xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlanTransforms.cpp (revision f4230b4332262dffb0bd3b7a2f8d6deb2e96488e)
1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a set of utility VPlan to VPlan transformations.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "VPlanTransforms.h"
15 #include "VPRecipeBuilder.h"
16 #include "VPlan.h"
17 #include "VPlanAnalysis.h"
18 #include "VPlanCFG.h"
19 #include "VPlanDominatorTree.h"
20 #include "VPlanPatternMatch.h"
21 #include "VPlanUtils.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/TypeSwitch.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/VectorUtils.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/PatternMatch.h"
30 
31 using namespace llvm;
32 
33 void VPlanTransforms::VPInstructionsToVPRecipes(
34     VPlanPtr &Plan,
35     function_ref<const InductionDescriptor *(PHINode *)>
36         GetIntOrFpInductionDescriptor,
37     ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
38 
39   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
40       Plan->getVectorLoopRegion());
41   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
42     // Skip blocks outside region
43     if (!VPBB->getParent())
44       break;
45     VPRecipeBase *Term = VPBB->getTerminator();
46     auto EndIter = Term ? Term->getIterator() : VPBB->end();
47     // Introduce each ingredient into VPlan.
48     for (VPRecipeBase &Ingredient :
49          make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
50 
51       VPValue *VPV = Ingredient.getVPSingleValue();
52       Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
53 
54       VPRecipeBase *NewRecipe = nullptr;
55       if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
56         auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
57         const auto *II = GetIntOrFpInductionDescriptor(Phi);
58         if (!II)
59           continue;
60 
61         VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
62         VPValue *Step =
63             vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
64         NewRecipe = new VPWidenIntOrFpInductionRecipe(
65             Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc());
66       } else {
67         assert(isa<VPInstruction>(&Ingredient) &&
68                "only VPInstructions expected here");
69         assert(!isa<PHINode>(Inst) && "phis should be handled above");
70         // Create VPWidenMemoryRecipe for loads and stores.
71         if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
72           NewRecipe = new VPWidenLoadRecipe(
73               *Load, Ingredient.getOperand(0), nullptr /*Mask*/,
74               false /*Consecutive*/, false /*Reverse*/,
75               Ingredient.getDebugLoc());
76         } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
77           NewRecipe = new VPWidenStoreRecipe(
78               *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
79               nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
80               Ingredient.getDebugLoc());
81         } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
82           NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
83         } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
84           NewRecipe = new VPWidenIntrinsicRecipe(
85               *CI, getVectorIntrinsicIDForCall(CI, &TLI),
86               {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
87               CI->getDebugLoc());
88         } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
89           NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
90         } else if (auto *CI = dyn_cast<CastInst>(Inst)) {
91           NewRecipe = new VPWidenCastRecipe(
92               CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
93         } else {
94           NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
95         }
96       }
97 
98       NewRecipe->insertBefore(&Ingredient);
99       if (NewRecipe->getNumDefinedValues() == 1)
100         VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
101       else
102         assert(NewRecipe->getNumDefinedValues() == 0 &&
103                "Only recpies with zero or one defined values expected");
104       Ingredient.eraseFromParent();
105     }
106   }
107 }
108 
109 static bool sinkScalarOperands(VPlan &Plan) {
110   auto Iter = vp_depth_first_deep(Plan.getEntry());
111   bool Changed = false;
112   // First, collect the operands of all recipes in replicate blocks as seeds for
113   // sinking.
114   SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList;
115   for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
116     VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
117     if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
118       continue;
119     VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
120     if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
121       continue;
122     for (auto &Recipe : *VPBB) {
123       for (VPValue *Op : Recipe.operands())
124         if (auto *Def =
125                 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
126           WorkList.insert(std::make_pair(VPBB, Def));
127     }
128   }
129 
130   bool ScalarVFOnly = Plan.hasScalarVFOnly();
131   // Try to sink each replicate or scalar IV steps recipe in the worklist.
132   for (unsigned I = 0; I != WorkList.size(); ++I) {
133     VPBasicBlock *SinkTo;
134     VPSingleDefRecipe *SinkCandidate;
135     std::tie(SinkTo, SinkCandidate) = WorkList[I];
136     if (SinkCandidate->getParent() == SinkTo ||
137         SinkCandidate->mayHaveSideEffects() ||
138         SinkCandidate->mayReadOrWriteMemory())
139       continue;
140     if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
141       if (!ScalarVFOnly && RepR->isUniform())
142         continue;
143     } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
144       continue;
145 
146     bool NeedsDuplicating = false;
147     // All recipe users of the sink candidate must be in the same block SinkTo
148     // or all users outside of SinkTo must be uniform-after-vectorization (
149     // i.e., only first lane is used) . In the latter case, we need to duplicate
150     // SinkCandidate.
151     auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
152                             SinkCandidate](VPUser *U) {
153       auto *UI = cast<VPRecipeBase>(U);
154       if (UI->getParent() == SinkTo)
155         return true;
156       NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
157       // We only know how to duplicate VPRecipeRecipes for now.
158       return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
159     };
160     if (!all_of(SinkCandidate->users(), CanSinkWithUser))
161       continue;
162 
163     if (NeedsDuplicating) {
164       if (ScalarVFOnly)
165         continue;
166       Instruction *I = SinkCandidate->getUnderlyingInstr();
167       auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
168       // TODO: add ".cloned" suffix to name of Clone's VPValue.
169 
170       Clone->insertBefore(SinkCandidate);
171       SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
172         return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
173       });
174     }
175     SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
176     for (VPValue *Op : SinkCandidate->operands())
177       if (auto *Def =
178               dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
179         WorkList.insert(std::make_pair(SinkTo, Def));
180     Changed = true;
181   }
182   return Changed;
183 }
184 
185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
186 /// the mask.
187 VPValue *getPredicatedMask(VPRegionBlock *R) {
188   auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
189   if (!EntryBB || EntryBB->size() != 1 ||
190       !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
191     return nullptr;
192 
193   return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
194 }
195 
196 /// If \p R is a triangle region, return the 'then' block of the triangle.
197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) {
198   auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
199   if (EntryBB->getNumSuccessors() != 2)
200     return nullptr;
201 
202   auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
203   auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
204   if (!Succ0 || !Succ1)
205     return nullptr;
206 
207   if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
208     return nullptr;
209   if (Succ0->getSingleSuccessor() == Succ1)
210     return Succ0;
211   if (Succ1->getSingleSuccessor() == Succ0)
212     return Succ1;
213   return nullptr;
214 }
215 
216 // Merge replicate regions in their successor region, if a replicate region
217 // is connected to a successor replicate region with the same predicate by a
218 // single, empty VPBasicBlock.
219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) {
220   SmallPtrSet<VPRegionBlock *, 4> TransformedRegions;
221 
222   // Collect replicate regions followed by an empty block, followed by another
223   // replicate region with matching masks to process front. This is to avoid
224   // iterator invalidation issues while merging regions.
225   SmallVector<VPRegionBlock *, 8> WorkList;
226   for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
227            vp_depth_first_deep(Plan.getEntry()))) {
228     if (!Region1->isReplicator())
229       continue;
230     auto *MiddleBasicBlock =
231         dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
232     if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
233       continue;
234 
235     auto *Region2 =
236         dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
237     if (!Region2 || !Region2->isReplicator())
238       continue;
239 
240     VPValue *Mask1 = getPredicatedMask(Region1);
241     VPValue *Mask2 = getPredicatedMask(Region2);
242     if (!Mask1 || Mask1 != Mask2)
243       continue;
244 
245     assert(Mask1 && Mask2 && "both region must have conditions");
246     WorkList.push_back(Region1);
247   }
248 
249   // Move recipes from Region1 to its successor region, if both are triangles.
250   for (VPRegionBlock *Region1 : WorkList) {
251     if (TransformedRegions.contains(Region1))
252       continue;
253     auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
254     auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
255 
256     VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
257     VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
258     if (!Then1 || !Then2)
259       continue;
260 
261     // Note: No fusion-preventing memory dependencies are expected in either
262     // region. Such dependencies should be rejected during earlier dependence
263     // checks, which guarantee accesses can be re-ordered for vectorization.
264     //
265     // Move recipes to the successor region.
266     for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
267       ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
268 
269     auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
270     auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
271 
272     // Move VPPredInstPHIRecipes from the merge block to the successor region's
273     // merge block. Update all users inside the successor region to use the
274     // original values.
275     for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
276       VPValue *PredInst1 =
277           cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
278       VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
279       Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
280         return cast<VPRecipeBase>(&U)->getParent() == Then2;
281       });
282 
283       // Remove phi recipes that are unused after merging the regions.
284       if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
285         Phi1ToMove.eraseFromParent();
286         continue;
287       }
288       Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
289     }
290 
291     // Finally, remove the first region.
