1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlan.h" 17 #include "VPlanAnalysis.h" 18 #include "VPlanCFG.h" 19 #include "VPlanDominatorTree.h" 20 #include "VPlanPatternMatch.h" 21 #include "VPlanUtils.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/PatternMatch.h" 30 31 using namespace llvm; 32 33 void VPlanTransforms::VPInstructionsToVPRecipes( 34 VPlanPtr &Plan, 35 function_ref<const InductionDescriptor *(PHINode *)> 36 GetIntOrFpInductionDescriptor, 37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 38 39 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 40 Plan->getVectorLoopRegion()); 41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 42 // Skip blocks outside region 43 if (!VPBB->getParent()) 44 break; 45 VPRecipeBase *Term = VPBB->getTerminator(); 46 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 47 // Introduce each ingredient into VPlan. 48 for (VPRecipeBase &Ingredient : 49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 50 51 VPValue *VPV = Ingredient.getVPSingleValue(); 52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 53 54 VPRecipeBase *NewRecipe = nullptr; 55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 57 const auto *II = GetIntOrFpInductionDescriptor(Phi); 58 if (!II) 59 continue; 60 61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 62 VPValue *Step = 63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 64 NewRecipe = new VPWidenIntOrFpInductionRecipe( 65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); 66 } else { 67 assert(isa<VPInstruction>(&Ingredient) && 68 "only VPInstructions expected here"); 69 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 70 // Create VPWidenMemoryRecipe for loads and stores. 71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 72 NewRecipe = new VPWidenLoadRecipe( 73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 74 false /*Consecutive*/, false /*Reverse*/, 75 Ingredient.getDebugLoc()); 76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 77 NewRecipe = new VPWidenStoreRecipe( 78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 80 Ingredient.getDebugLoc()); 81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 84 NewRecipe = new VPWidenIntrinsicRecipe( 85 *CI, getVectorIntrinsicIDForCall(CI, &TLI), 86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), 87 CI->getDebugLoc()); 88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 91 NewRecipe = new VPWidenCastRecipe( 92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 93 } else { 94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 95 } 96 } 97 98 NewRecipe->insertBefore(&Ingredient); 99 if (NewRecipe->getNumDefinedValues() == 1) 100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 101 else 102 assert(NewRecipe->getNumDefinedValues() == 0 && 103 "Only recpies with zero or one defined values expected"); 104 Ingredient.eraseFromParent(); 105 } 106 } 107 } 108 109 static bool sinkScalarOperands(VPlan &Plan) { 110 auto Iter = vp_depth_first_deep(Plan.getEntry()); 111 bool Changed = false; 112 // First, collect the operands of all recipes in replicate blocks as seeds for 113 // sinking. 114 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 118 continue; 119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 121 continue; 122 for (auto &Recipe : *VPBB) { 123 for (VPValue *Op : Recipe.operands()) 124 if (auto *Def = 125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 126 WorkList.insert(std::make_pair(VPBB, Def)); 127 } 128 } 129 130 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 131 // Try to sink each replicate or scalar IV steps recipe in the worklist. 132 for (unsigned I = 0; I != WorkList.size(); ++I) { 133 VPBasicBlock *SinkTo; 134 VPSingleDefRecipe *SinkCandidate; 135 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 136 if (SinkCandidate->getParent() == SinkTo || 137 SinkCandidate->mayHaveSideEffects() || 138 SinkCandidate->mayReadOrWriteMemory()) 139 continue; 140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 141 if (!ScalarVFOnly && RepR->isUniform()) 142 continue; 143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 144 continue; 145 146 bool NeedsDuplicating = false; 147 // All recipe users of the sink candidate must be in the same block SinkTo 148 // or all users outside of SinkTo must be uniform-after-vectorization ( 149 // i.e., only first lane is used) . In the latter case, we need to duplicate 150 // SinkCandidate. 151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 152 SinkCandidate](VPUser *U) { 153 auto *UI = cast<VPRecipeBase>(U); 154 if (UI->getParent() == SinkTo) 155 return true; 156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 157 // We only know how to duplicate VPRecipeRecipes for now. 158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 159 }; 160 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 161 continue; 162 163 if (NeedsDuplicating) { 164 if (ScalarVFOnly) 165 continue; 166 Instruction *I = SinkCandidate->getUnderlyingInstr(); 167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 168 // TODO: add ".cloned" suffix to name of Clone's VPValue. 169 170 Clone->insertBefore(SinkCandidate); 171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 173 }); 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 if (auto *Def = 178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 179 WorkList.insert(std::make_pair(SinkTo, Def)); 180 Changed = true; 181 } 182 return Changed; 183 } 184 185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 186 /// the mask. 187 VPValue *getPredicatedMask(VPRegionBlock *R) { 188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 189 if (!EntryBB || EntryBB->size() != 1 || 190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 191 return nullptr; 192 193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 194 } 195 196 /// If \p R is a triangle region, return the 'then' block of the triangle. 197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 199 if (EntryBB->getNumSuccessors() != 2) 200 return nullptr; 201 202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 204 if (!Succ0 || !Succ1) 205 return nullptr; 206 207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 208 return nullptr; 209 if (Succ0->getSingleSuccessor() == Succ1) 210 return Succ0; 211 if (Succ1->getSingleSuccessor() == Succ0) 212 return Succ1; 213 return nullptr; 214 } 215 216 // Merge replicate regions in their successor region, if a replicate region 217 // is connected to a successor replicate region with the same predicate by a 218 // single, empty VPBasicBlock. 219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 220 SetVector<VPRegionBlock *> DeletedRegions; 221 222 // Collect replicate regions followed by an empty block, followed by another 223 // replicate region with matching masks to process front. This is to avoid 224 // iterator invalidation issues while merging regions. 225 SmallVector<VPRegionBlock *, 8> WorkList; 226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 227 vp_depth_first_deep(Plan.getEntry()))) { 228 if (!Region1->isReplicator()) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2 || !Region2->isReplicator()) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 245 assert(Mask1 && Mask2 && "both region must have conditions"); 246 WorkList.push_back(Region1); 247 } 248 249 // Move recipes from Region1 to its successor region, if both are triangles. 250 for (VPRegionBlock *Region1 : WorkList) { 251 if (DeletedRegions.contains(Region1)) 252 continue; 253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 255 256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 258 if (!Then1 || !Then2) 259 continue; 260 261 // Note: No fusion-preventing memory dependencies are expected in either 262 // region. Such dependencies should be rejected during earlier dependence 263 // checks, which guarantee accesses can be re-ordered for vectorization. 264 // 265 // Move recipes to the successor region. 266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 268 269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 271 272 // Move VPPredInstPHIRecipes from the merge block to the successor region's 273 // merge block. Update all users inside the successor region to use the 274 // original values. 275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 276 VPValue *PredInst1 = 277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 280 return cast<VPRecipeBase>(&U)->getParent() == Then2; 281 }); 282 283 // Remove phi recipes that are unused after merging the regions. 284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 285 Phi1ToMove.eraseFromParent(); 286 continue; 287 } 288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 289 } 290 291 // Finally, remove the first region. 292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 293 VPBlockUtils::disconnectBlocks(Pred, Region1); 294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 295 } 296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 297 DeletedRegions.insert(Region1); 298 } 299 300 for (VPRegionBlock *ToDelete : DeletedRegions) 301 delete ToDelete; 302 return !DeletedRegions.empty(); 303 } 304 305 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 306 VPlan &Plan) { 307 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 308 // Build the triangular if-then region. 