1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlan.h" 17 #include "VPlanAnalysis.h" 18 #include "VPlanCFG.h" 19 #include "VPlanDominatorTree.h" 20 #include "VPlanPatternMatch.h" 21 #include "VPlanUtils.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/PatternMatch.h" 30 31 using namespace llvm; 32 33 void VPlanTransforms::VPInstructionsToVPRecipes( 34 VPlanPtr &Plan, 35 function_ref<const InductionDescriptor *(PHINode *)> 36 GetIntOrFpInductionDescriptor, 37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 38 39 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 40 Plan->getVectorLoopRegion()); 41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 42 // Skip blocks outside region 43 if (!VPBB->getParent()) 44 break; 45 VPRecipeBase *Term = VPBB->getTerminator(); 46 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 47 // Introduce each ingredient into VPlan. 48 for (VPRecipeBase &Ingredient : 49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 50 51 VPValue *VPV = Ingredient.getVPSingleValue(); 52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 53 54 VPRecipeBase *NewRecipe = nullptr; 55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 57 const auto *II = GetIntOrFpInductionDescriptor(Phi); 58 if (!II) 59 continue; 60 61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 62 VPValue *Step = 63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 64 NewRecipe = new VPWidenIntOrFpInductionRecipe( 65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); 66 } else { 67 assert(isa<VPInstruction>(&Ingredient) && 68 "only VPInstructions expected here"); 69 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 70 // Create VPWidenMemoryRecipe for loads and stores. 71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 72 NewRecipe = new VPWidenLoadRecipe( 73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 74 false /*Consecutive*/, false /*Reverse*/, 75 Ingredient.getDebugLoc()); 76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 77 NewRecipe = new VPWidenStoreRecipe( 78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 80 Ingredient.getDebugLoc()); 81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 84 NewRecipe = new VPWidenIntrinsicRecipe( 85 *CI, getVectorIntrinsicIDForCall(CI, &TLI), 86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), 87 CI->getDebugLoc()); 88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 91 NewRecipe = new VPWidenCastRecipe( 92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 93 } else { 94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 95 } 96 } 97 98 NewRecipe->insertBefore(&Ingredient); 99 if (NewRecipe->getNumDefinedValues() == 1) 100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 101 else 102 assert(NewRecipe->getNumDefinedValues() == 0 && 103 "Only recpies with zero or one defined values expected"); 104 Ingredient.eraseFromParent(); 105 } 106 } 107 } 108 109 static bool sinkScalarOperands(VPlan &Plan) { 110 auto Iter = vp_depth_first_deep(Plan.getEntry()); 111 bool Changed = false; 112 // First, collect the operands of all recipes in replicate blocks as seeds for 113 // sinking. 114 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 118 continue; 119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 121 continue; 122 for (auto &Recipe : *VPBB) { 123 for (VPValue *Op : Recipe.operands()) 124 if (auto *Def = 125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 126 WorkList.insert(std::make_pair(VPBB, Def)); 127 } 128 } 129 130 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 131 // Try to sink each replicate or scalar IV steps recipe in the worklist. 132 for (unsigned I = 0; I != WorkList.size(); ++I) { 133 VPBasicBlock *SinkTo; 134 VPSingleDefRecipe *SinkCandidate; 135 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 136 if (SinkCandidate->getParent() == SinkTo || 137 SinkCandidate->mayHaveSideEffects() || 138 SinkCandidate->mayReadOrWriteMemory()) 139 continue; 140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 141 if (!ScalarVFOnly && RepR->isUniform()) 142 continue; 143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 144 continue; 145 146 bool NeedsDuplicating = false; 147 // All recipe users of the sink candidate must be in the same block SinkTo 148 // or all users outside of SinkTo must be uniform-after-vectorization ( 149 // i.e., only first lane is used) . In the latter case, we need to duplicate 150 // SinkCandidate. 151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 152 SinkCandidate](VPUser *U) { 153 auto *UI = cast<VPRecipeBase>(U); 154 if (UI->getParent() == SinkTo) 155 return true; 156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 157 // We only know how to duplicate VPRecipeRecipes for now. 158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 159 }; 160 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 161 continue; 162 163 if (NeedsDuplicating) { 164 if (ScalarVFOnly) 165 continue; 166 Instruction *I = SinkCandidate->getUnderlyingInstr(); 167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 168 // TODO: add ".cloned" suffix to name of Clone's VPValue. 