1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlan.h" 17 #include "VPlanAnalysis.h" 18 #include "VPlanCFG.h" 19 #include "VPlanDominatorTree.h" 20 #include "VPlanPatternMatch.h" 21 #include "VPlanUtils.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/PatternMatch.h" 30 31 using namespace llvm; 32 33 void VPlanTransforms::VPInstructionsToVPRecipes( 34 VPlanPtr &Plan, 35 function_ref<const InductionDescriptor *(PHINode *)> 36 GetIntOrFpInductionDescriptor, 37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 38 39 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 40 Plan->getVectorLoopRegion()); 41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 42 // Skip blocks outside region 43 if (!VPBB->getParent()) 44 break; 45 VPRecipeBase *Term = VPBB->getTerminator(); 46 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 47 // Introduce each ingredient into VPlan. 48 for (VPRecipeBase &Ingredient : 49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 50 51 VPValue *VPV = Ingredient.getVPSingleValue(); 52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 53 54 VPRecipeBase *NewRecipe = nullptr; 55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 57 const auto *II = GetIntOrFpInductionDescriptor(Phi); 58 if (!II) 59 continue; 60 61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 62 VPValue *Step = 63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 64 NewRecipe = new VPWidenIntOrFpInductionRecipe( 65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); 66 } else { 67 assert(isa<VPInstruction>(&Ingredient) && 68 "only VPInstructions expected here"); 69 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 70 // Create VPWidenMemoryRecipe for loads and stores. 71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 72 NewRecipe = new VPWidenLoadRecipe( 73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 74 false /*Consecutive*/, false /*Reverse*/, 75 Ingredient.getDebugLoc()); 76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 77 NewRecipe = new VPWidenStoreRecipe( 78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 80 Ingredient.getDebugLoc()); 81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 84 NewRecipe = new VPWidenIntrinsicRecipe( 85 *CI, getVectorIntrinsicIDForCall(CI, &TLI), 86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), 87 CI->getDebugLoc()); 88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 91 NewRecipe = new VPWidenCastRecipe( 92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 93 } else { 94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 95 } 96 } 97 98 NewRecipe->insertBefore(&Ingredient); 99 if (NewRecipe->getNumDefinedValues() == 1) 100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 101 else 102 assert(NewRecipe->getNumDefinedValues() == 0 && 103 "Only recpies with zero or one defined values expected"); 104 Ingredient.eraseFromParent(); 105 } 106 } 107 } 108 109 static bool sinkScalarOperands(VPlan &Plan) { 110 auto Iter = vp_depth_first_deep(Plan.getEntry()); 111 bool Changed = false; 112 // First, collect the operands of all recipes in replicate blocks as seeds for 113 // sinking. 114 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 118 continue; 119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 121 continue; 122 for (auto &Recipe : *VPBB) { 123 for (VPValue *Op : Recipe.operands()) 124 if (auto *Def = 125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 126 WorkList.insert(std::make_pair(VPBB, Def)); 127 } 128 } 129 130 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 131 // Try to sink each replicate or scalar IV steps recipe in the worklist. 132 for (unsigned I = 0; I != WorkList.size(); ++I) { 133 VPBasicBlock *SinkTo; 134 VPSingleDefRecipe *SinkCandidate; 135 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 136 if (SinkCandidate->getParent() == SinkTo || 137 SinkCandidate->mayHaveSideEffects() || 138 SinkCandidate->mayReadOrWriteMemory()) 139 continue; 140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 141 if (!ScalarVFOnly && RepR->isUniform()) 142 continue; 143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 144 continue; 145 146 bool NeedsDuplicating = false; 147 // All recipe users of the sink candidate must be in the same block SinkTo 148 // or all users outside of SinkTo must be uniform-after-vectorization ( 149 // i.e., only first lane is used) . In the latter case, we need to duplicate 150 // SinkCandidate. 151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 152 SinkCandidate](VPUser *U) { 153 auto *UI = cast<VPRecipeBase>(U); 154 if (UI->getParent() == SinkTo) 155 return true; 156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 157 // We only know how to duplicate VPRecipeRecipes for now. 158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 159 }; 160 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 161 continue; 162 163 if (NeedsDuplicating) { 164 if (ScalarVFOnly) 165 continue; 166 Instruction *I = SinkCandidate->getUnderlyingInstr(); 167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 168 // TODO: add ".cloned" suffix to name of Clone's VPValue. 169 170 Clone->insertBefore(SinkCandidate); 171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 173 }); 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 if (auto *Def = 178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 179 WorkList.insert(std::make_pair(SinkTo, Def)); 180 Changed = true; 181 } 182 return Changed; 183 } 184 185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 186 /// the mask. 187 VPValue *getPredicatedMask(VPRegionBlock *R) { 188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 189 if (!EntryBB || EntryBB->size() != 1 || 190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 191 return nullptr; 192 193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 194 } 195 196 /// If \p R is a triangle region, return the 'then' block of the triangle. 197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 199 if (EntryBB->getNumSuccessors() != 2) 200 return nullptr; 201 202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 204 if (!Succ0 || !Succ1) 205 return nullptr; 206 207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 208 return nullptr; 209 if (Succ0->getSingleSuccessor() == Succ1) 210 return Succ0; 211 if (Succ1->getSingleSuccessor() == Succ0) 212 return Succ1; 213 return nullptr; 214 } 215 216 // Merge replicate regions in their successor region, if a replicate region 217 // is connected to a successor replicate region with the same predicate by a 218 // single, empty VPBasicBlock. 219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 220 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; 221 222 // Collect replicate regions followed by an empty block, followed by another 223 // replicate region with matching masks to process front. This is to avoid 224 // iterator invalidation issues while merging regions. 225 SmallVector<VPRegionBlock *, 8> WorkList; 226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 227 vp_depth_first_deep(Plan.getEntry()))) { 228 if (!Region1->isReplicator()) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2 || !Region2->isReplicator()) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 245 assert(Mask1 && Mask2 && "both region must have conditions"); 246 WorkList.push_back(Region1); 247 } 248 249 // Move recipes from Region1 to its successor region, if both are triangles. 250 for (VPRegionBlock *Region1 : WorkList) { 251 if (TransformedRegions.contains(Region1)) 252 continue; 253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 255 256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 258 if (!Then1 || !Then2) 259 continue; 260 261 // Note: No fusion-preventing memory dependencies are expected in either 262 // region. Such dependencies should be rejected during earlier dependence 263 // checks, which guarantee accesses can be re-ordered for vectorization. 264 // 265 // Move recipes to the successor region. 266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 268 269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 271 272 // Move VPPredInstPHIRecipes from the merge block to the successor region's 273 // merge block. Update all users inside the successor region to use the 274 // original values. 275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 276 VPValue *PredInst1 = 277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 280 return cast<VPRecipeBase>(&U)->getParent() == Then2; 281 }); 282 283 // Remove phi recipes that are unused after merging the regions. 284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 285 Phi1ToMove.eraseFromParent(); 286 continue; 287 } 288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 289 } 290 291 // Finally, remove the first region. 292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 293 VPBlockUtils::disconnectBlocks(Pred, Region1); 294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 295 } 296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 297 TransformedRegions.insert(Region1); 298 } 299 300 return !TransformedRegions.empty(); 301 } 302 303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 304 VPlan &Plan) { 305 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 306 // Build the triangular if-then region. 