
2401                 }))
2402               return false;
2403             continue;
2404           }
2405           Worklist.push_back(generateInstLaneVectorFromOperand(Item, Op));
2406         }
2407         continue;
2408       }
2409     }
2410 
2411     if (isFreeConcat(Item, CostKind, TTI)) {
2412       ConcatLeafs.insert(FrontU);
2413       continue;
2414     }
2415 
2416     return false;
2417   }
2418 
2419   if (NumVisited <= 1)
2420     return false;
2421 
2422   LLVM_DEBUG(dbgs() << "Found a superfluous identity shuffle: " << I << "\n");
2423 
2424   // If we got this far, we know the shuffles are superfluous and can be
2425   // removed. Scan through again and generate the new tree of instructions.
2426   Builder.SetInsertPoint(&I);
2427   Value *V = generateNewInstTree(Start, Ty, IdentityLeafs, SplatLeafs,
2428                                  ConcatLeafs, Builder, &TTI);
2429   replaceValue(I, *V);
2430   return true;
2431 }
2432 
2433 /// Given a commutative reduction, the order of the input lanes does not alter
2434 /// the results. We can use this to remove certain shuffles feeding the
2435 /// reduction, removing the need to shuffle at all.
2436 bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
2437   auto *II = dyn_cast<IntrinsicInst>(&I);
2438   if (!II)
2439     return false;
2440   switch (II->getIntrinsicID()) {
2441   case Intrinsic::vector_reduce_add:
2442   case Intrinsic::vector_reduce_mul:
2443   case Intrinsic::vector_reduce_and:
2444   case Intrinsic::vector_reduce_or:
2445   case Intrinsic::vector_reduce_xor:
2446   case Intrinsic::vector_reduce_smin:
2447   case Intrinsic::vector_reduce_smax:
2448   case Intrinsic::vector_reduce_umin:
2449   case Intrinsic::vector_reduce_umax:
2450     break;
2451   default:
2452     return false;
2453   }
2454 
2455   // Find all the inputs when looking through operations that do not alter the
2456   // lane order (binops, for example). Currently we look for a single shuffle,
2457   // and can ignore splat values.
2458   std::queue<Value *> Worklist;
2459   SmallPtrSet<Value *, 4> Visited;
2460   ShuffleVectorInst *Shuffle = nullptr;
2461   if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
2462     Worklist.push(Op);
2463 
2464   while (!Worklist.empty()) {
2465     Value *CV = Worklist.front();
2466     Worklist.pop();
2467     if (Visited.contains(CV))
2468       continue;
2469 
2470     // Splats don't change the order, so can be safely ignored.
2471     if (isSplatValue(CV))
2472       continue;
2473 
2474     Visited.insert(CV);
2475 
2476     if (auto *CI = dyn_cast<Instruction>(CV)) {
2477       if (CI->isBinaryOp()) {
2478         for (auto *Op : CI->operand_values())
2479           Worklist.push(Op);
2480         continue;
2481       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
2482         if (Shuffle && Shuffle != SV)
2483           return false;
2484         Shuffle = SV;
2485         continue;
2486       }
2487     }
2488 
2489     // Anything else is currently an unknown node.
2490     return false;
2491   }
2492 
2493   if (!Shuffle)
2494     return false;
2495 
2496   // Check all uses of the binary ops and shuffles are also included in the
2497   // lane-invariant operations (Visited should be the list of lanewise
2498   // instructions, including the shuffle that we found).
2499   for (auto *V : Visited)
2500     for (auto *U : V->users())
2501       if (!Visited.contains(U) && U != &I)
2502         return false;
2503 
2504   FixedVectorType *VecType =
2505       dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
2506   if (!VecType)
2507     return false;
2508   FixedVectorType *ShuffleInputType =
2509       dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
2510   if (!ShuffleInputType)
2511     return false;
2512   unsigned NumInputElts = ShuffleInputType->getNumElements();
2513 
2514   // Find the mask from sorting the lanes into order. This is most likely to
2515   // become a identity or concat mask. Undef elements are pushed to the end.
2516   SmallVector<int> ConcatMask;
2517   Shuffle->getShuffleMask(ConcatMask);
2518   sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
2519   // In the case of a truncating shuffle it's possible for the mask
2520   // to have an index greater than the size of the resulting vector.