292     for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
293       VPBlockUtils::disconnectBlocks(Pred, Region1);
294       VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
295     }
296     VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
297     TransformedRegions.insert(Region1);
298   }
299 
300   return !TransformedRegions.empty();
301 }
302 
303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe,
304                                             VPlan &Plan) {
305   Instruction *Instr = PredRecipe->getUnderlyingInstr();
306   // Build the triangular if-then region.
307   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
308   assert(Instr->getParent() && "Predicated instruction not in any basic block");
309   auto *BlockInMask = PredRecipe->getMask();
310   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
311   auto *Entry =
312       Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
313 
314   // Replace predicated replicate recipe with a replicate recipe without a
315   // mask but in the replicate region.
316   auto *RecipeWithoutMask = new VPReplicateRecipe(
317       PredRecipe->getUnderlyingInstr(),
318       make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
319       PredRecipe->isUniform());
320   auto *Pred =
321       Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
322 
323   VPPredInstPHIRecipe *PHIRecipe = nullptr;
324   if (PredRecipe->getNumUsers() != 0) {
325     PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask,
326                                         RecipeWithoutMask->getDebugLoc());
327     PredRecipe->replaceAllUsesWith(PHIRecipe);
328     PHIRecipe->setOperand(0, RecipeWithoutMask);
329   }
330   PredRecipe->eraseFromParent();
331   auto *Exiting =
332       Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
333   VPRegionBlock *Region =
334       Plan.createVPRegionBlock(Entry, Exiting, RegionName, true);
335 
336   // Note: first set Entry as region entry and then connect successors starting
337   // from it in order, to propagate the "parent" of each VPBasicBlock.
338   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
339   VPBlockUtils::connectBlocks(Pred, Exiting);
340 
341   return Region;
342 }
343 
344 static void addReplicateRegions(VPlan &Plan) {
345   SmallVector<VPReplicateRecipe *> WorkList;
346   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
347            vp_depth_first_deep(Plan.getEntry()))) {
348     for (VPRecipeBase &R : *VPBB)
349       if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
350         if (RepR->isPredicated())
351           WorkList.push_back(RepR);
352       }
353   }
354 
355   unsigned BBNum = 0;
356   for (VPReplicateRecipe *RepR : WorkList) {
357     VPBasicBlock *CurrentBlock = RepR->getParent();
358     VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
359 
360     BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
361     SplitBlock->setName(
362         OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
363     // Record predicated instructions for above packing optimizations.
364     VPBlockBase *Region = createReplicateRegion(RepR, Plan);
365     Region->setParent(CurrentBlock->getParent());
366     VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region);
367   }
368 }
369 
370 /// Remove redundant VPBasicBlocks by merging them into their predecessor if
371 /// the predecessor has a single successor.
372 static bool mergeBlocksIntoPredecessors(VPlan &Plan) {
373   SmallVector<VPBasicBlock *> WorkList;
374   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
375            vp_depth_first_deep(Plan.getEntry()))) {
376     // Don't fold the blocks in the skeleton of the Plan into their single
377     // predecessors for now.
378     // TODO: Remove restriction once more of the skeleton is modeled in VPlan.
379     if (!VPBB->getParent())
380       continue;
381     auto *PredVPBB =
382         dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
383     if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
384         isa<VPIRBasicBlock>(PredVPBB))
385       continue;
386     WorkList.push_back(VPBB);
387   }
388 
389   for (VPBasicBlock *VPBB : WorkList) {
390     VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
391     for (VPRecipeBase &R : make_early_inc_range(*VPBB))
392       R.moveBefore(*PredVPBB, PredVPBB->end());
393     VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
394     auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
395     if (ParentRegion && ParentRegion->getExiting() == VPBB)
396       ParentRegion->setExiting(PredVPBB);
397     for (auto *Succ : to_vector(VPBB->successors())) {
398       VPBlockUtils::disconnectBlocks(VPBB, Succ);
399       VPBlockUtils::connectBlocks(PredVPBB, Succ);
400     }
401     // VPBB is now dead and will be cleaned up when the plan gets destroyed.
402   }
403   return !WorkList.empty();
404 }
405 
406 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) {
407   // Convert masked VPReplicateRecipes to if-then region blocks.
408   addReplicateRegions(Plan);
409 
410   bool ShouldSimplify = true;
411   while (ShouldSimplify) {
412     ShouldSimplify = sinkScalarOperands(Plan);
413     ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
414     ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
415   }
416 }
417 
418 /// Remove redundant casts of inductions.
419 ///
420 /// Such redundant casts are casts of induction variables that can be ignored,
421 /// because we already proved that the casted phi is equal to the uncasted phi
422 /// in the vectorized loop. There is no need to vectorize the cast - the same
423 /// value can be used for both the phi and casts in the vector loop.
424 static void removeRedundantInductionCasts(VPlan &Plan) {
425   for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
426     auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
427     if (!IV || IV->getTruncInst())
428       continue;
429 
430     // A sequence of IR Casts has potentially been recorded for IV, which
431     // *must be bypassed* when the IV is vectorized, because the vectorized IV
432     // will produce the desired casted value. This sequence forms a def-use
433     // chain and is provided in reverse order, ending with the cast that uses
434     // the IV phi. Search for the recipe of the last cast in the chain and
435     // replace it with the original IV. Note that only the final cast is
436     // expected to have users outside the cast-chain and the dead casts left
437     // over will be cleaned up later.
438     auto &Casts = IV->getInductionDescriptor().getCastInsts();
439     VPValue *FindMyCast = IV;
440     for (Instruction *IRCast : reverse(Casts)) {
441       VPSingleDefRecipe *FoundUserCast = nullptr;
442       for (auto *U : FindMyCast->users()) {
443         auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
444         if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
445           FoundUserCast = UserCast;
446           break;
447         }
448       }
449       FindMyCast = FoundUserCast;
450     }
451     FindMyCast->replaceAllUsesWith(IV);
452   }
453 }
454 
455 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
456 /// recipe, if it exists.
457 static void removeRedundantCanonicalIVs(VPlan &Plan) {
458   VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
459   VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
460   for (VPUser *U : CanonicalIV->users()) {
461     WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
462     if (WidenNewIV)
463       break;
464   }
465 
466   if (!WidenNewIV)
467     return;
468 
469   VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
470   for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
471     auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
472 
473     if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
474       continue;
475 
476     // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
477     // everything WidenNewIV's users need. That is, WidenOriginalIV will
478     // generate a vector phi or all users of WidenNewIV demand the first lane
479     // only.
480     if (any_of(WidenOriginalIV->users(),
481                [WidenOriginalIV](VPUser *U) {
482                  return !U->usesScalars(WidenOriginalIV);
483                }) ||
484         vputils::onlyFirstLaneUsed(WidenNewIV)) {
485       WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
486       WidenNewIV->eraseFromParent();
487       return;
488     }
489   }
490 }
491 
492 /// Returns true if \p R is dead and can be removed.
493 static bool isDeadRecipe(VPRecipeBase &R) {
494   using namespace llvm::PatternMatch;
495   // Do remove conditional assume instructions as their conditions may be
496   // flattened.
497   auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
498   bool IsConditionalAssume =
499       RepR && RepR->isPredicated() &&
500       match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
501   if (IsConditionalAssume)
502     return true;
503 
504   if (R.mayHaveSideEffects())
505     return false;
506 
507   // Recipe is dead if no user keeps the recipe alive.
508   return all_of(R.definedValues(),
509                 [](VPValue *V) { return V->getNumUsers() == 0; });
510 }
511 
512 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) {
513   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
514       Plan.getEntry());
515 
516   for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
517     // The recipes in the block are processed in reverse order, to catch chains
518     // of dead recipes.
519     for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
520       if (isDeadRecipe(R))
521         R.eraseFromParent();
522     }
523   }
524 }
525 
526 static VPScalarIVStepsRecipe *
527 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind,
528                     Instruction::BinaryOps InductionOpcode,
529                     FPMathOperator *FPBinOp, Instruction *TruncI,
530                     VPValue *StartV, VPValue *Step, DebugLoc DL,
531                     VPBuilder &Builder) {
532   VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
533   VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
534   VPSingleDefRecipe *BaseIV = Builder.createDerivedIV(
535       Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx");
536 
537   // Truncate base induction if needed.
538   Type *CanonicalIVType = CanonicalIV->getScalarType();
539   VPTypeAnalysis TypeInfo(CanonicalIVType);
540   Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
541   if (TruncI) {
542     Type *TruncTy = TruncI->getType();
543     assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
544            "Not truncating.");
545     assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
546     BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL);
547     ResultTy = TruncTy;
548   }
549 
550   // Truncate step if needed.