307 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 308 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 309 auto *BlockInMask = PredRecipe->getMask(); 310 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 311 auto *Entry = 312 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 313 314 // Replace predicated replicate recipe with a replicate recipe without a 315 // mask but in the replicate region. 316 auto *RecipeWithoutMask = new VPReplicateRecipe( 317 PredRecipe->getUnderlyingInstr(), 318 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 319 PredRecipe->isUniform()); 320 auto *Pred = 321 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 322 323 VPPredInstPHIRecipe *PHIRecipe = nullptr; 324 if (PredRecipe->getNumUsers() != 0) { 325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, 326 RecipeWithoutMask->getDebugLoc()); 327 PredRecipe->replaceAllUsesWith(PHIRecipe); 328 PHIRecipe->setOperand(0, RecipeWithoutMask); 329 } 330 PredRecipe->eraseFromParent(); 331 auto *Exiting = 332 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 333 VPRegionBlock *Region = 334 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true); 335 336 // Note: first set Entry as region entry and then connect successors starting 337 // from it in order, to propagate the "parent" of each VPBasicBlock. 338 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 339 VPBlockUtils::connectBlocks(Pred, Exiting); 340 341 return Region; 342 } 343 344 static void addReplicateRegions(VPlan &Plan) { 345 SmallVector<VPReplicateRecipe *> WorkList; 346 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 347 vp_depth_first_deep(Plan.getEntry()))) { 348 for (VPRecipeBase &R : *VPBB) 349 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 350 if (RepR->isPredicated()) 351 WorkList.push_back(RepR); 352 } 353 } 354 355 unsigned BBNum = 0; 356 for (VPReplicateRecipe *RepR : WorkList) { 357 VPBasicBlock *CurrentBlock = RepR->getParent(); 358 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 359 360 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 361 SplitBlock->setName( 362 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 363 // Record predicated instructions for above packing optimizations. 364 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 365 Region->setParent(CurrentBlock->getParent()); 366 VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region); 367 } 368 } 369 370 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 371 /// the predecessor has a single successor. 372 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 373 SmallVector<VPBasicBlock *> WorkList; 374 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 375 vp_depth_first_deep(Plan.getEntry()))) { 376 // Don't fold the blocks in the skeleton of the Plan into their single 377 // predecessors for now. 378 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 379 if (!VPBB->getParent()) 380 continue; 381 auto *PredVPBB = 382 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 383 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || 384 isa<VPIRBasicBlock>(PredVPBB)) 385 continue; 386 WorkList.push_back(VPBB); 387 } 388 389 for (VPBasicBlock *VPBB : WorkList) { 390 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 391 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 392 R.moveBefore(*PredVPBB, PredVPBB->end()); 393 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 394 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 395 if (ParentRegion && ParentRegion->getExiting() == VPBB) 396 ParentRegion->setExiting(PredVPBB); 397 for (auto *Succ : to_vector(VPBB->successors())) { 398 VPBlockUtils::disconnectBlocks(VPBB, Succ); 399 VPBlockUtils::connectBlocks(PredVPBB, Succ); 400 } 401 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 402 } 403 return !WorkList.empty(); 404 } 405 406 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 407 // Convert masked VPReplicateRecipes to if-then region blocks. 408 addReplicateRegions(Plan); 409 410 bool ShouldSimplify = true; 411 while (ShouldSimplify) { 412 ShouldSimplify = sinkScalarOperands(Plan); 413 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 414 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 415 } 416 } 417 418 /// Remove redundant casts of inductions. 419 /// 420 /// Such redundant casts are casts of induction variables that can be ignored, 421 /// because we already proved that the casted phi is equal to the uncasted phi 422 /// in the vectorized loop. There is no need to vectorize the cast - the same 423 /// value can be used for both the phi and casts in the vector loop. 424 static void removeRedundantInductionCasts(VPlan &Plan) { 425 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 426 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 427 if (!IV || IV->getTruncInst()) 428 continue; 429 430 // A sequence of IR Casts has potentially been recorded for IV, which 431 // *must be bypassed* when the IV is vectorized, because the vectorized IV 432 // will produce the desired casted value. This sequence forms a def-use 433 // chain and is provided in reverse order, ending with the cast that uses 434 // the IV phi. Search for the recipe of the last cast in the chain and 435 // replace it with the original IV. Note that only the final cast is 436 // expected to have users outside the cast-chain and the dead casts left 437 // over will be cleaned up later. 438 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 439 VPValue *FindMyCast = IV; 440 for (Instruction *IRCast : reverse(Casts)) { 441 VPSingleDefRecipe *FoundUserCast = nullptr; 442 for (auto *U : FindMyCast->users()) { 443 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 444 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 445 FoundUserCast = UserCast; 446 break; 447 } 448 } 449 FindMyCast = FoundUserCast; 450 } 451 FindMyCast->replaceAllUsesWith(IV); 452 } 453 } 454 455 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 456 /// recipe, if it exists. 457 static void removeRedundantCanonicalIVs(VPlan &Plan) { 458 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 459 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 460 for (VPUser *U : CanonicalIV->users()) { 461 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 462 if (WidenNewIV) 463 break; 464 } 465 466 if (!WidenNewIV) 467 return; 468 469 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 470 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 471 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 472 473 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 474 continue; 475 476 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 477 // everything WidenNewIV's users need. That is, WidenOriginalIV will 478 // generate a vector phi or all users of WidenNewIV demand the first lane 479 // only. 480 if (any_of(WidenOriginalIV->users(), 481 [WidenOriginalIV](VPUser *U) { 482 return !U->usesScalars(WidenOriginalIV); 483 }) || 484 vputils::onlyFirstLaneUsed(WidenNewIV)) { 485 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 486 WidenNewIV->eraseFromParent(); 487 return; 488 } 489 } 490 } 491 492 /// Returns true if \p R is dead and can be removed. 493 static bool isDeadRecipe(VPRecipeBase &R) { 494 using namespace llvm::PatternMatch; 495 // Do remove conditional assume instructions as their conditions may be 496 // flattened. 497 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 498 bool IsConditionalAssume = 499 RepR && RepR->isPredicated() && 500 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 501 if (IsConditionalAssume) 502 return true; 503 504 if (R.mayHaveSideEffects()) 505 return false; 506 507 // Recipe is dead if no user keeps the recipe alive. 508 return all_of(R.definedValues(), 509 [](VPValue *V) { return V->getNumUsers() == 0; }); 510 } 511 512 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { 513 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 514 Plan.getEntry()); 515 516 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 517 // The recipes in the block are processed in reverse order, to catch chains 518 // of dead recipes. 519 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 520 if (isDeadRecipe(R)) 521 R.eraseFromParent(); 522 } 523 } 524 } 525 526 static VPScalarIVStepsRecipe * 527 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 528 Instruction::BinaryOps InductionOpcode, 529 FPMathOperator *FPBinOp, Instruction *TruncI, 530 VPValue *StartV, VPValue *Step, DebugLoc DL, 531 VPBuilder &Builder) { 532 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 533 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 534 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( 535 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx"); 536 537 // Truncate base induction if needed. 538 Type *CanonicalIVType = CanonicalIV->getScalarType(); 539 VPTypeAnalysis TypeInfo(CanonicalIVType); 540 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 541 if (TruncI) { 542 Type *TruncTy = TruncI->getType(); 543 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 544 "Not truncating."); 545 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 546 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL); 547 ResultTy = TruncTy; 548 } 549 550 // Truncate step if needed. 