2521   // This requires special handling.
2522   bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
2523   bool UsesSecondVec =
2524       any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
2525 
2526   FixedVectorType *VecTyForCost =
2527       (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
2528   InstructionCost OldCost = TTI.getShuffleCost(
2529       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2530       VecTyForCost, Shuffle->getShuffleMask(), CostKind);
2531   InstructionCost NewCost = TTI.getShuffleCost(
2532       UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
2533       VecTyForCost, ConcatMask, CostKind);
2534 
2535   LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
2536                     << "\n");
2537   LLVM_DEBUG(dbgs() << "  OldCost: " << OldCost << " vs NewCost: " << NewCost
2538                     << "\n");
2539   if (NewCost < OldCost) {
2540     Builder.SetInsertPoint(Shuffle);
2541     Value *NewShuffle = Builder.CreateShuffleVector(
2542         Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
2543     LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
2544     replaceValue(*Shuffle, *NewShuffle);
2545   }
2546 
2547   // See if we can re-use foldSelectShuffle, getting it to reduce the size of
2548   // the shuffle into a nicer order, as it can ignore the order of the shuffles.
2549   return foldSelectShuffle(*Shuffle, true);
2550 }
2551 
2552 /// Determine if its more efficient to fold:
2553 ///   reduce(trunc(x)) -> trunc(reduce(x)).
2554 ///   reduce(sext(x))  -> sext(reduce(x)).
2555 ///   reduce(zext(x))  -> zext(reduce(x)).
2556 bool VectorCombine::foldCastFromReductions(Instruction &I) {
2557   auto *II = dyn_cast<IntrinsicInst>(&I);
2558   if (!II)
2559     return false;
2560 
2561   bool TruncOnly = false;
2562   Intrinsic::ID IID = II->getIntrinsicID();
2563   switch (IID) {
2564   case Intrinsic::vector_reduce_add:
2565   case Intrinsic::vector_reduce_mul:
2566     TruncOnly = true;
2567     break;
2568   case Intrinsic::vector_reduce_and:
2569   case Intrinsic::vector_reduce_or:
2570   case Intrinsic::vector_reduce_xor:
2571     break;
2572   default:
2573     return false;
2574   }
2575 
2576   unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
2577   Value *ReductionSrc = I.getOperand(0);
2578 
2579   Value *Src;
2580   if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(Src)))) &&
2581       (TruncOnly || !match(ReductionSrc, m_OneUse(m_ZExtOrSExt(m_Value(Src))))))
2582     return false;
2583 
2584   auto CastOpc =
2585       (Instruction::CastOps)cast<Instruction>(ReductionSrc)->getOpcode();
2586 
2587   auto *SrcTy = cast<VectorType>(Src->getType());
2588   auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
2589   Type *ResultTy = I.getType();
2590 
2591   InstructionCost OldCost = TTI.getArithmeticReductionCost(
2592       ReductionOpc, ReductionSrcTy, std::nullopt, CostKind);
2593   OldCost += TTI.getCastInstrCost(CastOpc, ReductionSrcTy, SrcTy,
2594                                   TTI::CastContextHint::None, CostKind,
2595                                   cast<CastInst>(ReductionSrc));
2596   InstructionCost NewCost =
2597       TTI.getArithmeticReductionCost(ReductionOpc, SrcTy, std::nullopt,
2598                                      CostKind) +
2599       TTI.getCastInstrCost(CastOpc, ResultTy, ReductionSrcTy->getScalarType(),
2600                            TTI::CastContextHint::None, CostKind);
2601 
2602   if (OldCost <= NewCost || !NewCost.isValid())
2603     return false;
2604 
2605   Value *NewReduction = Builder.CreateIntrinsic(SrcTy->getScalarType(),
2606                                                 II->getIntrinsicID(), {Src});
2607   Value *NewCast = Builder.CreateCast(CastOpc, NewReduction, ResultTy);
2608   replaceValue(I, *NewCast);
2609   return true;
2610 }
2611 
2612 /// This method looks for groups of shuffles acting on binops, of the form:
2613 ///  %x = shuffle ...
2614 ///  %y = shuffle ...