551   Type *StepTy = TypeInfo.inferScalarType(Step);
552   if (ResultTy != StepTy) {
553     assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
554            "Not truncating.");
555     assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
556     auto *VecPreheader =
557         cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
558     VPBuilder::InsertPointGuard Guard(Builder);
559     Builder.setInsertPoint(VecPreheader);
560     Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL);
561   }
562   return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step);
563 }
564 
565 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
566 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
567 /// VPWidenPointerInductionRecipe will generate vectors only. If some users
568 /// require vectors while other require scalars, the scalar uses need to extract
569 /// the scalars from the generated vectors (Note that this is different to how
570 /// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
571 /// if any of its users needs scalar values, by providing them scalar steps
572 /// built on the canonical scalar IV and update the original IV's users. This is
573 /// an optional optimization to reduce the needs of vector extracts.
574 static void legalizeAndOptimizeInductions(VPlan &Plan) {
575   SmallVector<VPRecipeBase *> ToRemove;
576   VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
577   bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
578   VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
579   for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
580     // Replace wide pointer inductions which have only their scalars used by
581     // PtrAdd(IndStart, ScalarIVSteps (0, Step)).
582     if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
583       if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
584         continue;
585 
586       const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
587       VPValue *StartV =
588           Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
589       VPValue *StepV = PtrIV->getOperand(1);
590       VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
591           Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
592           nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder);
593 
594       VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
595                                              PtrIV->getDebugLoc(), "next.gep");
596 
597       PtrIV->replaceAllUsesWith(PtrAdd);
598       continue;
599     }
600 
601     // Replace widened induction with scalar steps for users that only use
602     // scalars.
603     auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
604     if (!WideIV)
605       continue;
606     if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
607           return U->usesScalars(WideIV);
608         }))
609       continue;
610 
611     const InductionDescriptor &ID = WideIV->getInductionDescriptor();
612     VPScalarIVStepsRecipe *Steps = createScalarIVSteps(
613         Plan, ID.getKind(), ID.getInductionOpcode(),
614         dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
615         WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
616         WideIV->getDebugLoc(), Builder);
617 
618     // Update scalar users of IV to use Step instead.
619     if (!HasOnlyVectorVFs)
620       WideIV->replaceAllUsesWith(Steps);
621     else
622       WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
623         return U.usesScalars(WideIV);
624       });
625   }
626 }
627 
628 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
629 /// them with already existing recipes expanding the same SCEV expression.
630 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) {
631   DenseMap<const SCEV *, VPValue *> SCEV2VPV;
632 
633   for (VPRecipeBase &R :
634        make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) {
635     auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
636     if (!ExpR)
637       continue;
638 
639     auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
640     if (I.second)
641       continue;
642     ExpR->replaceAllUsesWith(I.first->second);
643     ExpR->eraseFromParent();
644   }
645 }
646 
647 static void recursivelyDeleteDeadRecipes(VPValue *V) {
648   SmallVector<VPValue *> WorkList;
649   SmallPtrSet<VPValue *, 8> Seen;
650   WorkList.push_back(V);
651 
652   while (!WorkList.empty()) {
653     VPValue *Cur = WorkList.pop_back_val();
654     if (!Seen.insert(Cur).second)
655       continue;
656     VPRecipeBase *R = Cur->getDefiningRecipe();
657     if (!R)
658       continue;
659     if (!isDeadRecipe(*R))
660       continue;
661     WorkList.append(R->op_begin(), R->op_end());
662     R->eraseFromParent();
663   }
664 }
665 
666 /// Try to simplify recipe \p R.
667 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
668   using namespace llvm::VPlanPatternMatch;
669 
670   if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
671     // Try to remove redundant blend recipes.
672     SmallPtrSet<VPValue *, 4> UniqueValues;
673     if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
674       UniqueValues.insert(Blend->getIncomingValue(0));
675     for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
676       if (!match(Blend->getMask(I), m_False()))
677         UniqueValues.insert(Blend->getIncomingValue(I));
678 
679     if (UniqueValues.size() == 1) {
680       Blend->replaceAllUsesWith(*UniqueValues.begin());
681       Blend->eraseFromParent();
682       return;
683     }
684 
685     if (Blend->isNormalized())
686       return;
687 
688     // Normalize the blend so its first incoming value is used as the initial
689     // value with the others blended into it.
690 
691     unsigned StartIndex = 0;
692     for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
693       // If a value's mask is used only by the blend then is can be deadcoded.
694       // TODO: Find the most expensive mask that can be deadcoded, or a mask
695       // that's used by multiple blends where it can be removed from them all.
696       VPValue *Mask = Blend->getMask(I);
697       if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
698         StartIndex = I;
699         break;
700       }
701     }
702 
703     SmallVector<VPValue *, 4> OperandsWithMask;
704     OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
705 
706     for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
707       if (I == StartIndex)
708         continue;
709       OperandsWithMask.push_back(Blend->getIncomingValue(I));
710       OperandsWithMask.push_back(Blend->getMask(I));
711     }
712 
713     auto *NewBlend = new VPBlendRecipe(
714         cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask);
715     NewBlend->insertBefore(&R);
716 
717     VPValue *DeadMask = Blend->getMask(StartIndex);
718     Blend->replaceAllUsesWith(NewBlend);
719     Blend->eraseFromParent();
720     recursivelyDeleteDeadRecipes(DeadMask);
721     return;
722   }
723 
724   VPValue *A;
725   if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
726     VPValue *Trunc = R.getVPSingleValue();
727     Type *TruncTy = TypeInfo.inferScalarType(Trunc);
728     Type *ATy = TypeInfo.inferScalarType(A);
729     if (TruncTy == ATy) {
730       Trunc->replaceAllUsesWith(A);
731     } else {
732       // Don't replace a scalarizing recipe with a widened cast.
733       if (isa<VPReplicateRecipe>(&R))
734         return;
735       if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
736 
737         unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
738                                  ? Instruction::SExt
739                                  : Instruction::ZExt;
740         auto *VPC =
741             new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
742         if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
743           // UnderlyingExt has distinct return type, used to retain legacy cost.
744           VPC->setUnderlyingValue(UnderlyingExt);
745         }
746         VPC->insertBefore(&R);
747         Trunc->replaceAllUsesWith(VPC);
748       } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
749         auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
750         VPC->insertBefore(&R);
751         Trunc->replaceAllUsesWith(VPC);
752       }
753     }
754 #ifndef NDEBUG
755     // Verify that the cached type info is for both A and its users is still
756     // accurate by comparing it to freshly computed types.
757     VPTypeAnalysis TypeInfo2(
758         R.getParent()->getPlan()->getCanonicalIV()->getScalarType());
759     assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
760     for (VPUser *U : A->users()) {
761       auto *R = cast<VPRecipeBase>(U);
762       for (VPValue *VPV : R->definedValues())
763         assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
764     }
765 #endif
766   }
767 
768   // Simplify (X && Y) || (X && !Y) -> X.
769   // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
770   // && (Y || Z) and (X || !X) into true. This requires queuing newly created
771   // recipes to be visited during simplification.
772   VPValue *X, *Y, *X1, *Y1;
773   if (match(&R,
774             m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)),
775                          m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) &&
776       X == X1 && Y == Y1) {
777     R.getVPSingleValue()->replaceAllUsesWith(X);
778     R.eraseFromParent();
779     return;
780   }
781 
782   if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
783     return R.getVPSingleValue()->replaceAllUsesWith(A);
784 
785   if (match(&R, m_Not(m_Not(m_VPValue(A)))))
786     return R.getVPSingleValue()->replaceAllUsesWith(A);
787 
788   // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0.
789   if ((match(&R,
790              m_DerivedIV(m_SpecificInt(0), m_VPValue(A), m_SpecificInt(1))) ||
791        match(&R,
792              m_DerivedIV(m_SpecificInt(0), m_SpecificInt(0), m_VPValue()))) &&
793       TypeInfo.inferScalarType(R.getOperand(1)) ==
794           TypeInfo.inferScalarType(R.getVPSingleValue()))
795     return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1));
796 }
797 
798 /// Try to simplify the recipes in \p Plan. Use \p CanonicalIVTy as type for all
799 /// un-typed live-ins in VPTypeAnalysis.
800 static void simplifyRecipes(VPlan &Plan, Type *CanonicalIVTy) {
801   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT(
802       Plan.getEntry());
803   VPTypeAnalysis TypeInfo(CanonicalIVTy);
804   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
805     for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
806       simplifyRecipe(R, TypeInfo);
807     }
808   }
809 }
810 
811 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF,
812                                          unsigned BestUF,
813                                          PredicatedScalarEvolution &PSE) {
814   assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
815   assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
816   VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
817   VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock();
818   auto *Term = &ExitingVPBB->back();
819   // Try to simplify the branch condition if TC <= VF * UF when preparing to
820   // execute the plan for the main vector loop. We only do this if the
821   // terminator is:
822   //  1. BranchOnCount, or
823   //  2. BranchOnCond where the input is Not(ActiveLaneMask).
