1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlan.h" 17 #include "VPlanAnalysis.h" 18 #include "VPlanCFG.h" 19 #include "VPlanDominatorTree.h" 20 #include "VPlanPatternMatch.h" 21 #include "VPlanUtils.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/PatternMatch.h" 30 31 using namespace llvm; 32 33 void VPlanTransforms::VPInstructionsToVPRecipes( 34 VPlanPtr &Plan, 35 function_ref<const InductionDescriptor *(PHINode *)> 36 GetIntOrFpInductionDescriptor, 37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 38 39 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 40 Plan->getVectorLoopRegion()); 41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 42 // Skip blocks outside region 43 if (!VPBB->getParent()) 44 break; 45 VPRecipeBase *Term = VPBB->getTerminator(); 46 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 47 // Introduce each ingredient into VPlan. 48 for (VPRecipeBase &Ingredient : 49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 50 51 VPValue *VPV = Ingredient.getVPSingleValue(); 52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 53 54 VPRecipeBase *NewRecipe = nullptr; 55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 57 const auto *II = GetIntOrFpInductionDescriptor(Phi); 58 if (!II) 59 continue; 60 61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 62 VPValue *Step = 63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 64 NewRecipe = new VPWidenIntOrFpInductionRecipe( 65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); 66 } else { 67 assert(isa<VPInstruction>(&Ingredient) && 68 "only VPInstructions expected here"); 69 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 70 // Create VPWidenMemoryRecipe for loads and stores. 71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 72 NewRecipe = new VPWidenLoadRecipe( 73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 74 false /*Consecutive*/, false /*Reverse*/, 75 Ingredient.getDebugLoc()); 76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 77 NewRecipe = new VPWidenStoreRecipe( 78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 80 Ingredient.getDebugLoc()); 81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 84 NewRecipe = new VPWidenIntrinsicRecipe( 85 *CI, getVectorIntrinsicIDForCall(CI, &TLI), 86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), 87 CI->getDebugLoc()); 88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 91 NewRecipe = new VPWidenCastRecipe( 92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 93 } else { 94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 95 } 96 } 97 98 NewRecipe->insertBefore(&Ingredient); 99 if (NewRecipe->getNumDefinedValues() == 1) 100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 101 else 102 assert(NewRecipe->getNumDefinedValues() == 0 && 103 "Only recpies with zero or one defined values expected"); 104 Ingredient.eraseFromParent(); 105 } 106 } 107 } 108 109 static bool sinkScalarOperands(VPlan &Plan) { 110 auto Iter = vp_depth_first_deep(Plan.getEntry()); 111 bool Changed = false; 112 // First, collect the operands of all recipes in replicate blocks as seeds for 113 // sinking. 114 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 118 continue; 119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 121 continue; 122 for (auto &Recipe : *VPBB) { 123 for (VPValue *Op : Recipe.operands()) 124 if (auto *Def = 125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 126 WorkList.insert(std::make_pair(VPBB, Def)); 127 } 128 } 129 130 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 131 // Try to sink each replicate or scalar IV steps recipe in the worklist. 132 for (unsigned I = 0; I != WorkList.size(); ++I) { 133 VPBasicBlock *SinkTo; 134 VPSingleDefRecipe *SinkCandidate; 135 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 136 if (SinkCandidate->getParent() == SinkTo || 137 SinkCandidate->mayHaveSideEffects() || 138 SinkCandidate->mayReadOrWriteMemory()) 139 continue; 140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 141 if (!ScalarVFOnly && RepR->isUniform()) 142 continue; 143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 144 continue; 145 146 bool NeedsDuplicating = false; 147 // All recipe users of the sink candidate must be in the same block SinkTo 148 // or all users outside of SinkTo must be uniform-after-vectorization ( 149 // i.e., only first lane is used) . In the latter case, we need to duplicate 150 // SinkCandidate. 151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 152 SinkCandidate](VPUser *U) { 153 auto *UI = cast<VPRecipeBase>(U); 154 if (UI->getParent() == SinkTo) 155 return true; 156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 157 // We only know how to duplicate VPRecipeRecipes for now. 158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 159 }; 160 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 161 continue; 162 163 if (NeedsDuplicating) { 164 if (ScalarVFOnly) 165 continue; 166 Instruction *I = SinkCandidate->getUnderlyingInstr(); 167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 168 // TODO: add ".cloned" suffix to name of Clone's VPValue. 169 170 Clone->insertBefore(SinkCandidate); 171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 173 }); 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 if (auto *Def = 178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 179 WorkList.insert(std::make_pair(SinkTo, Def)); 180 Changed = true; 181 } 182 return Changed; 183 } 184 185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 186 /// the mask. 187 VPValue *getPredicatedMask(VPRegionBlock *R) { 188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 189 if (!EntryBB || EntryBB->size() != 1 || 190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 191 return nullptr; 192 193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 194 } 195 196 /// If \p R is a triangle region, return the 'then' block of the triangle. 197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 199 if (EntryBB->getNumSuccessors() != 2) 200 return nullptr; 201 202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 204 if (!Succ0 || !Succ1) 205 return nullptr; 206 207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 208 return nullptr; 209 if (Succ0->getSingleSuccessor() == Succ1) 210 return Succ0; 211 if (Succ1->getSingleSuccessor() == Succ0) 212 return Succ1; 213 return nullptr; 214 } 215 216 // Merge replicate regions in their successor region, if a replicate region 217 // is connected to a successor replicate region with the same predicate by a 218 // single, empty VPBasicBlock. 219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 220 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; 221 222 // Collect replicate regions followed by an empty block, followed by another 223 // replicate region with matching masks to process front. This is to avoid 224 // iterator invalidation issues while merging regions. 225 SmallVector<VPRegionBlock *, 8> WorkList; 226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 227 vp_depth_first_deep(Plan.getEntry()))) { 228 if (!Region1->isReplicator()) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2 || !Region2->isReplicator()) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 245 assert(Mask1 && Mask2 && "both region must have conditions"); 246 WorkList.push_back(Region1); 247 } 248 249 // Move recipes from Region1 to its successor region, if both are triangles. 250 for (VPRegionBlock *Region1 : WorkList) { 251 if (TransformedRegions.contains(Region1)) 252 continue; 253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 255 256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 258 if (!Then1 || !Then2) 259 continue; 260 261 // Note: No fusion-preventing memory dependencies are expected in either 262 // region. Such dependencies should be rejected during earlier dependence 263 // checks, which guarantee accesses can be re-ordered for vectorization. 264 // 265 // Move recipes to the successor region. 266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 268 269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 271 272 // Move VPPredInstPHIRecipes from the merge block to the successor region's 273 // merge block. Update all users inside the successor region to use the 274 // original values. 275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 276 VPValue *PredInst1 = 277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 280 return cast<VPRecipeBase>(&U)->getParent() == Then2; 281 }); 282 283 // Remove phi recipes that are unused after merging the regions. 284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 285 Phi1ToMove.eraseFromParent(); 286 continue; 287 } 288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 289 } 290 291 // Finally, remove the first region. 292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 293 VPBlockUtils::disconnectBlocks(Pred, Region1); 294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 295 } 296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 297 TransformedRegions.insert(Region1); 298 } 299 300 return !TransformedRegions.empty(); 301 } 302 303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 304 VPlan &Plan) { 305 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 306 // Build the triangular if-then region. 