309 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 310 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 311 auto *BlockInMask = PredRecipe->getMask(); 312 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 313 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 314 315 // Replace predicated replicate recipe with a replicate recipe without a 316 // mask but in the replicate region. 317 auto *RecipeWithoutMask = new VPReplicateRecipe( 318 PredRecipe->getUnderlyingInstr(), 319 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 320 PredRecipe->isUniform()); 321 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 322 323 VPPredInstPHIRecipe *PHIRecipe = nullptr; 324 if (PredRecipe->getNumUsers() != 0) { 325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, 326 RecipeWithoutMask->getDebugLoc()); 327 PredRecipe->replaceAllUsesWith(PHIRecipe); 328 PHIRecipe->setOperand(0, RecipeWithoutMask); 329 } 330 PredRecipe->eraseFromParent(); 331 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 332 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 333 334 // Note: first set Entry as region entry and then connect successors starting 335 // from it in order, to propagate the "parent" of each VPBasicBlock. 336 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 337 VPBlockUtils::connectBlocks(Pred, Exiting); 338 339 return Region; 340 } 341 342 static void addReplicateRegions(VPlan &Plan) { 343 SmallVector<VPReplicateRecipe *> WorkList; 344 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 345 vp_depth_first_deep(Plan.getEntry()))) { 346 for (VPRecipeBase &R : *VPBB) 347 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 348 if (RepR->isPredicated()) 349 WorkList.push_back(RepR); 350 } 351 } 352 353 unsigned BBNum = 0; 354 for (VPReplicateRecipe *RepR : WorkList) { 355 VPBasicBlock *CurrentBlock = RepR->getParent(); 356 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 357 358 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 359 SplitBlock->setName( 360 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 361 // Record predicated instructions for above packing optimizations. 362 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 363 Region->setParent(CurrentBlock->getParent()); 364 VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region); 365 } 366 } 367 368 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 369 /// the predecessor has a single successor. 370 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 371 SmallVector<VPBasicBlock *> WorkList; 372 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 373 vp_depth_first_deep(Plan.getEntry()))) { 374 // Don't fold the blocks in the skeleton of the Plan into their single 375 // predecessors for now. 376 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 377 if (!VPBB->getParent()) 378 continue; 379 auto *PredVPBB = 380 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 381 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || 382 isa<VPIRBasicBlock>(PredVPBB)) 383 continue; 384 WorkList.push_back(VPBB); 385 } 386 387 for (VPBasicBlock *VPBB : WorkList) { 388 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 389 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 390 R.moveBefore(*PredVPBB, PredVPBB->end()); 391 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 392 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 393 if (ParentRegion && ParentRegion->getExiting() == VPBB) 394 ParentRegion->setExiting(PredVPBB); 395 for (auto *Succ : to_vector(VPBB->successors())) { 396 VPBlockUtils::disconnectBlocks(VPBB, Succ); 397 VPBlockUtils::connectBlocks(PredVPBB, Succ); 398 } 399 delete VPBB; 400 } 401 return !WorkList.empty(); 402 } 403 404 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 405 // Convert masked VPReplicateRecipes to if-then region blocks. 406 addReplicateRegions(Plan); 407 408 bool ShouldSimplify = true; 409 while (ShouldSimplify) { 410 ShouldSimplify = sinkScalarOperands(Plan); 411 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 412 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 413 } 414 } 415 416 /// Remove redundant casts of inductions. 417 /// 418 /// Such redundant casts are casts of induction variables that can be ignored, 419 /// because we already proved that the casted phi is equal to the uncasted phi 420 /// in the vectorized loop. There is no need to vectorize the cast - the same 421 /// value can be used for both the phi and casts in the vector loop. 422 static void removeRedundantInductionCasts(VPlan &Plan) { 423 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 424 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 425 if (!IV || IV->getTruncInst()) 426 continue; 427 428 // A sequence of IR Casts has potentially been recorded for IV, which 429 // *must be bypassed* when the IV is vectorized, because the vectorized IV 430 // will produce the desired casted value. This sequence forms a def-use 431 // chain and is provided in reverse order, ending with the cast that uses 432 // the IV phi. Search for the recipe of the last cast in the chain and 433 // replace it with the original IV. Note that only the final cast is 434 // expected to have users outside the cast-chain and the dead casts left 435 // over will be cleaned up later. 436 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 437 VPValue *FindMyCast = IV; 438 for (Instruction *IRCast : reverse(Casts)) { 439 VPSingleDefRecipe *FoundUserCast = nullptr; 440 for (auto *U : FindMyCast->users()) { 441 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 442 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 443 FoundUserCast = UserCast; 444 break; 445 } 446 } 447 FindMyCast = FoundUserCast; 448 } 449 FindMyCast->replaceAllUsesWith(IV); 450 } 451 } 452 453 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 454 /// recipe, if it exists. 455 static void removeRedundantCanonicalIVs(VPlan &Plan) { 456 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 457 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 458 for (VPUser *U : CanonicalIV->users()) { 459 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 460 if (WidenNewIV) 461 break; 462 } 463 464 if (!WidenNewIV) 465 return; 466 467 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 468 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 469 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 470 471 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 472 continue; 473 474 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 475 // everything WidenNewIV's users need. That is, WidenOriginalIV will 476 // generate a vector phi or all users of WidenNewIV demand the first lane 477 // only. 478 if (any_of(WidenOriginalIV->users(), 479 [WidenOriginalIV](VPUser *U) { 480 return !U->usesScalars(WidenOriginalIV); 481 }) || 482 vputils::onlyFirstLaneUsed(WidenNewIV)) { 483 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 484 WidenNewIV->eraseFromParent(); 485 return; 486 } 487 } 488 } 489 490 /// Returns true if \p R is dead and can be removed. 491 static bool isDeadRecipe(VPRecipeBase &R) { 492 using namespace llvm::PatternMatch; 493 // Do remove conditional assume instructions as their conditions may be 494 // flattened. 495 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 496 bool IsConditionalAssume = 497 RepR && RepR->isPredicated() && 498 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 499 if (IsConditionalAssume) 500 return true; 501 502 if (R.mayHaveSideEffects()) 503 return false; 504 505 // Recipe is dead if no user keeps the recipe alive. 506 return all_of(R.definedValues(), 507 [](VPValue *V) { return V->getNumUsers() == 0; }); 508 } 509 510 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { 511 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 512 Plan.getEntry()); 513 514 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 515 // The recipes in the block are processed in reverse order, to catch chains 516 // of dead recipes. 517 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 518 if (isDeadRecipe(R)) 519 R.eraseFromParent(); 520 } 521 } 522 } 523 524 static VPScalarIVStepsRecipe * 525 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 526 Instruction::BinaryOps InductionOpcode, 527 FPMathOperator *FPBinOp, Instruction *TruncI, 528 VPValue *StartV, VPValue *Step, VPBuilder &Builder) { 529 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 530 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 531 VPSingleDefRecipe *BaseIV = CanonicalIV; 532 if (!CanonicalIV->isCanonical(Kind, StartV, Step)) { 533 BaseIV = Builder.createDerivedIV(Kind, FPBinOp, StartV, CanonicalIV, Step, 534 "offset.idx"); 535 } 536 537 // Truncate base induction if needed. 