2615 ///  %a = binop %x, %y
2616 ///  %b = binop %x, %y
2617 ///  shuffle %a, %b, selectmask
2618 /// We may, especially if the shuffle is wider than legal, be able to convert
2619 /// the shuffle to a form where only parts of a and b need to be computed. On
2620 /// architectures with no obvious "select" shuffle, this can reduce the total
2621 /// number of operations if the target reports them as cheaper.
2622 bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
2623   auto *SVI = cast<ShuffleVectorInst>(&I);
2624   auto *VT = cast<FixedVectorType>(I.getType());
2625   auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
2626   auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
2627   if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
2628       VT != Op0->getType())
2629     return false;
2630 
2631   auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
2632   auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
2633   auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
2634   auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
2635   SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
2636   auto checkSVNonOpUses = [&](Instruction *I) {
2637     if (!I || I->getOperand(0)->getType() != VT)
2638       return true;
2639     return any_of(I->users(), [&](User *U) {
2640       return U != Op0 && U != Op1 &&
2641              !(isa<ShuffleVectorInst>(U) &&
2642                (InputShuffles.contains(cast<Instruction>(U)) ||
2643                 isInstructionTriviallyDead(cast<Instruction>(U))));
2644     });
2645   };
2646   if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
2647       checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
2648     return false;
2649 
2650   // Collect all the uses that are shuffles that we can transform together. We
2651   // may not have a single shuffle, but a group that can all be transformed
2652   // together profitably.
2653   SmallVector<ShuffleVectorInst *> Shuffles;
2654   auto collectShuffles = [&](Instruction *I) {
2655     for (auto *U : I->users()) {
2656       auto *SV = dyn_cast<ShuffleVectorInst>(U);
2657       if (!SV || SV->getType() != VT)
2658         return false;
2659       if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
2660           (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
2661         return false;
2662       if (!llvm::is_contained(Shuffles, SV))
2663         Shuffles.push_back(SV);
2664     }
2665     return true;
2666   };
2667   if (!collectShuffles(Op0) || !collectShuffles(Op1))
2668     return false;
2669   // From a reduction, we need to be processing a single shuffle, otherwise the
2670   // other uses will not be lane-invariant.
2671   if (FromReduction && Shuffles.size() > 1)
2672     return false;
2673 
2674   // Add any shuffle uses for the shuffles we have found, to include them in our
2675   // cost calculations.
2676   if (!FromReduction) {
2677     for (ShuffleVectorInst *SV : Shuffles) {
2678       for (auto *U : SV->users()) {
2679         ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
2680         if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
2681           Shuffles.push_back(SSV);
2682       }
2683     }
2684   }
2685 
2686   // For each of the output shuffles, we try to sort all the first vector
2687   // elements to the beginning, followed by the second array elements at the
2688   // end. If the binops are legalized to smaller vectors, this may reduce total
2689   // number of binops. We compute the ReconstructMask mask needed to convert
2690   // back to the original lane order.
2691   SmallVector<std::pair<int, int>> V1, V2;
2692   SmallVector<SmallVector<int>> OrigReconstructMasks;
2693   int MaxV1Elt = 0, MaxV2Elt = 0;
2694   unsigned NumElts = VT->getNumElements();
2695   for (ShuffleVectorInst *SVN : Shuffles) {
2696     SmallVector<int> Mask;
2697     SVN->getShuffleMask(Mask);
2698 
2699     // Check the operands are the same as the original, or reversed (in which
2700     // case we need to commute the mask).
2701     Value *SVOp0 = SVN->getOperand(0);
2702     Value *SVOp1 = SVN->getOperand(1);
2703     if (isa<UndefValue>(SVOp1)) {
2704       auto *SSV = cast<ShuffleVectorInst>(SVOp0);
2705       SVOp0 = SSV->getOperand(0);
2706       SVOp1 = SSV->getOperand(1);
2707       for (unsigned I = 0, E = Mask.size(); I != E; I++) {
2708         if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
2709           return false;
2710         Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
2711       }
2712     }
2713     if (SVOp0 == Op1 && SVOp1 == Op0) {
2714       std::swap(SVOp0, SVOp1);
2715       ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
2716     }
2717     if (SVOp0 != Op0 || SVOp1 != Op1)
2718       return false;
2719 
2720     // Calculate the reconstruction mask for this shuffle, as the mask needed to
2721     // take the packed values from Op0/Op1 and reconstructing to the original
2722     // order.