307 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 308 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 309 auto *BlockInMask = PredRecipe->getMask(); 310 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 311 auto *Entry = 312 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 313 314 // Replace predicated replicate recipe with a replicate recipe without a 315 // mask but in the replicate region. 316 auto *RecipeWithoutMask = new VPReplicateRecipe( 317 PredRecipe->getUnderlyingInstr(), 318 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 319 PredRecipe->isUniform()); 320 auto *Pred = 321 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 322 323 VPPredInstPHIRecipe *PHIRecipe = nullptr; 324 if (PredRecipe->getNumUsers() != 0) { 325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, 326 RecipeWithoutMask->getDebugLoc()); 327 PredRecipe->replaceAllUsesWith(PHIRecipe); 328 PHIRecipe->setOperand(0, RecipeWithoutMask); 329 } 330 PredRecipe->eraseFromParent(); 331 auto *Exiting = 332 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 333 VPRegionBlock *Region = 334 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true); 335 336 // Note: first set Entry as region entry and then connect successors starting 337 // from it in order, to propagate the "parent" of each VPBasicBlock. 338 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 339 VPBlockUtils::connectBlocks(Pred, Exiting); 340 341 return Region; 342 } 343 344 static void addReplicateRegions(VPlan &Plan) { 345 SmallVector<VPReplicateRecipe *> WorkList; 346 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 347 vp_depth_first_deep(Plan.getEntry()))) { 348 for (VPRecipeBase &R : *VPBB) 349 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 350 if (RepR->isPredicated()) 351 WorkList.push_back(RepR); 352 } 353 } 354 355 unsigned BBNum = 0; 356 for (VPReplicateRecipe *RepR : WorkList) { 357 VPBasicBlock *CurrentBlock = RepR->getParent(); 358 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 359 360 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 361 SplitBlock->setName( 362 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 363 // Record predicated instructions for above packing optimizations. 364 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 365 Region->setParent(CurrentBlock->getParent()); 366 VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region); 367 } 368 } 369 370 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 371 /// the predecessor has a single successor. 372 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 373 SmallVector<VPBasicBlock *> WorkList; 374 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 375 vp_depth_first_deep(Plan.getEntry()))) { 376 // Don't fold the blocks in the skeleton of the Plan into their single 377 // predecessors for now. 378 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 379 if (!VPBB->getParent()) 380 continue; 381 auto *PredVPBB = 382 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 383 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || 384 isa<VPIRBasicBlock>(PredVPBB)) 385 continue; 386 WorkList.push_back(VPBB); 387 } 388 389 for (VPBasicBlock *VPBB : WorkList) { 390 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 391 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 392 R.moveBefore(*PredVPBB, PredVPBB->end()); 393 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 394 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 395 if (ParentRegion && ParentRegion->getExiting() == VPBB) 396 ParentRegion->setExiting(PredVPBB); 397 for (auto *Succ : to_vector(VPBB->successors())) { 398 VPBlockUtils::disconnectBlocks(VPBB, Succ); 399 VPBlockUtils::connectBlocks(PredVPBB, Succ); 400 } 401 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 402 } 403 return !WorkList.empty(); 404 } 405 406 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 407 // Convert masked VPReplicateRecipes to if-then region blocks. 408 addReplicateRegions(Plan); 409 410 bool ShouldSimplify = true; 411 while (ShouldSimplify) { 412 ShouldSimplify = sinkScalarOperands(Plan); 413 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 414 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 415 } 416 } 417 418 /// Remove redundant casts of inductions. 419 /// 420 /// Such redundant casts are casts of induction variables that can be ignored, 421 /// because we already proved that the casted phi is equal to the uncasted phi 422 /// in the vectorized loop. There is no need to vectorize the cast - the same 423 /// value can be used for both the phi and casts in the vector loop. 424 static void removeRedundantInductionCasts(VPlan &Plan) { 425 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 426 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 427 if (!IV || IV->getTruncInst()) 428 continue; 429 430 // A sequence of IR Casts has potentially been recorded for IV, which 431 // *must be bypassed* when the IV is vectorized, because the vectorized IV 432 // will produce the desired casted value. This sequence forms a def-use 433 // chain and is provided in reverse order, ending with the cast that uses 434 // the IV phi. Search for the recipe of the last cast in the chain and 435 // replace it with the original IV. Note that only the final cast is 436 // expected to have users outside the cast-chain and the dead casts left 437 // over will be cleaned up later. 438 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 439 VPValue *FindMyCast = IV; 440 for (Instruction *IRCast : reverse(Casts)) { 441 VPSingleDefRecipe *FoundUserCast = nullptr; 442 for (auto *U : FindMyCast->users()) { 443 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 444 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 445 FoundUserCast = UserCast; 446 break; 447 } 448 } 449 FindMyCast = FoundUserCast; 450 } 451 FindMyCast->replaceAllUsesWith(IV); 452 } 453 } 454 455 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 456 /// recipe, if it exists. 457 static void removeRedundantCanonicalIVs(VPlan &Plan) { 458 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 459 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 460 for (VPUser *U : CanonicalIV->users()) { 461 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 462 if (WidenNewIV) 463 break; 464 } 465 466 if (!WidenNewIV) 467 return; 468 469 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 470 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 471 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 472 473 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 474 continue; 475 476 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 477 // everything WidenNewIV's users need. That is, WidenOriginalIV will 478 // generate a vector phi or all users of WidenNewIV demand the first lane 479 // only. 480 if (any_of(WidenOriginalIV->users(), 481 [WidenOriginalIV](VPUser *U) { 482 return !U->usesScalars(WidenOriginalIV); 483 }) || 484 vputils::onlyFirstLaneUsed(WidenNewIV)) { 485 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 486 WidenNewIV->eraseFromParent(); 487 return; 488 } 489 } 490 } 491 492 /// Returns true if \p R is dead and can be removed. 493 static bool isDeadRecipe(VPRecipeBase &R) { 494 using namespace llvm::PatternMatch; 495 // Do remove conditional assume instructions as their conditions may be 496 // flattened. 497 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 498 bool IsConditionalAssume = 499 RepR && RepR->isPredicated() && 500 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 501 if (IsConditionalAssume) 502 return true; 503 504 if (R.mayHaveSideEffects()) 505 return false; 506 507 // Recipe is dead if no user keeps the recipe alive. 508 return all_of(R.definedValues(), 509 [](VPValue *V) { return V->getNumUsers() == 0; }); 510 } 511 512 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { 513 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 514 Plan.getEntry()); 515 516 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 517 // The recipes in the block are processed in reverse order, to catch chains 518 // of dead recipes. 519 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 520 if (isDeadRecipe(R)) 521 R.eraseFromParent(); 522 } 523 } 524 } 525 526 static VPScalarIVStepsRecipe * 527 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 528 Instruction::BinaryOps InductionOpcode, 529 FPMathOperator *FPBinOp, Instruction *TruncI, 530 VPValue *StartV, VPValue *Step, DebugLoc DL, 531 VPBuilder &Builder) { 532 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 533 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 534 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( 535 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx"); 536 537 // Truncate base induction if needed. 538 Type *CanonicalIVType = CanonicalIV->getScalarType(); 539 VPTypeAnalysis TypeInfo(CanonicalIVType); 540 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 541 if (TruncI) { 542 Type *TruncTy = TruncI->getType(); 543 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 544 "Not truncating."); 545 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 546 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL); 547 ResultTy = TruncTy; 548 } 549 550 // Truncate step if needed. 