538 Type *CanonicalIVType = CanonicalIV->getScalarType(); 539 VPTypeAnalysis TypeInfo(CanonicalIVType); 540 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 541 if (TruncI) { 542 Type *TruncTy = TruncI->getType(); 543 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 544 "Not truncating."); 545 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 546 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy); 547 ResultTy = TruncTy; 548 } 549 550 // Truncate step if needed. 551 Type *StepTy = TypeInfo.inferScalarType(Step); 552 if (ResultTy != StepTy) { 553 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 554 "Not truncating."); 555 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 556 auto *VecPreheader = 557 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 558 VPBuilder::InsertPointGuard Guard(Builder); 559 Builder.setInsertPoint(VecPreheader); 560 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy); 561 } 562 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step); 563 } 564 565 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 566 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 567 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 568 /// require vectors while other require scalars, the scalar uses need to extract 569 /// the scalars from the generated vectors (Note that this is different to how 570 /// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe, 571 /// if any of its users needs scalar values, by providing them scalar steps 572 /// built on the canonical scalar IV and update the original IV's users. This is 573 /// an optional optimization to reduce the needs of vector extracts. 574 static void legalizeAndOptimizeInductions(VPlan &Plan) { 575 SmallVector<VPRecipeBase *> ToRemove; 576 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 577 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 578 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 579 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 580 // Replace wide pointer inductions which have only their scalars used by 581 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 582 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 583 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 584 continue; 585 586 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 587 VPValue *StartV = 588 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 589 VPValue *StepV = PtrIV->getOperand(1); 590 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 591 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 592 nullptr, StartV, StepV, Builder); 593 594 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps, 595 PtrIV->getDebugLoc(), "next.gep"); 596 597 PtrIV->replaceAllUsesWith(PtrAdd); 598 continue; 599 } 600 601 // Replace widened induction with scalar steps for users that only use 602 // scalars. 603 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 604 if (!WideIV) 605 continue; 606 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 607 return U->usesScalars(WideIV); 608 })) 609 continue; 610 611 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 612 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 613 Plan, ID.getKind(), ID.getInductionOpcode(), 614 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 615 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 616 Builder); 617 618 // Update scalar users of IV to use Step instead. 619 if (!HasOnlyVectorVFs) 620 WideIV->replaceAllUsesWith(Steps); 621 else 622 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 623 return U.usesScalars(WideIV); 624 }); 625 } 626 } 627 628 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 629 /// them with already existing recipes expanding the same SCEV expression. 630 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 631 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 632 633 for (VPRecipeBase &R : 634 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 635 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 636 if (!ExpR) 637 continue; 638 639 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 640 if (I.second) 641 continue; 642 ExpR->replaceAllUsesWith(I.first->second); 643 ExpR->eraseFromParent(); 644 } 645 } 646 647 static void recursivelyDeleteDeadRecipes(VPValue *V) { 648 SmallVector<VPValue *> WorkList; 649 SmallPtrSet<VPValue *, 8> Seen; 650 WorkList.push_back(V); 651 652 while (!WorkList.empty()) { 653 VPValue *Cur = WorkList.pop_back_val(); 654 if (!Seen.insert(Cur).second) 655 continue; 656 VPRecipeBase *R = Cur->getDefiningRecipe(); 657 if (!R) 658 continue; 659 if (!isDeadRecipe(*R)) 660 continue; 661 WorkList.append(R->op_begin(), R->op_end()); 662 R->eraseFromParent(); 663 } 664 } 665 666 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 667 unsigned BestUF, 668 PredicatedScalarEvolution &PSE) { 669 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 670 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 671 VPBasicBlock *ExitingVPBB = 672 Plan.getVectorLoopRegion()->getExitingBasicBlock(); 673 auto *Term = &ExitingVPBB->back(); 674 // Try to simplify the branch condition if TC <= VF * UF when preparing to 675 // execute the plan for the main vector loop. We only do this if the 676 // terminator is: 677 // 1. BranchOnCount, or 678 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 679 using namespace llvm::VPlanPatternMatch; 680 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 681 !match(Term, 682 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 683 return; 684 685 ScalarEvolution &SE = *PSE.getSE(); 686 const SCEV *TripCount = 687 vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE); 688 assert(!isa<SCEVCouldNotCompute>(TripCount) && 689 "Trip count SCEV must be computable"); 690 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 691 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 692 if (TripCount->isZero() || 693 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 694 return; 695 696 LLVMContext &Ctx = SE.getContext(); 697 auto *BOC = new VPInstruction( 698 VPInstruction::BranchOnCond, 699 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc()); 700 701 SmallVector<VPValue *> PossiblyDead(Term->operands()); 702 Term->eraseFromParent(); 703 for (VPValue *Op : PossiblyDead) 704 recursivelyDeleteDeadRecipes(Op); 705 ExitingVPBB->appendRecipe(BOC); 706 Plan.setVF(BestVF); 707 Plan.setUF(BestUF); 708 // TODO: Further simplifications are possible 709 // 1. Replace inductions with constants. 710 // 2. Replace vector loop region with VPBasicBlock. 711 } 712 713 /// Sink users of \p FOR after the recipe defining the previous value \p 714 /// Previous of the recurrence. \returns true if all users of \p FOR could be 715 /// re-arranged as needed or false if it is not possible. 716 static bool 717 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 718 VPRecipeBase *Previous, 719 VPDominatorTree &VPDT) { 720 // Collect recipes that need sinking. 721 SmallVector<VPRecipeBase *> WorkList; 722 SmallPtrSet<VPRecipeBase *, 8> Seen; 723 Seen.insert(Previous); 724 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 725 // The previous value must not depend on the users of the recurrence phi. In 726 // that case, FOR is not a fixed order recurrence. 727 if (SinkCandidate == Previous) 728 return false; 729 730 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 731 !Seen.insert(SinkCandidate).second || 732 VPDT.properlyDominates(Previous, SinkCandidate)) 733 return true; 734 735 if (SinkCandidate->mayHaveSideEffects()) 736 return false; 737 738 WorkList.push_back(SinkCandidate); 739 return true; 740 }; 741 742 // Recursively sink users of FOR after Previous. 743 WorkList.push_back(FOR); 744 for (unsigned I = 0; I != WorkList.size(); ++I) { 745 VPRecipeBase *Current = WorkList[I]; 746 assert(Current->getNumDefinedValues() == 1 && 747 "only recipes with a single defined value expected"); 748 749 for (VPUser *User : Current->getVPSingleValue()->users()) { 750 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User))) 751 return false; 752 } 753 } 754 755 // Keep recipes to sink ordered by dominance so earlier instructions are 756 // processed first. 757 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 758 return VPDT.properlyDominates(A, B); 759 }); 760 761 for (VPRecipeBase *SinkCandidate : WorkList) { 762 if (SinkCandidate == FOR) 763 continue; 764 765 SinkCandidate->moveAfter(Previous); 766 Previous = SinkCandidate; 767 } 768 return true; 769 } 770 771 /// Try to hoist \p Previous and its operands before all users of \p FOR. 772 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, 773 VPRecipeBase *Previous, 774 VPDominatorTree &VPDT) { 775 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) 776 return false; 777 778 // Collect recipes that need hoisting. 779 SmallVector<VPRecipeBase *> HoistCandidates; 780 SmallPtrSet<VPRecipeBase *, 8> Visited; 781 VPRecipeBase *HoistPoint = nullptr; 782 // Find the closest hoist point by looking at all users of FOR and selecting 783 // the recipe dominating all other users. 