1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlan.h" 17 #include "VPlanAnalysis.h" 18 #include "VPlanCFG.h" 19 #include "VPlanDominatorTree.h" 20 #include "VPlanPatternMatch.h" 21 #include "VPlanUtils.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/PatternMatch.h" 30 31 using namespace llvm; 32 33 void VPlanTransforms::VPInstructionsToVPRecipes( 34 VPlanPtr &Plan, 35 function_ref<const InductionDescriptor *(PHINode *)> 36 GetIntOrFpInductionDescriptor, 37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 38 39 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 40 Plan->getVectorLoopRegion()); 41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 42 // Skip blocks outside region 43 if (!VPBB->getParent()) 44 break; 45 VPRecipeBase *Term = VPBB->getTerminator(); 46 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 47 // Introduce each ingredient into VPlan. 48 for (VPRecipeBase &Ingredient : 49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 50 51 VPValue *VPV = Ingredient.getVPSingleValue(); 52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 53 54 VPRecipeBase *NewRecipe = nullptr; 55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 57 const auto *II = GetIntOrFpInductionDescriptor(Phi); 58 if (!II) 59 continue; 60 61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 62 VPValue *Step = 63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 64 NewRecipe = new VPWidenIntOrFpInductionRecipe( 65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); 66 } else { 67 assert(isa<VPInstruction>(&Ingredient) && 68 "only VPInstructions expected here"); 69 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 70 // Create VPWidenMemoryRecipe for loads and stores. 71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 72 NewRecipe = new VPWidenLoadRecipe( 73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 74 false /*Consecutive*/, false /*Reverse*/, 75 Ingredient.getDebugLoc()); 76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 77 NewRecipe = new VPWidenStoreRecipe( 78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 80 Ingredient.getDebugLoc()); 81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 84 NewRecipe = new VPWidenIntrinsicRecipe( 85 *CI, getVectorIntrinsicIDForCall(CI, &TLI), 86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), 87 CI->getDebugLoc()); 88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 91 NewRecipe = new VPWidenCastRecipe( 92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 93 } else { 94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 95 } 96 } 97 98 NewRecipe->insertBefore(&Ingredient); 99 if (NewRecipe->getNumDefinedValues() == 1) 100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 101 else 102 assert(NewRecipe->getNumDefinedValues() == 0 && 103 "Only recpies with zero or one defined values expected"); 104 Ingredient.eraseFromParent(); 105 } 106 } 107 } 108 109 static bool sinkScalarOperands(VPlan &Plan) { 110 auto Iter = vp_depth_first_deep(Plan.getEntry()); 111 bool Changed = false; 112 // First, collect the operands of all recipes in replicate blocks as seeds for 113 // sinking. 114 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 118 continue; 119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 121 continue; 122 for (auto &Recipe : *VPBB) { 123 for (VPValue *Op : Recipe.operands()) 124 if (auto *Def = 125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 126 WorkList.insert(std::make_pair(VPBB, Def)); 127 } 128 } 129 130 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 131 // Try to sink each replicate or scalar IV steps recipe in the worklist. 132 for (unsigned I = 0; I != WorkList.size(); ++I) { 133 VPBasicBlock *SinkTo; 134 VPSingleDefRecipe *SinkCandidate; 135 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 136 if (SinkCandidate->getParent() == SinkTo || 137 SinkCandidate->mayHaveSideEffects() || 138 SinkCandidate->mayReadOrWriteMemory()) 139 continue; 140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 141 if (!ScalarVFOnly && RepR->isUniform()) 142 continue; 143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 144 continue; 145 146 bool NeedsDuplicating = false; 147 // All recipe users of the sink candidate must be in the same block SinkTo 148 // or all users outside of SinkTo must be uniform-after-vectorization ( 149 // i.e., only first lane is used) . In the latter case, we need to duplicate 150 // SinkCandidate. 151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 152 SinkCandidate](VPUser *U) { 153 auto *UI = cast<VPRecipeBase>(U); 154 if (UI->getParent() == SinkTo) 155 return true; 156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 157 // We only know how to duplicate VPRecipeRecipes for now. 158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 159 }; 160 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 161 continue; 162 163 if (NeedsDuplicating) { 164 if (ScalarVFOnly) 165 continue; 166 Instruction *I = SinkCandidate->getUnderlyingInstr(); 167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 168 // TODO: add ".cloned" suffix to name of Clone's VPValue. 169 170 Clone->insertBefore(SinkCandidate); 171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 173 }); 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 if (auto *Def = 178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 179 WorkList.insert(std::make_pair(SinkTo, Def)); 180 Changed = true; 181 } 182 return Changed; 183 } 184 185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 186 /// the mask. 187 VPValue *getPredicatedMask(VPRegionBlock *R) { 188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 189 if (!EntryBB || EntryBB->size() != 1 || 190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 191 return nullptr; 192 193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 194 } 195 196 /// If \p R is a triangle region, return the 'then' block of the triangle. 197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 199 if (EntryBB->getNumSuccessors() != 2) 200 return nullptr; 201 202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 204 if (!Succ0 || !Succ1) 205 return nullptr; 206 207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 208 return nullptr; 209 if (Succ0->getSingleSuccessor() == Succ1) 210 return Succ0; 211 if (Succ1->getSingleSuccessor() == Succ0) 212 return Succ1; 213 return nullptr; 214 } 215 216 // Merge replicate regions in their successor region, if a replicate region 217 // is connected to a successor replicate region with the same predicate by a 218 // single, empty VPBasicBlock. 219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 220 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; 221 222 // Collect replicate regions followed by an empty block, followed by another 223 // replicate region with matching masks to process front. This is to avoid 224 // iterator invalidation issues while merging regions. 225 SmallVector<VPRegionBlock *, 8> WorkList; 226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 227 vp_depth_first_deep(Plan.getEntry()))) { 228 if (!Region1->isReplicator()) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2 || !Region2->isReplicator()) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 245 assert(Mask1 && Mask2 && "both region must have conditions"); 246 WorkList.push_back(Region1); 247 } 248 249 // Move recipes from Region1 to its successor region, if both are triangles. 250 for (VPRegionBlock *Region1 : WorkList) { 251 if (TransformedRegions.contains(Region1)) 252 continue; 253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 255 256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 258 if (!Then1 || !Then2) 259 continue; 260 261 // Note: No fusion-preventing memory dependencies are expected in either 262 // region. Such dependencies should be rejected during earlier dependence 263 // checks, which guarantee accesses can be re-ordered for vectorization. 264 // 265 // Move recipes to the successor region. 266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 268 269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 271 272 // Move VPPredInstPHIRecipes from the merge block to the successor region's 273 // merge block. Update all users inside the successor region to use the 274 // original values. 275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 276 VPValue *PredInst1 = 277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 280 return cast<VPRecipeBase>(&U)->getParent() == Then2; 281 }); 282 283 // Remove phi recipes that are unused after merging the regions. 284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 285 Phi1ToMove.eraseFromParent(); 286 continue; 287 } 288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 289 } 290 291 // Finally, remove the first region. 292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 293 VPBlockUtils::disconnectBlocks(Pred, Region1); 294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 295 } 296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 297 TransformedRegions.insert(Region1); 298 } 299 300 return !TransformedRegions.empty(); 301 } 302 303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 304 VPlan &Plan) { 305 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 306 // Build the triangular if-then region. 