824   using namespace llvm::VPlanPatternMatch;
825   if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
826       !match(Term,
827              m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
828     return;
829 
830   ScalarEvolution &SE = *PSE.getSE();
831   const SCEV *TripCount =
832       vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE);
833   assert(!isa<SCEVCouldNotCompute>(TripCount) &&
834          "Trip count SCEV must be computable");
835   ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
836   const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
837   if (TripCount->isZero() ||
838       !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
839     return;
840 
841   // The vector loop region only executes once. If possible, completely remove
842   // the region, otherwise replace the terminator controlling the latch with
843   // (BranchOnCond true).
844   auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry());
845   auto *CanIVTy = Plan.getCanonicalIV()->getScalarType();
846   if (all_of(
847           Header->phis(),
848           IsaPred<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe>)) {
849     for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) {
850       auto *HeaderPhiR = cast<VPHeaderPHIRecipe>(&HeaderR);
851       HeaderPhiR->replaceAllUsesWith(HeaderPhiR->getStartValue());
852       HeaderPhiR->eraseFromParent();
853     }
854 
855     VPBlockBase *Preheader = VectorRegion->getSinglePredecessor();
856     VPBlockBase *Exit = VectorRegion->getSingleSuccessor();
857     VPBlockUtils::disconnectBlocks(Preheader, VectorRegion);
858     VPBlockUtils::disconnectBlocks(VectorRegion, Exit);
859 
860     for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry()))
861       B->setParent(nullptr);
862 
863     VPBlockUtils::connectBlocks(Preheader, Header);
864     VPBlockUtils::connectBlocks(ExitingVPBB, Exit);
865     simplifyRecipes(Plan, CanIVTy);
866   } else {
867     // The vector region contains header phis for which we cannot remove the
868     // loop region yet.
869     LLVMContext &Ctx = SE.getContext();
870     auto *BOC = new VPInstruction(
871         VPInstruction::BranchOnCond,
872         {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc());
873     ExitingVPBB->appendRecipe(BOC);
874   }
875 
876   Term->eraseFromParent();
877   VPlanTransforms::removeDeadRecipes(Plan);
878 
879   Plan.setVF(BestVF);
880   Plan.setUF(BestUF);
881   // TODO: Further simplifications are possible
882   //      1. Replace inductions with constants.
883   //      2. Replace vector loop region with VPBasicBlock.
884 }
885 
886 /// Sink users of \p FOR after the recipe defining the previous value \p
887 /// Previous of the recurrence. \returns true if all users of \p FOR could be
888 /// re-arranged as needed or false if it is not possible.
889 static bool
890 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR,
891                                  VPRecipeBase *Previous,
892                                  VPDominatorTree &VPDT) {
893   // Collect recipes that need sinking.
894   SmallVector<VPRecipeBase *> WorkList;
895   SmallPtrSet<VPRecipeBase *, 8> Seen;
896   Seen.insert(Previous);
897   auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
898     // The previous value must not depend on the users of the recurrence phi. In
899     // that case, FOR is not a fixed order recurrence.
900     if (SinkCandidate == Previous)
901       return false;
902 
903     if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
904         !Seen.insert(SinkCandidate).second ||
905         VPDT.properlyDominates(Previous, SinkCandidate))
906       return true;
907 
908     if (SinkCandidate->mayHaveSideEffects())
909       return false;
910 
911     WorkList.push_back(SinkCandidate);
912     return true;
913   };
914 
915   // Recursively sink users of FOR after Previous.
916   WorkList.push_back(FOR);
917   for (unsigned I = 0; I != WorkList.size(); ++I) {
918     VPRecipeBase *Current = WorkList[I];
919     assert(Current->getNumDefinedValues() == 1 &&
920            "only recipes with a single defined value expected");
921 
922     for (VPUser *User : Current->getVPSingleValue()->users()) {
923       if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
924         return false;
925     }
926   }
927 
928   // Keep recipes to sink ordered by dominance so earlier instructions are
929   // processed first.
930   sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
931     return VPDT.properlyDominates(A, B);
932   });
933 
934   for (VPRecipeBase *SinkCandidate : WorkList) {
935     if (SinkCandidate == FOR)
936       continue;
937 
938     SinkCandidate->moveAfter(Previous);
939     Previous = SinkCandidate;
940   }
941   return true;
942 }
943 
944 /// Try to hoist \p Previous and its operands before all users of \p FOR.
945 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR,
946                                         VPRecipeBase *Previous,
947                                         VPDominatorTree &VPDT) {
948   if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
949     return false;
950 
951   // Collect recipes that need hoisting.
952   SmallVector<VPRecipeBase *> HoistCandidates;
953   SmallPtrSet<VPRecipeBase *, 8> Visited;
954   VPRecipeBase *HoistPoint = nullptr;
955   // Find the closest hoist point by looking at all users of FOR and selecting
956   // the recipe dominating all other users.
957   for (VPUser *U : FOR->users()) {
958     auto *R = cast<VPRecipeBase>(U);
959     if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
960       HoistPoint = R;
961   }
962   assert(all_of(FOR->users(),
963                 [&VPDT, HoistPoint](VPUser *U) {
964                   auto *R = cast<VPRecipeBase>(U);
965                   return HoistPoint == R ||
966                          VPDT.properlyDominates(HoistPoint, R);
967                 }) &&
968          "HoistPoint must dominate all users of FOR");
969 
970   auto NeedsHoisting = [HoistPoint, &VPDT,
971                         &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
972     VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
973     if (!HoistCandidate)
974       return nullptr;
975     VPRegionBlock *EnclosingLoopRegion =
976         HoistCandidate->getParent()->getEnclosingLoopRegion();
977     assert((!HoistCandidate->getParent()->getParent() ||
978             HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
979            "CFG in VPlan should still be flat, without replicate regions");
980     // Hoist candidate was already visited, no need to hoist.
981     if (!Visited.insert(HoistCandidate).second)
982       return nullptr;
983 
984     // Candidate is outside loop region or a header phi, dominates FOR users w/o
985     // hoisting.
986     if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
987       return nullptr;
988 
989     // If we reached a recipe that dominates HoistPoint, we don't need to
990     // hoist the recipe.
991     if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
992       return nullptr;
993     return HoistCandidate;
994   };
995   auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
996     // Avoid hoisting candidates with side-effects, as we do not yet analyze
997     // associated dependencies.
998     return !HoistCandidate->mayHaveSideEffects();
999   };
1000 
1001   if (!NeedsHoisting(Previous->getVPSingleValue()))
1002     return true;
1003 
1004   // Recursively try to hoist Previous and its operands before all users of FOR.
1005   HoistCandidates.push_back(Previous);
1006 
1007   for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
1008     VPRecipeBase *Current = HoistCandidates[I];
1009     assert(Current->getNumDefinedValues() == 1 &&
1010            "only recipes with a single defined value expected");
1011     if (!CanHoist(Current))
1012       return false;
1013 
1014     for (VPValue *Op : Current->operands()) {
1015       // If we reach FOR, it means the original Previous depends on some other
1016       // recurrence that in turn depends on FOR. If that is the case, we would
1017       // also need to hoist recipes involving the other FOR, which may break
1018       // dependencies.
1019       if (Op == FOR)
1020         return false;
1021 
1022       if (auto *R = NeedsHoisting(Op))
1023         HoistCandidates.push_back(R);
1024     }
1025   }
1026 
1027   // Order recipes to hoist by dominance so earlier instructions are processed
1028   // first.
1029   sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
1030     return VPDT.properlyDominates(A, B);
1031   });
1032 
1033   for (VPRecipeBase *HoistCandidate : HoistCandidates) {
1034     HoistCandidate->moveBefore(*HoistPoint->getParent(),
1035                                HoistPoint->getIterator());
1036   }
1037 
1038   return true;
1039 }
1040 
1041 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan,
1042                                                   VPBuilder &LoopBuilder) {
1043   VPDominatorTree VPDT;
1044   VPDT.recalculate(Plan);
1045 
1046   SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis;
1047   for (VPRecipeBase &R :
1048        Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis())
1049     if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
1050       RecurrencePhis.push_back(FOR);
1051 
1052   for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
1053     SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis;
1054     VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
1055     // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
1056     // to terminate.
1057     while (auto *PrevPhi =
1058                dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
1059       assert(PrevPhi->getParent() == FOR->getParent());
1060       assert(SeenPhis.insert(PrevPhi).second);
1061       Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
1062     }
1063 
1064     if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
1065         !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
1066       return false;
1067 
1068     // Introduce a recipe to combine the incoming and previous values of a
1069     // fixed-order recurrence.