784 for (VPUser *U : FOR->users()) { 785 auto *R = cast<VPRecipeBase>(U); 786 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint)) 787 HoistPoint = R; 788 } 789 assert(all_of(FOR->users(), 790 [&VPDT, HoistPoint](VPUser *U) { 791 auto *R = cast<VPRecipeBase>(U); 792 return HoistPoint == R || 793 VPDT.properlyDominates(HoistPoint, R); 794 }) && 795 "HoistPoint must dominate all users of FOR"); 796 797 auto NeedsHoisting = [HoistPoint, &VPDT, 798 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { 799 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); 800 if (!HoistCandidate) 801 return nullptr; 802 VPRegionBlock *EnclosingLoopRegion = 803 HoistCandidate->getParent()->getEnclosingLoopRegion(); 804 assert((!HoistCandidate->getParent()->getParent() || 805 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && 806 "CFG in VPlan should still be flat, without replicate regions"); 807 // Hoist candidate was already visited, no need to hoist. 808 if (!Visited.insert(HoistCandidate).second) 809 return nullptr; 810 811 // Candidate is outside loop region or a header phi, dominates FOR users w/o 812 // hoisting. 813 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate)) 814 return nullptr; 815 816 // If we reached a recipe that dominates HoistPoint, we don't need to 817 // hoist the recipe. 818 if (VPDT.properlyDominates(HoistCandidate, HoistPoint)) 819 return nullptr; 820 return HoistCandidate; 821 }; 822 auto CanHoist = [&](VPRecipeBase *HoistCandidate) { 823 // Avoid hoisting candidates with side-effects, as we do not yet analyze 824 // associated dependencies. 825 return !HoistCandidate->mayHaveSideEffects(); 826 }; 827 828 if (!NeedsHoisting(Previous->getVPSingleValue())) 829 return true; 830 831 // Recursively try to hoist Previous and its operands before all users of FOR. 832 HoistCandidates.push_back(Previous); 833 834 for (unsigned I = 0; I != HoistCandidates.size(); ++I) { 835 VPRecipeBase *Current = HoistCandidates[I]; 836 assert(Current->getNumDefinedValues() == 1 && 837 "only recipes with a single defined value expected"); 838 if (!CanHoist(Current)) 839 return false; 840 841 for (VPValue *Op : Current->operands()) { 842 // If we reach FOR, it means the original Previous depends on some other 843 // recurrence that in turn depends on FOR. If that is the case, we would 844 // also need to hoist recipes involving the other FOR, which may break 845 // dependencies. 846 if (Op == FOR) 847 return false; 848 849 if (auto *R = NeedsHoisting(Op)) 850 HoistCandidates.push_back(R); 851 } 852 } 853 854 // Order recipes to hoist by dominance so earlier instructions are processed 855 // first. 856 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 857 return VPDT.properlyDominates(A, B); 858 }); 859 860 for (VPRecipeBase *HoistCandidate : HoistCandidates) { 861 HoistCandidate->moveBefore(*HoistPoint->getParent(), 862 HoistPoint->getIterator()); 863 } 864 865 return true; 866 } 867 868 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 869 VPBuilder &LoopBuilder) { 870 VPDominatorTree VPDT; 871 VPDT.recalculate(Plan); 872 873 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 874 for (VPRecipeBase &R : 875 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 876 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 877 RecurrencePhis.push_back(FOR); 878 879 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 880 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 881 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 882 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 883 // to terminate. 884 while (auto *PrevPhi = 885 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 886 assert(PrevPhi->getParent() == FOR->getParent()); 887 assert(SeenPhis.insert(PrevPhi).second); 888 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 889 } 890 891 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && 892 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) 893 return false; 894 895 // Introduce a recipe to combine the incoming and previous values of a 896 // fixed-order recurrence. 897 VPBasicBlock *InsertBlock = Previous->getParent(); 898 if (isa<VPHeaderPHIRecipe>(Previous)) 899 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 900 else 901 LoopBuilder.setInsertPoint(InsertBlock, 902 std::next(Previous->getIterator())); 903 904 auto *RecurSplice = cast<VPInstruction>( 905 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 906 {FOR, FOR->getBackedgeValue()})); 907 908 FOR->replaceAllUsesWith(RecurSplice); 909 // Set the first operand of RecurSplice to FOR again, after replacing 910 // all users. 911 RecurSplice->setOperand(0, FOR); 912 } 913 return true; 914 } 915 916 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 917 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 918 for (unsigned I = 0; I != Users.size(); ++I) { 919 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]); 920 if (isa<VPHeaderPHIRecipe>(Cur)) 921 continue; 922 for (VPValue *V : Cur->definedValues()) 923 Users.insert(V->user_begin(), V->user_end()); 924 } 925 return Users.takeVector(); 926 } 927 928 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 929 for (VPRecipeBase &R : 930 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 931 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 932 if (!PhiR) 933 continue; 934 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 935 RecurKind RK = RdxDesc.getRecurrenceKind(); 936 if (RK != RecurKind::Add && RK != RecurKind::Mul) 937 continue; 938 939 for (VPUser *U : collectUsersRecursively(PhiR)) 940 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 941 RecWithFlags->dropPoisonGeneratingFlags(); 942 } 943 } 944 } 945 946 /// Try to simplify recipe \p R. 947 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 948 using namespace llvm::VPlanPatternMatch; 949 950 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 951 // Try to remove redundant blend recipes. 952 SmallPtrSet<VPValue *, 4> UniqueValues; 953 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False())) 954 UniqueValues.insert(Blend->getIncomingValue(0)); 955 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 956 if (!match(Blend->getMask(I), m_False())) 957 UniqueValues.insert(Blend->getIncomingValue(I)); 958 959 if (UniqueValues.size() == 1) { 960 Blend->replaceAllUsesWith(*UniqueValues.begin()); 961 Blend->eraseFromParent(); 962 return; 963 } 964 965 if (Blend->isNormalized()) 966 return; 967 968 // Normalize the blend so its first incoming value is used as the initial 969 // value with the others blended into it. 970 971 unsigned StartIndex = 0; 972 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 973 // If a value's mask is used only by the blend then is can be deadcoded. 974 // TODO: Find the most expensive mask that can be deadcoded, or a mask 975 // that's used by multiple blends where it can be removed from them all. 976 VPValue *Mask = Blend->getMask(I); 977 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) { 978 StartIndex = I; 979 break; 980 } 981 } 982 983 SmallVector<VPValue *, 4> OperandsWithMask; 984 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex)); 985 986 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 987 if (I == StartIndex) 988 continue; 989 OperandsWithMask.push_back(Blend->getIncomingValue(I)); 990 OperandsWithMask.push_back(Blend->getMask(I)); 991 } 992 993 auto *NewBlend = new VPBlendRecipe( 994 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask); 995 NewBlend->insertBefore(&R); 996 997 VPValue *DeadMask = Blend->getMask(StartIndex); 998 Blend->replaceAllUsesWith(NewBlend); 999 Blend->eraseFromParent(); 1000 recursivelyDeleteDeadRecipes(DeadMask); 1001 return; 1002 } 1003 1004 VPValue *A; 1005 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 1006 VPValue *Trunc = R.getVPSingleValue(); 1007 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 1008 Type *ATy = TypeInfo.inferScalarType(A); 1009 if (TruncTy == ATy) { 1010 Trunc->replaceAllUsesWith(A); 1011 } else { 1012 // Don't replace a scalarizing recipe with a widened cast. 1013 if (isa<VPReplicateRecipe>(&R)) 1014 return; 1015 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 1016 1017 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 1018 ? Instruction::SExt 1019 : Instruction::ZExt; 1020 auto *VPC = 1021 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 1022 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 1023 // UnderlyingExt has distinct return type, used to retain legacy cost. 1024 VPC->setUnderlyingValue(UnderlyingExt); 1025 } 1026 VPC->insertBefore(&R); 1027 Trunc->replaceAllUsesWith(VPC); 1028 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 1029 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 1030 VPC->insertBefore(&R); 1031 Trunc->replaceAllUsesWith(VPC); 1032 } 1033 } 1034 #ifndef NDEBUG 1035 // Verify that the cached type info is for both A and its users is still 1036 // accurate by comparing it to freshly computed types. 