2723     SmallVector<int> ReconstructMask;
2724     for (unsigned I = 0; I < Mask.size(); I++) {
2725       if (Mask[I] < 0) {
2726         ReconstructMask.push_back(-1);
2727       } else if (Mask[I] < static_cast<int>(NumElts)) {
2728         MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
2729         auto It = find_if(V1, [&](const std::pair<int, int> &A) {
2730           return Mask[I] == A.first;
2731         });
2732         if (It != V1.end())
2733           ReconstructMask.push_back(It - V1.begin());
2734         else {
2735           ReconstructMask.push_back(V1.size());
2736           V1.emplace_back(Mask[I], V1.size());
2737         }
2738       } else {
2739         MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
2740         auto It = find_if(V2, [&](const std::pair<int, int> &A) {
2741           return Mask[I] - static_cast<int>(NumElts) == A.first;
2742         });
2743         if (It != V2.end())
2744           ReconstructMask.push_back(NumElts + It - V2.begin());
2745         else {
2746           ReconstructMask.push_back(NumElts + V2.size());
2747           V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
2748         }
2749       }
2750     }
2751 
2752     // For reductions, we know that the lane ordering out doesn't alter the
2753     // result. In-order can help simplify the shuffle away.
2754     if (FromReduction)
2755       sort(ReconstructMask);
2756     OrigReconstructMasks.push_back(std::move(ReconstructMask));
2757   }
2758 
2759   // If the Maximum element used from V1 and V2 are not larger than the new
2760   // vectors, the vectors are already packes and performing the optimization
2761   // again will likely not help any further. This also prevents us from getting
2762   // stuck in a cycle in case the costs do not also rule it out.
2763   if (V1.empty() || V2.empty() ||
2764       (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
2765        MaxV2Elt == static_cast<int>(V2.size()) - 1))
2766     return false;
2767 
2768   // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
2769   // shuffle of another shuffle, or not a shuffle (that is treated like a
2770   // identity shuffle).
2771   auto GetBaseMaskValue = [&](Instruction *I, int M) {
2772     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2773     if (!SV)
2774       return M;
2775     if (isa<UndefValue>(SV->getOperand(1)))
2776       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2777         if (InputShuffles.contains(SSV))
2778           return SSV->getMaskValue(SV->getMaskValue(M));
2779     return SV->getMaskValue(M);
2780   };
2781 
2782   // Attempt to sort the inputs my ascending mask values to make simpler input
2783   // shuffles and push complex shuffles down to the uses. We sort on the first
2784   // of the two input shuffle orders, to try and get at least one input into a
2785   // nice order.
2786   auto SortBase = [&](Instruction *A, std::pair<int, int> X,
2787                       std::pair<int, int> Y) {
2788     int MXA = GetBaseMaskValue(A, X.first);
2789     int MYA = GetBaseMaskValue(A, Y.first);
2790     return MXA < MYA;
2791   };
2792   stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
2793     return SortBase(SVI0A, A, B);
2794   });
2795   stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
2796     return SortBase(SVI1A, A, B);
2797   });
2798   // Calculate our ReconstructMasks from the OrigReconstructMasks and the
2799   // modified order of the input shuffles.
2800   SmallVector<SmallVector<int>> ReconstructMasks;
2801   for (const auto &Mask : OrigReconstructMasks) {
2802     SmallVector<int> ReconstructMask;
2803     for (int M : Mask) {
2804       auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
2805         auto It = find_if(V, [M](auto A) { return A.second == M; });
2806         assert(It != V.end() && "Expected all entries in Mask");
2807         return std::distance(V.begin(), It);
2808       };
2809       if (M < 0)
2810         ReconstructMask.push_back(-1);
2811       else if (M < static_cast<int>(NumElts)) {
2812         ReconstructMask.push_back(FindIndex(V1, M));
2813       } else {
2814         ReconstructMask.push_back(NumElts + FindIndex(V2, M));
2815       }
2816     }
2817     ReconstructMasks.push_back(std::move(ReconstructMask));
2818   }
2819 
2820   // Calculate the masks needed for the new input shuffles, which get padded
2821   // with undef
2822   SmallVector<int> V1A, V1B, V2A, V2B;
2823   for (unsigned I = 0; I < V1.size(); I++) {
2824     V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
2825     V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
2826   }
2827   for (unsigned I = 0; I < V2.size(); I++) {
2828     V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
2829     V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
2830   }
2831   while (V1A.size() < NumElts) {
2832     V1A.push_back(PoisonMaskElem);
2833     V1B.push_back(PoisonMaskElem);
2834   }
2835   while (V2A.size() < NumElts) {
2836     V2A.push_back(PoisonMaskElem);
2837     V2B.push_back(PoisonMaskElem);
2838   }
2839 
2840   auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
2841     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2842     if (!SV)
2843       return C;
2844     return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
2845                                       ? TTI::SK_PermuteSingleSrc
2846                                       : TTI::SK_PermuteTwoSrc,
2847                                   VT, SV->getShuffleMask(), CostKind);
2848   };
2849   auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
2850     return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask, CostKind);
2851   };
2852 
2853   // Get the costs of the shuffles + binops before and after with the new
2854   // shuffle masks.