1070     VPBasicBlock *InsertBlock = Previous->getParent();
1071     if (isa<VPHeaderPHIRecipe>(Previous))
1072       LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
1073     else
1074       LoopBuilder.setInsertPoint(InsertBlock,
1075                                  std::next(Previous->getIterator()));
1076 
1077     auto *RecurSplice = cast<VPInstruction>(
1078         LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
1079                                  {FOR, FOR->getBackedgeValue()}));
1080 
1081     FOR->replaceAllUsesWith(RecurSplice);
1082     // Set the first operand of RecurSplice to FOR again, after replacing
1083     // all users.
1084     RecurSplice->setOperand(0, FOR);
1085   }
1086   return true;
1087 }
1088 
1089 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) {
1090   SetVector<VPUser *> Users(V->user_begin(), V->user_end());
1091   for (unsigned I = 0; I != Users.size(); ++I) {
1092     VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]);
1093     if (isa<VPHeaderPHIRecipe>(Cur))
1094       continue;
1095     for (VPValue *V : Cur->definedValues())
1096       Users.insert(V->user_begin(), V->user_end());
1097   }
1098   return Users.takeVector();
1099 }
1100 
1101 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) {
1102   for (VPRecipeBase &R :
1103        Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
1104     auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
1105     if (!PhiR)
1106       continue;
1107     const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
1108     RecurKind RK = RdxDesc.getRecurrenceKind();
1109     if (RK != RecurKind::Add && RK != RecurKind::Mul)
1110       continue;
1111 
1112     for (VPUser *U : collectUsersRecursively(PhiR))
1113       if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
1114         RecWithFlags->dropPoisonGeneratingFlags();
1115       }
1116   }
1117 }
1118 
1119 /// Move loop-invariant recipes out of the vector loop region in \p Plan.
1120 static void licm(VPlan &Plan) {
1121   VPBasicBlock *Preheader = Plan.getVectorPreheader();
1122 
1123   // Return true if we do not know how to (mechanically) hoist a given recipe
1124   // out of a loop region. Does not address legality concerns such as aliasing
1125   // or speculation safety.
1126   auto CannotHoistRecipe = [](VPRecipeBase &R) {
1127     // Allocas cannot be hoisted.
1128     auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
1129     return RepR && RepR->getOpcode() == Instruction::Alloca;
1130   };
1131 
1132   // Hoist any loop invariant recipes from the vector loop region to the
1133   // preheader. Preform a shallow traversal of the vector loop region, to
1134   // exclude recipes in replicate regions.
1135   VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
1136   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1137            vp_depth_first_shallow(LoopRegion->getEntry()))) {
1138     for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1139       if (CannotHoistRecipe(R))
1140         continue;
1141       // TODO: Relax checks in the future, e.g. we could also hoist reads, if
1142       // their memory location is not modified in the vector loop.
1143       if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
1144           any_of(R.operands(), [](VPValue *Op) {
1145             return !Op->isDefinedOutsideLoopRegions();
1146           }))
1147         continue;
1148       R.moveBefore(*Preheader, Preheader->end());
1149     }
1150   }
1151 }
1152 
1153 void VPlanTransforms::truncateToMinimalBitwidths(
1154     VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
1155 #ifndef NDEBUG
1156   // Count the processed recipes and cross check the count later with MinBWs
1157   // size, to make sure all entries in MinBWs have been handled.
1158   unsigned NumProcessedRecipes = 0;
1159 #endif
1160   // Keep track of created truncates, so they can be re-used. Note that we
1161   // cannot use RAUW after creating a new truncate, as this would could make
1162   // other uses have different types for their operands, making them invalidly
1163   // typed.
1164   DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs;
1165   Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
1166   VPTypeAnalysis TypeInfo(CanonicalIVType);
1167   VPBasicBlock *PH = Plan.getVectorPreheader();
1168   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1169            vp_depth_first_deep(Plan.getVectorLoopRegion()))) {
1170     for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1171       if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe,
1172                VPWidenSelectRecipe, VPWidenLoadRecipe>(&R))
1173         continue;
1174 
1175       VPValue *ResultVPV = R.getVPSingleValue();
1176       auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
1177       unsigned NewResSizeInBits = MinBWs.lookup(UI);
1178       if (!NewResSizeInBits)
1179         continue;
1180 
1181 #ifndef NDEBUG
1182       NumProcessedRecipes++;
1183 #endif
1184       // If the value wasn't vectorized, we must maintain the original scalar
1185       // type. Skip those here, after incrementing NumProcessedRecipes. Also
1186       // skip casts which do not need to be handled explicitly here, as
1187       // redundant casts will be removed during recipe simplification.
1188       if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
1189 #ifndef NDEBUG
1190         // If any of the operands is a live-in and not used by VPWidenRecipe or
1191         // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
1192         // processed as well. When MinBWs is currently constructed, there is no
1193         // information about whether recipes are widened or replicated and in
1194         // case they are reciplicated the operands are not truncated. Counting
1195         // them them here ensures we do not miss any recipes in MinBWs.
1196         // TODO: Remove once the analysis is done on VPlan.
1197         for (VPValue *Op : R.operands()) {
1198           if (!Op->isLiveIn())
1199             continue;
1200           auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
1201           if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
1202               none_of(Op->users(),
1203                       IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) {
1204             // Add an entry to ProcessedTruncs to avoid counting the same
1205             // operand multiple times.
1206             ProcessedTruncs[Op] = nullptr;
1207             NumProcessedRecipes += 1;
1208           }
1209         }
1210 #endif
1211         continue;
1212       }
1213 
1214       Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
1215       unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
1216       assert(OldResTy->isIntegerTy() && "only integer types supported");
1217       (void)OldResSizeInBits;
1218 
1219       LLVMContext &Ctx = CanonicalIVType->getContext();
1220       auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
1221 
1222       // Any wrapping introduced by shrinking this operation shouldn't be
1223       // considered undefined behavior. So, we can't unconditionally copy
1224       // arithmetic wrapping flags to VPW.
1225       if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
1226         VPW->dropPoisonGeneratingFlags();
1227 
1228       using namespace llvm::VPlanPatternMatch;
1229       if (OldResSizeInBits != NewResSizeInBits &&
1230           !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
1231         // Extend result to original width.
1232         auto *Ext =
1233             new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
1234         Ext->insertAfter(&R);
1235         ResultVPV->replaceAllUsesWith(Ext);
1236         Ext->setOperand(0, ResultVPV);
1237         assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
1238       } else {
1239         assert(
1240             match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
1241             "Only ICmps should not need extending the result.");
1242       }
1243 
1244       assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
1245       if (isa<VPWidenLoadRecipe>(&R))
1246         continue;
1247 
1248       // Shrink operands by introducing truncates as needed.
1249       unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
1250       for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
1251         auto *Op = R.getOperand(Idx);
1252         unsigned OpSizeInBits =
1253             TypeInfo.inferScalarType(Op)->getScalarSizeInBits();
1254         if (OpSizeInBits == NewResSizeInBits)
1255           continue;
1256         assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
1257         auto [ProcessedIter, IterIsEmpty] =
1258             ProcessedTruncs.insert({Op, nullptr});
1259         VPWidenCastRecipe *NewOp =
1260             IterIsEmpty
1261                 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
1262                 : ProcessedIter->second;
1263         R.setOperand(Idx, NewOp);
1264         if (!IterIsEmpty)
1265           continue;
1266         ProcessedIter->second = NewOp;
1267         if (!Op->isLiveIn()) {
1268           NewOp->insertBefore(&R);
1269         } else {
1270           PH->appendRecipe(NewOp);
1271 #ifndef NDEBUG
1272           auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
1273           bool IsContained = MinBWs.contains(OpInst);
1274           NumProcessedRecipes += IsContained;
1275 #endif
1276         }
1277       }
1278 
1279     }
1280   }
1281 
1282   assert(MinBWs.size() == NumProcessedRecipes &&
1283          "some entries in MinBWs haven't been processed");
1284 }
1285 
1286 void VPlanTransforms::optimize(VPlan &Plan) {
1287   removeRedundantCanonicalIVs(Plan);
1288   removeRedundantInductionCasts(Plan);
1289 
1290   simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType());
1291   legalizeAndOptimizeInductions(Plan);
1292   removeRedundantExpandSCEVRecipes(Plan);
1293   simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType());
1294   removeDeadRecipes(Plan);
1295 
1296   createAndOptimizeReplicateRegions(Plan);
1297   mergeBlocksIntoPredecessors(Plan);
1298   licm(Plan);
1299 }
1300 
1301 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
1302 // the loop terminator with a branch-on-cond recipe with the negated
1303 // active-lane-mask as operand. Note that this turns the loop into an
1304 // uncountable one. Only the existing terminator is replaced, all other existing
1305 // recipes/users remain unchanged, except for poison-generating flags being
1306 // dropped from the canonical IV increment. Return the created
1307 // VPActiveLaneMaskPHIRecipe.