169 170 Clone->insertBefore(SinkCandidate); 171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 173 }); 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 if (auto *Def = 178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 179 WorkList.insert(std::make_pair(SinkTo, Def)); 180 Changed = true; 181 } 182 return Changed; 183 } 184 185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 186 /// the mask. 187 VPValue *getPredicatedMask(VPRegionBlock *R) { 188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 189 if (!EntryBB || EntryBB->size() != 1 || 190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 191 return nullptr; 192 193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 194 } 195 196 /// If \p R is a triangle region, return the 'then' block of the triangle. 197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 199 if (EntryBB->getNumSuccessors() != 2) 200 return nullptr; 201 202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 204 if (!Succ0 || !Succ1) 205 return nullptr; 206 207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 208 return nullptr; 209 if (Succ0->getSingleSuccessor() == Succ1) 210 return Succ0; 211 if (Succ1->getSingleSuccessor() == Succ0) 212 return Succ1; 213 return nullptr; 214 } 215 216 // Merge replicate regions in their successor region, if a replicate region 217 // is connected to a successor replicate region with the same predicate by a 218 // single, empty VPBasicBlock. 219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 220 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; 221 222 // Collect replicate regions followed by an empty block, followed by another 223 // replicate region with matching masks to process front. This is to avoid 224 // iterator invalidation issues while merging regions. 225 SmallVector<VPRegionBlock *, 8> WorkList; 226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 227 vp_depth_first_deep(Plan.getEntry()))) { 228 if (!Region1->isReplicator()) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2 || !Region2->isReplicator()) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 245 assert(Mask1 && Mask2 && "both region must have conditions"); 246 WorkList.push_back(Region1); 247 } 248 249 // Move recipes from Region1 to its successor region, if both are triangles. 250 for (VPRegionBlock *Region1 : WorkList) { 251 if (TransformedRegions.contains(Region1)) 252 continue; 253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 255 256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 258 if (!Then1 || !Then2) 259 continue; 260 261 // Note: No fusion-preventing memory dependencies are expected in either 262 // region. Such dependencies should be rejected during earlier dependence 263 // checks, which guarantee accesses can be re-ordered for vectorization. 264 // 265 // Move recipes to the successor region. 266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 268 269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 271 272 // Move VPPredInstPHIRecipes from the merge block to the successor region's 273 // merge block. Update all users inside the successor region to use the 274 // original values. 275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 276 VPValue *PredInst1 = 277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 280 return cast<VPRecipeBase>(&U)->getParent() == Then2; 281 }); 282 283 // Remove phi recipes that are unused after merging the regions. 284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 285 Phi1ToMove.eraseFromParent(); 286 continue; 287 } 288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 289 } 290 291 // Finally, remove the first region. 292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 293 VPBlockUtils::disconnectBlocks(Pred, Region1); 294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 295 } 296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 297 TransformedRegions.insert(Region1); 298 } 299 300 return !TransformedRegions.empty(); 301 } 302 303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 304 VPlan &Plan) { 305 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 306 // Build the triangular if-then region. 307 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 308 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 309 auto *BlockInMask = PredRecipe->getMask(); 310 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 311 auto *Entry = 312 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 313 314 // Replace predicated replicate recipe with a replicate recipe without a 315 // mask but in the replicate region. 