307 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 308 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 309 auto *BlockInMask = PredRecipe->getMask(); 310 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 311 auto *Entry = 312 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 313 314 // Replace predicated replicate recipe with a replicate recipe without a 315 // mask but in the replicate region. 316 auto *RecipeWithoutMask = new VPReplicateRecipe( 317 PredRecipe->getUnderlyingInstr(), 318 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 319 PredRecipe->isUniform()); 320 auto *Pred = 321 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 322 323 VPPredInstPHIRecipe *PHIRecipe = nullptr; 324 if (PredRecipe->getNumUsers() != 0) { 325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, 326 RecipeWithoutMask->getDebugLoc()); 327 PredRecipe->replaceAllUsesWith(PHIRecipe); 328 PHIRecipe->setOperand(0, RecipeWithoutMask); 329 } 330 PredRecipe->eraseFromParent(); 331 auto *Exiting = 332 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 333 VPRegionBlock *Region = 334 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true); 335 336 // Note: first set Entry as region entry and then connect successors starting 337 // from it in order, to propagate the "parent" of each VPBasicBlock. 338 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 339 VPBlockUtils::connectBlocks(Pred, Exiting); 340 341 return Region; 342 } 343 344 static void addReplicateRegions(VPlan &Plan) { 345 SmallVector<VPReplicateRecipe *> WorkList; 346 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 347 vp_depth_first_deep(Plan.getEntry()))) { 348 for (VPRecipeBase &R : *VPBB) 349 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 350 if (RepR->isPredicated()) 351 WorkList.push_back(RepR); 352 } 353 } 354 355 unsigned BBNum = 0; 356 for (VPReplicateRecipe *RepR : WorkList) { 357 VPBasicBlock *CurrentBlock = RepR->getParent(); 358 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 359 360 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 361 SplitBlock->setName( 362 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 363 // Record predicated instructions for above packing optimizations. 364 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 365 Region->setParent(CurrentBlock->getParent()); 366 VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region); 367 } 368 } 369 370 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 371 /// the predecessor has a single successor. 372 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 373 SmallVector<VPBasicBlock *> WorkList; 374 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 375 vp_depth_first_deep(Plan.getEntry()))) { 376 // Don't fold the blocks in the skeleton of the Plan into their single 377 // predecessors for now. 378 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 379 if (!VPBB->getParent()) 380 continue; 381 auto *PredVPBB = 382 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 383 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || 384 isa<VPIRBasicBlock>(PredVPBB)) 385 continue; 386 WorkList.push_back(VPBB); 387 } 388 389 for (VPBasicBlock *VPBB : WorkList) { 390 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 391 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 392 R.moveBefore(*PredVPBB, PredVPBB->end()); 393 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 394 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 395 if (ParentRegion && ParentRegion->getExiting() == VPBB) 396 ParentRegion->setExiting(PredVPBB); 397 for (auto *Succ : to_vector(VPBB->successors())) { 398 VPBlockUtils::disconnectBlocks(VPBB, Succ); 399 VPBlockUtils::connectBlocks(PredVPBB, Succ); 400 } 401 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 402 } 403 return !WorkList.empty(); 404 } 405 406 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 407 // Convert masked VPReplicateRecipes to if-then region blocks. 408 addReplicateRegions(Plan); 409 410 bool ShouldSimplify = true; 411 while (ShouldSimplify) { 412 ShouldSimplify = sinkScalarOperands(Plan); 413 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 414 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 415 } 416 } 417 418 /// Remove redundant casts of inductions. 419 /// 420 /// Such redundant casts are casts of induction variables that can be ignored, 421 /// because we already proved that the casted phi is equal to the uncasted phi 422 /// in the vectorized loop. There is no need to vectorize the cast - the same 423 /// value can be used for both the phi and casts in the vector loop. 424 static void removeRedundantInductionCasts(VPlan &Plan) { 425 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 426 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 427 if (!IV || IV->getTruncInst()) 428 continue; 429 430 // A sequence of IR Casts has potentially been recorded for IV, which 431 // *must be bypassed* when the IV is vectorized, because the vectorized IV 432 // will produce the desired casted value. This sequence forms a def-use 433 // chain and is provided in reverse order, ending with the cast that uses 434 // the IV phi. Search for the recipe of the last cast in the chain and 435 // replace it with the original IV. Note that only the final cast is 436 // expected to have users outside the cast-chain and the dead casts left 437 // over will be cleaned up later. 438 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 439 VPValue *FindMyCast = IV; 440 for (Instruction *IRCast : reverse(Casts)) { 441 VPSingleDefRecipe *FoundUserCast = nullptr; 442 for (auto *U : FindMyCast->users()) { 443 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 444 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 445 FoundUserCast = UserCast; 446 break; 447 } 448 } 449 FindMyCast = FoundUserCast; 450 } 451 FindMyCast->replaceAllUsesWith(IV); 452 } 453 } 454 455 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 456 /// recipe, if it exists. 457 static void removeRedundantCanonicalIVs(VPlan &Plan) { 458 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 459 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 460 for (VPUser *U : CanonicalIV->users()) { 461 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 462 if (WidenNewIV) 463 break; 464 } 465 466 if (!WidenNewIV) 467 return; 468 469 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 470 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 471 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 472 473 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 474 continue; 475 476 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 477 // everything WidenNewIV's users need. That is, WidenOriginalIV will 478 // generate a vector phi or all users of WidenNewIV demand the first lane 479 // only. 480 if (any_of(WidenOriginalIV->users(), 481 [WidenOriginalIV](VPUser *U) { 482 return !U->usesScalars(WidenOriginalIV); 483 }) || 484 vputils::onlyFirstLaneUsed(WidenNewIV)) { 485 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 486 WidenNewIV->eraseFromParent(); 487 return; 488 } 489 } 490 } 491 492 /// Returns true if \p R is dead and can be removed. 493 static bool isDeadRecipe(VPRecipeBase &R) { 494 using namespace llvm::PatternMatch; 495 // Do remove conditional assume instructions as their conditions may be 496 // flattened. 497 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 498 bool IsConditionalAssume = 499 RepR && RepR->isPredicated() && 500 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 501 if (IsConditionalAssume) 502 return true; 503 504 if (R.mayHaveSideEffects()) 505 return false; 506 507 // Recipe is dead if no user keeps the recipe alive. 508 return all_of(R.definedValues(), 509 [](VPValue *V) { return V->getNumUsers() == 0; }); 510 } 511 512 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { 513 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 514 Plan.getEntry()); 515 516 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 517 // The recipes in the block are processed in reverse order, to catch chains 518 // of dead recipes. 519 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 520 if (isDeadRecipe(R)) 521 R.eraseFromParent(); 522 } 523 } 524 } 525 526 static VPScalarIVStepsRecipe * 527 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 528 Instruction::BinaryOps InductionOpcode, 529 FPMathOperator *FPBinOp, Instruction *TruncI, 530 VPValue *StartV, VPValue *Step, DebugLoc DL, 531 VPBuilder &Builder) { 532 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 533 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 534 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( 535 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx"); 536 537 // Truncate base induction if needed. 538 Type *CanonicalIVType = CanonicalIV->getScalarType(); 539 VPTypeAnalysis TypeInfo(CanonicalIVType); 540 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 541 if (TruncI) { 542 Type *TruncTy = TruncI->getType(); 543 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 544 "Not truncating."); 545 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 546 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL); 547 ResultTy = TruncTy; 548 } 549 550 // Truncate step if needed. 