1037 VPTypeAnalysis TypeInfo2( 1038 R.getParent()->getPlan()->getCanonicalIV()->getScalarType()); 1039 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 1040 for (VPUser *U : A->users()) { 1041 auto *R = cast<VPRecipeBase>(U); 1042 for (VPValue *VPV : R->definedValues()) 1043 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 1044 } 1045 #endif 1046 } 1047 1048 // Simplify (X && Y) || (X && !Y) -> X. 1049 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 1050 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 1051 // recipes to be visited during simplification. 1052 VPValue *X, *Y, *X1, *Y1; 1053 if (match(&R, 1054 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 1055 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 1056 X == X1 && Y == Y1) { 1057 R.getVPSingleValue()->replaceAllUsesWith(X); 1058 R.eraseFromParent(); 1059 return; 1060 } 1061 1062 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 1063 return R.getVPSingleValue()->replaceAllUsesWith(A); 1064 1065 if (match(&R, m_Not(m_Not(m_VPValue(A))))) 1066 return R.getVPSingleValue()->replaceAllUsesWith(A); 1067 } 1068 1069 /// Move loop-invariant recipes out of the vector loop region in \p Plan. 1070 static void licm(VPlan &Plan) { 1071 VPBasicBlock *Preheader = Plan.getVectorPreheader(); 1072 1073 // Return true if we do not know how to (mechanically) hoist a given recipe 1074 // out of a loop region. Does not address legality concerns such as aliasing 1075 // or speculation safety. 1076 auto CannotHoistRecipe = [](VPRecipeBase &R) { 1077 // Allocas cannot be hoisted. 1078 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 1079 return RepR && RepR->getOpcode() == Instruction::Alloca; 1080 }; 1081 1082 // Hoist any loop invariant recipes from the vector loop region to the 1083 // preheader. Preform a shallow traversal of the vector loop region, to 1084 // exclude recipes in replicate regions. 1085 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1086 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1087 vp_depth_first_shallow(LoopRegion->getEntry()))) { 1088 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1089 if (CannotHoistRecipe(R)) 1090 continue; 1091 // TODO: Relax checks in the future, e.g. we could also hoist reads, if 1092 // their memory location is not modified in the vector loop. 1093 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || 1094 any_of(R.operands(), [](VPValue *Op) { 1095 return !Op->isDefinedOutsideLoopRegions(); 1096 })) 1097 continue; 1098 R.moveBefore(*Preheader, Preheader->end()); 1099 } 1100 } 1101 } 1102 1103 /// Try to simplify the recipes in \p Plan. 1104 static void simplifyRecipes(VPlan &Plan) { 1105 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 1106 Plan.getEntry()); 1107 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1108 VPTypeAnalysis TypeInfo(CanonicalIVType); 1109 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 1110 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1111 simplifyRecipe(R, TypeInfo); 1112 } 1113 } 1114 } 1115 1116 void VPlanTransforms::truncateToMinimalBitwidths( 1117 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { 1118 #ifndef NDEBUG 1119 // Count the processed recipes and cross check the count later with MinBWs 1120 // size, to make sure all entries in MinBWs have been handled. 1121 unsigned NumProcessedRecipes = 0; 1122 #endif 1123 // Keep track of created truncates, so they can be re-used. Note that we 1124 // cannot use RAUW after creating a new truncate, as this would could make 1125 // other uses have different types for their operands, making them invalidly 1126 // typed. 1127 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1128 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1129 VPTypeAnalysis TypeInfo(CanonicalIVType); 1130 VPBasicBlock *PH = Plan.getVectorPreheader(); 1131 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1132 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1133 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1134 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1135 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1136 continue; 1137 1138 VPValue *ResultVPV = R.getVPSingleValue(); 1139 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1140 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1141 if (!NewResSizeInBits) 1142 continue; 1143 1144 #ifndef NDEBUG 1145 NumProcessedRecipes++; 1146 #endif 1147 // If the value wasn't vectorized, we must maintain the original scalar 1148 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1149 // skip casts which do not need to be handled explicitly here, as 1150 // redundant casts will be removed during recipe simplification. 1151 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1152 #ifndef NDEBUG 1153 // If any of the operands is a live-in and not used by VPWidenRecipe or 1154 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1155 // processed as well. When MinBWs is currently constructed, there is no 1156 // information about whether recipes are widened or replicated and in 1157 // case they are reciplicated the operands are not truncated. Counting 1158 // them them here ensures we do not miss any recipes in MinBWs. 1159 // TODO: Remove once the analysis is done on VPlan. 1160 for (VPValue *Op : R.operands()) { 1161 if (!Op->isLiveIn()) 1162 continue; 1163 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1164 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1165 none_of(Op->users(), 1166 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) { 1167 // Add an entry to ProcessedTruncs to avoid counting the same 1168 // operand multiple times. 1169 ProcessedTruncs[Op] = nullptr; 1170 NumProcessedRecipes += 1; 1171 } 1172 } 1173 #endif 1174 continue; 1175 } 1176 1177 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1178 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1179 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1180 (void)OldResSizeInBits; 1181 1182 LLVMContext &Ctx = CanonicalIVType->getContext(); 1183 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1184 1185 // Any wrapping introduced by shrinking this operation shouldn't be 1186 // considered undefined behavior. So, we can't unconditionally copy 1187 // arithmetic wrapping flags to VPW. 1188 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1189 VPW->dropPoisonGeneratingFlags(); 1190 1191 using namespace llvm::VPlanPatternMatch; 1192 if (OldResSizeInBits != NewResSizeInBits && 1193 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1194 // Extend result to original width. 1195 auto *Ext = 1196 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1197 Ext->insertAfter(&R); 1198 ResultVPV->replaceAllUsesWith(Ext); 1199 Ext->setOperand(0, ResultVPV); 1200 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1201 } else { 1202 assert( 1203 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1204 "Only ICmps should not need extending the result."); 1205 } 1206 1207 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1208 if (isa<VPWidenLoadRecipe>(&R)) 1209 continue; 1210 1211 // Shrink operands by introducing truncates as needed. 1212 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1213 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1214 auto *Op = R.getOperand(Idx); 1215 unsigned OpSizeInBits = 1216 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1217 if (OpSizeInBits == NewResSizeInBits) 1218 continue; 1219 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1220 auto [ProcessedIter, IterIsEmpty] = 1221 ProcessedTruncs.insert({Op, nullptr}); 1222 VPWidenCastRecipe *NewOp = 1223 IterIsEmpty 1224 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1225 : ProcessedIter->second; 1226 R.setOperand(Idx, NewOp); 1227 if (!IterIsEmpty) 1228 continue; 1229 ProcessedIter->second = NewOp; 1230 if (!Op->isLiveIn()) { 1231 NewOp->insertBefore(&R); 1232 } else { 1233 PH->appendRecipe(NewOp); 1234 #ifndef NDEBUG 1235 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1236 bool IsContained = MinBWs.contains(OpInst); 1237 NumProcessedRecipes += IsContained; 1238 #endif 1239 } 1240 } 1241 1242 } 1243 } 1244 1245 assert(MinBWs.size() == NumProcessedRecipes && 1246 "some entries in MinBWs haven't been processed"); 1247 } 1248 1249 void VPlanTransforms::optimize(VPlan &Plan) { 1250 removeRedundantCanonicalIVs(Plan); 1251 removeRedundantInductionCasts(Plan); 1252 1253 simplifyRecipes(Plan); 1254 legalizeAndOptimizeInductions(Plan); 1255 removeDeadRecipes(Plan); 1256 1257 createAndOptimizeReplicateRegions(Plan); 1258 1259 removeRedundantExpandSCEVRecipes(Plan); 1260 mergeBlocksIntoPredecessors(Plan); 1261 licm(Plan); 1262 } 1263 1264 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1265 // the loop terminator with a branch-on-cond recipe with the negated 1266 // active-lane-mask as operand. Note that this turns the loop into an 1267 // uncountable one. Only the existing terminator is replaced, all other existing 1268 // recipes/users remain unchanged, except for poison-generating flags being 1269 // dropped from the canonical IV increment. Return the created 1270 // VPActiveLaneMaskPHIRecipe. 1271 // 1272 // The function uses the following definitions: 1273 // 1274 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1275 // calculate-trip-count-minus-VF (original TC) : original TC 1276 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1277 // CanonicalIVPhi : CanonicalIVIncrement 1278 // %StartV is the canonical induction start value. 