316 auto *RecipeWithoutMask = new VPReplicateRecipe( 317 PredRecipe->getUnderlyingInstr(), 318 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 319 PredRecipe->isUniform()); 320 auto *Pred = 321 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 322 323 VPPredInstPHIRecipe *PHIRecipe = nullptr; 324 if (PredRecipe->getNumUsers() != 0) { 325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, 326 RecipeWithoutMask->getDebugLoc()); 327 PredRecipe->replaceAllUsesWith(PHIRecipe); 328 PHIRecipe->setOperand(0, RecipeWithoutMask); 329 } 330 PredRecipe->eraseFromParent(); 331 auto *Exiting = 332 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 333 VPRegionBlock *Region = 334 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true); 335 336 // Note: first set Entry as region entry and then connect successors starting 337 // from it in order, to propagate the "parent" of each VPBasicBlock. 338 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 339 VPBlockUtils::connectBlocks(Pred, Exiting); 340 341 return Region; 342 } 343 344 static void addReplicateRegions(VPlan &Plan) { 345 SmallVector<VPReplicateRecipe *> WorkList; 346 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 347 vp_depth_first_deep(Plan.getEntry()))) { 348 for (VPRecipeBase &R : *VPBB) 349 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 350 if (RepR->isPredicated()) 351 WorkList.push_back(RepR); 352 } 353 } 354 355 unsigned BBNum = 0; 356 for (VPReplicateRecipe *RepR : WorkList) { 357 VPBasicBlock *CurrentBlock = RepR->getParent(); 358 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 359 360 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 361 SplitBlock->setName( 362 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 363 // Record predicated instructions for above packing optimizations. 364 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 365 Region->setParent(CurrentBlock->getParent()); 366 VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region); 367 } 368 } 369 370 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 371 /// the predecessor has a single successor. 372 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 373 SmallVector<VPBasicBlock *> WorkList; 374 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 375 vp_depth_first_deep(Plan.getEntry()))) { 376 // Don't fold the blocks in the skeleton of the Plan into their single 377 // predecessors for now. 378 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 379 if (!VPBB->getParent()) 380 continue; 381 auto *PredVPBB = 382 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 383 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || 384 isa<VPIRBasicBlock>(PredVPBB)) 385 continue; 386 WorkList.push_back(VPBB); 387 } 388 389 for (VPBasicBlock *VPBB : WorkList) { 390 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 391 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 392 R.moveBefore(*PredVPBB, PredVPBB->end()); 393 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 394 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 395 if (ParentRegion && ParentRegion->getExiting() == VPBB) 396 ParentRegion->setExiting(PredVPBB); 397 for (auto *Succ : to_vector(VPBB->successors())) { 398 VPBlockUtils::disconnectBlocks(VPBB, Succ); 399 VPBlockUtils::connectBlocks(PredVPBB, Succ); 400 } 401 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 402 } 403 return !WorkList.empty(); 404 } 405 406 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 407 // Convert masked VPReplicateRecipes to if-then region blocks. 408 addReplicateRegions(Plan); 409 410 bool ShouldSimplify = true; 411 while (ShouldSimplify) { 412 ShouldSimplify = sinkScalarOperands(Plan); 413 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 414 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 415 } 416 } 417 418 /// Remove redundant casts of inductions. 419 /// 420 /// Such redundant casts are casts of induction variables that can be ignored, 421 /// because we already proved that the casted phi is equal to the uncasted phi 422 /// in the vectorized loop. There is no need to vectorize the cast - the same 423 /// value can be used for both the phi and casts in the vector loop. 424 static void removeRedundantInductionCasts(VPlan &Plan) { 425 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 426 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 427 if (!IV || IV->getTruncInst()) 428 continue; 429 430 // A sequence of IR Casts has potentially been recorded for IV, which 431 // *must be bypassed* when the IV is vectorized, because the vectorized IV 432 // will produce the desired casted value. This sequence forms a def-use 433 // chain and is provided in reverse order, ending with the cast that uses 434 // the IV phi. Search for the recipe of the last cast in the chain and 435 // replace it with the original IV. Note that only the final cast is 436 // expected to have users outside the cast-chain and the dead casts left 437 // over will be cleaned up later. 438 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 439 VPValue *FindMyCast = IV; 440 for (Instruction *IRCast : reverse(Casts)) { 441 VPSingleDefRecipe *FoundUserCast = nullptr; 442 for (auto *U : FindMyCast->users()) { 443 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 444 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 445 FoundUserCast = UserCast; 446 break; 447 } 448 } 449 FindMyCast = FoundUserCast; 450 } 451 FindMyCast->replaceAllUsesWith(IV); 452 } 453 } 454 455 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 456 /// recipe, if it exists. 