551 Type *StepTy = TypeInfo.inferScalarType(Step); 552 if (ResultTy != StepTy) { 553 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 554 "Not truncating."); 555 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 556 auto *VecPreheader = 557 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 558 VPBuilder::InsertPointGuard Guard(Builder); 559 Builder.setInsertPoint(VecPreheader); 560 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL); 561 } 562 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step); 563 } 564 565 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 566 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 567 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 568 /// require vectors while other require scalars, the scalar uses need to extract 569 /// the scalars from the generated vectors (Note that this is different to how 570 /// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe, 571 /// if any of its users needs scalar values, by providing them scalar steps 572 /// built on the canonical scalar IV and update the original IV's users. This is 573 /// an optional optimization to reduce the needs of vector extracts. 574 static void legalizeAndOptimizeInductions(VPlan &Plan) { 575 SmallVector<VPRecipeBase *> ToRemove; 576 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 577 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 578 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 579 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 580 // Replace wide pointer inductions which have only their scalars used by 581 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 582 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 583 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 584 continue; 585 586 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 587 VPValue *StartV = 588 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 589 VPValue *StepV = PtrIV->getOperand(1); 590 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 591 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 592 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder); 593 594 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps, 595 PtrIV->getDebugLoc(), "next.gep"); 596 597 PtrIV->replaceAllUsesWith(PtrAdd); 598 continue; 599 } 600 601 // Replace widened induction with scalar steps for users that only use 602 // scalars. 603 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 604 if (!WideIV) 605 continue; 606 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 607 return U->usesScalars(WideIV); 608 })) 609 continue; 610 611 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 612 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 613 Plan, ID.getKind(), ID.getInductionOpcode(), 614 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 615 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 616 WideIV->getDebugLoc(), Builder); 617 618 // Update scalar users of IV to use Step instead. 619 if (!HasOnlyVectorVFs) 620 WideIV->replaceAllUsesWith(Steps); 621 else 622 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 623 return U.usesScalars(WideIV); 624 }); 625 } 626 } 627 628 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 629 /// them with already existing recipes expanding the same SCEV expression. 630 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 631 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 632 633 for (VPRecipeBase &R : 634 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 635 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 636 if (!ExpR) 637 continue; 638 639 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 640 if (I.second) 641 continue; 642 ExpR->replaceAllUsesWith(I.first->second); 643 ExpR->eraseFromParent(); 644 } 645 } 646 647 static void recursivelyDeleteDeadRecipes(VPValue *V) { 648 SmallVector<VPValue *> WorkList; 649 SmallPtrSet<VPValue *, 8> Seen; 650 WorkList.push_back(V); 651 652 while (!WorkList.empty()) { 653 VPValue *Cur = WorkList.pop_back_val(); 654 if (!Seen.insert(Cur).second) 655 continue; 656 VPRecipeBase *R = Cur->getDefiningRecipe(); 657 if (!R) 658 continue; 659 if (!isDeadRecipe(*R)) 660 continue; 661 WorkList.append(R->op_begin(), R->op_end()); 662 R->eraseFromParent(); 663 } 664 } 665 666 /// Try to simplify recipe \p R. 667 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 668 using namespace llvm::VPlanPatternMatch; 669 670 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 671 // Try to remove redundant blend recipes. 672 SmallPtrSet<VPValue *, 4> UniqueValues; 673 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False())) 674 UniqueValues.insert(Blend->getIncomingValue(0)); 675 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 676 if (!match(Blend->getMask(I), m_False())) 677 UniqueValues.insert(Blend->getIncomingValue(I)); 678 679 if (UniqueValues.size() == 1) { 680 Blend->replaceAllUsesWith(*UniqueValues.begin()); 681 Blend->eraseFromParent(); 682 return; 683 } 684 685 if (Blend->isNormalized()) 686 return; 687 688 // Normalize the blend so its first incoming value is used as the initial 689 // value with the others blended into it. 690 691 unsigned StartIndex = 0; 692 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 693 // If a value's mask is used only by the blend then is can be deadcoded. 694 // TODO: Find the most expensive mask that can be deadcoded, or a mask 695 // that's used by multiple blends where it can be removed from them all. 696 VPValue *Mask = Blend->getMask(I); 697 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) { 698 StartIndex = I; 699 break; 700 } 701 } 702 703 SmallVector<VPValue *, 4> OperandsWithMask; 704 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex)); 705 706 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 707 if (I == StartIndex) 708 continue; 709 OperandsWithMask.push_back(Blend->getIncomingValue(I)); 710 OperandsWithMask.push_back(Blend->getMask(I)); 711 } 712 713 auto *NewBlend = new VPBlendRecipe( 714 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask); 715 NewBlend->insertBefore(&R); 716 717 VPValue *DeadMask = Blend->getMask(StartIndex); 718 Blend->replaceAllUsesWith(NewBlend); 719 Blend->eraseFromParent(); 720 recursivelyDeleteDeadRecipes(DeadMask); 721 return; 722 } 723 724 VPValue *A; 725 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 726 VPValue *Trunc = R.getVPSingleValue(); 727 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 728 Type *ATy = TypeInfo.inferScalarType(A); 729 if (TruncTy == ATy) { 730 Trunc->replaceAllUsesWith(A); 731 } else { 732 // Don't replace a scalarizing recipe with a widened cast. 733 if (isa<VPReplicateRecipe>(&R)) 734 return; 735 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 736 737 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 738 ? Instruction::SExt 739 : Instruction::ZExt; 740 auto *VPC = 741 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 742 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 743 // UnderlyingExt has distinct return type, used to retain legacy cost. 744 VPC->setUnderlyingValue(UnderlyingExt); 745 } 746 VPC->insertBefore(&R); 747 Trunc->replaceAllUsesWith(VPC); 748 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 749 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 750 VPC->insertBefore(&R); 751 Trunc->replaceAllUsesWith(VPC); 752 } 753 } 754 #ifndef NDEBUG 755 // Verify that the cached type info is for both A and its users is still 756 // accurate by comparing it to freshly computed types. 757 VPTypeAnalysis TypeInfo2( 758 R.getParent()->getPlan()->getCanonicalIV()->getScalarType()); 759 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 760 for (VPUser *U : A->users()) { 761 auto *R = cast<VPRecipeBase>(U); 762 for (VPValue *VPV : R->definedValues()) 763 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 764 } 765 #endif 766 } 767 768 // Simplify (X && Y) || (X && !Y) -> X. 769 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 770 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 771 // recipes to be visited during simplification. 772 VPValue *X, *Y, *X1, *Y1; 773 if (match(&R, 774 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 775 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 776 X == X1 && Y == Y1) { 777 R.getVPSingleValue()->replaceAllUsesWith(X); 778 R.eraseFromParent(); 779 return; 780 } 781 782 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 783 return R.getVPSingleValue()->replaceAllUsesWith(A); 784 785 if (match(&R, m_Not(m_Not(m_VPValue(A))))) 786 return R.getVPSingleValue()->replaceAllUsesWith(A); 787 788 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. 789 if ((match(&R, 790 m_DerivedIV(m_SpecificInt(0), m_VPValue(A), m_SpecificInt(1))) || 791 match(&R, 792 m_DerivedIV(m_SpecificInt(0), m_SpecificInt(0), m_VPValue()))) && 793 TypeInfo.inferScalarType(R.getOperand(1)) == 794 TypeInfo.inferScalarType(R.getVPSingleValue())) 795 return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1)); 796 } 797 798 /// Try to simplify the recipes in \p Plan. Use \p CanonicalIVTy as type for all 799 /// un-typed live-ins in VPTypeAnalysis. 