551 Type *StepTy = TypeInfo.inferScalarType(Step); 552 if (ResultTy != StepTy) { 553 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 554 "Not truncating."); 555 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 556 auto *VecPreheader = 557 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 558 VPBuilder::InsertPointGuard Guard(Builder); 559 Builder.setInsertPoint(VecPreheader); 560 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL); 561 } 562 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step); 563 } 564 565 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 566 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 567 for (unsigned I = 0; I != Users.size(); ++I) { 568 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]); 569 if (isa<VPHeaderPHIRecipe>(Cur)) 570 continue; 571 for (VPValue *V : Cur->definedValues()) 572 Users.insert(V->user_begin(), V->user_end()); 573 } 574 return Users.takeVector(); 575 } 576 577 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 578 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 579 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 580 /// require vectors while other require scalars, the scalar uses need to extract 581 /// the scalars from the generated vectors (Note that this is different to how 582 /// int/fp inductions are handled). Legalize extract-from-ends using uniform 583 /// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so 584 /// the correct end value is available. Also optimize 585 /// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by 586 /// providing them scalar steps built on the canonical scalar IV and update the 587 /// original IV's users. This is an optional optimization to reduce the needs of 588 /// vector extracts. 589 static void legalizeAndOptimizeInductions(VPlan &Plan) { 590 using namespace llvm::VPlanPatternMatch; 591 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 592 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 593 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 594 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 595 auto *PhiR = dyn_cast<VPHeaderPHIRecipe>(&Phi); 596 if (!PhiR) 597 break; 598 599 // Check if any uniform VPReplicateRecipes using the phi recipe are used by 600 // ExtractFromEnd. Those must be replaced by a regular VPReplicateRecipe to 601 // ensure the final value is available. 602 // TODO: Remove once uniformity analysis is done on VPlan. 603 for (VPUser *U : collectUsersRecursively(PhiR)) { 604 auto *ExitIRI = dyn_cast<VPIRInstruction>(U); 605 VPValue *Op; 606 if (!ExitIRI || !match(ExitIRI->getOperand(0), 607 m_VPInstruction<VPInstruction::ExtractFromEnd>( 608 m_VPValue(Op), m_VPValue()))) 609 continue; 610 auto *RepR = dyn_cast<VPReplicateRecipe>(Op); 611 if (!RepR || !RepR->isUniform()) 612 continue; 613 assert(!RepR->isPredicated() && "RepR must not be predicated"); 614 Instruction *I = RepR->getUnderlyingInstr(); 615 auto *Clone = 616 new VPReplicateRecipe(I, RepR->operands(), /*IsUniform*/ false); 617 Clone->insertAfter(RepR); 618 RepR->replaceAllUsesWith(Clone); 619 } 620 621 // Replace wide pointer inductions which have only their scalars used by 622 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 623 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 624 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 625 continue; 626 627 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 628 VPValue *StartV = 629 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 630 VPValue *StepV = PtrIV->getOperand(1); 631 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 632 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 633 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder); 634 635 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps, 636 PtrIV->getDebugLoc(), "next.gep"); 637 638 PtrIV->replaceAllUsesWith(PtrAdd); 639 continue; 640 } 641 642 // Replace widened induction with scalar steps for users that only use 643 // scalars. 644 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 645 if (!WideIV) 646 continue; 647 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 648 return U->usesScalars(WideIV); 649 })) 650 continue; 651 652 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 653 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 654 Plan, ID.getKind(), ID.getInductionOpcode(), 655 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 656 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 657 WideIV->getDebugLoc(), Builder); 658 659 // Update scalar users of IV to use Step instead. 660 if (!HasOnlyVectorVFs) 661 WideIV->replaceAllUsesWith(Steps); 662 else 663 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 664 return U.usesScalars(WideIV); 665 }); 666 } 667 } 668 669 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 670 /// them with already existing recipes expanding the same SCEV expression. 671 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 672 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 673 674 for (VPRecipeBase &R : 675 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 676 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 677 if (!ExpR) 678 continue; 679 680 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 681 if (I.second) 682 continue; 683 ExpR->replaceAllUsesWith(I.first->second); 684 ExpR->eraseFromParent(); 685 } 686 } 687 688 static void recursivelyDeleteDeadRecipes(VPValue *V) { 689 SmallVector<VPValue *> WorkList; 690 SmallPtrSet<VPValue *, 8> Seen; 691 WorkList.push_back(V); 692 693 while (!WorkList.empty()) { 694 VPValue *Cur = WorkList.pop_back_val(); 695 if (!Seen.insert(Cur).second) 696 continue; 697 VPRecipeBase *R = Cur->getDefiningRecipe(); 698 if (!R) 699 continue; 700 if (!isDeadRecipe(*R)) 701 continue; 702 WorkList.append(R->op_begin(), R->op_end()); 703 R->eraseFromParent(); 704 } 705 } 706 707 /// Try to simplify recipe \p R. 708 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 709 using namespace llvm::VPlanPatternMatch; 710 711 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 712 // Try to remove redundant blend recipes. 713 SmallPtrSet<VPValue *, 4> UniqueValues; 714 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False())) 715 UniqueValues.insert(Blend->getIncomingValue(0)); 716 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 717 if (!match(Blend->getMask(I), m_False())) 718 UniqueValues.insert(Blend->getIncomingValue(I)); 719 720 if (UniqueValues.size() == 1) { 721 Blend->replaceAllUsesWith(*UniqueValues.begin()); 722 Blend->eraseFromParent(); 723 return; 724 } 725 726 if (Blend->isNormalized()) 727 return; 728 729 // Normalize the blend so its first incoming value is used as the initial 730 // value with the others blended into it. 731 732 unsigned StartIndex = 0; 733 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 734 // If a value's mask is used only by the blend then is can be deadcoded. 735 // TODO: Find the most expensive mask that can be deadcoded, or a mask 736 // that's used by multiple blends where it can be removed from them all. 737 VPValue *Mask = Blend->getMask(I); 738 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) { 739 StartIndex = I; 740 break; 741 } 742 } 743 744 SmallVector<VPValue *, 4> OperandsWithMask; 745 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex)); 746 747 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 748 if (I == StartIndex) 749 continue; 750 OperandsWithMask.push_back(Blend->getIncomingValue(I)); 751 OperandsWithMask.push_back(Blend->getMask(I)); 752 } 753 754 auto *NewBlend = new VPBlendRecipe( 755 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask); 756 NewBlend->insertBefore(&R); 757 758 VPValue *DeadMask = Blend->getMask(StartIndex); 759 Blend->replaceAllUsesWith(NewBlend); 760 Blend->eraseFromParent(); 761 recursivelyDeleteDeadRecipes(DeadMask); 762 return; 763 } 764 765 VPValue *A; 766 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 767 VPValue *Trunc = R.getVPSingleValue(); 768 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 769 Type *ATy = TypeInfo.inferScalarType(A); 770 if (TruncTy == ATy) { 771 Trunc->replaceAllUsesWith(A); 772 } else { 773 // Don't replace a scalarizing recipe with a widened cast. 774 if (isa<VPReplicateRecipe>(&R)) 775 return; 776 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 777 778 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 779 ? Instruction::SExt 780 : Instruction::ZExt; 781 auto *VPC = 782 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 783 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 784 // UnderlyingExt has distinct return type, used to retain legacy cost. 785 VPC->setUnderlyingValue(UnderlyingExt); 786 } 787 VPC->insertBefore(&R); 788 Trunc->replaceAllUsesWith(VPC); 789 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 790 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 791 VPC->insertBefore(&R); 792 Trunc->replaceAllUsesWith(VPC); 793 } 794 } 795 #ifndef NDEBUG 796 // Verify that the cached type info is for both A and its users is still 797 // accurate by comparing it to freshly computed types. 798 VPTypeAnalysis TypeInfo2( 799 R.getParent()->getPlan()->getCanonicalIV()->getScalarType()); 800 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 801 for (VPUser *U : A->users()) { 802 auto *R = cast<VPRecipeBase>(U); 803 for (VPValue *VPV : R->definedValues()) 804 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 805 } 806 #endif 807 } 808 809 // Simplify (X && Y) || (X && !Y) -> X. 810 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 811 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 812 // recipes to be visited during simplification. 