457 static void removeRedundantCanonicalIVs(VPlan &Plan) { 458 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 459 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 460 for (VPUser *U : CanonicalIV->users()) { 461 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 462 if (WidenNewIV) 463 break; 464 } 465 466 if (!WidenNewIV) 467 return; 468 469 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 470 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 471 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 472 473 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 474 continue; 475 476 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 477 // everything WidenNewIV's users need. That is, WidenOriginalIV will 478 // generate a vector phi or all users of WidenNewIV demand the first lane 479 // only. 480 if (any_of(WidenOriginalIV->users(), 481 [WidenOriginalIV](VPUser *U) { 482 return !U->usesScalars(WidenOriginalIV); 483 }) || 484 vputils::onlyFirstLaneUsed(WidenNewIV)) { 485 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 486 WidenNewIV->eraseFromParent(); 487 return; 488 } 489 } 490 } 491 492 /// Returns true if \p R is dead and can be removed. 493 static bool isDeadRecipe(VPRecipeBase &R) { 494 using namespace llvm::PatternMatch; 495 // Do remove conditional assume instructions as their conditions may be 496 // flattened. 497 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 498 bool IsConditionalAssume = 499 RepR && RepR->isPredicated() && 500 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 501 if (IsConditionalAssume) 502 return true; 503 504 if (R.mayHaveSideEffects()) 505 return false; 506 507 // Recipe is dead if no user keeps the recipe alive. 508 return all_of(R.definedValues(), 509 [](VPValue *V) { return V->getNumUsers() == 0; }); 510 } 511 512 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { 513 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 514 Plan.getEntry()); 515 516 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 517 // The recipes in the block are processed in reverse order, to catch chains 518 // of dead recipes. 519 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 520 if (isDeadRecipe(R)) 521 R.eraseFromParent(); 522 } 523 } 524 } 525 526 static VPScalarIVStepsRecipe * 527 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 528 Instruction::BinaryOps InductionOpcode, 529 FPMathOperator *FPBinOp, Instruction *TruncI, 530 VPValue *StartV, VPValue *Step, DebugLoc DL, 531 VPBuilder &Builder) { 532 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 533 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 534 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( 535 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx"); 536 537 // Truncate base induction if needed. 538 Type *CanonicalIVType = CanonicalIV->getScalarType(); 539 VPTypeAnalysis TypeInfo(CanonicalIVType); 540 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 541 if (TruncI) { 542 Type *TruncTy = TruncI->getType(); 543 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 544 "Not truncating."); 545 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 546 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy, DL); 547 ResultTy = TruncTy; 548 } 549 550 // Truncate step if needed. 551 Type *StepTy = TypeInfo.inferScalarType(Step); 552 if (ResultTy != StepTy) { 553 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 554 "Not truncating."); 555 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 556 auto *VecPreheader = 557 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 558 VPBuilder::InsertPointGuard Guard(Builder); 559 Builder.setInsertPoint(VecPreheader); 560 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy, DL); 561 } 562 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step); 563 } 564 565 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 566 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 567 for (unsigned I = 0; I != Users.size(); ++I) { 568 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]); 569 if (isa<VPHeaderPHIRecipe>(Cur)) 570 continue; 571 for (VPValue *V : Cur->definedValues()) 572 Users.insert(V->user_begin(), V->user_end()); 573 } 574 return Users.takeVector(); 575 } 576 577 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 578 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 579 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 580 /// require vectors while other require scalars, the scalar uses need to extract 581 /// the scalars from the generated vectors (Note that this is different to how 582 /// int/fp inductions are handled). Legalize extract-from-ends using uniform 583 /// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so 584 /// the correct end value is available. Also optimize 585 /// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by 586 /// providing them scalar steps built on the canonical scalar IV and update the 587 /// original IV's users. This is an optional optimization to reduce the needs of 588 /// vector extracts. 