800 static void simplifyRecipes(VPlan &Plan, Type *CanonicalIVTy) { 801 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 802 Plan.getEntry()); 803 VPTypeAnalysis TypeInfo(CanonicalIVTy); 804 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 805 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 806 simplifyRecipe(R, TypeInfo); 807 } 808 } 809 } 810 811 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 812 unsigned BestUF, 813 PredicatedScalarEvolution &PSE) { 814 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 815 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 816 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 817 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); 818 auto *Term = &ExitingVPBB->back(); 819 // Try to simplify the branch condition if TC <= VF * UF when preparing to 820 // execute the plan for the main vector loop. We only do this if the 821 // terminator is: 822 // 1. BranchOnCount, or 823 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 824 using namespace llvm::VPlanPatternMatch; 825 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 826 !match(Term, 827 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 828 return; 829 830 ScalarEvolution &SE = *PSE.getSE(); 831 const SCEV *TripCount = 832 vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE); 833 assert(!isa<SCEVCouldNotCompute>(TripCount) && 834 "Trip count SCEV must be computable"); 835 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 836 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 837 if (TripCount->isZero() || 838 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 839 return; 840 841 // The vector loop region only executes once. If possible, completely remove 842 // the region, otherwise replace the terminator controlling the latch with 843 // (BranchOnCond true). 844 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry()); 845 auto *CanIVTy = Plan.getCanonicalIV()->getScalarType(); 846 if (all_of( 847 Header->phis(), 848 IsaPred<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe>)) { 849 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) { 850 auto *HeaderPhiR = cast<VPHeaderPHIRecipe>(&HeaderR); 851 HeaderPhiR->replaceAllUsesWith(HeaderPhiR->getStartValue()); 852 HeaderPhiR->eraseFromParent(); 853 } 854 855 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor(); 856 VPBlockBase *Exit = VectorRegion->getSingleSuccessor(); 857 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion); 858 VPBlockUtils::disconnectBlocks(VectorRegion, Exit); 859 860 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry())) 861 B->setParent(nullptr); 862 863 VPBlockUtils::connectBlocks(Preheader, Header); 864 VPBlockUtils::connectBlocks(ExitingVPBB, Exit); 865 simplifyRecipes(Plan, CanIVTy); 866 } else { 867 // The vector region contains header phis for which we cannot remove the 868 // loop region yet. 869 LLVMContext &Ctx = SE.getContext(); 870 auto *BOC = new VPInstruction( 871 VPInstruction::BranchOnCond, 872 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc()); 873 ExitingVPBB->appendRecipe(BOC); 874 } 875 876 Term->eraseFromParent(); 877 VPlanTransforms::removeDeadRecipes(Plan); 878 879 Plan.setVF(BestVF); 880 Plan.setUF(BestUF); 881 // TODO: Further simplifications are possible 882 // 1. Replace inductions with constants. 883 // 2. Replace vector loop region with VPBasicBlock. 884 } 885 886 /// Sink users of \p FOR after the recipe defining the previous value \p 887 /// Previous of the recurrence. \returns true if all users of \p FOR could be 888 /// re-arranged as needed or false if it is not possible. 889 static bool 890 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 891 VPRecipeBase *Previous, 892 VPDominatorTree &VPDT) { 893 // Collect recipes that need sinking. 894 SmallVector<VPRecipeBase *> WorkList; 895 SmallPtrSet<VPRecipeBase *, 8> Seen; 896 Seen.insert(Previous); 897 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 898 // The previous value must not depend on the users of the recurrence phi. In 899 // that case, FOR is not a fixed order recurrence. 900 if (SinkCandidate == Previous) 901 return false; 902 903 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 904 !Seen.insert(SinkCandidate).second || 905 VPDT.properlyDominates(Previous, SinkCandidate)) 906 return true; 907 908 if (SinkCandidate->mayHaveSideEffects()) 909 return false; 910 911 WorkList.push_back(SinkCandidate); 912 return true; 913 }; 914 915 // Recursively sink users of FOR after Previous. 916 WorkList.push_back(FOR); 917 for (unsigned I = 0; I != WorkList.size(); ++I) { 918 VPRecipeBase *Current = WorkList[I]; 919 assert(Current->getNumDefinedValues() == 1 && 920 "only recipes with a single defined value expected"); 921 922 for (VPUser *User : Current->getVPSingleValue()->users()) { 923 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User))) 924 return false; 925 } 926 } 927 928 // Keep recipes to sink ordered by dominance so earlier instructions are 929 // processed first. 930 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 931 return VPDT.properlyDominates(A, B); 932 }); 933 934 for (VPRecipeBase *SinkCandidate : WorkList) { 935 if (SinkCandidate == FOR) 936 continue; 937 938 SinkCandidate->moveAfter(Previous); 939 Previous = SinkCandidate; 940 } 941 return true; 942 } 943 944 /// Try to hoist \p Previous and its operands before all users of \p FOR. 945 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, 946 VPRecipeBase *Previous, 947 VPDominatorTree &VPDT) { 948 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) 949 return false; 950 951 // Collect recipes that need hoisting. 952 SmallVector<VPRecipeBase *> HoistCandidates; 953 SmallPtrSet<VPRecipeBase *, 8> Visited; 954 VPRecipeBase *HoistPoint = nullptr; 955 // Find the closest hoist point by looking at all users of FOR and selecting 956 // the recipe dominating all other users. 957 for (VPUser *U : FOR->users()) { 958 auto *R = cast<VPRecipeBase>(U); 959 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint)) 960 HoistPoint = R; 961 } 962 assert(all_of(FOR->users(), 963 [&VPDT, HoistPoint](VPUser *U) { 964 auto *R = cast<VPRecipeBase>(U); 965 return HoistPoint == R || 966 VPDT.properlyDominates(HoistPoint, R); 967 }) && 968 "HoistPoint must dominate all users of FOR"); 969 970 auto NeedsHoisting = [HoistPoint, &VPDT, 971 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { 972 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); 973 if (!HoistCandidate) 974 return nullptr; 975 VPRegionBlock *EnclosingLoopRegion = 976 HoistCandidate->getParent()->getEnclosingLoopRegion(); 977 assert((!HoistCandidate->getParent()->getParent() || 978 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && 979 "CFG in VPlan should still be flat, without replicate regions"); 980 // Hoist candidate was already visited, no need to hoist. 981 if (!Visited.insert(HoistCandidate).second) 982 return nullptr; 983 984 // Candidate is outside loop region or a header phi, dominates FOR users w/o 985 // hoisting. 986 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate)) 987 return nullptr; 988 989 // If we reached a recipe that dominates HoistPoint, we don't need to 990 // hoist the recipe. 991 if (VPDT.properlyDominates(HoistCandidate, HoistPoint)) 992 return nullptr; 993 return HoistCandidate; 994 }; 995 auto CanHoist = [&](VPRecipeBase *HoistCandidate) { 996 // Avoid hoisting candidates with side-effects, as we do not yet analyze 997 // associated dependencies. 998 return !HoistCandidate->mayHaveSideEffects(); 999 }; 1000 1001 if (!NeedsHoisting(Previous->getVPSingleValue())) 1002 return true; 1003 1004 // Recursively try to hoist Previous and its operands before all users of FOR. 1005 HoistCandidates.push_back(Previous); 1006 1007 for (unsigned I = 0; I != HoistCandidates.size(); ++I) { 1008 VPRecipeBase *Current = HoistCandidates[I]; 1009 assert(Current->getNumDefinedValues() == 1 && 1010 "only recipes with a single defined value expected"); 1011 if (!CanHoist(Current)) 1012 return false; 1013 1014 for (VPValue *Op : Current->operands()) { 1015 // If we reach FOR, it means the original Previous depends on some other 1016 // recurrence that in turn depends on FOR. If that is the case, we would 1017 // also need to hoist recipes involving the other FOR, which may break 1018 // dependencies. 1019 if (Op == FOR) 1020 return false; 1021 1022 if (auto *R = NeedsHoisting(Op)) 1023 HoistCandidates.push_back(R); 1024 } 1025 } 1026 1027 // Order recipes to hoist by dominance so earlier instructions are processed 1028 // first. 1029 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 1030 return VPDT.properlyDominates(A, B); 1031 }); 1032 1033 for (VPRecipeBase *HoistCandidate : HoistCandidates) { 1034 HoistCandidate->moveBefore(*HoistPoint->getParent(), 1035 HoistPoint->getIterator()); 1036 } 1037 1038 return true; 1039 } 1040 1041 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 1042 VPBuilder &LoopBuilder) { 1043 VPDominatorTree VPDT; 1044 VPDT.recalculate(Plan); 1045 1046 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 1047 for (VPRecipeBase &R : 1048 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 1049 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 1050 RecurrencePhis.push_back(FOR); 1051 1052 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 1053 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 1054 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 1055 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 1056 // to terminate. 