813 VPValue *X, *Y, *X1, *Y1; 814 if (match(&R, 815 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 816 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 817 X == X1 && Y == Y1) { 818 R.getVPSingleValue()->replaceAllUsesWith(X); 819 R.eraseFromParent(); 820 return; 821 } 822 823 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 824 return R.getVPSingleValue()->replaceAllUsesWith(A); 825 826 if (match(&R, m_Not(m_Not(m_VPValue(A))))) 827 return R.getVPSingleValue()->replaceAllUsesWith(A); 828 829 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. 830 if ((match(&R, 831 m_DerivedIV(m_SpecificInt(0), m_VPValue(A), m_SpecificInt(1))) || 832 match(&R, 833 m_DerivedIV(m_SpecificInt(0), m_SpecificInt(0), m_VPValue()))) && 834 TypeInfo.inferScalarType(R.getOperand(1)) == 835 TypeInfo.inferScalarType(R.getVPSingleValue())) 836 return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1)); 837 } 838 839 /// Try to simplify the recipes in \p Plan. Use \p CanonicalIVTy as type for all 840 /// un-typed live-ins in VPTypeAnalysis. 841 static void simplifyRecipes(VPlan &Plan, Type *CanonicalIVTy) { 842 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 843 Plan.getEntry()); 844 VPTypeAnalysis TypeInfo(CanonicalIVTy); 845 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 846 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 847 simplifyRecipe(R, TypeInfo); 848 } 849 } 850 } 851 852 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 853 unsigned BestUF, 854 PredicatedScalarEvolution &PSE) { 855 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 856 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 857 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 858 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); 859 auto *Term = &ExitingVPBB->back(); 860 // Try to simplify the branch condition if TC <= VF * UF when preparing to 861 // execute the plan for the main vector loop. We only do this if the 862 // terminator is: 863 // 1. BranchOnCount, or 864 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 865 using namespace llvm::VPlanPatternMatch; 866 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 867 !match(Term, 868 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 869 return; 870 871 ScalarEvolution &SE = *PSE.getSE(); 872 const SCEV *TripCount = 873 vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE); 874 assert(!isa<SCEVCouldNotCompute>(TripCount) && 875 "Trip count SCEV must be computable"); 876 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 877 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 878 if (TripCount->isZero() || 879 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 880 return; 881 882 // The vector loop region only executes once. If possible, completely remove 883 // the region, otherwise replace the terminator controlling the latch with 884 // (BranchOnCond true). 885 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry()); 886 auto *CanIVTy = Plan.getCanonicalIV()->getScalarType(); 887 if (all_of( 888 Header->phis(), 889 IsaPred<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe>)) { 890 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) { 891 auto *HeaderPhiR = cast<VPHeaderPHIRecipe>(&HeaderR); 892 HeaderPhiR->replaceAllUsesWith(HeaderPhiR->getStartValue()); 893 HeaderPhiR->eraseFromParent(); 894 } 895 896 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor(); 897 VPBlockBase *Exit = VectorRegion->getSingleSuccessor(); 898 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion); 899 VPBlockUtils::disconnectBlocks(VectorRegion, Exit); 900 901 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry())) 902 B->setParent(nullptr); 903 904 VPBlockUtils::connectBlocks(Preheader, Header); 905 VPBlockUtils::connectBlocks(ExitingVPBB, Exit); 906 simplifyRecipes(Plan, CanIVTy); 907 } else { 908 // The vector region contains header phis for which we cannot remove the 909 // loop region yet. 910 LLVMContext &Ctx = SE.getContext(); 911 auto *BOC = new VPInstruction( 912 VPInstruction::BranchOnCond, 913 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc()); 914 ExitingVPBB->appendRecipe(BOC); 915 } 916 917 Term->eraseFromParent(); 918 VPlanTransforms::removeDeadRecipes(Plan); 919 920 Plan.setVF(BestVF); 921 Plan.setUF(BestUF); 922 // TODO: Further simplifications are possible 923 // 1. Replace inductions with constants. 924 // 2. Replace vector loop region with VPBasicBlock. 925 } 926 927 /// Sink users of \p FOR after the recipe defining the previous value \p 928 /// Previous of the recurrence. \returns true if all users of \p FOR could be 929 /// re-arranged as needed or false if it is not possible. 930 static bool 931 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 932 VPRecipeBase *Previous, 933 VPDominatorTree &VPDT) { 934 // Collect recipes that need sinking. 935 SmallVector<VPRecipeBase *> WorkList; 936 SmallPtrSet<VPRecipeBase *, 8> Seen; 937 Seen.insert(Previous); 938 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 939 // The previous value must not depend on the users of the recurrence phi. In 940 // that case, FOR is not a fixed order recurrence. 941 if (SinkCandidate == Previous) 942 return false; 943 944 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 945 !Seen.insert(SinkCandidate).second || 946 VPDT.properlyDominates(Previous, SinkCandidate)) 947 return true; 948 949 if (SinkCandidate->mayHaveSideEffects()) 950 return false; 951 952 WorkList.push_back(SinkCandidate); 953 return true; 954 }; 955 956 // Recursively sink users of FOR after Previous. 957 WorkList.push_back(FOR); 958 for (unsigned I = 0; I != WorkList.size(); ++I) { 959 VPRecipeBase *Current = WorkList[I]; 960 assert(Current->getNumDefinedValues() == 1 && 961 "only recipes with a single defined value expected"); 962 963 for (VPUser *User : Current->getVPSingleValue()->users()) { 964 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User))) 965 return false; 966 } 967 } 968 969 // Keep recipes to sink ordered by dominance so earlier instructions are 970 // processed first. 971 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 972 return VPDT.properlyDominates(A, B); 973 }); 974 975 for (VPRecipeBase *SinkCandidate : WorkList) { 976 if (SinkCandidate == FOR) 977 continue; 978 979 SinkCandidate->moveAfter(Previous); 980 Previous = SinkCandidate; 981 } 982 return true; 983 } 984 985 /// Try to hoist \p Previous and its operands before all users of \p FOR. 986 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, 987 VPRecipeBase *Previous, 988 VPDominatorTree &VPDT) { 989 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) 990 return false; 991 992 // Collect recipes that need hoisting. 993 SmallVector<VPRecipeBase *> HoistCandidates; 994 SmallPtrSet<VPRecipeBase *, 8> Visited; 995 VPRecipeBase *HoistPoint = nullptr; 996 // Find the closest hoist point by looking at all users of FOR and selecting 997 // the recipe dominating all other users. 998 for (VPUser *U : FOR->users()) { 999 auto *R = cast<VPRecipeBase>(U); 1000 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint)) 1001 HoistPoint = R; 1002 } 1003 assert(all_of(FOR->users(), 1004 [&VPDT, HoistPoint](VPUser *U) { 1005 auto *R = cast<VPRecipeBase>(U); 1006 return HoistPoint == R || 1007 VPDT.properlyDominates(HoistPoint, R); 1008 }) && 1009 "HoistPoint must dominate all users of FOR"); 1010 1011 auto NeedsHoisting = [HoistPoint, &VPDT, 1012 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { 1013 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); 1014 if (!HoistCandidate) 1015 return nullptr; 1016 VPRegionBlock *EnclosingLoopRegion = 1017 HoistCandidate->getParent()->getEnclosingLoopRegion(); 1018 assert((!HoistCandidate->getParent()->getParent() || 1019 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && 1020 "CFG in VPlan should still be flat, without replicate regions"); 1021 // Hoist candidate was already visited, no need to hoist. 1022 if (!Visited.insert(HoistCandidate).second) 1023 return nullptr; 1024 1025 // Candidate is outside loop region or a header phi, dominates FOR users w/o 1026 // hoisting. 1027 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate)) 1028 return nullptr; 1029 1030 // If we reached a recipe that dominates HoistPoint, we don't need to 1031 // hoist the recipe. 1032 if (VPDT.properlyDominates(HoistCandidate, HoistPoint)) 1033 return nullptr; 1034 return HoistCandidate; 1035 }; 1036 auto CanHoist = [&](VPRecipeBase *HoistCandidate) { 1037 // Avoid hoisting candidates with side-effects, as we do not yet analyze 1038 // associated dependencies. 1039 return !HoistCandidate->mayHaveSideEffects(); 1040 }; 1041 1042 if (!NeedsHoisting(Previous->getVPSingleValue())) 1043 return true; 1044 1045 // Recursively try to hoist Previous and its operands before all users of FOR. 1046 HoistCandidates.push_back(Previous); 1047 1048 for (unsigned I = 0; I != HoistCandidates.size(); ++I) { 1049 VPRecipeBase *Current = HoistCandidates[I]; 1050 assert(Current->getNumDefinedValues() == 1 && 1051 "only recipes with a single defined value expected"); 1052 if (!CanHoist(Current)) 1053 return false; 1054 1055 for (VPValue *Op : Current->operands()) { 1056 // If we reach FOR, it means the original Previous depends on some other 1057 // recurrence that in turn depends on FOR. If that is the case, we would 1058 // also need to hoist recipes involving the other FOR, which may break 1059 // dependencies. 1060 if (Op == FOR) 1061 return false; 1062 1063 if (auto *R = NeedsHoisting(Op)) 1064 HoistCandidates.push_back(R); 1065 } 1066 } 1067 1068 // Order recipes to hoist by dominance so earlier instructions are processed 1069 // first. 