1279 // 1280 // The function adds the following recipes: 1281 // 1282 // vector.ph: 1283 // %TripCount = calculate-trip-count-minus-VF (original TC) 1284 // [if DataWithControlFlowWithoutRuntimeCheck] 1285 // %EntryInc = canonical-iv-increment-for-part %StartV 1286 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1287 // 1288 // vector.body: 1289 // ... 1290 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1291 // ... 1292 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1293 // %ALM = active-lane-mask %InLoopInc, TripCount 1294 // %Negated = Not %ALM 1295 // branch-on-cond %Negated 1296 // 1297 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1298 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1299 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1300 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1301 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1302 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1303 1304 auto *CanonicalIVIncrement = 1305 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1306 // TODO: Check if dropping the flags is needed if 1307 // !DataAndControlFlowWithoutRuntimeCheck. 1308 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1309 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1310 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1311 // we have to take unrolling into account. Each part needs to start at 1312 // Part * VF 1313 auto *VecPreheader = Plan.getVectorPreheader(); 1314 VPBuilder Builder(VecPreheader); 1315 1316 // Create the ActiveLaneMask instruction using the correct start values. 1317 VPValue *TC = Plan.getTripCount(); 1318 1319 VPValue *TripCount, *IncrementValue; 1320 if (!DataAndControlFlowWithoutRuntimeCheck) { 1321 // When the loop is guarded by a runtime overflow check for the loop 1322 // induction variable increment by VF, we can increment the value before 1323 // the get.active.lane mask and use the unmodified tripcount. 1324 IncrementValue = CanonicalIVIncrement; 1325 TripCount = TC; 1326 } else { 1327 // When avoiding a runtime check, the active.lane.mask inside the loop 1328 // uses a modified trip count and the induction variable increment is 1329 // done after the active.lane.mask intrinsic is called. 1330 IncrementValue = CanonicalIVPHI; 1331 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1332 {TC}, DL); 1333 } 1334 auto *EntryIncrement = Builder.createOverflowingOp( 1335 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1336 "index.part.next"); 1337 1338 // Create the active lane mask instruction in the VPlan preheader. 1339 auto *EntryALM = 1340 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1341 DL, "active.lane.mask.entry"); 1342 1343 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1344 // preheader ActiveLaneMask instruction. 1345 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1346 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1347 1348 // Create the active lane mask for the next iteration of the loop before the 1349 // original terminator. 1350 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1351 Builder.setInsertPoint(OriginalTerminator); 1352 auto *InLoopIncrement = 1353 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1354 {IncrementValue}, {false, false}, DL); 1355 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1356 {InLoopIncrement, TripCount}, DL, 1357 "active.lane.mask.next"); 1358 LaneMaskPhi->addOperand(ALM); 1359 1360 // Replace the original terminator with BranchOnCond. We have to invert the 1361 // mask here because a true condition means jumping to the exit block. 1362 auto *NotMask = Builder.createNot(ALM, DL); 1363 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1364 OriginalTerminator->eraseFromParent(); 1365 return LaneMaskPhi; 1366 } 1367 1368 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1369 /// WideCanonicalIV, backedge-taken-count) pattern. 1370 /// TODO: Introduce explicit recipe for header-mask instead of searching 1371 /// for the header-mask pattern manually. 1372 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1373 SmallVector<VPValue *> WideCanonicalIVs; 1374 auto *FoundWidenCanonicalIVUser = 1375 find_if(Plan.getCanonicalIV()->users(), 1376 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1377 assert(count_if(Plan.getCanonicalIV()->users(), 1378 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1379 1 && 1380 "Must have at most one VPWideCanonicalIVRecipe"); 1381 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1382 auto *WideCanonicalIV = 1383 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1384 WideCanonicalIVs.push_back(WideCanonicalIV); 1385 } 1386 1387 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1388 // version of the canonical induction. 1389 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1390 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1391 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1392 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1393 WideCanonicalIVs.push_back(WidenOriginalIV); 1394 } 1395 1396 // Walk users of wide canonical IVs and collect to all compares of the form 1397 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1398 SmallVector<VPValue *> HeaderMasks; 1399 for (auto *Wide : WideCanonicalIVs) { 1400 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1401 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1402 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1403 continue; 1404 1405 assert(HeaderMask->getOperand(0) == Wide && 1406 "WidenCanonicalIV must be the first operand of the compare"); 1407 HeaderMasks.push_back(HeaderMask); 1408 } 1409 } 1410 return HeaderMasks; 1411 } 1412 1413 void VPlanTransforms::addActiveLaneMask( 1414 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1415 bool DataAndControlFlowWithoutRuntimeCheck) { 1416 assert((!DataAndControlFlowWithoutRuntimeCheck || 1417 UseActiveLaneMaskForControlFlow) && 1418 "DataAndControlFlowWithoutRuntimeCheck implies " 1419 "UseActiveLaneMaskForControlFlow"); 1420 1421 auto *FoundWidenCanonicalIVUser = 1422 find_if(Plan.getCanonicalIV()->users(), 1423 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1424 assert(FoundWidenCanonicalIVUser && 1425 "Must have widened canonical IV when tail folding!"); 1426 auto *WideCanonicalIV = 1427 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1428 VPSingleDefRecipe *LaneMask; 1429 if (UseActiveLaneMaskForControlFlow) { 1430 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1431 Plan, DataAndControlFlowWithoutRuntimeCheck); 1432 } else { 1433 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1434 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1435 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1436 "active.lane.mask"); 1437 } 1438 1439 // Walk users of WideCanonicalIV and replace all compares of the form 1440 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1441 // active-lane-mask. 1442 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1443 HeaderMask->replaceAllUsesWith(LaneMask); 1444 } 1445 1446 /// Replace recipes with their EVL variants. 1447 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { 1448 using namespace llvm::VPlanPatternMatch; 1449 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1450 VPTypeAnalysis TypeInfo(CanonicalIVType); 1451 LLVMContext &Ctx = CanonicalIVType->getContext(); 1452 SmallVector<VPValue *> HeaderMasks = collectAllHeaderMasks(Plan); 1453 1454 for (VPUser *U : Plan.getVF().users()) { 1455 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U)) 1456 R->setOperand(1, &EVL); 1457 } 1458 1459 SmallVector<VPRecipeBase *> ToErase; 1460 1461 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1462 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1463 auto *CurRecipe = cast<VPRecipeBase>(U); 1464 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1465 assert(OrigMask && "Unmasked recipe when folding tail"); 1466 return HeaderMask == OrigMask ? nullptr : OrigMask; 1467 }; 1468 1469 VPRecipeBase *NewRecipe = 1470 TypeSwitch<VPRecipeBase *, VPRecipeBase *>(CurRecipe) 1471 .