2855   InstructionCost CostBefore =
2856       TTI.getArithmeticInstrCost(Op0->getOpcode(), VT, CostKind) +
2857       TTI.getArithmeticInstrCost(Op1->getOpcode(), VT, CostKind);
2858   CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
2859                                 InstructionCost(0), AddShuffleCost);
2860   CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
2861                                 InstructionCost(0), AddShuffleCost);
2862 
2863   // The new binops will be unused for lanes past the used shuffle lengths.
2864   // These types attempt to get the correct cost for that from the target.
2865   FixedVectorType *Op0SmallVT =
2866       FixedVectorType::get(VT->getScalarType(), V1.size());
2867   FixedVectorType *Op1SmallVT =
2868       FixedVectorType::get(VT->getScalarType(), V2.size());
2869   InstructionCost CostAfter =
2870       TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT, CostKind) +
2871       TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT, CostKind);
2872   CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
2873                                InstructionCost(0), AddShuffleMaskCost);
2874   std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
2875   CostAfter +=
2876       std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
2877                       InstructionCost(0), AddShuffleMaskCost);
2878 
2879   LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
2880   LLVM_DEBUG(dbgs() << "  CostBefore: " << CostBefore
2881                     << " vs CostAfter: " << CostAfter << "\n");
2882   if (CostBefore <= CostAfter)
2883     return false;
2884 
2885   // The cost model has passed, create the new instructions.
2886   auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
2887     auto *SV = dyn_cast<ShuffleVectorInst>(I);
2888     if (!SV)
2889       return I;
2890     if (isa<UndefValue>(SV->getOperand(1)))
2891       if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2892         if (InputShuffles.contains(SSV))
2893           return SSV->getOperand(Op);
2894     return SV->getOperand(Op);
2895   };
2896   Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
2897   Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
2898                                              GetShuffleOperand(SVI0A, 1), V1A);
2899   Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
2900   Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
2901                                              GetShuffleOperand(SVI0B, 1), V1B);
2902   Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
2903   Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
2904                                              GetShuffleOperand(SVI1A, 1), V2A);
2905   Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
2906   Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
2907                                              GetShuffleOperand(SVI1B, 1), V2B);
2908   Builder.SetInsertPoint(Op0);
2909   Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
2910                                     NSV0A, NSV0B);
2911   if (auto *I = dyn_cast<Instruction>(NOp0))
2912     I->copyIRFlags(Op0, true);
2913   Builder.SetInsertPoint(Op1);
2914   Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
2915                                     NSV1A, NSV1B);
2916   if (auto *I = dyn_cast<Instruction>(NOp1))
2917     I->copyIRFlags(Op1, true);
2918 
2919   for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
2920     Builder.SetInsertPoint(Shuffles[S]);
2921     Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
2922     replaceValue(*Shuffles[S], *NSV);
2923   }
2924 
2925   Worklist.pushValue(NSV0A);
2926   Worklist.pushValue(NSV0B);
2927   Worklist.pushValue(NSV1A);
2928   Worklist.pushValue(NSV1B);
2929   for (auto *S : Shuffles)
2930     Worklist.add(S);
2931   return true;
2932 }
2933 
2934 /// Check if instruction depends on ZExt and this ZExt can be moved after the
2935 /// instruction. Move ZExt if it is profitable. For example:
2936 ///     logic(zext(x),y) -> zext(logic(x,trunc(y)))
2937 ///     lshr((zext(x),y) -> zext(lshr(x,trunc(y)))
2938 /// Cost model calculations takes into account if zext(x) has other users and
2939 /// whether it can be propagated through them too.