551 Type *StepTy = TypeInfo.inferScalarType(Step); 552 if (ResultTy != StepTy) { 553 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 554 "Not truncating."); 555 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 556 auto *VecPreheader = 557 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 558 VPBuilder::InsertPointGuard Guard(Builder); 559 Builder.setInsertPoint(VecPreheader); 560 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL); 561 } 562 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step); 563 } 564 565 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 566 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 567 for (unsigned I = 0; I != Users.size(); ++I) { 568 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]); 569 if (isa<VPHeaderPHIRecipe>(Cur)) 570 continue; 571 for (VPValue *V : Cur->definedValues()) 572 Users.insert(V->user_begin(), V->user_end()); 573 } 574 return Users.takeVector(); 575 } 576 577 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 578 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 579 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 580 /// require vectors while other require scalars, the scalar uses need to extract 581 /// the scalars from the generated vectors (Note that this is different to how 582 /// int/fp inductions are handled). Legalize extract-from-ends using uniform 583 /// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so 584 /// the correct end value is available. Also optimize 585 /// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by 586 /// providing them scalar steps built on the canonical scalar IV and update the 587 /// original IV's users. This is an optional optimization to reduce the needs of 588 /// vector extracts. 589 static void legalizeAndOptimizeInductions(VPlan &Plan) { 590 using namespace llvm::VPlanPatternMatch; 591 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 592 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 593 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 594 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 595 auto *PhiR = dyn_cast<VPWidenInductionRecipe>(&Phi); 596 if (!PhiR) 597 continue; 598 599 // Try to narrow wide and replicating recipes to uniform recipes, based on 600 // VPlan analysis. 601 // TODO: Apply to all recipes in the future, to replace legacy uniformity 602 // analysis. 603 auto Users = collectUsersRecursively(PhiR); 604 for (VPUser *U : reverse(Users)) { 605 auto *Def = dyn_cast<VPSingleDefRecipe>(U); 606 auto *RepR = dyn_cast<VPReplicateRecipe>(U); 607 // Skip recipes that shouldn't be narrowed. 608 if (!Def || !isa<VPReplicateRecipe, VPWidenRecipe>(Def) || 609 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() || 610 (RepR && (RepR->isUniform() || RepR->isPredicated()))) 611 continue; 612 613 // Skip recipes that may have other lanes than their first used. 614 if (!vputils::isUniformAfterVectorization(Def) && 615 !vputils::onlyFirstLaneUsed(Def)) 616 continue; 617 618 auto *Clone = new VPReplicateRecipe(Def->getUnderlyingInstr(), 619 Def->operands(), /*IsUniform*/ true); 620 Clone->insertAfter(Def); 621 Def->replaceAllUsesWith(Clone); 622 } 623 624 // Replace wide pointer inductions which have only their scalars used by 625 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 626 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 627 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 628 continue; 629 630 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 631 VPValue *StartV = 632 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 633 VPValue *StepV = PtrIV->getOperand(1); 634 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 635 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 636 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder); 637 638 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps, 639 PtrIV->getDebugLoc(), "next.gep"); 640 641 PtrIV->replaceAllUsesWith(PtrAdd); 642 continue; 643 } 644 645 // Replace widened induction with scalar steps for users that only use 646 // scalars. 647 auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(&Phi); 648 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 649 return U->usesScalars(WideIV); 650 })) 651 continue; 652 653 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 654 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 655 Plan, ID.getKind(), ID.getInductionOpcode(), 656 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 657 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 658 WideIV->getDebugLoc(), Builder); 659 660 // Update scalar users of IV to use Step instead. 661 if (!HasOnlyVectorVFs) 662 WideIV->replaceAllUsesWith(Steps); 663 else 664 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 665 return U.usesScalars(WideIV); 666 }); 667 } 668 } 669 670 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 671 /// them with already existing recipes expanding the same SCEV expression. 672 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 673 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 674 675 for (VPRecipeBase &R : 676 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 677 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 678 if (!ExpR) 679 continue; 680 681 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 682 if (I.second) 683 continue; 684 ExpR->replaceAllUsesWith(I.first->second); 685 ExpR->eraseFromParent(); 686 } 687 } 688 689 static void recursivelyDeleteDeadRecipes(VPValue *V) { 690 SmallVector<VPValue *> WorkList; 691 SmallPtrSet<VPValue *, 8> Seen; 692 WorkList.push_back(V); 693 694 while (!WorkList.empty()) { 695 VPValue *Cur = WorkList.pop_back_val(); 696 if (!Seen.insert(Cur).second) 697 continue; 698 VPRecipeBase *R = Cur->getDefiningRecipe(); 699 if (!R) 700 continue; 701 if (!isDeadRecipe(*R)) 702 continue; 703 WorkList.append(R->op_begin(), R->op_end()); 704 R->eraseFromParent(); 705 } 706 } 707 708 /// Try to simplify recipe \p R. 709 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 710 using namespace llvm::VPlanPatternMatch; 711 712 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 713 // Try to remove redundant blend recipes. 714 SmallPtrSet<VPValue *, 4> UniqueValues; 715 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False())) 716 UniqueValues.insert(Blend->getIncomingValue(0)); 717 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 718 if (!match(Blend->getMask(I), m_False())) 719 UniqueValues.insert(Blend->getIncomingValue(I)); 720 721 if (UniqueValues.size() == 1) { 722 Blend->replaceAllUsesWith(*UniqueValues.begin()); 723 Blend->eraseFromParent(); 724 return; 725 } 726 727 if (Blend->isNormalized()) 728 return; 729 730 // Normalize the blend so its first incoming value is used as the initial 731 // value with the others blended into it. 732 733 unsigned StartIndex = 0; 734 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 735 // If a value's mask is used only by the blend then is can be deadcoded. 736 // TODO: Find the most expensive mask that can be deadcoded, or a mask 737 // that's used by multiple blends where it can be removed from them all. 738 VPValue *Mask = Blend->getMask(I); 739 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) { 740 StartIndex = I; 741 break; 742 } 743 } 744 745 SmallVector<VPValue *, 4> OperandsWithMask; 746 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex)); 747 748 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 749 if (I == StartIndex) 750 continue; 751 OperandsWithMask.push_back(Blend->getIncomingValue(I)); 752 OperandsWithMask.push_back(Blend->getMask(I)); 753 } 754 755 auto *NewBlend = new VPBlendRecipe( 756 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask); 757 NewBlend->insertBefore(&R); 758 759 VPValue *DeadMask = Blend->getMask(StartIndex); 760 Blend->replaceAllUsesWith(NewBlend); 761 Blend->eraseFromParent(); 762 recursivelyDeleteDeadRecipes(DeadMask); 763 return; 764 } 765 766 VPValue *A; 767 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 768 VPValue *Trunc = R.getVPSingleValue(); 769 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 770 Type *ATy = TypeInfo.inferScalarType(A); 771 if (TruncTy == ATy) { 772 Trunc->replaceAllUsesWith(A); 773 } else { 774 // Don't replace a scalarizing recipe with a widened cast. 775 if (isa<VPReplicateRecipe>(&R)) 776 return; 777 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 778 779 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 780 ? Instruction::SExt 781 : Instruction::ZExt; 782 auto *VPC = 783 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 784 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 785 // UnderlyingExt has distinct return type, used to retain legacy cost. 786 VPC->setUnderlyingValue(UnderlyingExt); 787 } 788 VPC->insertBefore(&R); 789 Trunc->replaceAllUsesWith(VPC); 790 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 791 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 792 VPC->insertBefore(&R); 793 Trunc->replaceAllUsesWith(VPC); 794 } 795 } 796 #ifndef NDEBUG 797 // Verify that the cached type info is for both A and its users is still 798 // accurate by comparing it to freshly computed types. 799 VPTypeAnalysis TypeInfo2( 800 R.getParent()->getPlan()->getCanonicalIV()->getScalarType()); 801 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 802 for (VPUser *U : A->users()) { 803 auto *R = cast<VPRecipeBase>(U); 804 for (VPValue *VPV : R->definedValues()) 805 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 806 } 807 #endif 808 } 809 810 // Simplify (X && Y) || (X && !Y) -> X. 811 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 812 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 813 // recipes to be visited during simplification. 