1308 //
1309 // The function uses the following definitions:
1310 //
1311 //  %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
1312 //    calculate-trip-count-minus-VF (original TC) : original TC
1313 //  %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
1314 //     CanonicalIVPhi : CanonicalIVIncrement
1315 //  %StartV is the canonical induction start value.
1316 //
1317 // The function adds the following recipes:
1318 //
1319 // vector.ph:
1320 //   %TripCount = calculate-trip-count-minus-VF (original TC)
1321 //       [if DataWithControlFlowWithoutRuntimeCheck]
1322 //   %EntryInc = canonical-iv-increment-for-part %StartV
1323 //   %EntryALM = active-lane-mask %EntryInc, %TripCount
1324 //
1325 // vector.body:
1326 //   ...
1327 //   %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
1328 //   ...
1329 //   %InLoopInc = canonical-iv-increment-for-part %IncrementValue
1330 //   %ALM = active-lane-mask %InLoopInc, TripCount
1331 //   %Negated = Not %ALM
1332 //   branch-on-cond %Negated
1333 //
1334 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch(
1335     VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) {
1336   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
1337   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
1338   auto *CanonicalIVPHI = Plan.getCanonicalIV();
1339   VPValue *StartV = CanonicalIVPHI->getStartValue();
1340 
1341   auto *CanonicalIVIncrement =
1342       cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
1343   // TODO: Check if dropping the flags is needed if
1344   // !DataAndControlFlowWithoutRuntimeCheck.
1345   CanonicalIVIncrement->dropPoisonGeneratingFlags();
1346   DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
1347   // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
1348   // we have to take unrolling into account. Each part needs to start at
1349   //   Part * VF
1350   auto *VecPreheader = Plan.getVectorPreheader();
1351   VPBuilder Builder(VecPreheader);
1352 
1353   // Create the ActiveLaneMask instruction using the correct start values.
1354   VPValue *TC = Plan.getTripCount();
1355 
1356   VPValue *TripCount, *IncrementValue;
1357   if (!DataAndControlFlowWithoutRuntimeCheck) {
1358     // When the loop is guarded by a runtime overflow check for the loop
1359     // induction variable increment by VF, we can increment the value before
1360     // the get.active.lane mask and use the unmodified tripcount.
1361     IncrementValue = CanonicalIVIncrement;
1362     TripCount = TC;
1363   } else {
1364     // When avoiding a runtime check, the active.lane.mask inside the loop
1365     // uses a modified trip count and the induction variable increment is
1366     // done after the active.lane.mask intrinsic is called.
1367     IncrementValue = CanonicalIVPHI;
1368     TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF,
1369                                      {TC}, DL);
1370   }
1371   auto *EntryIncrement = Builder.createOverflowingOp(
1372       VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
1373       "index.part.next");
1374 
1375   // Create the active lane mask instruction in the VPlan preheader.
1376   auto *EntryALM =
1377       Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
1378                            DL, "active.lane.mask.entry");
1379 
1380   // Now create the ActiveLaneMaskPhi recipe in the main loop using the
1381   // preheader ActiveLaneMask instruction.
1382   auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
1383   LaneMaskPhi->insertAfter(CanonicalIVPHI);
1384 
1385   // Create the active lane mask for the next iteration of the loop before the
1386   // original terminator.
1387   VPRecipeBase *OriginalTerminator = EB->getTerminator();
1388   Builder.setInsertPoint(OriginalTerminator);
1389   auto *InLoopIncrement =
1390       Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart,
1391                                   {IncrementValue}, {false, false}, DL);
1392   auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
1393                                    {InLoopIncrement, TripCount}, DL,
1394                                    "active.lane.mask.next");
1395   LaneMaskPhi->addOperand(ALM);
1396 
1397   // Replace the original terminator with BranchOnCond. We have to invert the
1398   // mask here because a true condition means jumping to the exit block.
1399   auto *NotMask = Builder.createNot(ALM, DL);
1400   Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
1401   OriginalTerminator->eraseFromParent();
1402   return LaneMaskPhi;
1403 }
1404 
1405 /// Collect all VPValues representing a header mask through the (ICMP_ULE,
1406 /// WideCanonicalIV, backedge-taken-count) pattern.
1407 /// TODO: Introduce explicit recipe for header-mask instead of searching
1408 /// for the header-mask pattern manually.
1409 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) {
1410   SmallVector<VPValue *> WideCanonicalIVs;
1411   auto *FoundWidenCanonicalIVUser =
1412       find_if(Plan.getCanonicalIV()->users(),
1413               [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
1414   assert(count_if(Plan.getCanonicalIV()->users(),
1415                   [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
1416              1 &&
1417          "Must have at most one VPWideCanonicalIVRecipe");
1418   if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
1419     auto *WideCanonicalIV =
1420         cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
1421     WideCanonicalIVs.push_back(WideCanonicalIV);
1422   }
1423 
1424   // Also include VPWidenIntOrFpInductionRecipes that represent a widened
1425   // version of the canonical induction.
1426   VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
1427   for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
1428     auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
1429     if (WidenOriginalIV && WidenOriginalIV->isCanonical())
1430       WideCanonicalIVs.push_back(WidenOriginalIV);
1431   }
1432 
1433   // Walk users of wide canonical IVs and collect to all compares of the form
1434   // (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
1435   SmallVector<VPValue *> HeaderMasks;
1436   for (auto *Wide : WideCanonicalIVs) {
1437     for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
1438       auto *HeaderMask = dyn_cast<VPInstruction>(U);
1439       if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan))
1440         continue;
1441 
1442       assert(HeaderMask->getOperand(0) == Wide &&
1443              "WidenCanonicalIV must be the first operand of the compare");
1444       HeaderMasks.push_back(HeaderMask);
1445     }
1446   }
1447   return HeaderMasks;
1448 }
1449 
1450 void VPlanTransforms::addActiveLaneMask(
1451     VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
1452     bool DataAndControlFlowWithoutRuntimeCheck) {
1453   assert((!DataAndControlFlowWithoutRuntimeCheck ||
1454           UseActiveLaneMaskForControlFlow) &&
1455          "DataAndControlFlowWithoutRuntimeCheck implies "
1456          "UseActiveLaneMaskForControlFlow");
1457 
1458   auto *FoundWidenCanonicalIVUser =
1459       find_if(Plan.getCanonicalIV()->users(),
1460               [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
1461   assert(FoundWidenCanonicalIVUser &&
1462          "Must have widened canonical IV when tail folding!");
1463   auto *WideCanonicalIV =
1464       cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
1465   VPSingleDefRecipe *LaneMask;
1466   if (UseActiveLaneMaskForControlFlow) {
1467     LaneMask = addVPLaneMaskPhiAndUpdateExitBranch(
1468         Plan, DataAndControlFlowWithoutRuntimeCheck);
1469   } else {
1470     VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
1471     LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
1472                               {WideCanonicalIV, Plan.getTripCount()}, nullptr,
1473                               "active.lane.mask");
1474   }
1475 
1476   // Walk users of WideCanonicalIV and replace all compares of the form
1477   // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
1478   // active-lane-mask.
1479   for (VPValue *HeaderMask : collectAllHeaderMasks(Plan))
1480     HeaderMask->replaceAllUsesWith(LaneMask);
1481 }
1482 
1483 /// Try to convert \p CurRecipe to a corresponding EVL-based recipe. Returns
1484 /// nullptr if no EVL-based recipe could be created.
1485 /// \p HeaderMask  Header Mask.
1486 /// \p CurRecipe   Recipe to be transform.
1487 /// \p TypeInfo    VPlan-based type analysis.
1488 /// \p AllOneMask  The vector mask parameter of vector-predication intrinsics.
1489 /// \p EVL         The explicit vector length parameter of vector-predication
1490 /// intrinsics.