589 static void legalizeAndOptimizeInductions(VPlan &Plan) { 590 using namespace llvm::VPlanPatternMatch; 591 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 592 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 593 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 594 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 595 auto *PhiR = dyn_cast<VPWidenInductionRecipe>(&Phi); 596 if (!PhiR) 597 continue; 598 599 // Check if any uniform VPReplicateRecipes using the phi recipe are used by 600 // ExtractFromEnd. Those must be replaced by a regular VPReplicateRecipe to 601 // ensure the final value is available. 602 // TODO: Remove once uniformity analysis is done on VPlan. 603 for (VPUser *U : collectUsersRecursively(PhiR)) { 604 auto *ExitIRI = dyn_cast<VPIRInstruction>(U); 605 VPValue *Op; 606 if (!ExitIRI || !match(ExitIRI->getOperand(0), 607 m_VPInstruction<VPInstruction::ExtractFromEnd>( 608 m_VPValue(Op), m_VPValue()))) 609 continue; 610 auto *RepR = dyn_cast<VPReplicateRecipe>(Op); 611 if (!RepR || !RepR->isUniform()) 612 continue; 613 assert(!RepR->isPredicated() && "RepR must not be predicated"); 614 Instruction *I = RepR->getUnderlyingInstr(); 615 auto *Clone = 616 new VPReplicateRecipe(I, RepR->operands(), /*IsUniform*/ false); 617 Clone->insertAfter(RepR); 618 RepR->replaceAllUsesWith(Clone); 619 } 620 621 // Replace wide pointer inductions which have only their scalars used by 622 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 623 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 624 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 625 continue; 626 627 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 628 VPValue *StartV = 629 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 630 VPValue *StepV = PtrIV->getOperand(1); 631 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 632 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 633 nullptr, StartV, StepV, PtrIV->getDebugLoc(), Builder); 634 635 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps, 636 PtrIV->getDebugLoc(), "next.gep"); 637 638 PtrIV->replaceAllUsesWith(PtrAdd); 639 continue; 640 } 641 642 // Replace widened induction with scalar steps for users that only use 643 // scalars. 644 auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(&Phi); 645 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 646 return U->usesScalars(WideIV); 647 })) 648 continue; 649 650 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 651 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 652 Plan, ID.getKind(), ID.getInductionOpcode(), 653 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 654 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 655 WideIV->getDebugLoc(), Builder); 656 657 // Update scalar users of IV to use Step instead. 658 if (!HasOnlyVectorVFs) 659 WideIV->replaceAllUsesWith(Steps); 660 else 661 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 662 return U.usesScalars(WideIV); 663 }); 664 } 665 } 666 667 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 668 /// them with already existing recipes expanding the same SCEV expression. 669 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 670 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 671 672 for (VPRecipeBase &R : 673 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 674 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 675 if (!ExpR) 676 continue; 677 678 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 679 if (I.second) 680 continue; 681 ExpR->replaceAllUsesWith(I.first->second); 682 ExpR->eraseFromParent(); 683 } 684 } 685 686 static void recursivelyDeleteDeadRecipes(VPValue *V) { 687 SmallVector<VPValue *> WorkList; 688 SmallPtrSet<VPValue *, 8> Seen; 689 WorkList.push_back(V); 690 691 while (!WorkList.empty()) { 692 VPValue *Cur = WorkList.pop_back_val(); 693 if (!Seen.insert(Cur).second) 694 continue; 695 VPRecipeBase *R = Cur->getDefiningRecipe(); 696 if (!R) 697 continue; 698 if (!isDeadRecipe(*R)) 699 continue; 700 WorkList.append(R->op_begin(), R->op_end()); 701 R->eraseFromParent(); 702 } 703 } 704 705 /// Try to simplify recipe \p R. 706 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 707 using namespace llvm::VPlanPatternMatch; 708 709 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 710 // Try to remove redundant blend recipes. 711 SmallPtrSet<VPValue *, 4> UniqueValues; 712 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False())) 713 UniqueValues.insert(Blend->getIncomingValue(0)); 714 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 715 if (!match(Blend->getMask(I), m_False())) 716 UniqueValues.insert(Blend->getIncomingValue(I)); 717 718 if (UniqueValues.size() == 1) { 719 Blend->replaceAllUsesWith(*UniqueValues.begin()); 720 Blend->eraseFromParent(); 721 return; 722 } 723 724 if (Blend->isNormalized()) 725 return; 726 727 // Normalize the blend so its first incoming value is used as the initial 728 // value with the others blended into it. 729 730 unsigned StartIndex = 0; 731 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 732 // If a value's mask is used only by the blend then is can be deadcoded. 