814 VPValue *X, *Y, *X1, *Y1; 815 if (match(&R, 816 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 817 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 818 X == X1 && Y == Y1) { 819 R.getVPSingleValue()->replaceAllUsesWith(X); 820 R.eraseFromParent(); 821 return; 822 } 823 824 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 825 return R.getVPSingleValue()->replaceAllUsesWith(A); 826 827 if (match(&R, m_Not(m_Not(m_VPValue(A))))) 828 return R.getVPSingleValue()->replaceAllUsesWith(A); 829 830 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. 831 if ((match(&R, 832 m_DerivedIV(m_SpecificInt(0), m_VPValue(A), m_SpecificInt(1))) || 833 match(&R, 834 m_DerivedIV(m_SpecificInt(0), m_SpecificInt(0), m_VPValue()))) && 835 TypeInfo.inferScalarType(R.getOperand(1)) == 836 TypeInfo.inferScalarType(R.getVPSingleValue())) 837 return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1)); 838 } 839 840 /// Try to simplify the recipes in \p Plan. Use \p CanonicalIVTy as type for all 841 /// un-typed live-ins in VPTypeAnalysis. 842 static void simplifyRecipes(VPlan &Plan, Type *CanonicalIVTy) { 843 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 844 Plan.getEntry()); 845 VPTypeAnalysis TypeInfo(CanonicalIVTy); 846 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 847 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 848 simplifyRecipe(R, TypeInfo); 849 } 850 } 851 } 852 853 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 854 unsigned BestUF, 855 PredicatedScalarEvolution &PSE) { 856 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 857 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 858 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 859 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); 860 auto *Term = &ExitingVPBB->back(); 861 // Try to simplify the branch condition if TC <= VF * UF when preparing to 862 // execute the plan for the main vector loop. We only do this if the 863 // terminator is: 864 // 1. BranchOnCount, or 865 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 866 using namespace llvm::VPlanPatternMatch; 867 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 868 !match(Term, 869 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 870 return; 871 872 ScalarEvolution &SE = *PSE.getSE(); 873 const SCEV *TripCount = 874 vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE); 875 assert(!isa<SCEVCouldNotCompute>(TripCount) && 876 "Trip count SCEV must be computable"); 877 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 878 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 879 if (TripCount->isZero() || 880 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 881 return; 882 883 // The vector loop region only executes once. If possible, completely remove 884 // the region, otherwise replace the terminator controlling the latch with 885 // (BranchOnCond true). 886 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry()); 887 auto *CanIVTy = Plan.getCanonicalIV()->getScalarType(); 888 if (all_of( 889 Header->phis(), 890 IsaPred<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe>)) { 891 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) { 892 auto *HeaderPhiR = cast<VPHeaderPHIRecipe>(&HeaderR); 893 HeaderPhiR->replaceAllUsesWith(HeaderPhiR->getStartValue()); 894 HeaderPhiR->eraseFromParent(); 895 } 896 897 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor(); 898 VPBlockBase *Exit = VectorRegion->getSingleSuccessor(); 899 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion); 900 VPBlockUtils::disconnectBlocks(VectorRegion, Exit); 901 902 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry())) 903 B->setParent(nullptr); 904 905 VPBlockUtils::connectBlocks(Preheader, Header); 906 VPBlockUtils::connectBlocks(ExitingVPBB, Exit); 907 simplifyRecipes(Plan, CanIVTy); 908 } else { 909 // The vector region contains header phis for which we cannot remove the 910 // loop region yet. 911 LLVMContext &Ctx = SE.getContext(); 912 auto *BOC = new VPInstruction( 913 VPInstruction::BranchOnCond, 914 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc()); 915 ExitingVPBB->appendRecipe(BOC); 916 } 917 918 Term->eraseFromParent(); 919 VPlanTransforms::removeDeadRecipes(Plan); 920 921 Plan.setVF(BestVF); 922 Plan.setUF(BestUF); 923 // TODO: Further simplifications are possible 924 // 1. Replace inductions with constants. 925 // 2. Replace vector loop region with VPBasicBlock. 926 } 927 928 /// Sink users of \p FOR after the recipe defining the previous value \p 929 /// Previous of the recurrence. \returns true if all users of \p FOR could be 930 /// re-arranged as needed or false if it is not possible. 931 static bool 932 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 933 VPRecipeBase *Previous, 934 VPDominatorTree &VPDT) { 935 // Collect recipes that need sinking. 936 SmallVector<VPRecipeBase *> WorkList; 937 SmallPtrSet<VPRecipeBase *, 8> Seen; 938 Seen.insert(Previous); 939 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 940 // The previous value must not depend on the users of the recurrence phi. In 941 // that case, FOR is not a fixed order recurrence. 942 if (SinkCandidate == Previous) 943 return false; 944 945 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 946 !Seen.insert(SinkCandidate).second || 947 VPDT.properlyDominates(Previous, SinkCandidate)) 948 return true; 949 950 if (SinkCandidate->mayHaveSideEffects()) 951 return false; 952 953 WorkList.push_back(SinkCandidate); 954 return true; 955 }; 956 957 // Recursively sink users of FOR after Previous. 958 WorkList.push_back(FOR); 959 for (unsigned I = 0; I != WorkList.size(); ++I) { 960 VPRecipeBase *Current = WorkList[I]; 961 assert(Current->getNumDefinedValues() == 1 && 962 "only recipes with a single defined value expected"); 963 964 for (VPUser *User : Current->getVPSingleValue()->users()) { 965 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User))) 966 return false; 967 } 968 } 969 970 // Keep recipes to sink ordered by dominance so earlier instructions are 971 // processed first. 972 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 973 return VPDT.properlyDominates(A, B); 974 }); 975 976 for (VPRecipeBase *SinkCandidate : WorkList) { 977 if (SinkCandidate == FOR) 978 continue; 979 980 SinkCandidate->moveAfter(Previous); 981 Previous = SinkCandidate; 982 } 983 return true; 984 } 985 986 /// Try to hoist \p Previous and its operands before all users of \p FOR. 987 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, 988 VPRecipeBase *Previous, 989 VPDominatorTree &VPDT) { 990 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) 991 return false; 992 993 // Collect recipes that need hoisting. 994 SmallVector<VPRecipeBase *> HoistCandidates; 995 SmallPtrSet<VPRecipeBase *, 8> Visited; 996 VPRecipeBase *HoistPoint = nullptr; 997 // Find the closest hoist point by looking at all users of FOR and selecting 998 // the recipe dominating all other users. 999 for (VPUser *U : FOR->users()) { 1000 auto *R = cast<VPRecipeBase>(U); 1001 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint)) 1002 HoistPoint = R; 1003 } 1004 assert(all_of(FOR->users(), 1005 [&VPDT, HoistPoint](VPUser *U) { 1006 auto *R = cast<VPRecipeBase>(U); 1007 return HoistPoint == R || 1008 VPDT.properlyDominates(HoistPoint, R); 1009 }) && 1010 "HoistPoint must dominate all users of FOR"); 1011 1012 auto NeedsHoisting = [HoistPoint, &VPDT, 1013 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { 1014 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); 1015 if (!HoistCandidate) 1016 return nullptr; 1017 VPRegionBlock *EnclosingLoopRegion = 1018 HoistCandidate->getParent()->getEnclosingLoopRegion(); 1019 assert((!HoistCandidate->getParent()->getParent() || 1020 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && 1021 "CFG in VPlan should still be flat, without replicate regions"); 1022 // Hoist candidate was already visited, no need to hoist. 1023 if (!Visited.insert(HoistCandidate).second) 1024 return nullptr; 1025 1026 // Candidate is outside loop region or a header phi, dominates FOR users w/o 1027 // hoisting. 1028 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate)) 1029 return nullptr; 1030 1031 // If we reached a recipe that dominates HoistPoint, we don't need to 1032 // hoist the recipe. 1033 if (VPDT.properlyDominates(HoistCandidate, HoistPoint)) 1034 return nullptr; 1035 return HoistCandidate; 1036 }; 1037 auto CanHoist = [&](VPRecipeBase *HoistCandidate) { 1038 // Avoid hoisting candidates with side-effects, as we do not yet analyze 1039 // associated dependencies. 1040 return !HoistCandidate->mayHaveSideEffects(); 1041 }; 1042 1043 if (!NeedsHoisting(Previous->getVPSingleValue())) 1044 return true; 1045 1046 // Recursively try to hoist Previous and its operands before all users of FOR. 1047 HoistCandidates.push_back(Previous); 1048 1049 for (unsigned I = 0; I != HoistCandidates.size(); ++I) { 1050 VPRecipeBase *Current = HoistCandidates[I]; 1051 assert(Current->getNumDefinedValues() == 1 && 1052 "only recipes with a single defined value expected"); 1053 if (!CanHoist(Current)) 1054 return false; 1055 1056 for (VPValue *Op : Current->operands()) { 1057 // If we reach FOR, it means the original Previous depends on some other 1058 // recurrence that in turn depends on FOR. If that is the case, we would 1059 // also need to hoist recipes involving the other FOR, which may break 1060 // dependencies. 1061 if (Op == FOR) 1062 return false; 1063 1064 if (auto *R = NeedsHoisting(Op)) 1065 HoistCandidates.push_back(R); 1066 } 1067 } 1068 1069 // Order recipes to hoist by dominance so earlier instructions are processed 1070 // first. 