1491 static VPRecipeBase *createEVLRecipe(VPValue *HeaderMask,
1492                                      VPRecipeBase &CurRecipe,
1493                                      VPTypeAnalysis &TypeInfo,
1494                                      VPValue &AllOneMask, VPValue &EVL) {
1495   using namespace llvm::VPlanPatternMatch;
1496   auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
1497     assert(OrigMask && "Unmasked recipe when folding tail");
1498     return HeaderMask == OrigMask ? nullptr : OrigMask;
1499   };
1500 
1501   return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe)
1502       .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) {
1503         VPValue *NewMask = GetNewMask(L->getMask());
1504         return new VPWidenLoadEVLRecipe(*L, EVL, NewMask);
1505       })
1506       .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
1507         VPValue *NewMask = GetNewMask(S->getMask());
1508         return new VPWidenStoreEVLRecipe(*S, EVL, NewMask);
1509       })
1510       .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * {
1511         unsigned Opcode = W->getOpcode();
1512         if (!Instruction::isBinaryOp(Opcode) && !Instruction::isUnaryOp(Opcode))
1513           return nullptr;
1514         return new VPWidenEVLRecipe(*W, EVL);
1515       })
1516       .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
1517         VPValue *NewMask = GetNewMask(Red->getCondOp());
1518         return new VPReductionEVLRecipe(*Red, EVL, NewMask);
1519       })
1520       .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>(
1521           [&](auto *CR) -> VPRecipeBase * {
1522             Intrinsic::ID VPID;
1523             if (auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) {
1524               VPID =
1525                   VPIntrinsic::getForIntrinsic(CallR->getVectorIntrinsicID());
1526             } else {
1527               auto *CastR = cast<VPWidenCastRecipe>(CR);
1528               VPID = VPIntrinsic::getForOpcode(CastR->getOpcode());
1529             }
1530 
1531             // Not all intrinsics have a corresponding VP intrinsic.
1532             if (VPID == Intrinsic::not_intrinsic)
1533               return nullptr;
1534             assert(VPIntrinsic::getMaskParamPos(VPID) &&
1535                    VPIntrinsic::getVectorLengthParamPos(VPID) &&
1536                    "Expected VP intrinsic to have mask and EVL");
1537 
1538             SmallVector<VPValue *> Ops(CR->operands());
1539             Ops.push_back(&AllOneMask);
1540             Ops.push_back(&EVL);
1541             return new VPWidenIntrinsicRecipe(
1542                 VPID, Ops, TypeInfo.inferScalarType(CR), CR->getDebugLoc());
1543           })
1544       .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) {
1545         SmallVector<VPValue *> Ops(Sel->operands());
1546         Ops.push_back(&EVL);
1547         return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops,
1548                                           TypeInfo.inferScalarType(Sel),
1549                                           Sel->getDebugLoc());
1550       })
1551       .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
1552         VPValue *LHS, *RHS;
1553         // Transform select with a header mask condition
1554         //   select(header_mask, LHS, RHS)
1555         // into vector predication merge.
1556         //   vp.merge(all-true, LHS, RHS, EVL)
1557         if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
1558                                  m_VPValue(RHS))))
1559           return nullptr;
1560         // Use all true as the condition because this transformation is
1561         // limited to selects whose condition is a header mask.
1562         return new VPWidenIntrinsicRecipe(
1563             Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL},
1564             TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
1565       })
1566       .Default([&](VPRecipeBase *R) { return nullptr; });
1567 }
1568 
1569 /// Replace recipes with their EVL variants.
1570 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) {
1571   Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
1572   VPTypeAnalysis TypeInfo(CanonicalIVType);
1573   LLVMContext &Ctx = CanonicalIVType->getContext();
1574   VPValue *AllOneMask = Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx));
1575 
1576   for (VPUser *U : Plan.getVF().users()) {
1577     if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U))
1578       R->setOperand(1, &EVL);
1579   }
1580 
1581   SmallVector<VPRecipeBase *> ToErase;
1582 
1583   for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) {
1584     for (VPUser *U : collectUsersRecursively(HeaderMask)) {
1585       auto *CurRecipe = cast<VPRecipeBase>(U);
1586       VPRecipeBase *EVLRecipe =
1587           createEVLRecipe(HeaderMask, *CurRecipe, TypeInfo, *AllOneMask, EVL);
1588       if (!EVLRecipe)
1589         continue;
1590 
1591       [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues();
1592       assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
1593              "New recipe must define the same number of values as the "
1594              "original.");
1595       assert(
1596           NumDefVal <= 1 &&
1597           "Only supports recipes with a single definition or without users.");
1598       EVLRecipe->insertBefore(CurRecipe);
1599       if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) {
1600         VPValue *CurVPV = CurRecipe->getVPSingleValue();
1601         CurVPV->replaceAllUsesWith(EVLRecipe->getVPSingleValue());
1602       }
1603       // Defer erasing recipes till the end so that we don't invalidate the
1604       // VPTypeAnalysis cache.
1605       ToErase.push_back(CurRecipe);
1606     }
1607   }
1608 
1609   for (VPRecipeBase *R : reverse(ToErase)) {
1610     SmallVector<VPValue *> PossiblyDead(R->operands());
1611     R->eraseFromParent();
1612     for (VPValue *Op : PossiblyDead)
1613       recursivelyDeleteDeadRecipes(Op);
1614   }
1615 }
1616 
1617 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
1618 /// replaces all uses except the canonical IV increment of
1619 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
1620 /// is used only for loop iterations counting after this transformation.
1621 ///
1622 /// The function uses the following definitions:
1623 ///  %StartV is the canonical induction start value.
1624 ///
1625 /// The function adds the following recipes:
1626 ///
1627 /// vector.ph:
1628 /// ...
1629 ///
1630 /// vector.body:
1631 /// ...
1632 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
1633 ///                                               [ %NextEVLIV, %vector.body ]
1634 /// %AVL = sub original TC, %EVLPhi
1635 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
1636 /// ...
1637 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi
1638 /// ...
1639 ///
1640 /// If MaxSafeElements is provided, the function adds the following recipes:
1641 /// vector.ph:
1642 /// ...
1643 ///
1644 /// vector.body:
1645 /// ...
1646 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
1647 ///                                               [ %NextEVLIV, %vector.body ]
1648 /// %AVL = sub original TC, %EVLPhi
1649 /// %cmp = cmp ult %AVL, MaxSafeElements
1650 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
1651 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
1652 /// ...
1653 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi
1654 /// ...
1655 ///
1656 bool VPlanTransforms::tryAddExplicitVectorLength(
1657     VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
1658   VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock();
1659   // The transform updates all users of inductions to work based on EVL, instead
1660   // of the VF directly. At the moment, widened inductions cannot be updated, so
1661   // bail out if the plan contains any.
1662   bool ContainsWidenInductions = any_of(
1663       Header->phis(),
1664       IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>);
1665   if (ContainsWidenInductions)
1666     return false;
1667 
1668   auto *CanonicalIVPHI = Plan.getCanonicalIV();
1669   VPValue *StartV = CanonicalIVPHI->getStartValue();
1670 
1671   // Create the ExplicitVectorLengthPhi recipe in the main loop.
1672   auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc());
1673   EVLPhi->insertAfter(CanonicalIVPHI);
1674   VPBuilder Builder(Header, Header->getFirstNonPhi());
1675   // Compute original TC - IV as the AVL (application vector length).
1676   VPValue *AVL = Builder.createNaryOp(
1677       Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl");
1678   if (MaxSafeElements) {
1679     // Support for MaxSafeDist for correct loop emission.
1680     VPValue *AVLSafe = Plan.getOrAddLiveIn(
1681         ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements));
1682     VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
1683     AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl");
1684   }
1685   auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
1686                                      DebugLoc());
1687 
1688   auto *CanonicalIVIncrement =
1689       cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
1690   VPSingleDefRecipe *OpVPEVL = VPEVL;
1691   if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
1692       IVSize != 32) {
1693     OpVPEVL = new VPScalarCastRecipe(
1694         IVSize < 32 ? Instruction::Trunc : Instruction::ZExt, OpVPEVL,
1695         CanonicalIVPHI->getScalarType(), CanonicalIVIncrement->getDebugLoc());
1696     OpVPEVL->insertBefore(CanonicalIVIncrement);
1697   }
1698   auto *NextEVLIV =
1699       new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi},
1700                         {CanonicalIVIncrement->hasNoUnsignedWrap(),
1701                          CanonicalIVIncrement->hasNoSignedWrap()},
1702                         CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
1703   NextEVLIV->insertBefore(CanonicalIVIncrement);
1704   EVLPhi->addOperand(NextEVLIV);
1705 
1706   transformRecipestoEVLRecipes(Plan, *VPEVL);
1707 
1708   // Replace all uses of VPCanonicalIVPHIRecipe by
1709   // VPEVLBasedIVPHIRecipe except for the canonical IV increment.
1710   CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
1711   CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
1712   // TODO: support unroll factor > 1.
1713   Plan.setUF(1);
1714   return true;
1715 }
1716 
1717 void VPlanTransforms::dropPoisonGeneratingRecipes(
1718     VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
1719   // Collect recipes in the backward slice of `Root` that may generate a poison
1720   // value that is used after vectorization.
1721   SmallPtrSet<VPRecipeBase *, 16> Visited;
1722   auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1723     SmallVector<VPRecipeBase *, 16> Worklist;
1724     Worklist.push_back(Root);
1725 
1726     // Traverse the backward slice of Root through its use-def chain.