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) { 1472 VPValue *NewMask = GetNewMask(L->getMask()); 1473 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); 1474 }) 1475 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) { 1476 VPValue *NewMask = GetNewMask(S->getMask()); 1477 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); 1478 }) 1479 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * { 1480 unsigned Opcode = W->getOpcode(); 1481 if (!Instruction::isBinaryOp(Opcode) && 1482 !Instruction::isUnaryOp(Opcode)) 1483 return nullptr; 1484 return new VPWidenEVLRecipe(*W, EVL); 1485 }) 1486 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) { 1487 VPValue *NewMask = GetNewMask(Red->getCondOp()); 1488 return new VPReductionEVLRecipe(*Red, EVL, NewMask); 1489 }) 1490 .Case<VPWidenIntrinsicRecipe>( 1491 [&](VPWidenIntrinsicRecipe *CInst) -> VPRecipeBase * { 1492 auto *CI = cast<CallInst>(CInst->getUnderlyingInstr()); 1493 Intrinsic::ID VPID = VPIntrinsic::getForIntrinsic( 1494 CI->getCalledFunction()->getIntrinsicID()); 1495 if (VPID == Intrinsic::not_intrinsic) 1496 return nullptr; 1497 1498 SmallVector<VPValue *> Ops(CInst->operands()); 1499 assert(VPIntrinsic::getMaskParamPos(VPID) && 1500 VPIntrinsic::getVectorLengthParamPos(VPID) && 1501 "Expected VP intrinsic"); 1502 VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::getTrue( 1503 IntegerType::getInt1Ty(CI->getContext()))); 1504 Ops.push_back(Mask); 1505 Ops.push_back(&EVL); 1506 return new VPWidenIntrinsicRecipe( 1507 *CI, VPID, Ops, TypeInfo.inferScalarType(CInst), 1508 CInst->getDebugLoc()); 1509 }) 1510 .Case<VPWidenCastRecipe>( 1511 [&](VPWidenCastRecipe *CastR) -> VPRecipeBase * { 1512 Intrinsic::ID VPID = 1513 VPIntrinsic::getForOpcode(CastR->getOpcode()); 1514 assert(VPID != Intrinsic::not_intrinsic && 1515 "Expected vp.casts Instrinsic"); 1516 1517 SmallVector<VPValue *> Ops(CastR->operands()); 1518 assert(VPIntrinsic::getMaskParamPos(VPID) && 1519 VPIntrinsic::getVectorLengthParamPos(VPID) && 1520 "Expected VP intrinsic"); 1521 VPValue *Mask = 1522 Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1523 Ops.push_back(Mask); 1524 Ops.push_back(&EVL); 1525 return new VPWidenIntrinsicRecipe( 1526 VPID, Ops, TypeInfo.inferScalarType(CastR), 1527 CastR->getDebugLoc()); 1528 }) 1529 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) { 1530 SmallVector<VPValue *> Ops(Sel->operands()); 1531 Ops.push_back(&EVL); 1532 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops, 1533 TypeInfo.inferScalarType(Sel), 1534 Sel->getDebugLoc()); 1535 }) 1536 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * { 1537 VPValue *LHS, *RHS; 1538 // Transform select with a header mask condition 1539 // select(header_mask, LHS, RHS) 1540 // into vector predication merge. 1541 // vp.merge(all-true, LHS, RHS, EVL) 1542 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS), 1543 m_VPValue(RHS)))) 1544 return nullptr; 1545 // Use all true as the condition because this transformation is 1546 // limited to selects whose condition is a header mask. 1547 VPValue *AllTrue = 1548 Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1549 return new VPWidenIntrinsicRecipe( 1550 Intrinsic::vp_merge, {AllTrue, LHS, RHS, &EVL}, 1551 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc()); 1552 }) 1553 .Default([&](VPRecipeBase *R) { return nullptr; }); 1554 1555 if (!NewRecipe) 1556 continue; 1557 1558 [[maybe_unused]] unsigned NumDefVal = NewRecipe->getNumDefinedValues(); 1559 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1560 "New recipe must define the same number of values as the " 1561 "original."); 1562 assert( 1563 NumDefVal <= 1 && 1564 "Only supports recipes with a single definition or without users."); 1565 NewRecipe->insertBefore(CurRecipe); 1566 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(NewRecipe)) { 1567 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1568 CurVPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 1569 } 1570 // Defer erasing recipes till the end so that we don't invalidate the 1571 // VPTypeAnalysis cache. 1572 ToErase.push_back(CurRecipe); 1573 } 1574 } 1575 1576 for (VPRecipeBase *R : reverse(ToErase)) { 1577 SmallVector<VPValue *> PossiblyDead(R->operands()); 1578 R->eraseFromParent(); 1579 for (VPValue *Op : PossiblyDead) 1580 recursivelyDeleteDeadRecipes(Op); 1581 } 1582 } 1583 1584 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1585 /// replaces all uses except the canonical IV increment of 1586 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1587 /// is used only for loop iterations counting after this transformation. 1588 /// 1589 /// The function uses the following definitions: 1590 /// %StartV is the canonical induction start value. 1591 /// 1592 /// The function adds the following recipes: 1593 /// 1594 /// vector.ph: 1595 /// ... 1596 /// 1597 /// vector.body: 1598 /// ... 1599 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1600 /// [ %NextEVLIV, %vector.body ] 1601 /// %AVL = sub original TC, %EVLPhi 1602 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL 1603 /// ... 1604 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1605 /// ... 1606 /// 1607 /// If MaxSafeElements is provided, the function adds the following recipes: 1608 /// vector.ph: 1609 /// ... 1610 /// 1611 /// vector.body: 1612 /// ... 1613 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1614 /// [ %NextEVLIV, %vector.body ] 1615 /// %AVL = sub original TC, %EVLPhi 1616 /// %cmp = cmp ult %AVL, MaxSafeElements 1617 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements 1618 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL 1619 /// ... 1620 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi 1621 /// ... 1622 /// 1623 bool VPlanTransforms::tryAddExplicitVectorLength( 1624 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { 1625 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1626 // The transform updates all users of inductions to work based on EVL, instead 1627 // of the VF directly. At the moment, widened inductions cannot be updated, so 1628 // bail out if the plan contains any. 1629 bool ContainsWidenInductions = any_of( 1630 Header->phis(), 1631 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>); 1632 if (ContainsWidenInductions) 1633 return false; 1634 1635 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1636 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1637 1638 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1639 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1640 EVLPhi->insertAfter(CanonicalIVPHI); 1641 VPBuilder Builder(Header, Header->getFirstNonPhi()); 1642 // Compute original TC - IV as the AVL (application vector length). 1643 VPValue *AVL = Builder.createNaryOp( 1644 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl"); 1645 if (MaxSafeElements) { 1646 // Support for MaxSafeDist for correct loop emission. 1647 VPValue *AVLSafe = Plan.getOrAddLiveIn( 1648 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements)); 1649 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe); 1650 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl"); 1651 } 1652 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL, 1653 DebugLoc()); 1654 1655 auto *CanonicalIVIncrement = 1656 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1657 VPSingleDefRecipe *OpVPEVL = VPEVL; 1658 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1659 IVSize != 32) { 1660 OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc 1661 : Instruction::ZExt, 1662 OpVPEVL, CanonicalIVPHI->getScalarType()); 1663 OpVPEVL->insertBefore(CanonicalIVIncrement); 1664 } 1665 auto *NextEVLIV = 1666 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1667 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1668 CanonicalIVIncrement->hasNoSignedWrap()}, 1669 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1670 NextEVLIV->insertBefore(CanonicalIVIncrement); 1671 EVLPhi->addOperand(NextEVLIV); 1672 1673 transformRecipestoEVLRecipes(Plan, *VPEVL); 1674 1675 // Replace all uses of VPCanonicalIVPHIRecipe by 1676 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1677 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1678 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1679 // TODO: support unroll factor > 1. 1680 Plan.setUF(1); 1681 return true; 1682 } 1683 1684 void VPlanTransforms::dropPoisonGeneratingRecipes( 1685 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1686 // Collect recipes in the backward slice of `Root` that may generate a poison 1687 // value that is used after vectorization. 1688 SmallPtrSet<VPRecipeBase *, 16> Visited; 1689 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1690 SmallVector<VPRecipeBase *, 16> Worklist; 1691 Worklist.push_back(Root); 1692 1693 // Traverse the backward slice of Root through its use-def chain. 1694 while (!Worklist.empty()) { 1695 VPRecipeBase *CurRec = Worklist.pop_back_val(); 1696 1697 if (!Visited.insert(CurRec).second) 1698 continue; 1699 1700 // Prune search if we find another recipe generating a widen memory 1701 // instruction. Widen memory instructions involved in address computation 1702 // will lead to gather/scatter instructions, which don't need to be 1703 // handled. 1704 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, 1705 VPHeaderPHIRecipe>(CurRec)) 1706 continue; 1707 1708 // This recipe contributes to the address computation of a widen 1709 // load/store. If the underlying instruction has poison-generating flags, 1710 // drop them directly. 1711 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1712 VPValue *A, *B; 1713 using namespace llvm::VPlanPatternMatch; 1714 // Dropping disjoint from an OR may yield incorrect results, as some 1715 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1716 // for dependence analysis). Instead, replace it with an equivalent Add. 1717 // This is possible as all users of the disjoint OR only access lanes 1718 // where the operands are disjoint or poison otherwise. 