1071 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 1072 return VPDT.properlyDominates(A, B); 1073 }); 1074 1075 for (VPRecipeBase *HoistCandidate : HoistCandidates) { 1076 HoistCandidate->moveBefore(*HoistPoint->getParent(), 1077 HoistPoint->getIterator()); 1078 } 1079 1080 return true; 1081 } 1082 1083 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 1084 VPBuilder &LoopBuilder) { 1085 VPDominatorTree VPDT; 1086 VPDT.recalculate(Plan); 1087 1088 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 1089 for (VPRecipeBase &R : 1090 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 1091 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 1092 RecurrencePhis.push_back(FOR); 1093 1094 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 1095 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 1096 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 1097 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 1098 // to terminate. 1099 while (auto *PrevPhi = 1100 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 1101 assert(PrevPhi->getParent() == FOR->getParent()); 1102 assert(SeenPhis.insert(PrevPhi).second); 1103 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 1104 } 1105 1106 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && 1107 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) 1108 return false; 1109 1110 // Introduce a recipe to combine the incoming and previous values of a 1111 // fixed-order recurrence. 1112 VPBasicBlock *InsertBlock = Previous->getParent(); 1113 if (isa<VPHeaderPHIRecipe>(Previous)) 1114 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 1115 else 1116 LoopBuilder.setInsertPoint(InsertBlock, 1117 std::next(Previous->getIterator())); 1118 1119 auto *RecurSplice = cast<VPInstruction>( 1120 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 1121 {FOR, FOR->getBackedgeValue()})); 1122 1123 FOR->replaceAllUsesWith(RecurSplice); 1124 // Set the first operand of RecurSplice to FOR again, after replacing 1125 // all users. 1126 RecurSplice->setOperand(0, FOR); 1127 } 1128 return true; 1129 } 1130 1131 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 1132 for (VPRecipeBase &R : 1133 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 1134 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 1135 if (!PhiR) 1136 continue; 1137 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 1138 RecurKind RK = RdxDesc.getRecurrenceKind(); 1139 if (RK != RecurKind::Add && RK != RecurKind::Mul) 1140 continue; 1141 1142 for (VPUser *U : collectUsersRecursively(PhiR)) 1143 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 1144 RecWithFlags->dropPoisonGeneratingFlags(); 1145 } 1146 } 1147 } 1148 1149 /// Move loop-invariant recipes out of the vector loop region in \p Plan. 1150 static void licm(VPlan &Plan) { 1151 VPBasicBlock *Preheader = Plan.getVectorPreheader(); 1152 1153 // Return true if we do not know how to (mechanically) hoist a given recipe 1154 // out of a loop region. Does not address legality concerns such as aliasing 1155 // or speculation safety. 1156 auto CannotHoistRecipe = [](VPRecipeBase &R) { 1157 // Allocas cannot be hoisted. 1158 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 1159 return RepR && RepR->getOpcode() == Instruction::Alloca; 1160 }; 1161 1162 // Hoist any loop invariant recipes from the vector loop region to the 1163 // preheader. Preform a shallow traversal of the vector loop region, to 1164 // exclude recipes in replicate regions. 1165 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1166 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1167 vp_depth_first_shallow(LoopRegion->getEntry()))) { 1168 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1169 if (CannotHoistRecipe(R)) 1170 continue; 1171 // TODO: Relax checks in the future, e.g. we could also hoist reads, if 1172 // their memory location is not modified in the vector loop. 1173 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || 1174 any_of(R.operands(), [](VPValue *Op) { 1175 return !Op->isDefinedOutsideLoopRegions(); 1176 })) 1177 continue; 1178 R.moveBefore(*Preheader, Preheader->end()); 1179 } 1180 } 1181 } 1182 1183 void VPlanTransforms::truncateToMinimalBitwidths( 1184 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { 1185 #ifndef NDEBUG 1186 // Count the processed recipes and cross check the count later with MinBWs 1187 // size, to make sure all entries in MinBWs have been handled. 1188 unsigned NumProcessedRecipes = 0; 1189 #endif 1190 // Keep track of created truncates, so they can be re-used. Note that we 1191 // cannot use RAUW after creating a new truncate, as this would could make 1192 // other uses have different types for their operands, making them invalidly 1193 // typed. 1194 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1195 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1196 VPTypeAnalysis TypeInfo(CanonicalIVType); 1197 VPBasicBlock *PH = Plan.getVectorPreheader(); 1198 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1199 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1200 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1201 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1202 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1203 continue; 1204 1205 VPValue *ResultVPV = R.getVPSingleValue(); 1206 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1207 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1208 if (!NewResSizeInBits) 1209 continue; 1210 1211 #ifndef NDEBUG 1212 NumProcessedRecipes++; 1213 #endif 1214 // If the value wasn't vectorized, we must maintain the original scalar 1215 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1216 // skip casts which do not need to be handled explicitly here, as 1217 // redundant casts will be removed during recipe simplification. 1218 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1219 #ifndef NDEBUG 1220 // If any of the operands is a live-in and not used by VPWidenRecipe or 1221 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1222 // processed as well. When MinBWs is currently constructed, there is no 1223 // information about whether recipes are widened or replicated and in 1224 // case they are reciplicated the operands are not truncated. Counting 1225 // them them here ensures we do not miss any recipes in MinBWs. 1226 // TODO: Remove once the analysis is done on VPlan. 1227 for (VPValue *Op : R.operands()) { 1228 if (!Op->isLiveIn()) 1229 continue; 1230 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1231 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1232 none_of(Op->users(), 1233 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) { 1234 // Add an entry to ProcessedTruncs to avoid counting the same 1235 // operand multiple times. 1236 ProcessedTruncs[Op] = nullptr; 1237 NumProcessedRecipes += 1; 1238 } 1239 } 1240 #endif 1241 continue; 1242 } 1243 1244 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1245 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1246 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1247 (void)OldResSizeInBits; 1248 1249 LLVMContext &Ctx = CanonicalIVType->getContext(); 1250 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1251 1252 // Any wrapping introduced by shrinking this operation shouldn't be 1253 // considered undefined behavior. So, we can't unconditionally copy 1254 // arithmetic wrapping flags to VPW. 1255 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1256 VPW->dropPoisonGeneratingFlags(); 1257 1258 using namespace llvm::VPlanPatternMatch; 1259 if (OldResSizeInBits != NewResSizeInBits && 1260 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1261 // Extend result to original width. 1262 auto *Ext = 1263 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1264 Ext->insertAfter(&R); 1265 ResultVPV->replaceAllUsesWith(Ext); 1266 Ext->setOperand(0, ResultVPV); 1267 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1268 } else { 1269 assert( 1270 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1271 "Only ICmps should not need extending the result."); 1272 } 1273 1274 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1275 if (isa<VPWidenLoadRecipe>(&R)) 1276 continue; 1277 1278 // Shrink operands by introducing truncates as needed. 1279 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1280 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1281 auto *Op = R.getOperand(Idx); 1282 unsigned OpSizeInBits = 1283 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1284 if (OpSizeInBits == NewResSizeInBits) 1285 continue; 1286 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1287 auto [ProcessedIter, IterIsEmpty] = 1288 ProcessedTruncs.insert({Op, nullptr}); 1289 VPWidenCastRecipe *NewOp = 1290 IterIsEmpty 1291 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1292 : ProcessedIter->second; 1293 R.setOperand(Idx, NewOp); 1294 if (!IterIsEmpty) 1295 continue; 1296 ProcessedIter->second = NewOp; 1297 if (!Op->isLiveIn()) { 1298 NewOp->insertBefore(&R); 1299 } else { 1300 PH->appendRecipe(NewOp); 1301 #ifndef NDEBUG 1302 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1303 bool IsContained = MinBWs.contains(OpInst); 1304 NumProcessedRecipes += IsContained; 1305 #endif 1306 } 1307 } 1308 1309 } 1310 } 1311 1312 assert(MinBWs.size() == NumProcessedRecipes && 1313 "some entries in MinBWs haven't been processed"); 1314 } 1315 1316 void VPlanTransforms::optimize(VPlan &Plan) { 1317 removeRedundantCanonicalIVs(Plan); 1318 removeRedundantInductionCasts(Plan); 1319 1320 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1321 legalizeAndOptimizeInductions(Plan); 1322 removeRedundantExpandSCEVRecipes(Plan); 1323 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1324 removeDeadRecipes(Plan); 1325 1326 createAndOptimizeReplicateRegions(Plan); 1327 mergeBlocksIntoPredecessors(Plan); 1328 licm(Plan); 1329 } 1330 1331 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1332 // the loop terminator with a branch-on-cond recipe with the negated 1333 // active-lane-mask as operand. Note that this turns the loop into an 1334 // uncountable one. Only the existing terminator is replaced, all other existing 1335 // recipes/users remain unchanged, except for poison-generating flags being 1336 // dropped from the canonical IV increment. Return the created 1337 // VPActiveLaneMaskPHIRecipe. 