2940 bool VectorCombine::shrinkType(Instruction &I) {
2941   Value *ZExted, *OtherOperand;
2942   if (!match(&I, m_c_BitwiseLogic(m_ZExt(m_Value(ZExted)),
2943                                   m_Value(OtherOperand))) &&
2944       !match(&I, m_LShr(m_ZExt(m_Value(ZExted)), m_Value(OtherOperand))))
2945     return false;
2946 
2947   Value *ZExtOperand = I.getOperand(I.getOperand(0) == OtherOperand ? 1 : 0);
2948 
2949   auto *BigTy = cast<FixedVectorType>(I.getType());
2950   auto *SmallTy = cast<FixedVectorType>(ZExted->getType());
2951   unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
2952 
2953   if (I.getOpcode() == Instruction::LShr) {
2954     // Check that the shift amount is less than the number of bits in the
2955     // smaller type. Otherwise, the smaller lshr will return a poison value.
2956     KnownBits ShAmtKB = computeKnownBits(I.getOperand(1), *DL);
2957     if (ShAmtKB.getMaxValue().uge(BW))
2958       return false;
2959   } else {
2960     // Check that the expression overall uses at most the same number of bits as
2961     // ZExted
2962     KnownBits KB = computeKnownBits(&I, *DL);
2963     if (KB.countMaxActiveBits() > BW)
2964       return false;
2965   }
2966 
2967   // Calculate costs of leaving current IR as it is and moving ZExt operation
2968   // later, along with adding truncates if needed
2969   InstructionCost ZExtCost = TTI.getCastInstrCost(
2970       Instruction::ZExt, BigTy, SmallTy,
2971       TargetTransformInfo::CastContextHint::None, CostKind);
2972   InstructionCost CurrentCost = ZExtCost;
2973   InstructionCost ShrinkCost = 0;
2974 
2975   // Calculate total cost and check that we can propagate through all ZExt users
2976   for (User *U : ZExtOperand->users()) {
2977     auto *UI = cast<Instruction>(U);
2978     if (UI == &I) {
2979       CurrentCost +=
2980           TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
2981       ShrinkCost +=
2982           TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
2983       ShrinkCost += ZExtCost;
2984       continue;
2985     }
2986 
2987     if (!Instruction::isBinaryOp(UI->getOpcode()))
2988       return false;
2989 
2990     // Check if we can propagate ZExt through its other users
2991     KnownBits KB = computeKnownBits(UI, *DL);
2992     if (KB.countMaxActiveBits() > BW)
2993       return false;
2994 
2995     CurrentCost += TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
2996     ShrinkCost +=
2997         TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
2998     ShrinkCost += ZExtCost;
2999   }
3000 
3001   // If the other instruction operand is not a constant, we'll need to
3002   // generate a truncate instruction. So we have to adjust cost
3003   if (!isa<Constant>(OtherOperand))
3004     ShrinkCost += TTI.getCastInstrCost(
3005         Instruction::Trunc, SmallTy, BigTy,
3006         TargetTransformInfo::CastContextHint::None, CostKind);
3007 
3008   // If the cost of shrinking types and leaving the IR is the same, we'll lean
3009   // towards modifying the IR because shrinking opens opportunities for other
3010   // shrinking optimisations.