1070 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 1071 return VPDT.properlyDominates(A, B); 1072 }); 1073 1074 for (VPRecipeBase *HoistCandidate : HoistCandidates) { 1075 HoistCandidate->moveBefore(*HoistPoint->getParent(), 1076 HoistPoint->getIterator()); 1077 } 1078 1079 return true; 1080 } 1081 1082 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 1083 VPBuilder &LoopBuilder) { 1084 VPDominatorTree VPDT; 1085 VPDT.recalculate(Plan); 1086 1087 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 1088 for (VPRecipeBase &R : 1089 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 1090 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 1091 RecurrencePhis.push_back(FOR); 1092 1093 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 1094 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 1095 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 1096 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 1097 // to terminate. 1098 while (auto *PrevPhi = 1099 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 1100 assert(PrevPhi->getParent() == FOR->getParent()); 1101 assert(SeenPhis.insert(PrevPhi).second); 1102 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 1103 } 1104 1105 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && 1106 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) 1107 return false; 1108 1109 // Introduce a recipe to combine the incoming and previous values of a 1110 // fixed-order recurrence. 1111 VPBasicBlock *InsertBlock = Previous->getParent(); 1112 if (isa<VPHeaderPHIRecipe>(Previous)) 1113 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 1114 else 1115 LoopBuilder.setInsertPoint(InsertBlock, 1116 std::next(Previous->getIterator())); 1117 1118 auto *RecurSplice = cast<VPInstruction>( 1119 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 1120 {FOR, FOR->getBackedgeValue()})); 1121 1122 FOR->replaceAllUsesWith(RecurSplice); 1123 // Set the first operand of RecurSplice to FOR again, after replacing 1124 // all users. 1125 RecurSplice->setOperand(0, FOR); 1126 } 1127 return true; 1128 } 1129 1130 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 1131 for (VPRecipeBase &R : 1132 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 1133 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 1134 if (!PhiR) 1135 continue; 1136 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 1137 RecurKind RK = RdxDesc.getRecurrenceKind(); 1138 if (RK != RecurKind::Add && RK != RecurKind::Mul) 1139 continue; 1140 1141 for (VPUser *U : collectUsersRecursively(PhiR)) 1142 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 1143 RecWithFlags->dropPoisonGeneratingFlags(); 1144 } 1145 } 1146 } 1147 1148 /// Move loop-invariant recipes out of the vector loop region in \p Plan. 1149 static void licm(VPlan &Plan) { 1150 VPBasicBlock *Preheader = Plan.getVectorPreheader(); 1151 1152 // Return true if we do not know how to (mechanically) hoist a given recipe 1153 // out of a loop region. Does not address legality concerns such as aliasing 1154 // or speculation safety. 1155 auto CannotHoistRecipe = [](VPRecipeBase &R) { 1156 // Allocas cannot be hoisted. 1157 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 1158 return RepR && RepR->getOpcode() == Instruction::Alloca; 1159 }; 1160 1161 // Hoist any loop invariant recipes from the vector loop region to the 1162 // preheader. Preform a shallow traversal of the vector loop region, to 1163 // exclude recipes in replicate regions. 1164 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1165 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1166 vp_depth_first_shallow(LoopRegion->getEntry()))) { 1167 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1168 if (CannotHoistRecipe(R)) 1169 continue; 1170 // TODO: Relax checks in the future, e.g. we could also hoist reads, if 1171 // their memory location is not modified in the vector loop. 1172 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || 1173 any_of(R.operands(), [](VPValue *Op) { 1174 return !Op->isDefinedOutsideLoopRegions(); 1175 })) 1176 continue; 1177 R.moveBefore(*Preheader, Preheader->end()); 1178 } 1179 } 1180 } 1181 1182 void VPlanTransforms::truncateToMinimalBitwidths( 1183 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { 1184 #ifndef NDEBUG 1185 // Count the processed recipes and cross check the count later with MinBWs 1186 // size, to make sure all entries in MinBWs have been handled. 1187 unsigned NumProcessedRecipes = 0; 1188 #endif 1189 // Keep track of created truncates, so they can be re-used. Note that we 1190 // cannot use RAUW after creating a new truncate, as this would could make 1191 // other uses have different types for their operands, making them invalidly 1192 // typed. 1193 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1194 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1195 VPTypeAnalysis TypeInfo(CanonicalIVType); 1196 VPBasicBlock *PH = Plan.getVectorPreheader(); 1197 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1198 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1199 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1200 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1201 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1202 continue; 1203 1204 VPValue *ResultVPV = R.getVPSingleValue(); 1205 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1206 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1207 if (!NewResSizeInBits) 1208 continue; 1209 1210 #ifndef NDEBUG 1211 NumProcessedRecipes++; 1212 #endif 1213 // If the value wasn't vectorized, we must maintain the original scalar 1214 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1215 // skip casts which do not need to be handled explicitly here, as 1216 // redundant casts will be removed during recipe simplification. 1217 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1218 #ifndef NDEBUG 1219 // If any of the operands is a live-in and not used by VPWidenRecipe or 1220 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1221 // processed as well. When MinBWs is currently constructed, there is no 1222 // information about whether recipes are widened or replicated and in 1223 // case they are reciplicated the operands are not truncated. Counting 1224 // them them here ensures we do not miss any recipes in MinBWs. 1225 // TODO: Remove once the analysis is done on VPlan. 1226 for (VPValue *Op : R.operands()) { 1227 if (!Op->isLiveIn()) 1228 continue; 1229 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1230 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1231 none_of(Op->users(), 1232 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) { 1233 // Add an entry to ProcessedTruncs to avoid counting the same 1234 // operand multiple times. 1235 ProcessedTruncs[Op] = nullptr; 1236 NumProcessedRecipes += 1; 1237 } 1238 } 1239 #endif 1240 continue; 1241 } 1242 1243 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1244 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1245 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1246 (void)OldResSizeInBits; 1247 1248 LLVMContext &Ctx = CanonicalIVType->getContext(); 1249 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1250 1251 // Any wrapping introduced by shrinking this operation shouldn't be 1252 // considered undefined behavior. So, we can't unconditionally copy 1253 // arithmetic wrapping flags to VPW. 1254 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1255 VPW->dropPoisonGeneratingFlags(); 1256 1257 using namespace llvm::VPlanPatternMatch; 1258 if (OldResSizeInBits != NewResSizeInBits && 1259 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1260 // Extend result to original width. 1261 auto *Ext = 1262 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1263 Ext->insertAfter(&R); 1264 ResultVPV->replaceAllUsesWith(Ext); 1265 Ext->setOperand(0, ResultVPV); 1266 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1267 } else { 1268 assert( 1269 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1270 "Only ICmps should not need extending the result."); 1271 } 1272 1273 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1274 if (isa<VPWidenLoadRecipe>(&R)) 1275 continue; 1276 1277 // Shrink operands by introducing truncates as needed. 1278 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1279 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1280 auto *Op = R.getOperand(Idx); 1281 unsigned OpSizeInBits = 1282 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1283 if (OpSizeInBits == NewResSizeInBits) 1284 continue; 1285 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1286 auto [ProcessedIter, IterIsEmpty] = 1287 ProcessedTruncs.insert({Op, nullptr}); 1288 VPWidenCastRecipe *NewOp = 1289 IterIsEmpty 1290 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1291 : ProcessedIter->second; 1292 R.setOperand(Idx, NewOp); 1293 if (!IterIsEmpty) 1294 continue; 1295 ProcessedIter->second = NewOp; 1296 if (!Op->isLiveIn()) { 1297 NewOp->insertBefore(&R); 1298 } else { 1299 PH->appendRecipe(NewOp); 1300 #ifndef NDEBUG 1301 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1302 bool IsContained = MinBWs.contains(OpInst); 1303 NumProcessedRecipes += IsContained; 1304 #endif 1305 } 1306 } 1307 1308 } 1309 } 1310 1311 assert(MinBWs.size() == NumProcessedRecipes && 1312 "some entries in MinBWs haven't been processed"); 1313 } 1314 1315 void VPlanTransforms::optimize(VPlan &Plan) { 1316 removeRedundantCanonicalIVs(Plan); 1317 removeRedundantInductionCasts(Plan); 1318 1319 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1320 legalizeAndOptimizeInductions(Plan); 1321 removeRedundantExpandSCEVRecipes(Plan); 1322 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1323 removeDeadRecipes(Plan); 1324 1325 createAndOptimizeReplicateRegions(Plan); 1326 mergeBlocksIntoPredecessors(Plan); 1327 licm(Plan); 1328 } 1329 1330 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1331 // the loop terminator with a branch-on-cond recipe with the negated 1332 // active-lane-mask as operand. Note that this turns the loop into an 1333 // uncountable one. Only the existing terminator is replaced, all other existing 1334 // recipes/users remain unchanged, except for poison-generating flags being 1335 // dropped from the canonical IV increment. Return the created 1336 // VPActiveLaneMaskPHIRecipe. 