1338 // 1339 // The function uses the following definitions: 1340 // 1341 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1342 // calculate-trip-count-minus-VF (original TC) : original TC 1343 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1344 // CanonicalIVPhi : CanonicalIVIncrement 1345 // %StartV is the canonical induction start value. 1346 // 1347 // The function adds the following recipes: 1348 // 1349 // vector.ph: 1350 // %TripCount = calculate-trip-count-minus-VF (original TC) 1351 // [if DataWithControlFlowWithoutRuntimeCheck] 1352 // %EntryInc = canonical-iv-increment-for-part %StartV 1353 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1354 // 1355 // vector.body: 1356 // ... 1357 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1358 // ... 1359 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1360 // %ALM = active-lane-mask %InLoopInc, TripCount 1361 // %Negated = Not %ALM 1362 // branch-on-cond %Negated 1363 // 1364 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1365 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1366 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1367 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1368 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1369 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1370 1371 auto *CanonicalIVIncrement = 1372 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1373 // TODO: Check if dropping the flags is needed if 1374 // !DataAndControlFlowWithoutRuntimeCheck. 1375 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1376 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1377 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1378 // we have to take unrolling into account. Each part needs to start at 1379 // Part * VF 1380 auto *VecPreheader = Plan.getVectorPreheader(); 1381 VPBuilder Builder(VecPreheader); 1382 1383 // Create the ActiveLaneMask instruction using the correct start values. 1384 VPValue *TC = Plan.getTripCount(); 1385 1386 VPValue *TripCount, *IncrementValue; 1387 if (!DataAndControlFlowWithoutRuntimeCheck) { 1388 // When the loop is guarded by a runtime overflow check for the loop 1389 // induction variable increment by VF, we can increment the value before 1390 // the get.active.lane mask and use the unmodified tripcount. 1391 IncrementValue = CanonicalIVIncrement; 1392 TripCount = TC; 1393 } else { 1394 // When avoiding a runtime check, the active.lane.mask inside the loop 1395 // uses a modified trip count and the induction variable increment is 1396 // done after the active.lane.mask intrinsic is called. 1397 IncrementValue = CanonicalIVPHI; 1398 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1399 {TC}, DL); 1400 } 1401 auto *EntryIncrement = Builder.createOverflowingOp( 1402 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1403 "index.part.next"); 1404 1405 // Create the active lane mask instruction in the VPlan preheader. 1406 auto *EntryALM = 1407 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1408 DL, "active.lane.mask.entry"); 1409 1410 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1411 // preheader ActiveLaneMask instruction. 1412 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1413 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1414 1415 // Create the active lane mask for the next iteration of the loop before the 1416 // original terminator. 1417 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1418 Builder.setInsertPoint(OriginalTerminator); 1419 auto *InLoopIncrement = 1420 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1421 {IncrementValue}, {false, false}, DL); 1422 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1423 {InLoopIncrement, TripCount}, DL, 1424 "active.lane.mask.next"); 1425 LaneMaskPhi->addOperand(ALM); 1426 1427 // Replace the original terminator with BranchOnCond. We have to invert the 1428 // mask here because a true condition means jumping to the exit block. 1429 auto *NotMask = Builder.createNot(ALM, DL); 1430 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1431 OriginalTerminator->eraseFromParent(); 1432 return LaneMaskPhi; 1433 } 1434 1435 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1436 /// WideCanonicalIV, backedge-taken-count) pattern. 1437 /// TODO: Introduce explicit recipe for header-mask instead of searching 1438 /// for the header-mask pattern manually. 1439 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1440 SmallVector<VPValue *> WideCanonicalIVs; 1441 auto *FoundWidenCanonicalIVUser = 1442 find_if(Plan.getCanonicalIV()->users(), 1443 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1444 assert(count_if(Plan.getCanonicalIV()->users(), 1445 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1446 1 && 1447 "Must have at most one VPWideCanonicalIVRecipe"); 1448 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1449 auto *WideCanonicalIV = 1450 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1451 WideCanonicalIVs.push_back(WideCanonicalIV); 1452 } 1453 1454 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1455 // version of the canonical induction. 1456 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1457 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1458 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1459 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1460 WideCanonicalIVs.push_back(WidenOriginalIV); 1461 } 1462 1463 // Walk users of wide canonical IVs and collect to all compares of the form 1464 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1465 SmallVector<VPValue *> HeaderMasks; 1466 for (auto *Wide : WideCanonicalIVs) { 1467 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1468 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1469 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1470 continue; 1471 1472 assert(HeaderMask->getOperand(0) == Wide && 1473 "WidenCanonicalIV must be the first operand of the compare"); 1474 HeaderMasks.push_back(HeaderMask); 1475 } 1476 } 1477 return HeaderMasks; 1478 } 1479 1480 void VPlanTransforms::addActiveLaneMask( 1481 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1482 bool DataAndControlFlowWithoutRuntimeCheck) { 1483 assert((!DataAndControlFlowWithoutRuntimeCheck || 1484 UseActiveLaneMaskForControlFlow) && 1485 "DataAndControlFlowWithoutRuntimeCheck implies " 1486 "UseActiveLaneMaskForControlFlow"); 1487 1488 auto *FoundWidenCanonicalIVUser = 1489 find_if(Plan.getCanonicalIV()->users(), 1490 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1491 assert(FoundWidenCanonicalIVUser && 1492 "Must have widened canonical IV when tail folding!"); 1493 auto *WideCanonicalIV = 1494 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1495 VPSingleDefRecipe *LaneMask; 1496 if (UseActiveLaneMaskForControlFlow) { 1497 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1498 Plan, DataAndControlFlowWithoutRuntimeCheck); 1499 } else { 1500 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1501 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1502 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1503 "active.lane.mask"); 1504 } 1505 1506 // Walk users of WideCanonicalIV and replace all compares of the form 1507 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1508 // active-lane-mask. 1509 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1510 HeaderMask->replaceAllUsesWith(LaneMask); 1511 } 1512 1513 /// Try to convert \p CurRecipe to a corresponding EVL-based recipe. Returns 1514 /// nullptr if no EVL-based recipe could be created. 1515 /// \p HeaderMask Header Mask. 1516 /// \p CurRecipe Recipe to be transform. 1517 /// \p TypeInfo VPlan-based type analysis. 1518 /// \p AllOneMask The vector mask parameter of vector-predication intrinsics. 1519 /// \p EVL The explicit vector length parameter of vector-predication 1520 /// intrinsics. 1521 static VPRecipeBase *createEVLRecipe(VPValue *HeaderMask, 1522 VPRecipeBase &CurRecipe, 1523 VPTypeAnalysis &TypeInfo, 1524 VPValue &AllOneMask, VPValue &EVL) { 1525 using namespace llvm::VPlanPatternMatch; 1526 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1527 assert(OrigMask && "Unmasked recipe when folding tail"); 1528 return HeaderMask == OrigMask ? nullptr : OrigMask; 1529 }; 1530 1531 return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe) 1532 .