1057 while (auto *PrevPhi = 1058 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 1059 assert(PrevPhi->getParent() == FOR->getParent()); 1060 assert(SeenPhis.insert(PrevPhi).second); 1061 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 1062 } 1063 1064 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && 1065 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) 1066 return false; 1067 1068 // Introduce a recipe to combine the incoming and previous values of a 1069 // fixed-order recurrence. 1070 VPBasicBlock *InsertBlock = Previous->getParent(); 1071 if (isa<VPHeaderPHIRecipe>(Previous)) 1072 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 1073 else 1074 LoopBuilder.setInsertPoint(InsertBlock, 1075 std::next(Previous->getIterator())); 1076 1077 auto *RecurSplice = cast<VPInstruction>( 1078 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 1079 {FOR, FOR->getBackedgeValue()})); 1080 1081 FOR->replaceAllUsesWith(RecurSplice); 1082 // Set the first operand of RecurSplice to FOR again, after replacing 1083 // all users. 1084 RecurSplice->setOperand(0, FOR); 1085 } 1086 return true; 1087 } 1088 1089 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 1090 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 1091 for (unsigned I = 0; I != Users.size(); ++I) { 1092 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]); 1093 if (isa<VPHeaderPHIRecipe>(Cur)) 1094 continue; 1095 for (VPValue *V : Cur->definedValues()) 1096 Users.insert(V->user_begin(), V->user_end()); 1097 } 1098 return Users.takeVector(); 1099 } 1100 1101 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 1102 for (VPRecipeBase &R : 1103 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 1104 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 1105 if (!PhiR) 1106 continue; 1107 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 1108 RecurKind RK = RdxDesc.getRecurrenceKind(); 1109 if (RK != RecurKind::Add && RK != RecurKind::Mul) 1110 continue; 1111 1112 for (VPUser *U : collectUsersRecursively(PhiR)) 1113 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 1114 RecWithFlags->dropPoisonGeneratingFlags(); 1115 } 1116 } 1117 } 1118 1119 /// Move loop-invariant recipes out of the vector loop region in \p Plan. 1120 static void licm(VPlan &Plan) { 1121 VPBasicBlock *Preheader = Plan.getVectorPreheader(); 1122 1123 // Return true if we do not know how to (mechanically) hoist a given recipe 1124 // out of a loop region. Does not address legality concerns such as aliasing 1125 // or speculation safety. 1126 auto CannotHoistRecipe = [](VPRecipeBase &R) { 1127 // Allocas cannot be hoisted. 1128 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 1129 return RepR && RepR->getOpcode() == Instruction::Alloca; 1130 }; 1131 1132 // Hoist any loop invariant recipes from the vector loop region to the 1133 // preheader. Preform a shallow traversal of the vector loop region, to 1134 // exclude recipes in replicate regions. 1135 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1136 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1137 vp_depth_first_shallow(LoopRegion->getEntry()))) { 1138 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1139 if (CannotHoistRecipe(R)) 1140 continue; 1141 // TODO: Relax checks in the future, e.g. we could also hoist reads, if 1142 // their memory location is not modified in the vector loop. 1143 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || 1144 any_of(R.operands(), [](VPValue *Op) { 1145 return !Op->isDefinedOutsideLoopRegions(); 1146 })) 1147 continue; 1148 R.moveBefore(*Preheader, Preheader->end()); 1149 } 1150 } 1151 } 1152 1153 void VPlanTransforms::truncateToMinimalBitwidths( 1154 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { 1155 #ifndef NDEBUG 1156 // Count the processed recipes and cross check the count later with MinBWs 1157 // size, to make sure all entries in MinBWs have been handled. 1158 unsigned NumProcessedRecipes = 0; 1159 #endif 1160 // Keep track of created truncates, so they can be re-used. Note that we 1161 // cannot use RAUW after creating a new truncate, as this would could make 1162 // other uses have different types for their operands, making them invalidly 1163 // typed. 1164 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1165 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1166 VPTypeAnalysis TypeInfo(CanonicalIVType); 1167 VPBasicBlock *PH = Plan.getVectorPreheader(); 1168 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1169 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1170 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1171 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1172 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1173 continue; 1174 1175 VPValue *ResultVPV = R.getVPSingleValue(); 1176 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1177 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1178 if (!NewResSizeInBits) 1179 continue; 1180 1181 #ifndef NDEBUG 1182 NumProcessedRecipes++; 1183 #endif 1184 // If the value wasn't vectorized, we must maintain the original scalar 1185 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1186 // skip casts which do not need to be handled explicitly here, as 1187 // redundant casts will be removed during recipe simplification. 1188 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1189 #ifndef NDEBUG 1190 // If any of the operands is a live-in and not used by VPWidenRecipe or 1191 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1192 // processed as well. When MinBWs is currently constructed, there is no 1193 // information about whether recipes are widened or replicated and in 1194 // case they are reciplicated the operands are not truncated. Counting 1195 // them them here ensures we do not miss any recipes in MinBWs. 1196 // TODO: Remove once the analysis is done on VPlan. 1197 for (VPValue *Op : R.operands()) { 1198 if (!Op->isLiveIn()) 1199 continue; 1200 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1201 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1202 none_of(Op->users(), 1203 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) { 1204 // Add an entry to ProcessedTruncs to avoid counting the same 1205 // operand multiple times. 1206 ProcessedTruncs[Op] = nullptr; 1207 NumProcessedRecipes += 1; 1208 } 1209 } 1210 #endif 1211 continue; 1212 } 1213 1214 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1215 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1216 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1217 (void)OldResSizeInBits; 1218 1219 LLVMContext &Ctx = CanonicalIVType->getContext(); 1220 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1221 1222 // Any wrapping introduced by shrinking this operation shouldn't be 1223 // considered undefined behavior. So, we can't unconditionally copy 1224 // arithmetic wrapping flags to VPW. 1225 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1226 VPW->dropPoisonGeneratingFlags(); 1227 1228 using namespace llvm::VPlanPatternMatch; 1229 if (OldResSizeInBits != NewResSizeInBits && 1230 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1231 // Extend result to original width. 1232 auto *Ext = 1233 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1234 Ext->insertAfter(&R); 1235 ResultVPV->replaceAllUsesWith(Ext); 1236 Ext->setOperand(0, ResultVPV); 1237 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1238 } else { 1239 assert( 1240 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1241 "Only ICmps should not need extending the result."); 1242 } 1243 1244 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1245 if (isa<VPWidenLoadRecipe>(&R)) 1246 continue; 1247 1248 // Shrink operands by introducing truncates as needed. 1249 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1250 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1251 auto *Op = R.getOperand(Idx); 1252 unsigned OpSizeInBits = 1253 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1254 if (OpSizeInBits == NewResSizeInBits) 1255 continue; 1256 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1257 auto [ProcessedIter, IterIsEmpty] = 1258 ProcessedTruncs.insert({Op, nullptr}); 1259 VPWidenCastRecipe *NewOp = 1260 IterIsEmpty 1261 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1262 : ProcessedIter->second; 1263 R.setOperand(Idx, NewOp); 1264 if (!IterIsEmpty) 1265 continue; 1266 ProcessedIter->second = NewOp; 1267 if (!Op->isLiveIn()) { 1268 NewOp->insertBefore(&R); 1269 } else { 1270 PH->appendRecipe(NewOp); 1271 #ifndef NDEBUG 1272 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1273 bool IsContained = MinBWs.contains(OpInst); 1274 NumProcessedRecipes += IsContained; 1275 #endif 1276 } 1277 } 1278 1279 } 1280 } 1281 1282 assert(MinBWs.size() == NumProcessedRecipes && 1283 "some entries in MinBWs haven't been processed"); 1284 } 1285 1286 void VPlanTransforms::optimize(VPlan &Plan) { 1287 removeRedundantCanonicalIVs(Plan); 1288 removeRedundantInductionCasts(Plan); 1289 1290 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1291 legalizeAndOptimizeInductions(Plan); 1292 removeRedundantExpandSCEVRecipes(Plan); 1293 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1294 removeDeadRecipes(Plan); 1295 1296 createAndOptimizeReplicateRegions(Plan); 1297 mergeBlocksIntoPredecessors(Plan); 1298 licm(Plan); 1299 } 1300 1301 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1302 // the loop terminator with a branch-on-cond recipe with the negated 1303 // active-lane-mask as operand. Note that this turns the loop into an 1304 // uncountable one. Only the existing terminator is replaced, all other existing 1305 // recipes/users remain unchanged, except for poison-generating flags being 1306 // dropped from the canonical IV increment. Return the created 1307 // VPActiveLaneMaskPHIRecipe. 