733 // TODO: Find the most expensive mask that can be deadcoded, or a mask 734 // that's used by multiple blends where it can be removed from them all. 735 VPValue *Mask = Blend->getMask(I); 736 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) { 737 StartIndex = I; 738 break; 739 } 740 } 741 742 SmallVector<VPValue *, 4> OperandsWithMask; 743 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex)); 744 745 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 746 if (I == StartIndex) 747 continue; 748 OperandsWithMask.push_back(Blend->getIncomingValue(I)); 749 OperandsWithMask.push_back(Blend->getMask(I)); 750 } 751 752 auto *NewBlend = new VPBlendRecipe( 753 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask); 754 NewBlend->insertBefore(&R); 755 756 VPValue *DeadMask = Blend->getMask(StartIndex); 757 Blend->replaceAllUsesWith(NewBlend); 758 Blend->eraseFromParent(); 759 recursivelyDeleteDeadRecipes(DeadMask); 760 return; 761 } 762 763 VPValue *A; 764 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 765 VPValue *Trunc = R.getVPSingleValue(); 766 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 767 Type *ATy = TypeInfo.inferScalarType(A); 768 if (TruncTy == ATy) { 769 Trunc->replaceAllUsesWith(A); 770 } else { 771 // Don't replace a scalarizing recipe with a widened cast. 772 if (isa<VPReplicateRecipe>(&R)) 773 return; 774 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 775 776 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 777 ? Instruction::SExt 778 : Instruction::ZExt; 779 auto *VPC = 780 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 781 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 782 // UnderlyingExt has distinct return type, used to retain legacy cost. 783 VPC->setUnderlyingValue(UnderlyingExt); 784 } 785 VPC->insertBefore(&R); 786 Trunc->replaceAllUsesWith(VPC); 787 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 788 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 789 VPC->insertBefore(&R); 790 Trunc->replaceAllUsesWith(VPC); 791 } 792 } 793 #ifndef NDEBUG 794 // Verify that the cached type info is for both A and its users is still 795 // accurate by comparing it to freshly computed types. 796 VPTypeAnalysis TypeInfo2( 797 R.getParent()->getPlan()->getCanonicalIV()->getScalarType()); 798 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 799 for (VPUser *U : A->users()) { 800 auto *R = cast<VPRecipeBase>(U); 801 for (VPValue *VPV : R->definedValues()) 802 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 803 } 804 #endif 805 } 806 807 // Simplify (X && Y) || (X && !Y) -> X. 808 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 809 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 810 // recipes to be visited during simplification. 811 VPValue *X, *Y, *X1, *Y1; 812 if (match(&R, 813 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 814 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 815 X == X1 && Y == Y1) { 816 R.getVPSingleValue()->replaceAllUsesWith(X); 817 R.eraseFromParent(); 818 return; 819 } 820 821 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 822 return R.getVPSingleValue()->replaceAllUsesWith(A); 823 824 if (match(&R, m_Not(m_Not(m_VPValue(A))))) 825 return R.getVPSingleValue()->replaceAllUsesWith(A); 826 827 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. 828 if ((match(&R, 829 m_DerivedIV(m_SpecificInt(0), m_VPValue(A), m_SpecificInt(1))) || 830 match(&R, 831 m_DerivedIV(m_SpecificInt(0), m_SpecificInt(0), m_VPValue()))) && 832 TypeInfo.inferScalarType(R.getOperand(1)) == 833 TypeInfo.inferScalarType(R.getVPSingleValue())) 834 return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1)); 835 } 836 837 /// Try to simplify the recipes in \p Plan. Use \p CanonicalIVTy as type for all 838 /// un-typed live-ins in VPTypeAnalysis. 839 static void simplifyRecipes(VPlan &Plan, Type *CanonicalIVTy) { 840 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 841 Plan.getEntry()); 842 VPTypeAnalysis TypeInfo(CanonicalIVTy); 843 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 844 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 845 simplifyRecipe(R, TypeInfo); 846 } 847 } 848 } 849 850 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 851 unsigned BestUF, 852 PredicatedScalarEvolution &PSE) { 853 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 854 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 855 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); 856 VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); 857 auto *Term = &ExitingVPBB->back(); 858 // Try to simplify the branch condition if TC <= VF * UF when preparing to 859 // execute the plan for the main vector loop. We only do this if the 860 // terminator is: 861 // 1. BranchOnCount, or 862 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 863 using namespace