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) { 1533 VPValue *NewMask = GetNewMask(L->getMask()); 1534 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); 1535 }) 1536 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) { 1537 VPValue *NewMask = GetNewMask(S->getMask()); 1538 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); 1539 }) 1540 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * { 1541 unsigned Opcode = W->getOpcode(); 1542 if (!Instruction::isBinaryOp(Opcode) && !Instruction::isUnaryOp(Opcode)) 1543 return nullptr; 1544 return new VPWidenEVLRecipe(*W, EVL); 1545 }) 1546 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) { 1547 VPValue *NewMask = GetNewMask(Red->getCondOp()); 1548 return new VPReductionEVLRecipe(*Red, EVL, NewMask); 1549 }) 1550 .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>( 1551 [&](auto *CR) -> VPRecipeBase * { 1552 Intrinsic::ID VPID; 1553 if (auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) { 1554 VPID = 1555 VPIntrinsic::getForIntrinsic(CallR->getVectorIntrinsicID()); 1556 } else { 1557 auto *CastR = cast<VPWidenCastRecipe>(CR); 1558 VPID = VPIntrinsic::getForOpcode(CastR->getOpcode()); 1559 } 1560 1561 // Not all intrinsics have a corresponding VP intrinsic. 1562 if (VPID == Intrinsic::not_intrinsic) 1563 return nullptr; 1564 assert(VPIntrinsic::getMaskParamPos(VPID) && 1565 VPIntrinsic::getVectorLengthParamPos(VPID) && 1566 "Expected VP intrinsic to have mask and EVL"); 1567 1568 SmallVector<VPValue *> Ops(CR->operands()); 1569 Ops.push_back(&AllOneMask); 1570 Ops.push_back(&EVL); 1571 return new VPWidenIntrinsicRecipe( 1572 VPID, Ops, TypeInfo.inferScalarType(CR), CR->getDebugLoc()); 1573 }) 1574 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) { 1575 SmallVector<VPValue *> Ops(Sel->operands()); 1576 Ops.push_back(&EVL); 1577 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops, 1578 TypeInfo.inferScalarType(Sel), 1579 Sel->getDebugLoc()); 1580 }) 1581 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * { 1582 VPValue *LHS, *RHS; 1583 // Transform select with a header mask condition 1584 // select(header_mask, LHS, RHS) 1585 // into vector predication merge. 1586 // vp.merge(all-true, LHS, RHS, EVL) 1587 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS), 1588 m_VPValue(RHS)))) 1589 return nullptr; 1590 // Use all true as the condition because this transformation is 1591 // limited to selects whose condition is a header mask. 1592 return new VPWidenIntrinsicRecipe( 1593 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL}, 1594 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc()); 1595 }) 1596 .Default([&](VPRecipeBase *R) { return nullptr; }); 1597 } 1598 1599 /// Replace recipes with their EVL variants. 1600 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { 1601 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1602 VPTypeAnalysis TypeInfo(CanonicalIVType); 1603 LLVMContext &Ctx = CanonicalIVType->getContext(); 1604 VPValue *AllOneMask = Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1605 1606 for (VPUser *U : Plan.getVF().users()) { 1607 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U)) 1608 R->setOperand(1, &EVL); 1609 } 1610 1611 SmallVector<VPRecipeBase *> ToErase; 1612 1613 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1614 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1615 auto *CurRecipe = cast<VPRecipeBase>(U); 1616 VPRecipeBase *EVLRecipe = 1617 createEVLRecipe(HeaderMask, *CurRecipe, TypeInfo, *AllOneMask, EVL); 1618 if (!EVLRecipe) 1619 continue; 1620 1621 [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues(); 1622 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1623 "New recipe must define the same number of values as the " 1624 "original."); 1625 assert( 1626 NumDefVal <= 1 && 1627 "Only supports recipes with a single definition or without users."); 1628 EVLRecipe->insertBefore(CurRecipe); 1629 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) { 1630 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1631 CurVPV->replaceAllUsesWith(EVLRecipe->getVPSingleValue()); 1632 } 1633 // Defer erasing recipes till the end so that we don't invalidate the 1634 // VPTypeAnalysis cache. 1635 ToErase.push_back(CurRecipe); 1636 } 1637 } 1638 1639 for (VPRecipeBase *R : reverse(ToErase)) { 1640 SmallVector<VPValue *> PossiblyDead(R->operands()); 1641 R->eraseFromParent(); 1642 for (VPValue *Op : PossiblyDead) 1643 recursivelyDeleteDeadRecipes(Op); 1644 } 1645 } 1646 1647 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1648 /// replaces all uses except the canonical IV increment of 1649 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1650 /// is used only for loop iterations counting after this transformation. 1651 /// 1652 /// The function uses the following definitions: 1653 /// %StartV is the canonical induction start value. 1654 /// 1655 /// The function adds the following recipes: 1656 /// 1657 /// vector.ph: 1658 /// ... 1659 /// 1660 /// vector.body: 1661 /// ... 1662 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1663 /// [ %NextEVLIV, %vector.body ] 1664 /// %AVL = sub original TC, %EVLPhi 1665 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL 1666 /// ... 1667 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1668 /// ... 1669 /// 1670 /// If MaxSafeElements is provided, the function adds the following recipes: 1671 /// vector.ph: 1672 /// ... 1673 /// 1674 /// vector.body: 1675 /// ... 1676 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1677 /// [ %NextEVLIV, %vector.body ] 1678 /// %AVL = sub original TC, %EVLPhi 1679 /// %cmp = cmp ult %AVL, MaxSafeElements 1680 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements 1681 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL 1682 /// ... 1683 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi 1684 /// ... 1685 /// 1686 bool VPlanTransforms::tryAddExplicitVectorLength( 1687 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { 1688 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1689 // The transform updates all users of inductions to work based on EVL, instead 1690 // of the VF directly. At the moment, widened inductions cannot be updated, so 1691 // bail out if the plan contains any. 1692 bool ContainsWidenInductions = any_of( 1693 Header->phis(), 1694 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>); 1695 if (ContainsWidenInductions) 1696 return false; 1697 1698 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1699 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1700 1701 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1702 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1703 EVLPhi->insertAfter(CanonicalIVPHI); 1704 VPBuilder Builder(Header, Header->getFirstNonPhi()); 1705 // Compute original TC - IV as the AVL (application vector length). 1706 VPValue *AVL = Builder.createNaryOp( 1707 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl"); 1708 if (MaxSafeElements) { 1709 // Support for MaxSafeDist for correct loop emission. 1710 VPValue *AVLSafe = Plan.getOrAddLiveIn( 1711 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements)); 1712 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe); 1713 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl"); 1714 } 1715 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL, 1716 DebugLoc()); 1717 1718 auto *CanonicalIVIncrement = 1719 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1720 VPSingleDefRecipe *OpVPEVL = VPEVL; 1721 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1722 IVSize != 32) { 1723 OpVPEVL = new VPScalarCastRecipe( 1724 IVSize < 32 ? Instruction::Trunc : Instruction::ZExt, OpVPEVL, 1725 CanonicalIVPHI->getScalarType(), CanonicalIVIncrement->getDebugLoc()); 1726 OpVPEVL->insertBefore(CanonicalIVIncrement); 1727 } 1728 auto *NextEVLIV = 1729 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1730 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1731 CanonicalIVIncrement->hasNoSignedWrap()}, 1732 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1733 NextEVLIV->insertBefore(CanonicalIVIncrement); 1734 EVLPhi->addOperand(NextEVLIV); 1735 1736 transformRecipestoEVLRecipes(Plan, *VPEVL); 1737 1738 // Replace all uses of VPCanonicalIVPHIRecipe by 1739 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1740 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1741 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1742 // TODO: support unroll factor > 1. 1743 Plan.setUF(1); 1744 return true; 1745 } 1746 1747 void VPlanTransforms::dropPoisonGeneratingRecipes( 1748 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1749 // Collect recipes in the backward slice of `Root` that may generate a poison 1750 // value that is used after vectorization. 1751 SmallPtrSet<VPRecipeBase *, 16> Visited; 1752 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1753 SmallVector<VPRecipeBase *, 16> Worklist; 1754 Worklist.push_back(Root); 1755 1756 // Traverse the backward slice of Root through its use-def chain. 1757 while (!Worklist.empty()) { 1758 VPRecipeBase *CurRec = Worklist.pop_back_val(); 1759 1760 if (!Visited.insert(CurRec).second) 1761 continue; 1762 1763 // Prune search if we find another recipe generating a widen memory 1764 // instruction. Widen memory instructions involved in address computation 1765 // will lead to gather/scatter instructions, which don't need to be 1766 // handled. 1767 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, 1768 VPHeaderPHIRecipe>(CurRec)) 1769 continue; 1770 1771 // This recipe contributes to the address computation of a widen 1772 // load/store. If the underlying instruction has poison-generating flags, 1773 // drop them directly. 