1308 // 1309 // The function uses the following definitions: 1310 // 1311 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1312 // calculate-trip-count-minus-VF (original TC) : original TC 1313 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1314 // CanonicalIVPhi : CanonicalIVIncrement 1315 // %StartV is the canonical induction start value. 1316 // 1317 // The function adds the following recipes: 1318 // 1319 // vector.ph: 1320 // %TripCount = calculate-trip-count-minus-VF (original TC) 1321 // [if DataWithControlFlowWithoutRuntimeCheck] 1322 // %EntryInc = canonical-iv-increment-for-part %StartV 1323 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1324 // 1325 // vector.body: 1326 // ... 1327 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1328 // ... 1329 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1330 // %ALM = active-lane-mask %InLoopInc, TripCount 1331 // %Negated = Not %ALM 1332 // branch-on-cond %Negated 1333 // 1334 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1335 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1336 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1337 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1338 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1339 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1340 1341 auto *CanonicalIVIncrement = 1342 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1343 // TODO: Check if dropping the flags is needed if 1344 // !DataAndControlFlowWithoutRuntimeCheck. 1345 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1346 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1347 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1348 // we have to take unrolling into account. Each part needs to start at 1349 // Part * VF 1350 auto *VecPreheader = Plan.getVectorPreheader(); 1351 VPBuilder Builder(VecPreheader); 1352 1353 // Create the ActiveLaneMask instruction using the correct start values. 1354 VPValue *TC = Plan.getTripCount(); 1355 1356 VPValue *TripCount, *IncrementValue; 1357 if (!DataAndControlFlowWithoutRuntimeCheck) { 1358 // When the loop is guarded by a runtime overflow check for the loop 1359 // induction variable increment by VF, we can increment the value before 1360 // the get.active.lane mask and use the unmodified tripcount. 1361 IncrementValue = CanonicalIVIncrement; 1362 TripCount = TC; 1363 } else { 1364 // When avoiding a runtime check, the active.lane.mask inside the loop 1365 // uses a modified trip count and the induction variable increment is 1366 // done after the active.lane.mask intrinsic is called. 1367 IncrementValue = CanonicalIVPHI; 1368 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1369 {TC}, DL); 1370 } 1371 auto *EntryIncrement = Builder.createOverflowingOp( 1372 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1373 "index.part.next"); 1374 1375 // Create the active lane mask instruction in the VPlan preheader. 1376 auto *EntryALM = 1377 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1378 DL, "active.lane.mask.entry"); 1379 1380 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1381 // preheader ActiveLaneMask instruction. 1382 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1383 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1384 1385 // Create the active lane mask for the next iteration of the loop before the 1386 // original terminator. 1387 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1388 Builder.setInsertPoint(OriginalTerminator); 1389 auto *InLoopIncrement = 1390 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1391 {IncrementValue}, {false, false}, DL); 1392 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1393 {InLoopIncrement, TripCount}, DL, 1394 "active.lane.mask.next"); 1395 LaneMaskPhi->addOperand(ALM); 1396 1397 // Replace the original terminator with BranchOnCond. We have to invert the 1398 // mask here because a true condition means jumping to the exit block. 1399 auto *NotMask = Builder.createNot(ALM, DL); 1400 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1401 OriginalTerminator->eraseFromParent(); 1402 return LaneMaskPhi; 1403 } 1404 1405 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1406 /// WideCanonicalIV, backedge-taken-count) pattern. 1407 /// TODO: Introduce explicit recipe for header-mask instead of searching 1408 /// for the header-mask pattern manually. 1409 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1410 SmallVector<VPValue *> WideCanonicalIVs; 1411 auto *FoundWidenCanonicalIVUser = 1412 find_if(Plan.getCanonicalIV()->users(), 1413 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1414 assert(count_if(Plan.getCanonicalIV()->users(), 1415 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1416 1 && 1417 "Must have at most one VPWideCanonicalIVRecipe"); 1418 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1419 auto *WideCanonicalIV = 1420 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1421 WideCanonicalIVs.push_back(WideCanonicalIV); 1422 } 1423 1424 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1425 // version of the canonical induction. 1426 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1427 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1428 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1429 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1430 WideCanonicalIVs.push_back(WidenOriginalIV); 1431 } 1432 1433 // Walk users of wide canonical IVs and collect to all compares of the form 1434 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1435 SmallVector<VPValue *> HeaderMasks; 1436 for (auto *Wide : WideCanonicalIVs) { 1437 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1438 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1439 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1440 continue; 1441 1442 assert(HeaderMask->getOperand(0) == Wide && 1443 "WidenCanonicalIV must be the first operand of the compare"); 1444 HeaderMasks.push_back(HeaderMask); 1445 } 1446 } 1447 return HeaderMasks; 1448 } 1449 1450 void VPlanTransforms::addActiveLaneMask( 1451 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1452 bool DataAndControlFlowWithoutRuntimeCheck) { 1453 assert((!DataAndControlFlowWithoutRuntimeCheck || 1454 UseActiveLaneMaskForControlFlow) && 1455 "DataAndControlFlowWithoutRuntimeCheck implies " 1456 "UseActiveLaneMaskForControlFlow"); 1457 1458 auto *FoundWidenCanonicalIVUser = 1459 find_if(Plan.getCanonicalIV()->users(), 1460 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1461 assert(FoundWidenCanonicalIVUser && 1462 "Must have widened canonical IV when tail folding!"); 1463 auto *WideCanonicalIV = 1464 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1465 VPSingleDefRecipe *LaneMask; 1466 if (UseActiveLaneMaskForControlFlow) { 1467 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1468 Plan, DataAndControlFlowWithoutRuntimeCheck); 1469 } else { 1470 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1471 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1472 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1473 "active.lane.mask"); 1474 } 1475 1476 // Walk users of WideCanonicalIV and replace all compares of the form 1477 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1478 // active-lane-mask. 1479 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1480 HeaderMask->replaceAllUsesWith(LaneMask); 1481 } 1482 1483 /// Try to convert \p CurRecipe to a corresponding EVL-based recipe. Returns 1484 /// nullptr if no EVL-based recipe could be created. 1485 /// \p HeaderMask Header Mask. 1486 /// \p CurRecipe Recipe to be transform. 1487 /// \p TypeInfo VPlan-based type analysis. 1488 /// \p AllOneMask The vector mask parameter of vector-predication intrinsics. 1489 /// \p EVL The explicit vector length parameter of vector-predication 1490 /// intrinsics. 1491 static VPRecipeBase *createEVLRecipe(VPValue *HeaderMask, 1492 VPRecipeBase &CurRecipe, 1493 VPTypeAnalysis &TypeInfo, 1494 VPValue &AllOneMask, VPValue &EVL) { 1495 using namespace llvm::VPlanPatternMatch; 1496 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1497 assert(OrigMask && "Unmasked recipe when folding tail"); 1498 return HeaderMask == OrigMask ? nullptr : OrigMask; 1499 }; 1500 1501 return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe) 1502 .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) { 1503 VPValue *NewMask = GetNewMask(L->getMask()); 1504 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); 1505 }) 1506 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) { 1507 VPValue *NewMask = GetNewMask(S->getMask()); 1508 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); 1509 }) 1510 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * { 1511 unsigned Opcode = W->getOpcode(); 1512 if (!Instruction::isBinaryOp(Opcode) && !Instruction::isUnaryOp(Opcode)) 1513 return nullptr; 1514 return new VPWidenEVLRecipe(*W, EVL); 1515 }) 1516 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) { 1517 VPValue *NewMask = GetNewMask(Red->getCondOp()); 1518 return new VPReductionEVLRecipe(*Red, EVL, NewMask); 1519 }) 1520 .