1337 // 1338 // The function uses the following definitions: 1339 // 1340 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1341 // calculate-trip-count-minus-VF (original TC) : original TC 1342 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1343 // CanonicalIVPhi : CanonicalIVIncrement 1344 // %StartV is the canonical induction start value. 1345 // 1346 // The function adds the following recipes: 1347 // 1348 // vector.ph: 1349 // %TripCount = calculate-trip-count-minus-VF (original TC) 1350 // [if DataWithControlFlowWithoutRuntimeCheck] 1351 // %EntryInc = canonical-iv-increment-for-part %StartV 1352 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1353 // 1354 // vector.body: 1355 // ... 1356 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1357 // ... 1358 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1359 // %ALM = active-lane-mask %InLoopInc, TripCount 1360 // %Negated = Not %ALM 1361 // branch-on-cond %Negated 1362 // 1363 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1364 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1365 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1366 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1367 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1368 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1369 1370 auto *CanonicalIVIncrement = 1371 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1372 // TODO: Check if dropping the flags is needed if 1373 // !DataAndControlFlowWithoutRuntimeCheck. 1374 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1375 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1376 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1377 // we have to take unrolling into account. Each part needs to start at 1378 // Part * VF 1379 auto *VecPreheader = Plan.getVectorPreheader(); 1380 VPBuilder Builder(VecPreheader); 1381 1382 // Create the ActiveLaneMask instruction using the correct start values. 1383 VPValue *TC = Plan.getTripCount(); 1384 1385 VPValue *TripCount, *IncrementValue; 1386 if (!DataAndControlFlowWithoutRuntimeCheck) { 1387 // When the loop is guarded by a runtime overflow check for the loop 1388 // induction variable increment by VF, we can increment the value before 1389 // the get.active.lane mask and use the unmodified tripcount. 1390 IncrementValue = CanonicalIVIncrement; 1391 TripCount = TC; 1392 } else { 1393 // When avoiding a runtime check, the active.lane.mask inside the loop 1394 // uses a modified trip count and the induction variable increment is 1395 // done after the active.lane.mask intrinsic is called. 1396 IncrementValue = CanonicalIVPHI; 1397 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1398 {TC}, DL); 1399 } 1400 auto *EntryIncrement = Builder.createOverflowingOp( 1401 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1402 "index.part.next"); 1403 1404 // Create the active lane mask instruction in the VPlan preheader. 1405 auto *EntryALM = 1406 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1407 DL, "active.lane.mask.entry"); 1408 1409 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1410 // preheader ActiveLaneMask instruction. 1411 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1412 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1413 1414 // Create the active lane mask for the next iteration of the loop before the 1415 // original terminator. 1416 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1417 Builder.setInsertPoint(OriginalTerminator); 1418 auto *InLoopIncrement = 1419 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1420 {IncrementValue}, {false, false}, DL); 1421 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1422 {InLoopIncrement, TripCount}, DL, 1423 "active.lane.mask.next"); 1424 LaneMaskPhi->addOperand(ALM); 1425 1426 // Replace the original terminator with BranchOnCond. We have to invert the 1427 // mask here because a true condition means jumping to the exit block. 1428 auto *NotMask = Builder.createNot(ALM, DL); 1429 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1430 OriginalTerminator->eraseFromParent(); 1431 return LaneMaskPhi; 1432 } 1433 1434 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1435 /// WideCanonicalIV, backedge-taken-count) pattern. 1436 /// TODO: Introduce explicit recipe for header-mask instead of searching 1437 /// for the header-mask pattern manually. 1438 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1439 SmallVector<VPValue *> WideCanonicalIVs; 1440 auto *FoundWidenCanonicalIVUser = 1441 find_if(Plan.getCanonicalIV()->users(), 1442 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1443 assert(count_if(Plan.getCanonicalIV()->users(), 1444 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1445 1 && 1446 "Must have at most one VPWideCanonicalIVRecipe"); 1447 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1448 auto *WideCanonicalIV = 1449 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1450 WideCanonicalIVs.push_back(WideCanonicalIV); 1451 } 1452 1453 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1454 // version of the canonical induction. 1455 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1456 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1457 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1458 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1459 WideCanonicalIVs.push_back(WidenOriginalIV); 1460 } 1461 1462 // Walk users of wide canonical IVs and collect to all compares of the form 1463 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1464 SmallVector<VPValue *> HeaderMasks; 1465 for (auto *Wide : WideCanonicalIVs) { 1466 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1467 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1468 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1469 continue; 1470 1471 assert(HeaderMask->getOperand(0) == Wide && 1472 "WidenCanonicalIV must be the first operand of the compare"); 1473 HeaderMasks.push_back(HeaderMask); 1474 } 1475 } 1476 return HeaderMasks; 1477 } 1478 1479 void VPlanTransforms::addActiveLaneMask( 1480 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1481 bool DataAndControlFlowWithoutRuntimeCheck) { 1482 assert((!DataAndControlFlowWithoutRuntimeCheck || 1483 UseActiveLaneMaskForControlFlow) && 1484 "DataAndControlFlowWithoutRuntimeCheck implies " 1485 "UseActiveLaneMaskForControlFlow"); 1486 1487 auto *FoundWidenCanonicalIVUser = 1488 find_if(Plan.getCanonicalIV()->users(), 1489 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1490 assert(FoundWidenCanonicalIVUser && 1491 "Must have widened canonical IV when tail folding!"); 1492 auto *WideCanonicalIV = 1493 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1494 VPSingleDefRecipe *LaneMask; 1495 if (UseActiveLaneMaskForControlFlow) { 1496 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1497 Plan, DataAndControlFlowWithoutRuntimeCheck); 1498 } else { 1499 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1500 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1501 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1502 "active.lane.mask"); 1503 } 1504 1505 // Walk users of WideCanonicalIV and replace all compares of the form 1506 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1507 // active-lane-mask. 1508 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1509 HeaderMask->replaceAllUsesWith(LaneMask); 1510 } 1511 1512 /// Try to convert \p CurRecipe to a corresponding EVL-based recipe. Returns 1513 /// nullptr if no EVL-based recipe could be created. 1514 /// \p HeaderMask Header Mask. 1515 /// \p CurRecipe Recipe to be transform. 1516 /// \p TypeInfo VPlan-based type analysis. 1517 /// \p AllOneMask The vector mask parameter of vector-predication intrinsics. 1518 /// \p EVL The explicit vector length parameter of vector-predication 1519 /// intrinsics. 1520 static VPRecipeBase *createEVLRecipe(VPValue *HeaderMask, 1521 VPRecipeBase &CurRecipe, 1522 VPTypeAnalysis &TypeInfo, 1523 VPValue &AllOneMask, VPValue &EVL) { 1524 using namespace llvm::VPlanPatternMatch; 1525 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1526 assert(OrigMask && "Unmasked recipe when folding tail"); 1527 return HeaderMask == OrigMask ? nullptr : OrigMask; 1528 }; 1529 1530 return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe) 1531 .