1727     while (!Worklist.empty()) {
1728       VPRecipeBase *CurRec = Worklist.pop_back_val();
1729 
1730       if (!Visited.insert(CurRec).second)
1731         continue;
1732 
1733       // Prune search if we find another recipe generating a widen memory
1734       // instruction. Widen memory instructions involved in address computation
1735       // will lead to gather/scatter instructions, which don't need to be
1736       // handled.
1737       if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe,
1738               VPHeaderPHIRecipe>(CurRec))
1739         continue;
1740 
1741       // This recipe contributes to the address computation of a widen
1742       // load/store. If the underlying instruction has poison-generating flags,
1743       // drop them directly.
1744       if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
1745         VPValue *A, *B;
1746         using namespace llvm::VPlanPatternMatch;
1747         // Dropping disjoint from an OR may yield incorrect results, as some
1748         // analysis may have converted it to an Add implicitly (e.g. SCEV used
1749         // for dependence analysis). Instead, replace it with an equivalent Add.
1750         // This is possible as all users of the disjoint OR only access lanes
1751         // where the operands are disjoint or poison otherwise.
1752         if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
1753             RecWithFlags->isDisjoint()) {
1754           VPBuilder Builder(RecWithFlags);
1755           VPInstruction *New = Builder.createOverflowingOp(
1756               Instruction::Add, {A, B}, {false, false},
1757               RecWithFlags->getDebugLoc());
1758           New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
1759           RecWithFlags->replaceAllUsesWith(New);
1760           RecWithFlags->eraseFromParent();
1761           CurRec = New;
1762         } else
1763           RecWithFlags->dropPoisonGeneratingFlags();
1764       } else {
1765         Instruction *Instr = dyn_cast_or_null<Instruction>(
1766             CurRec->getVPSingleValue()->getUnderlyingValue());
1767         (void)Instr;
1768         assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
1769                "found instruction with poison generating flags not covered by "
1770                "VPRecipeWithIRFlags");
1771       }
1772 
1773       // Add new definitions to the worklist.
1774       for (VPValue *Operand : CurRec->operands())
1775         if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
1776           Worklist.push_back(OpDef);
1777     }
1778   });
1779 
1780   // Traverse all the recipes in the VPlan and collect the poison-generating
1781   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1782   // VPInterleaveRecipe.
1783   auto Iter = vp_depth_first_deep(Plan.getEntry());
1784   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1785     for (VPRecipeBase &Recipe : *VPBB) {
1786       if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
1787         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1788         VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
1789         if (AddrDef && WidenRec->isConsecutive() &&
1790             BlockNeedsPredication(UnderlyingInstr.getParent()))
1791           CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
1792       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1793         VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
1794         if (AddrDef) {
1795           // Check if any member of the interleave group needs predication.
1796           const InterleaveGroup<Instruction> *InterGroup =
1797               InterleaveRec->getInterleaveGroup();
1798           bool NeedPredication = false;
1799           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1800                I < NumMembers; ++I) {
1801             Instruction *Member = InterGroup->getMember(I);
1802             if (Member)
1803               NeedPredication |= BlockNeedsPredication(Member->getParent());
1804           }
1805 
1806           if (NeedPredication)
1807             CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
1808         }
1809       }
1810     }
1811   }
1812 }
1813 
1814 void VPlanTransforms::createInterleaveGroups(
1815     VPlan &Plan,
1816     const SmallPtrSetImpl<const InterleaveGroup<Instruction> *>
1817         &InterleaveGroups,
1818     VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) {
1819   if (InterleaveGroups.empty())
1820     return;
1821 
1822   // Interleave memory: for each Interleave Group we marked earlier as relevant
1823   // for this VPlan, replace the Recipes widening its memory instructions with a
1824   // single VPInterleaveRecipe at its insertion point.
1825   VPDominatorTree VPDT;
1826   VPDT.recalculate(Plan);
1827   for (const auto *IG : InterleaveGroups) {
1828     SmallVector<VPValue *, 4> StoredValues;
1829     for (unsigned i = 0; i < IG->getFactor(); ++i)
1830       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
1831         auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI));
1832         StoredValues.push_back(StoreR->getStoredValue());
1833       }
1834 
1835     bool NeedsMaskForGaps =
1836         IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed;
1837 
1838     Instruction *IRInsertPos = IG->getInsertPos();
1839     auto *InsertPos =
1840         cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
1841 
1842     // Get or create the start address for the interleave group.
1843     auto *Start =
1844         cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
1845     VPValue *Addr = Start->getAddr();
1846     VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
1847     if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
1848       // TODO: Hoist Addr's defining recipe (and any operands as needed) to
1849       // InsertPos or sink loads above zero members to join it.
1850       bool InBounds = false;
1851       if (auto *Gep = dyn_cast<GetElementPtrInst>(
1852               getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
1853         InBounds = Gep->isInBounds();
1854 
1855       // We cannot re-use the address of member zero because it does not
1856       // dominate the insert position. Instead, use the address of the insert
1857       // position and create a PtrAdd adjusting it to the address of member
1858       // zero.
1859       assert(IG->getIndex(IRInsertPos) != 0 &&
1860              "index of insert position shouldn't be zero");
1861       auto &DL = IRInsertPos->getDataLayout();
1862       APInt Offset(32,
1863                    DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
1864                        IG->getIndex(IRInsertPos),
1865                    /*IsSigned=*/true);
1866       VPValue *OffsetVPV = Plan.getOrAddLiveIn(
1867           ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset));
1868       VPBuilder B(InsertPos);
1869       Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV)
1870                       : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV);
1871     }
1872     auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
1873                                         InsertPos->getMask(), NeedsMaskForGaps);
1874     VPIG->insertBefore(InsertPos);
1875 
1876     unsigned J = 0;
1877     for (unsigned i = 0; i < IG->getFactor(); ++i)
1878       if (Instruction *Member = IG->getMember(i)) {
1879         VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
1880         if (!Member->getType()->isVoidTy()) {
1881           VPValue *OriginalV = MemberR->getVPSingleValue();
1882           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
1883           J++;
1884         }
1885         MemberR->eraseFromParent();
1886       }
1887   }
1888 }
1889 
1890 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) {
1891   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1892            vp_depth_first_deep(Plan.getEntry()))) {
1893     for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) {
1894       if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R))
1895         continue;
1896       auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1897       StringRef Name =
1898           isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv";
1899       auto *ScalarR =
1900           new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(),
1901                                 PhiR->getDebugLoc(), Name);
1902       ScalarR->insertBefore(PhiR);
1903       PhiR->replaceAllUsesWith(ScalarR);
1904       PhiR->eraseFromParent();
1905     }
1906   }
1907 }
1908 
1909 void VPlanTransforms::handleUncountableEarlyExit(
1910     VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop,
1911     BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) {
1912   VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
1913   auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting());
1914   VPBuilder Builder(LatchVPBB->getTerminator());
1915   auto *MiddleVPBB = Plan.getMiddleBlock();
1916   VPValue *IsEarlyExitTaken = nullptr;
1917 
1918   // Process the uncountable exiting block. Update IsEarlyExitTaken, which
1919   // tracks if the uncountable early exit has been taken. Also split the middle
1920   // block and have it conditionally branch to the early exit block if
1921   // EarlyExitTaken.
1922   auto *EarlyExitingBranch =
1923       cast<BranchInst>(UncountableExitingBlock->getTerminator());
1924   BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0);
1925   BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1);
1926 
1927   // The early exit block may or may not be the same as the "countable" exit
1928   // block. Creates a new VPIRBB for the early exit block in case it is distinct
1929   // from the countable exit block.
1930   // TODO: Introduce both exit blocks during VPlan skeleton construction.
1931   VPIRBasicBlock *VPEarlyExitBlock;
1932   if (OrigLoop->getUniqueExitBlock()) {
1933     VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]);
1934   } else {
1935     VPEarlyExitBlock = Plan.createVPIRBasicBlock(
1936         !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc);
1937   }
1938 
1939   VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask(
1940       OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc);
1941   auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond);
1942   IsEarlyExitTaken =
1943       Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond});
1944 
1945   VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split");
1946   VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle);
1947   VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock);
1948   NewMiddle->swapSuccessors();
1949 
1950   VPBuilder MiddleBuilder(NewMiddle);
1951   MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken});
1952 
1953   // Replace the condition controlling the non-early exit from the vector loop
1954   // with one exiting if either the original condition of the vector latch is
1955   // true or the early exit has been taken.
1956   auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
1957   assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount &&
1958          "Unexpected terminator");
1959   auto *IsLatchExitTaken =
1960       Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
1961                          LatchExitingBranch->getOperand(1));
1962   auto *AnyExitTaken = Builder.createNaryOp(
1963       Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
1964   Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
1965   LatchExitingBranch->eraseFromParent();
1966 }
1967