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>( 1521 [&](auto *CR) -> VPRecipeBase * { 1522 Intrinsic::ID VPID; 1523 if (auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) { 1524 VPID = 1525 VPIntrinsic::getForIntrinsic(CallR->getVectorIntrinsicID()); 1526 } else { 1527 auto *CastR = cast<VPWidenCastRecipe>(CR); 1528 VPID = VPIntrinsic::getForOpcode(CastR->getOpcode()); 1529 } 1530 1531 // Not all intrinsics have a corresponding VP intrinsic. 1532 if (VPID == Intrinsic::not_intrinsic) 1533 return nullptr; 1534 assert(VPIntrinsic::getMaskParamPos(VPID) && 1535 VPIntrinsic::getVectorLengthParamPos(VPID) && 1536 "Expected VP intrinsic to have mask and EVL"); 1537 1538 SmallVector<VPValue *> Ops(CR->operands()); 1539 Ops.push_back(&AllOneMask); 1540 Ops.push_back(&EVL); 1541 return new VPWidenIntrinsicRecipe( 1542 VPID, Ops, TypeInfo.inferScalarType(CR), CR->getDebugLoc()); 1543 }) 1544 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) { 1545 SmallVector<VPValue *> Ops(Sel->operands()); 1546 Ops.push_back(&EVL); 1547 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops, 1548 TypeInfo.inferScalarType(Sel), 1549 Sel->getDebugLoc()); 1550 }) 1551 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * { 1552 VPValue *LHS, *RHS; 1553 // Transform select with a header mask condition 1554 // select(header_mask, LHS, RHS) 1555 // into vector predication merge. 1556 // vp.merge(all-true, LHS, RHS, EVL) 1557 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS), 1558 m_VPValue(RHS)))) 1559 return nullptr; 1560 // Use all true as the condition because this transformation is 1561 // limited to selects whose condition is a header mask. 1562 return new VPWidenIntrinsicRecipe( 1563 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL}, 1564 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc()); 1565 }) 1566 .Default([&](VPRecipeBase *R) { return nullptr; }); 1567 } 1568 1569 /// Replace recipes with their EVL variants. 1570 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { 1571 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1572 VPTypeAnalysis TypeInfo(CanonicalIVType); 1573 LLVMContext &Ctx = CanonicalIVType->getContext(); 1574 VPValue *AllOneMask = Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1575 1576 for (VPUser *U : Plan.getVF().users()) { 1577 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U)) 1578 R->setOperand(1, &EVL); 1579 } 1580 1581 SmallVector<VPRecipeBase *> ToErase; 1582 1583 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1584 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1585 auto *CurRecipe = cast<VPRecipeBase>(U); 1586 VPRecipeBase *EVLRecipe = 1587 createEVLRecipe(HeaderMask, *CurRecipe, TypeInfo, *AllOneMask, EVL); 1588 if (!EVLRecipe) 1589 continue; 1590 1591 [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues(); 1592 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1593 "New recipe must define the same number of values as the " 1594 "original."); 1595 assert( 1596 NumDefVal <= 1 && 1597 "Only supports recipes with a single definition or without users."); 1598 EVLRecipe->insertBefore(CurRecipe); 1599 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) { 1600 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1601 CurVPV->replaceAllUsesWith(EVLRecipe->getVPSingleValue()); 1602 } 1603 // Defer erasing recipes till the end so that we don't invalidate the 1604 // VPTypeAnalysis cache. 1605 ToErase.push_back(CurRecipe); 1606 } 1607 } 1608 1609 for (VPRecipeBase *R : reverse(ToErase)) { 1610 SmallVector<VPValue *> PossiblyDead(R->operands()); 1611 R->eraseFromParent(); 1612 for (VPValue *Op : PossiblyDead) 1613 recursivelyDeleteDeadRecipes(Op); 1614 } 1615 } 1616 1617 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1618 /// replaces all uses except the canonical IV increment of 1619 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1620 /// is used only for loop iterations counting after this transformation. 1621 /// 1622 /// The function uses the following definitions: 1623 /// %StartV is the canonical induction start value. 1624 /// 1625 /// The function adds the following recipes: 1626 /// 1627 /// vector.ph: 1628 /// ... 1629 /// 1630 /// vector.body: 1631 /// ... 1632 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1633 /// [ %NextEVLIV, %vector.body ] 1634 /// %AVL = sub original TC, %EVLPhi 1635 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL 1636 /// ... 1637 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1638 /// ... 1639 /// 1640 /// If MaxSafeElements is provided, the function adds the following recipes: 1641 /// vector.ph: 1642 /// ... 1643 /// 1644 /// vector.body: 1645 /// ... 1646 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1647 /// [ %NextEVLIV, %vector.body ] 1648 /// %AVL = sub original TC, %EVLPhi 1649 /// %cmp = cmp ult %AVL, MaxSafeElements 1650 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements 1651 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL 1652 /// ... 1653 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi 1654 /// ... 1655 /// 1656 bool VPlanTransforms::tryAddExplicitVectorLength( 1657 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { 1658 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1659 // The transform updates all users of inductions to work based on EVL, instead 1660 // of the VF directly. At the moment, widened inductions cannot be updated, so 1661 // bail out if the plan contains any. 1662 bool ContainsWidenInductions = any_of( 1663 Header->phis(), 1664 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>); 1665 if (ContainsWidenInductions) 1666 return false; 1667 1668 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1669 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1670 1671 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1672 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1673 EVLPhi->insertAfter(CanonicalIVPHI); 1674 VPBuilder Builder(Header, Header->getFirstNonPhi()); 1675 // Compute original TC - IV as the AVL (application vector length). 1676 VPValue *AVL = Builder.createNaryOp( 1677 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl"); 1678 if (MaxSafeElements) { 1679 // Support for MaxSafeDist for correct loop emission. 1680 VPValue *AVLSafe = Plan.getOrAddLiveIn( 1681 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements)); 1682 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe); 1683 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl"); 1684 } 1685 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL, 1686 DebugLoc()); 1687 1688 auto *CanonicalIVIncrement = 1689 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1690 VPSingleDefRecipe *OpVPEVL = VPEVL; 1691 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1692 IVSize != 32) { 1693 OpVPEVL = new VPScalarCastRecipe( 1694 IVSize < 32 ? Instruction::Trunc : Instruction::ZExt, OpVPEVL, 1695 CanonicalIVPHI->getScalarType(), CanonicalIVIncrement->getDebugLoc()); 1696 OpVPEVL->insertBefore(CanonicalIVIncrement); 1697 } 1698 auto *NextEVLIV = 1699 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1700 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1701 CanonicalIVIncrement->hasNoSignedWrap()}, 1702 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1703 NextEVLIV->insertBefore(CanonicalIVIncrement); 1704 EVLPhi->addOperand(NextEVLIV); 1705 1706 transformRecipestoEVLRecipes(Plan, *VPEVL); 1707 1708 // Replace all uses of VPCanonicalIVPHIRecipe by 1709 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1710 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1711 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1712 // TODO: support unroll factor > 1. 1713 Plan.setUF(1); 1714 return true; 1715 } 1716 1717 void VPlanTransforms::dropPoisonGeneratingRecipes( 1718 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1719 // Collect recipes in the backward slice of `Root` that may generate a poison 1720 // value that is used after vectorization. 1721 SmallPtrSet<VPRecipeBase *, 16> Visited; 1722 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1723 SmallVector<VPRecipeBase *, 16> Worklist; 1724 Worklist.push_back(Root); 1725 1726 // Traverse the backward slice of Root through its use-def chain. 1727 while (!Worklist.empty()) { 1728 VPRecipeBase *CurRec = Worklist.pop_back_val(); 1729 1730 if (!Visited.insert(CurRec).second) 1731 continue; 1732 1733 // Prune search if we find another recipe generating a widen memory 1734 // instruction. Widen memory instructions involved in address computation 1735 // will lead to gather/scatter instructions, which don't need to be 1736 // handled. 1737 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, 1738 VPHeaderPHIRecipe>(CurRec)) 1739 continue; 1740 1741 // This recipe contributes to the address computation of a widen 1742 // load/store. If the underlying instruction has poison-generating flags, 1743 // drop them directly. 