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) { 1532 VPValue *NewMask = GetNewMask(L->getMask()); 1533 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); 1534 }) 1535 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) { 1536 VPValue *NewMask = GetNewMask(S->getMask()); 1537 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); 1538 }) 1539 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * { 1540 unsigned Opcode = W->getOpcode(); 1541 if (!Instruction::isBinaryOp(Opcode) && !Instruction::isUnaryOp(Opcode)) 1542 return nullptr; 1543 return new VPWidenEVLRecipe(*W, EVL); 1544 }) 1545 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) { 1546 VPValue *NewMask = GetNewMask(Red->getCondOp()); 1547 return new VPReductionEVLRecipe(*Red, EVL, NewMask); 1548 }) 1549 .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>( 1550 [&](auto *CR) -> VPRecipeBase * { 1551 Intrinsic::ID VPID; 1552 if (auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) { 1553 VPID = 1554 VPIntrinsic::getForIntrinsic(CallR->getVectorIntrinsicID()); 1555 } else { 1556 auto *CastR = cast<VPWidenCastRecipe>(CR); 1557 VPID = VPIntrinsic::getForOpcode(CastR->getOpcode()); 1558 } 1559 1560 // Not all intrinsics have a corresponding VP intrinsic. 1561 if (VPID == Intrinsic::not_intrinsic) 1562 return nullptr; 1563 assert(VPIntrinsic::getMaskParamPos(VPID) && 1564 VPIntrinsic::getVectorLengthParamPos(VPID) && 1565 "Expected VP intrinsic to have mask and EVL"); 1566 1567 SmallVector<VPValue *> Ops(CR->operands()); 1568 Ops.push_back(&AllOneMask); 1569 Ops.push_back(&EVL); 1570 return new VPWidenIntrinsicRecipe( 1571 VPID, Ops, TypeInfo.inferScalarType(CR), CR->getDebugLoc()); 1572 }) 1573 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) { 1574 SmallVector<VPValue *> Ops(Sel->operands()); 1575 Ops.push_back(&EVL); 1576 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops, 1577 TypeInfo.inferScalarType(Sel), 1578 Sel->getDebugLoc()); 1579 }) 1580 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * { 1581 VPValue *LHS, *RHS; 1582 // Transform select with a header mask condition 1583 // select(header_mask, LHS, RHS) 1584 // into vector predication merge. 1585 // vp.merge(all-true, LHS, RHS, EVL) 1586 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS), 1587 m_VPValue(RHS)))) 1588 return nullptr; 1589 // Use all true as the condition because this transformation is 1590 // limited to selects whose condition is a header mask. 1591 return new VPWidenIntrinsicRecipe( 1592 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL}, 1593 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc()); 1594 }) 1595 .Default([&](VPRecipeBase *R) { return nullptr; }); 1596 } 1597 1598 /// Replace recipes with their EVL variants. 1599 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { 1600 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1601 VPTypeAnalysis TypeInfo(CanonicalIVType); 1602 LLVMContext &Ctx = CanonicalIVType->getContext(); 1603 VPValue *AllOneMask = Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1604 1605 for (VPUser *U : Plan.getVF().users()) { 1606 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U)) 1607 R->setOperand(1, &EVL); 1608 } 1609 1610 SmallVector<VPRecipeBase *> ToErase; 1611 1612 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1613 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1614 auto *CurRecipe = cast<VPRecipeBase>(U); 1615 VPRecipeBase *EVLRecipe = 1616 createEVLRecipe(HeaderMask, *CurRecipe, TypeInfo, *AllOneMask, EVL); 1617 if (!EVLRecipe) 1618 continue; 1619 1620 [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues(); 1621 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1622 "New recipe must define the same number of values as the " 1623 "original."); 1624 assert( 1625 NumDefVal <= 1 && 1626 "Only supports recipes with a single definition or without users."); 1627 EVLRecipe->insertBefore(CurRecipe); 1628 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) { 1629 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1630 CurVPV->replaceAllUsesWith(EVLRecipe->getVPSingleValue()); 1631 } 1632 // Defer erasing recipes till the end so that we don't invalidate the 1633 // VPTypeAnalysis cache. 1634 ToErase.push_back(CurRecipe); 1635 } 1636 } 1637 1638 for (VPRecipeBase *R : reverse(ToErase)) { 1639 SmallVector<VPValue *> PossiblyDead(R->operands()); 1640 R->eraseFromParent(); 1641 for (VPValue *Op : PossiblyDead) 1642 recursivelyDeleteDeadRecipes(Op); 1643 } 1644 } 1645 1646 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1647 /// replaces all uses except the canonical IV increment of 1648 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1649 /// is used only for loop iterations counting after this transformation. 1650 /// 1651 /// The function uses the following definitions: 1652 /// %StartV is the canonical induction start value. 1653 /// 1654 /// The function adds the following recipes: 1655 /// 1656 /// vector.ph: 1657 /// ... 1658 /// 1659 /// vector.body: 1660 /// ... 1661 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1662 /// [ %NextEVLIV, %vector.body ] 1663 /// %AVL = sub original TC, %EVLPhi 1664 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL 1665 /// ... 1666 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1667 /// ... 1668 /// 1669 /// If MaxSafeElements is provided, the function adds the following recipes: 1670 /// vector.ph: 1671 /// ... 1672 /// 1673 /// vector.body: 1674 /// ... 1675 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1676 /// [ %NextEVLIV, %vector.body ] 1677 /// %AVL = sub original TC, %EVLPhi 1678 /// %cmp = cmp ult %AVL, MaxSafeElements 1679 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements 1680 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL 1681 /// ... 1682 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi 1683 /// ... 1684 /// 1685 bool VPlanTransforms::tryAddExplicitVectorLength( 1686 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { 1687 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1688 // The transform updates all users of inductions to work based on EVL, instead 1689 // of the VF directly. At the moment, widened inductions cannot be updated, so 1690 // bail out if the plan contains any. 1691 bool ContainsWidenInductions = any_of( 1692 Header->phis(), 1693 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>); 1694 if (ContainsWidenInductions) 1695 return false; 1696 1697 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1698 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1699 1700 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1701 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1702 EVLPhi->insertAfter(CanonicalIVPHI); 1703 VPBuilder Builder(Header, Header->getFirstNonPhi()); 1704 // Compute original TC - IV as the AVL (application vector length). 1705 VPValue *AVL = Builder.createNaryOp( 1706 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl"); 1707 if (MaxSafeElements) { 1708 // Support for MaxSafeDist for correct loop emission. 1709 VPValue *AVLSafe = Plan.getOrAddLiveIn( 1710 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements)); 1711 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe); 1712 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl"); 1713 } 1714 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL, 1715 DebugLoc()); 1716 1717 auto *CanonicalIVIncrement = 1718 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1719 VPSingleDefRecipe *OpVPEVL = VPEVL; 1720 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1721 IVSize != 32) { 1722 OpVPEVL = new VPScalarCastRecipe( 1723 IVSize < 32 ? Instruction::Trunc : Instruction::ZExt, OpVPEVL, 1724 CanonicalIVPHI->getScalarType(), CanonicalIVIncrement->getDebugLoc()); 1725 OpVPEVL->insertBefore(CanonicalIVIncrement); 1726 } 1727 auto *NextEVLIV = 1728 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1729 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1730 CanonicalIVIncrement->hasNoSignedWrap()}, 1731 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1732 NextEVLIV->insertBefore(CanonicalIVIncrement); 1733 EVLPhi->addOperand(NextEVLIV); 1734 1735 transformRecipestoEVLRecipes(Plan, *VPEVL); 1736 1737 // Replace all uses of VPCanonicalIVPHIRecipe by 1738 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1739 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1740 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1741 // TODO: support unroll factor > 1. 1742 Plan.setUF(1); 1743 return true; 1744 } 1745 1746 void VPlanTransforms::dropPoisonGeneratingRecipes( 1747 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1748 // Collect recipes in the backward slice of `Root` that may generate a poison 1749 // value that is used after vectorization. 1750 SmallPtrSet<VPRecipeBase *, 16> Visited; 1751 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1752 SmallVector<VPRecipeBase *, 16> Worklist; 1753 Worklist.push_back(Root); 1754 1755 // Traverse the backward slice of Root through its use-def chain. 1756 while (!Worklist.empty()) { 1757 VPRecipeBase *CurRec = Worklist.pop_back_val(); 1758 1759 if (!Visited.insert(CurRec).second) 1760 continue; 1761 1762 // Prune search if we find another recipe generating a widen memory 1763 // instruction. Widen memory instructions involved in address computation 1764 // will lead to gather/scatter instructions, which don't need to be 1765 // handled. 1766 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, 1767 VPHeaderPHIRecipe>(CurRec)) 1768 continue; 1769 1770 // This recipe contributes to the address computation of a widen 1771 // load/store. If the underlying instruction has poison-generating flags, 1772 // drop them directly. 