3011   if (ShrinkCost > CurrentCost)
3012     return false;
3013 
3014   Builder.SetInsertPoint(&I);
3015   Value *Op0 = ZExted;
3016   Value *Op1 = Builder.CreateTrunc(OtherOperand, SmallTy);
3017   // Keep the order of operands the same
3018   if (I.getOperand(0) == OtherOperand)
3019     std::swap(Op0, Op1);
3020   Value *NewBinOp =
3021       Builder.CreateBinOp((Instruction::BinaryOps)I.getOpcode(), Op0, Op1);
3022   cast<Instruction>(NewBinOp)->copyIRFlags(&I);
3023   cast<Instruction>(NewBinOp)->copyMetadata(I);
3024   Value *NewZExtr = Builder.CreateZExt(NewBinOp, BigTy);
3025   replaceValue(I, *NewZExtr);
3026   return true;
3027 }
3028 
3029 /// insert (DstVec, (extract SrcVec, ExtIdx), InsIdx) -->
3030 /// shuffle (DstVec, SrcVec, Mask)
3031 bool VectorCombine::foldInsExtVectorToShuffle(Instruction &I) {
3032   Value *DstVec, *SrcVec;
3033   uint64_t ExtIdx, InsIdx;
3034   if (!match(&I,
3035              m_InsertElt(m_Value(DstVec),
3036                          m_ExtractElt(m_Value(SrcVec), m_ConstantInt(ExtIdx)),
3037                          m_ConstantInt(InsIdx))))
3038     return false;
3039 
3040   auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
3041   if (!VecTy || SrcVec->getType() != VecTy)
3042     return false;
3043 
3044   unsigned NumElts = VecTy->getNumElements();
3045   if (ExtIdx >= NumElts || InsIdx >= NumElts)
3046     return false;
3047 
3048   // Insertion into poison is a cheaper single operand shuffle.
3049   TargetTransformInfo::ShuffleKind SK;
3050   SmallVector<int> Mask(NumElts, PoisonMaskElem);
3051   if (isa<PoisonValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3052     SK = TargetTransformInfo::SK_PermuteSingleSrc;
3053     Mask[InsIdx] = ExtIdx;
3054     std::swap(DstVec, SrcVec);
3055   } else {
3056     SK = TargetTransformInfo::SK_PermuteTwoSrc;
3057     std::iota(Mask.begin(), Mask.end(), 0);
3058     Mask[InsIdx] = ExtIdx + NumElts;
3059   }
3060 
3061   // Cost
3062   auto *Ins = cast<InsertElementInst>(&I);
3063   auto *Ext = cast<ExtractElementInst>(I.getOperand(1));
3064   InstructionCost InsCost =
3065       TTI.getVectorInstrCost(*Ins, VecTy, CostKind, InsIdx);
3066   InstructionCost ExtCost =
3067       TTI.getVectorInstrCost(*Ext, VecTy, CostKind, ExtIdx);
3068   InstructionCost OldCost = ExtCost + InsCost;
3069 
3070   InstructionCost NewCost = TTI.getShuffleCost(SK, VecTy, Mask, CostKind, 0,
3071                                                nullptr, {DstVec, SrcVec});
3072   if (!Ext->hasOneUse())
3073     NewCost += ExtCost;
3074 
3075   LLVM_DEBUG(dbgs() << "Found a insert/extract shuffle-like pair : " << I
3076                     << "\n  OldCost: " << OldCost << " vs NewCost: " << NewCost
3077                     << "\n");
3078 
3079   if (OldCost < NewCost)
3080     return false;
3081 
3082   // Canonicalize undef param to RHS to help further folds.
3083   if (isa<UndefValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3084     ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
3085     std::swap(DstVec, SrcVec);
3086   }
3087 
3088   Value *Shuf = Builder.CreateShuffleVector(DstVec, SrcVec, Mask);
3089   replaceValue(I, *Shuf);
3090 
3091   return true;
3092 }
3093 
3094 /// This is the entry point for all transforms. Pass manager differences are
3095 /// handled in the callers of this function.
3096 bool VectorCombine::run() {
3097   if (DisableVectorCombine)
3098     return false;
3099 
3100   // Don't attempt vectorization if the target does not support vectors.
3101   if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
3102     return false;
3103 
3104   LLVM_DEBUG(dbgs() << "\n\nVECTORCOMBINE on " << F.getName() << "\n");
3105 
3106   bool MadeChange = false;
3107   auto FoldInst = [this, &MadeChange](Instruction &I) {
3108     Builder.SetInsertPoint(&I);
3109     bool IsVectorType = isa<VectorType>(I.getType());
3110     bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
3111     auto Opcode = I.getOpcode();
3112 
3113     LLVM_DEBUG(dbgs() << "VC: Visiting: " << I << '\n');
3114 
3115     // These folds should be beneficial regardless of when this pass is run
3116     // in the optimization pipeline.
3117     // The type checking is for run-time efficiency. We can avoid wasting time
3118     // dispatching to folding functions if there's no chance of matching.