1744 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1745 VPValue *A, *B; 1746 using namespace llvm::VPlanPatternMatch; 1747 // Dropping disjoint from an OR may yield incorrect results, as some 1748 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1749 // for dependence analysis). Instead, replace it with an equivalent Add. 1750 // This is possible as all users of the disjoint OR only access lanes 1751 // where the operands are disjoint or poison otherwise. 1752 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1753 RecWithFlags->isDisjoint()) { 1754 VPBuilder Builder(RecWithFlags); 1755 VPInstruction *New = Builder.createOverflowingOp( 1756 Instruction::Add, {A, B}, {false, false}, 1757 RecWithFlags->getDebugLoc()); 1758 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1759 RecWithFlags->replaceAllUsesWith(New); 1760 RecWithFlags->eraseFromParent(); 1761 CurRec = New; 1762 } else 1763 RecWithFlags->dropPoisonGeneratingFlags(); 1764 } else { 1765 Instruction *Instr = dyn_cast_or_null<Instruction>( 1766 CurRec->getVPSingleValue()->getUnderlyingValue()); 1767 (void)Instr; 1768 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1769 "found instruction with poison generating flags not covered by " 1770 "VPRecipeWithIRFlags"); 1771 } 1772 1773 // Add new definitions to the worklist. 1774 for (VPValue *Operand : CurRec->operands()) 1775 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) 1776 Worklist.push_back(OpDef); 1777 } 1778 }); 1779 1780 // Traverse all the recipes in the VPlan and collect the poison-generating 1781 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1782 // VPInterleaveRecipe. 1783 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1784 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1785 for (VPRecipeBase &Recipe : *VPBB) { 1786 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1787 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1788 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1789 if (AddrDef && WidenRec->isConsecutive() && 1790 BlockNeedsPredication(UnderlyingInstr.getParent())) 1791 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1792 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1793 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1794 if (AddrDef) { 1795 // Check if any member of the interleave group needs predication. 1796 const InterleaveGroup<Instruction> *InterGroup = 1797 InterleaveRec->getInterleaveGroup(); 1798 bool NeedPredication = false; 1799 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1800 I < NumMembers; ++I) { 1801 Instruction *Member = InterGroup->getMember(I); 1802 if (Member) 1803 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1804 } 1805 1806 if (NeedPredication) 1807 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1808 } 1809 } 1810 } 1811 } 1812 } 1813 1814 void VPlanTransforms::createInterleaveGroups( 1815 VPlan &Plan, 1816 const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> 1817 &InterleaveGroups, 1818 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) { 1819 if (InterleaveGroups.empty()) 1820 return; 1821 1822 // Interleave memory: for each Interleave Group we marked earlier as relevant 1823 // for this VPlan, replace the Recipes widening its memory instructions with a 1824 // single VPInterleaveRecipe at its insertion point. 1825 VPDominatorTree VPDT; 1826 VPDT.recalculate(Plan); 1827 for (const auto *IG : InterleaveGroups) { 1828 SmallVector<VPValue *, 4> StoredValues; 1829 for (unsigned i = 0; i < IG->getFactor(); ++i) 1830 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 1831 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); 1832 StoredValues.push_back(StoreR->getStoredValue()); 1833 } 1834 1835 bool NeedsMaskForGaps = 1836 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; 1837 1838 Instruction *IRInsertPos = IG->getInsertPos(); 1839 auto *InsertPos = 1840 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos)); 1841 1842 // Get or create the start address for the interleave group. 1843 auto *Start = 1844 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0))); 1845 VPValue *Addr = Start->getAddr(); 1846 VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); 1847 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) { 1848 // TODO: Hoist Addr's defining recipe (and any operands as needed) to 1849 // InsertPos or sink loads above zero members to join it. 1850 bool InBounds = false; 1851 if (auto *Gep = dyn_cast<GetElementPtrInst>( 1852 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts())) 1853 InBounds = Gep->isInBounds(); 1854 1855 // We cannot re-use the address of member zero because it does not 1856 // dominate the insert position. Instead, use the address of the insert 1857 // position and create a PtrAdd adjusting it to the address of member 1858 // zero. 1859 assert(IG->getIndex(IRInsertPos) != 0 && 1860 "index of insert position shouldn't be zero"); 1861 auto &DL = IRInsertPos->getDataLayout(); 1862 APInt Offset(32, 1863 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) * 1864 IG->getIndex(IRInsertPos), 1865 /*IsSigned=*/true); 1866 VPValue *OffsetVPV = Plan.getOrAddLiveIn( 1867 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset)); 1868 VPBuilder B(InsertPos); 1869 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV) 1870 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV); 1871 } 1872 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, 1873 InsertPos->getMask(), NeedsMaskForGaps); 1874 VPIG->insertBefore(InsertPos); 1875 1876 unsigned J = 0; 1877 for (unsigned i = 0; i < IG->getFactor(); ++i) 1878 if (Instruction *Member = IG->getMember(i)) { 1879 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); 1880 if (!Member->getType()->isVoidTy()) { 1881 VPValue *OriginalV = MemberR->getVPSingleValue(); 1882 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 1883 J++; 1884 } 1885 MemberR->eraseFromParent(); 1886 } 1887 } 1888 } 1889 1890 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { 1891 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1892 vp_depth_first_deep(Plan.getEntry()))) { 1893 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) { 1894 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R)) 1895 continue; 1896 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1897 StringRef Name = 1898 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv"; 1899 auto *ScalarR = 1900 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(), 1901 PhiR->getDebugLoc(), Name); 1902 ScalarR->insertBefore(PhiR); 1903 PhiR->replaceAllUsesWith(ScalarR); 1904 PhiR->eraseFromParent(); 1905 } 1906 } 1907 } 1908 1909 void VPlanTransforms::handleUncountableEarlyExit( 1910 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, 1911 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) { 1912 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1913 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting()); 1914 VPBuilder Builder(LatchVPBB->getTerminator()); 1915 auto *MiddleVPBB = Plan.getMiddleBlock(); 1916 VPValue *IsEarlyExitTaken = nullptr; 1917 1918 // Process the uncountable exiting block. Update IsEarlyExitTaken, which 1919 // tracks if the uncountable early exit has been taken. Also split the middle 1920 // block and have it conditionally branch to the early exit block if 1921 // EarlyExitTaken. 1922 auto *EarlyExitingBranch = 1923 cast<BranchInst>(UncountableExitingBlock->getTerminator()); 1924 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0); 1925 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1); 1926 1927 // The early exit block may or may not be the same as the "countable" exit 1928 // block. Creates a new VPIRBB for the early exit block in case it is distinct 1929 // from the countable exit block. 1930 // TODO: Introduce both exit blocks during VPlan skeleton construction. 1931 VPIRBasicBlock *VPEarlyExitBlock; 1932 if (OrigLoop->getUniqueExitBlock()) { 1933 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]); 1934 } else { 1935 VPEarlyExitBlock = Plan.createVPIRBasicBlock( 1936 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1937 } 1938 1939 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask( 1940 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1941 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond); 1942 IsEarlyExitTaken = 1943 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond}); 1944 1945 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split"); 1946 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle); 1947 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock); 1948 NewMiddle->swapSuccessors(); 1949 1950 VPBuilder MiddleBuilder(NewMiddle); 1951 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken}); 1952 1953 // Replace the condition controlling the non-early exit from the vector loop 1954 // with one exiting if either the original condition of the vector latch is 1955 // true or the early exit has been taken. 1956 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator()); 1957 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && 1958 "Unexpected terminator"); 1959 auto *IsLatchExitTaken = 1960 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0), 1961 LatchExitingBranch->getOperand(1)); 1962 auto *AnyExitTaken = Builder.createNaryOp( 1963 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken}); 1964 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken); 1965 LatchExitingBranch->eraseFromParent(); 1966 } 1967