1773 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1774 VPValue *A, *B; 1775 using namespace llvm::VPlanPatternMatch; 1776 // Dropping disjoint from an OR may yield incorrect results, as some 1777 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1778 // for dependence analysis). Instead, replace it with an equivalent Add. 1779 // This is possible as all users of the disjoint OR only access lanes 1780 // where the operands are disjoint or poison otherwise. 1781 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1782 RecWithFlags->isDisjoint()) { 1783 VPBuilder Builder(RecWithFlags); 1784 VPInstruction *New = Builder.createOverflowingOp( 1785 Instruction::Add, {A, B}, {false, false}, 1786 RecWithFlags->getDebugLoc()); 1787 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1788 RecWithFlags->replaceAllUsesWith(New); 1789 RecWithFlags->eraseFromParent(); 1790 CurRec = New; 1791 } else 1792 RecWithFlags->dropPoisonGeneratingFlags(); 1793 } else { 1794 Instruction *Instr = dyn_cast_or_null<Instruction>( 1795 CurRec->getVPSingleValue()->getUnderlyingValue()); 1796 (void)Instr; 1797 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1798 "found instruction with poison generating flags not covered by " 1799 "VPRecipeWithIRFlags"); 1800 } 1801 1802 // Add new definitions to the worklist. 1803 for (VPValue *Operand : CurRec->operands()) 1804 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) 1805 Worklist.push_back(OpDef); 1806 } 1807 }); 1808 1809 // Traverse all the recipes in the VPlan and collect the poison-generating 1810 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1811 // VPInterleaveRecipe. 1812 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1813 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1814 for (VPRecipeBase &Recipe : *VPBB) { 1815 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1816 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1817 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1818 if (AddrDef && WidenRec->isConsecutive() && 1819 BlockNeedsPredication(UnderlyingInstr.getParent())) 1820 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1821 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1822 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1823 if (AddrDef) { 1824 // Check if any member of the interleave group needs predication. 1825 const InterleaveGroup<Instruction> *InterGroup = 1826 InterleaveRec->getInterleaveGroup(); 1827 bool NeedPredication = false; 1828 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1829 I < NumMembers; ++I) { 1830 Instruction *Member = InterGroup->getMember(I); 1831 if (Member) 1832 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1833 } 1834 1835 if (NeedPredication) 1836 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1837 } 1838 } 1839 } 1840 } 1841 } 1842 1843 void VPlanTransforms::createInterleaveGroups( 1844 VPlan &Plan, 1845 const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> 1846 &InterleaveGroups, 1847 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) { 1848 if (InterleaveGroups.empty()) 1849 return; 1850 1851 // Interleave memory: for each Interleave Group we marked earlier as relevant 1852 // for this VPlan, replace the Recipes widening its memory instructions with a 1853 // single VPInterleaveRecipe at its insertion point. 1854 VPDominatorTree VPDT; 1855 VPDT.recalculate(Plan); 1856 for (const auto *IG : InterleaveGroups) { 1857 SmallVector<VPValue *, 4> StoredValues; 1858 for (unsigned i = 0; i < IG->getFactor(); ++i) 1859 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 1860 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); 1861 StoredValues.push_back(StoreR->getStoredValue()); 1862 } 1863 1864 bool NeedsMaskForGaps = 1865 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; 1866 1867 Instruction *IRInsertPos = IG->getInsertPos(); 1868 auto *InsertPos = 1869 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos)); 1870 1871 // Get or create the start address for the interleave group. 1872 auto *Start = 1873 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0))); 1874 VPValue *Addr = Start->getAddr(); 1875 VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); 1876 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) { 1877 // TODO: Hoist Addr's defining recipe (and any operands as needed) to 1878 // InsertPos or sink loads above zero members to join it. 1879 bool InBounds = false; 1880 if (auto *Gep = dyn_cast<GetElementPtrInst>( 1881 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts())) 1882 InBounds = Gep->isInBounds(); 1883 1884 // We cannot re-use the address of member zero because it does not 1885 // dominate the insert position. Instead, use the address of the insert 1886 // position and create a PtrAdd adjusting it to the address of member 1887 // zero. 1888 assert(IG->getIndex(IRInsertPos) != 0 && 1889 "index of insert position shouldn't be zero"); 1890 auto &DL = IRInsertPos->getDataLayout(); 1891 APInt Offset(32, 1892 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) * 1893 IG->getIndex(IRInsertPos), 1894 /*IsSigned=*/true); 1895 VPValue *OffsetVPV = Plan.getOrAddLiveIn( 1896 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset)); 1897 VPBuilder B(InsertPos); 1898 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV) 1899 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV); 1900 } 1901 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, 1902 InsertPos->getMask(), NeedsMaskForGaps); 1903 VPIG->insertBefore(InsertPos); 1904 1905 unsigned J = 0; 1906 for (unsigned i = 0; i < IG->getFactor(); ++i) 1907 if (Instruction *Member = IG->getMember(i)) { 1908 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); 1909 if (!Member->getType()->isVoidTy()) { 1910 VPValue *OriginalV = MemberR->getVPSingleValue(); 1911 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 1912 J++; 1913 } 1914 MemberR->eraseFromParent(); 1915 } 1916 } 1917 } 1918 1919 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { 1920 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1921 vp_depth_first_deep(Plan.getEntry()))) { 1922 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) { 1923 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R)) 1924 continue; 1925 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1926 StringRef Name = 1927 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv"; 1928 auto *ScalarR = 1929 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(), 1930 PhiR->getDebugLoc(), Name); 1931 ScalarR->insertBefore(PhiR); 1932 PhiR->replaceAllUsesWith(ScalarR); 1933 PhiR->eraseFromParent(); 1934 } 1935 } 1936 } 1937 1938 void VPlanTransforms::handleUncountableEarlyExit( 1939 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, 1940 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) { 1941 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1942 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting()); 1943 VPBuilder Builder(LatchVPBB->getTerminator()); 1944 auto *MiddleVPBB = Plan.getMiddleBlock(); 1945 VPValue *IsEarlyExitTaken = nullptr; 1946 1947 // Process the uncountable exiting block. Update IsEarlyExitTaken, which 1948 // tracks if the uncountable early exit has been taken. Also split the middle 1949 // block and have it conditionally branch to the early exit block if 1950 // EarlyExitTaken. 1951 auto *EarlyExitingBranch = 1952 cast<BranchInst>(UncountableExitingBlock->getTerminator()); 1953 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0); 1954 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1); 1955 1956 // The early exit block may or may not be the same as the "countable" exit 1957 // block. Creates a new VPIRBB for the early exit block in case it is distinct 1958 // from the countable exit block. 1959 // TODO: Introduce both exit blocks during VPlan skeleton construction. 1960 VPIRBasicBlock *VPEarlyExitBlock; 1961 if (OrigLoop->getUniqueExitBlock()) { 1962 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]); 1963 } else { 1964 VPEarlyExitBlock = Plan.createVPIRBasicBlock( 1965 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1966 } 1967 1968 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask( 1969 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1970 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond); 1971 IsEarlyExitTaken = 1972 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond}); 1973 1974 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split"); 1975 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle); 1976 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock); 1977 NewMiddle->swapSuccessors(); 1978 1979 VPBuilder MiddleBuilder(NewMiddle); 1980 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken}); 1981 1982 // Replace the condition controlling the non-early exit from the vector loop 1983 // with one exiting if either the original condition of the vector latch is 1984 // true or the early exit has been taken. 1985 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator()); 1986 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && 1987 "Unexpected terminator"); 1988 auto *IsLatchExitTaken = 1989 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0), 1990 LatchExitingBranch->getOperand(1)); 1991 auto *AnyExitTaken = Builder.createNaryOp( 1992 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken}); 1993 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken); 1994 LatchExitingBranch->eraseFromParent(); 1995 } 1996