3119     if (IsFixedVectorType) {
3120       switch (Opcode) {
3121       case Instruction::InsertElement:
3122         MadeChange |= vectorizeLoadInsert(I);
3123         break;
3124       case Instruction::ShuffleVector:
3125         MadeChange |= widenSubvectorLoad(I);
3126         break;
3127       default:
3128         break;
3129       }
3130     }
3131 
3132     // This transform works with scalable and fixed vectors
3133     // TODO: Identify and allow other scalable transforms
3134     if (IsVectorType) {
3135       MadeChange |= scalarizeBinopOrCmp(I);
3136       MadeChange |= scalarizeLoadExtract(I);
3137       MadeChange |= scalarizeVPIntrinsic(I);
3138     }
3139 
3140     if (Opcode == Instruction::Store)
3141       MadeChange |= foldSingleElementStore(I);
3142 
3143     // If this is an early pipeline invocation of this pass, we are done.
3144     if (TryEarlyFoldsOnly)
3145       return;
3146 
3147     // Otherwise, try folds that improve codegen but may interfere with
3148     // early IR canonicalizations.
3149     // The type checking is for run-time efficiency. We can avoid wasting time
3150     // dispatching to folding functions if there's no chance of matching.
3151     if (IsFixedVectorType) {
3152       switch (Opcode) {
3153       case Instruction::InsertElement:
3154         MadeChange |= foldInsExtFNeg(I);
3155         MadeChange |= foldInsExtVectorToShuffle(I);
3156         break;
3157       case Instruction::ShuffleVector:
3158         MadeChange |= foldPermuteOfBinops(I);
3159         MadeChange |= foldShuffleOfBinops(I);
3160         MadeChange |= foldShuffleOfCastops(I);
3161         MadeChange |= foldShuffleOfShuffles(I);
3162         MadeChange |= foldShuffleOfIntrinsics(I);
3163         MadeChange |= foldSelectShuffle(I);
3164         MadeChange |= foldShuffleToIdentity(I);
3165         break;
3166       case Instruction::BitCast:
3167         MadeChange |= foldBitcastShuffle(I);
3168         break;
3169       default:
3170         MadeChange |= shrinkType(I);
3171         break;
3172       }
3173     } else {
3174       switch (Opcode) {
3175       case Instruction::Call:
3176         MadeChange |= foldShuffleFromReductions(I);
3177         MadeChange |= foldCastFromReductions(I);
3178         break;
3179       case Instruction::ICmp:
3180       case Instruction::FCmp:
3181         MadeChange |= foldExtractExtract(I);
3182         break;
3183       case Instruction::Or:
3184         MadeChange |= foldConcatOfBoolMasks(I);
3185         [[fallthrough]];
3186       default:
3187         if (Instruction::isBinaryOp(Opcode)) {
3188           MadeChange |= foldExtractExtract(I);
3189           MadeChange |= foldExtractedCmps(I);
3190         }
3191         break;
3192       }
3193     }
3194   };
3195 
3196   for (BasicBlock &BB : F) {
3197     // Ignore unreachable basic blocks.
3198     if (!DT.isReachableFromEntry(&BB))
3199       continue;
3200     // Use early increment range so that we can erase instructions in loop.
3201     for (Instruction &I : make_early_inc_range(BB)) {
3202       if (I.isDebugOrPseudoInst())
3203         continue;
3204       FoldInst(I);
3205     }
3206   }
3207 
3208   while (!Worklist.isEmpty()) {
3209     Instruction *I = Worklist.removeOne();
3210     if (!I)
3211       continue;
3212 
3213     if (isInstructionTriviallyDead(I)) {
3214       eraseInstruction(*I);
3215       continue;
3216     }
3217 
3218     FoldInst(*I);
3219   }
3220 
3221   return MadeChange;
3222 }
3223 
3224 PreservedAnalyses VectorCombinePass::run(Function &F,
3225                                          FunctionAnalysisManager &FAM) {
3226   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
3227   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
3228   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3229   AAResults &AA = FAM.getResult<AAManager>(F);
3230   const DataLayout *DL = &F.getDataLayout();
3231   VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TTI::TCK_RecipThroughput,
3232                          TryEarlyFoldsOnly);
3233   if (!Combiner.run())
3234     return PreservedAnalyses::all();
3235   PreservedAnalyses PA;
3236   PA.preserveSet<CFGAnalyses>();
3237   return PA;
3238 }
3239