1719 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1720 RecWithFlags->isDisjoint()) { 1721 VPBuilder Builder(RecWithFlags); 1722 VPInstruction *New = Builder.createOverflowingOp( 1723 Instruction::Add, {A, B}, {false, false}, 1724 RecWithFlags->getDebugLoc()); 1725 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1726 RecWithFlags->replaceAllUsesWith(New); 1727 RecWithFlags->eraseFromParent(); 1728 CurRec = New; 1729 } else 1730 RecWithFlags->dropPoisonGeneratingFlags(); 1731 } else { 1732 Instruction *Instr = dyn_cast_or_null<Instruction>( 1733 CurRec->getVPSingleValue()->getUnderlyingValue()); 1734 (void)Instr; 1735 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1736 "found instruction with poison generating flags not covered by " 1737 "VPRecipeWithIRFlags"); 1738 } 1739 1740 // Add new definitions to the worklist. 1741 for (VPValue *Operand : CurRec->operands()) 1742 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) 1743 Worklist.push_back(OpDef); 1744 } 1745 }); 1746 1747 // Traverse all the recipes in the VPlan and collect the poison-generating 1748 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1749 // VPInterleaveRecipe. 1750 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1751 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1752 for (VPRecipeBase &Recipe : *VPBB) { 1753 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1754 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1755 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1756 if (AddrDef && WidenRec->isConsecutive() && 1757 BlockNeedsPredication(UnderlyingInstr.getParent())) 1758 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1759 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1760 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1761 if (AddrDef) { 1762 // Check if any member of the interleave group needs predication. 1763 const InterleaveGroup<Instruction> *InterGroup = 1764 InterleaveRec->getInterleaveGroup(); 1765 bool NeedPredication = false; 1766 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1767 I < NumMembers; ++I) { 1768 Instruction *Member = InterGroup->getMember(I); 1769 if (Member) 1770 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1771 } 1772 1773 if (NeedPredication) 1774 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1775 } 1776 } 1777 } 1778 } 1779 } 1780 1781 void VPlanTransforms::createInterleaveGroups( 1782 VPlan &Plan, 1783 const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> 1784 &InterleaveGroups, 1785 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) { 1786 if (InterleaveGroups.empty()) 1787 return; 1788 1789 // Interleave memory: for each Interleave Group we marked earlier as relevant 1790 // for this VPlan, replace the Recipes widening its memory instructions with a 1791 // single VPInterleaveRecipe at its insertion point. 1792 VPDominatorTree VPDT; 1793 VPDT.recalculate(Plan); 1794 for (const auto *IG : InterleaveGroups) { 1795 SmallVector<VPValue *, 4> StoredValues; 1796 for (unsigned i = 0; i < IG->getFactor(); ++i) 1797 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 1798 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); 1799 StoredValues.push_back(StoreR->getStoredValue()); 1800 } 1801 1802 bool NeedsMaskForGaps = 1803 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; 1804 1805 Instruction *IRInsertPos = IG->getInsertPos(); 1806 auto *InsertPos = 1807 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos)); 1808 1809 // Get or create the start address for the interleave group. 1810 auto *Start = 1811 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0))); 1812 VPValue *Addr = Start->getAddr(); 1813 VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); 1814 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) { 1815 // TODO: Hoist Addr's defining recipe (and any operands as needed) to 1816 // InsertPos or sink loads above zero members to join it. 1817 bool InBounds = false; 1818 if (auto *Gep = dyn_cast<GetElementPtrInst>( 1819 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts())) 1820 InBounds = Gep->isInBounds(); 1821 1822 // We cannot re-use the address of member zero because it does not 1823 // dominate the insert position. Instead, use the address of the insert 1824 // position and create a PtrAdd adjusting it to the address of member 1825 // zero. 1826 assert(IG->getIndex(IRInsertPos) != 0 && 1827 "index of insert position shouldn't be zero"); 1828 auto &DL = IRInsertPos->getDataLayout(); 1829 APInt Offset(32, 1830 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) * 1831 IG->getIndex(IRInsertPos), 1832 /*IsSigned=*/true); 1833 VPValue *OffsetVPV = Plan.getOrAddLiveIn( 1834 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset)); 1835 VPBuilder B(InsertPos); 1836 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV) 1837 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV); 1838 } 1839 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, 1840 InsertPos->getMask(), NeedsMaskForGaps); 1841 VPIG->insertBefore(InsertPos); 1842 1843 unsigned J = 0; 1844 for (unsigned i = 0; i < IG->getFactor(); ++i) 1845 if (Instruction *Member = IG->getMember(i)) { 1846 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); 1847 if (!Member->getType()->isVoidTy()) { 1848 VPValue *OriginalV = MemberR->getVPSingleValue(); 1849 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 1850 J++; 1851 } 1852 MemberR->eraseFromParent(); 1853 } 1854 } 1855 } 1856 1857 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { 1858 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1859 vp_depth_first_deep(Plan.getEntry()))) { 1860 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) { 1861 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R)) 1862 continue; 1863 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1864 StringRef Name = 1865 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv"; 1866 auto *ScalarR = 1867 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(), 1868 PhiR->getDebugLoc(), Name); 1869 ScalarR->insertBefore(PhiR); 1870 PhiR->replaceAllUsesWith(ScalarR); 1871 PhiR->eraseFromParent(); 1872 } 1873 } 1874 } 1875 1876 void VPlanTransforms::handleUncountableEarlyExit( 1877 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, 1878 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) { 1879 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1880 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting()); 1881 VPBuilder Builder(LatchVPBB->getTerminator()); 1882 auto *MiddleVPBB = Plan.getMiddleBlock(); 1883 VPValue *IsEarlyExitTaken = nullptr; 1884 1885 // Process the uncountable exiting block. Update IsEarlyExitTaken, which 1886 // tracks if the uncountable early exit has been taken. Also split the middle 1887 // block and have it conditionally branch to the early exit block if 1888 // EarlyExitTaken. 1889 auto *EarlyExitingBranch = 1890 cast<BranchInst>(UncountableExitingBlock->getTerminator()); 1891 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0); 1892 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1); 1893 1894 // The early exit block may or may not be the same as the "countable" exit 1895 // block. Creates a new VPIRBB for the early exit block in case it is distinct 1896 // from the countable exit block. 1897 // TODO: Introduce both exit blocks during VPlan skeleton construction. 1898 VPIRBasicBlock *VPEarlyExitBlock; 1899 if (OrigLoop->getUniqueExitBlock()) { 1900 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]); 1901 } else { 1902 VPEarlyExitBlock = VPIRBasicBlock::fromBasicBlock( 1903 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1904 } 1905 1906 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask( 1907 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1908 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond); 1909 IsEarlyExitTaken = 1910 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond}); 1911 1912 VPBasicBlock *NewMiddle = new VPBasicBlock("middle.split"); 1913 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle); 1914 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock); 1915 NewMiddle->swapSuccessors(); 1916 1917 VPBuilder MiddleBuilder(NewMiddle); 1918 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken}); 1919 1920 // Replace the condition controlling the non-early exit from the vector loop 1921 // with one exiting if either the original condition of the vector latch is 1922 // true or the early exit has been taken. 1923 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator()); 1924 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && 1925 "Unexpected terminator"); 1926 auto *IsLatchExitTaken = 1927 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0), 1928 LatchExitingBranch->getOperand(1)); 1929 auto *AnyExitTaken = Builder.createNaryOp( 1930 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken}); 1931 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken); 1932 LatchExitingBranch->eraseFromParent(); 1933 } 1934