1774 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1775 VPValue *A, *B; 1776 using namespace llvm::VPlanPatternMatch; 1777 // Dropping disjoint from an OR may yield incorrect results, as some 1778 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1779 // for dependence analysis). Instead, replace it with an equivalent Add. 1780 // This is possible as all users of the disjoint OR only access lanes 1781 // where the operands are disjoint or poison otherwise. 1782 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1783 RecWithFlags->isDisjoint()) { 1784 VPBuilder Builder(RecWithFlags); 1785 VPInstruction *New = Builder.createOverflowingOp( 1786 Instruction::Add, {A, B}, {false, false}, 1787 RecWithFlags->getDebugLoc()); 1788 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1789 RecWithFlags->replaceAllUsesWith(New); 1790 RecWithFlags->eraseFromParent(); 1791 CurRec = New; 1792 } else 1793 RecWithFlags->dropPoisonGeneratingFlags(); 1794 } else { 1795 Instruction *Instr = dyn_cast_or_null<Instruction>( 1796 CurRec->getVPSingleValue()->getUnderlyingValue()); 1797 (void)Instr; 1798 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1799 "found instruction with poison generating flags not covered by " 1800 "VPRecipeWithIRFlags"); 1801 } 1802 1803 // Add new definitions to the worklist. 1804 for (VPValue *Operand : CurRec->operands()) 1805 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) 1806 Worklist.push_back(OpDef); 1807 } 1808 }); 1809 1810 // Traverse all the recipes in the VPlan and collect the poison-generating 1811 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1812 // VPInterleaveRecipe. 1813 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1814 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1815 for (VPRecipeBase &Recipe : *VPBB) { 1816 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1817 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1818 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1819 if (AddrDef && WidenRec->isConsecutive() && 1820 BlockNeedsPredication(UnderlyingInstr.getParent())) 1821 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1822 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1823 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1824 if (AddrDef) { 1825 // Check if any member of the interleave group needs predication. 1826 const InterleaveGroup<Instruction> *InterGroup = 1827 InterleaveRec->getInterleaveGroup(); 1828 bool NeedPredication = false; 1829 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1830 I < NumMembers; ++I) { 1831 Instruction *Member = InterGroup->getMember(I); 1832 if (Member) 1833 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1834 } 1835 1836 if (NeedPredication) 1837 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1838 } 1839 } 1840 } 1841 } 1842 } 1843 1844 void VPlanTransforms::createInterleaveGroups( 1845 VPlan &Plan, 1846 const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> 1847 &InterleaveGroups, 1848 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) { 1849 if (InterleaveGroups.empty()) 1850 return; 1851 1852 // Interleave memory: for each Interleave Group we marked earlier as relevant 1853 // for this VPlan, replace the Recipes widening its memory instructions with a 1854 // single VPInterleaveRecipe at its insertion point. 1855 VPDominatorTree VPDT; 1856 VPDT.recalculate(Plan); 1857 for (const auto *IG : InterleaveGroups) { 1858 SmallVector<VPValue *, 4> StoredValues; 1859 for (unsigned i = 0; i < IG->getFactor(); ++i) 1860 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 1861 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); 1862 StoredValues.push_back(StoreR->getStoredValue()); 1863 } 1864 1865 bool NeedsMaskForGaps = 1866 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; 1867 1868 Instruction *IRInsertPos = IG->getInsertPos(); 1869 auto *InsertPos = 1870 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos)); 1871 1872 // Get or create the start address for the interleave group. 1873 auto *Start = 1874 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0))); 1875 VPValue *Addr = Start->getAddr(); 1876 VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); 1877 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) { 1878 // TODO: Hoist Addr's defining recipe (and any operands as needed) to 1879 // InsertPos or sink loads above zero members to join it. 1880 bool InBounds = false; 1881 if (auto *Gep = dyn_cast<GetElementPtrInst>( 1882 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts())) 1883 InBounds = Gep->isInBounds(); 1884 1885 // We cannot re-use the address of member zero because it does not 1886 // dominate the insert position. Instead, use the address of the insert 1887 // position and create a PtrAdd adjusting it to the address of member 1888 // zero. 1889 assert(IG->getIndex(IRInsertPos) != 0 && 1890 "index of insert position shouldn't be zero"); 1891 auto &DL = IRInsertPos->getDataLayout(); 1892 APInt Offset(32, 1893 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) * 1894 IG->getIndex(IRInsertPos), 1895 /*IsSigned=*/true); 1896 VPValue *OffsetVPV = Plan.getOrAddLiveIn( 1897 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset)); 1898 VPBuilder B(InsertPos); 1899 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV) 1900 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV); 1901 } 1902 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, 1903 InsertPos->getMask(), NeedsMaskForGaps); 1904 VPIG->insertBefore(InsertPos); 1905 1906 unsigned J = 0; 1907 for (unsigned i = 0; i < IG->getFactor(); ++i) 1908 if (Instruction *Member = IG->getMember(i)) { 1909 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); 1910 if (!Member->getType()->isVoidTy()) { 1911 VPValue *OriginalV = MemberR->getVPSingleValue(); 1912 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 1913 J++; 1914 } 1915 MemberR->eraseFromParent(); 1916 } 1917 } 1918 } 1919 1920 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { 1921 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1922 vp_depth_first_deep(Plan.getEntry()))) { 1923 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) { 1924 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R)) 1925 continue; 1926 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1927 StringRef Name = 1928 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv"; 1929 auto *ScalarR = 1930 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(), 1931 PhiR->getDebugLoc(), Name); 1932 ScalarR->insertBefore(PhiR); 1933 PhiR->replaceAllUsesWith(ScalarR); 1934 PhiR->eraseFromParent(); 1935 } 1936 } 1937 } 1938 1939 void VPlanTransforms::handleUncountableEarlyExit( 1940 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, 1941 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) { 1942 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1943 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting()); 1944 VPBuilder Builder(LatchVPBB->getTerminator()); 1945 auto *MiddleVPBB = Plan.getMiddleBlock(); 1946 VPValue *IsEarlyExitTaken = nullptr; 1947 1948 // Process the uncountable exiting block. Update IsEarlyExitTaken, which 1949 // tracks if the uncountable early exit has been taken. Also split the middle 1950 // block and have it conditionally branch to the early exit block if 1951 // EarlyExitTaken. 1952 auto *EarlyExitingBranch = 1953 cast<BranchInst>(UncountableExitingBlock->getTerminator()); 1954 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0); 1955 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1); 1956 1957 // The early exit block may or may not be the same as the "countable" exit 1958 // block. Creates a new VPIRBB for the early exit block in case it is distinct 1959 // from the countable exit block. 1960 // TODO: Introduce both exit blocks during VPlan skeleton construction. 1961 VPIRBasicBlock *VPEarlyExitBlock; 1962 if (OrigLoop->getUniqueExitBlock()) { 1963 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]); 1964 } else { 1965 VPEarlyExitBlock = Plan.createVPIRBasicBlock( 1966 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1967 } 1968 1969 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask( 1970 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1971 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond); 1972 IsEarlyExitTaken = 1973 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond}); 1974 1975 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split"); 1976 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle); 1977 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock); 1978 NewMiddle->swapSuccessors(); 1979 1980 VPBuilder MiddleBuilder(NewMiddle); 1981 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken}); 1982 1983 // Replace the condition controlling the non-early exit from the vector loop 1984 // with one exiting if either the original condition of the vector latch is 1985 // true or the early exit has been taken. 1986 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator()); 1987 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && 1988 "Unexpected terminator"); 1989 auto *IsLatchExitTaken = 1990 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0), 1991 LatchExitingBranch->getOperand(1)); 1992 auto *AnyExitTaken = Builder.createNaryOp( 1993 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken}); 1994 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken); 1995 LatchExitingBranch->eraseFromParent(); 1996 } 1997