llvm::VPlanPatternMatch; 864 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 865 !match(Term, 866 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 867 return; 868 869 ScalarEvolution &SE = *PSE.getSE(); 870 const SCEV *TripCount = 871 vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE); 872 assert(!isa<SCEVCouldNotCompute>(TripCount) && 873 "Trip count SCEV must be computable"); 874 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 875 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 876 if (TripCount->isZero() || 877 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 878 return; 879 880 // The vector loop region only executes once. If possible, completely remove 881 // the region, otherwise replace the terminator controlling the latch with 882 // (BranchOnCond true). 883 auto *Header = cast<VPBasicBlock>(VectorRegion->getEntry()); 884 auto *CanIVTy = Plan.getCanonicalIV()->getScalarType(); 885 if (all_of( 886 Header->phis(), 887 IsaPred<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe>)) { 888 for (VPRecipeBase &HeaderR : make_early_inc_range(Header->phis())) { 889 auto *HeaderPhiR = cast<VPHeaderPHIRecipe>(&HeaderR); 890 HeaderPhiR->replaceAllUsesWith(HeaderPhiR->getStartValue()); 891 HeaderPhiR->eraseFromParent(); 892 } 893 894 VPBlockBase *Preheader = VectorRegion->getSinglePredecessor(); 895 VPBlockBase *Exit = VectorRegion->getSingleSuccessor(); 896 VPBlockUtils::disconnectBlocks(Preheader, VectorRegion); 897 VPBlockUtils::disconnectBlocks(VectorRegion, Exit); 898 899 for (VPBlockBase *B : vp_depth_first_shallow(VectorRegion->getEntry())) 900 B->setParent(nullptr); 901 902 VPBlockUtils::connectBlocks(Preheader, Header); 903 VPBlockUtils::connectBlocks(ExitingVPBB, Exit); 904 simplifyRecipes(Plan, CanIVTy); 905 } else { 906 // The vector region contains header phis for which we cannot remove the 907 // loop region yet. 908 LLVMContext &Ctx = SE.getContext(); 909 auto *BOC = new VPInstruction( 910 VPInstruction::BranchOnCond, 911 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc()); 912 ExitingVPBB->appendRecipe(BOC); 913 } 914 915 Term->eraseFromParent(); 916 VPlanTransforms::removeDeadRecipes(Plan); 917 918 Plan.setVF(BestVF); 919 Plan.setUF(BestUF); 920 // TODO: Further simplifications are possible 921 // 1. Replace inductions with constants. 922 // 2. Replace vector loop region with VPBasicBlock. 923 } 924 925 /// Sink users of \p FOR after the recipe defining the previous value \p 926 /// Previous of the recurrence. \returns true if all users of \p FOR could be 927 /// re-arranged as needed or false if it is not possible. 928 static bool 929 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 930 VPRecipeBase *Previous, 931 VPDominatorTree &VPDT) { 932 // Collect recipes that need sinking. 933 SmallVector<VPRecipeBase *> WorkList; 934 SmallPtrSet<VPRecipeBase *, 8> Seen; 935 Seen.insert(Previous); 936 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 937 // The previous value must not depend on the users of the recurrence phi. In 938 // that case, FOR is not a fixed order recurrence. 939 if (SinkCandidate == Previous) 940 return false; 941 942 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 943 !Seen.insert(SinkCandidate).second || 944 VPDT.properlyDominates(Previous, SinkCandidate)) 945 return true; 946 947 if (SinkCandidate->mayHaveSideEffects()) 948 return false; 949 950 WorkList.push_back(SinkCandidate); 951 return true; 952 }; 953 954 // Recursively sink users of FOR after Previous. 955 WorkList.push_back(FOR); 956 for (unsigned I = 0; I != WorkList.size(); ++I) { 957 VPRecipeBase *Current = WorkList[I]; 958 assert(Current->getNumDefinedValues() == 1 && 959 "only recipes with a single defined value expected"); 960 961 for (VPUser *User : Current->getVPSingleValue()->users()) { 962 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User))) 963 return false; 964 } 965 } 966 967 // Keep recipes to sink ordered by dominance so earlier instructions are 968 // processed first. 969 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 970 return VPDT.properlyDominates(A, B); 971 }); 972 973 for (VPRecipeBase *SinkCandidate : WorkList) { 974 if (SinkCandidate == FOR) 975 continue; 976 977 SinkCandidate->moveAfter(Previous); 978 Previous = SinkCandidate; 979 } 980 return true; 981 } 982 983 /// Try to hoist \p Previous and its operands before all users of \p FOR. 984 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, 985 VPRecipeBase *Previous, 986 VPDominatorTree &VPDT) { 987 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) 988 return false; 989 990 // Collect recipes that need hoisting. 991 SmallVector<VPRecipeBase *> HoistCandidates; 992 SmallPtrSet<VPRecipeBase *, 8> Visited; 993 VPRecipeBase *HoistPoint = nullptr; 994 // Find the closest hoist point by looking at all users of FOR and selecting 995 // the recipe dominating all other users. 996 for (VPUser *U : FOR->users()) { 997 auto *R = cast<VPRecipeBase>(U); 998 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint)) 999 HoistPoint = R; 1000 } 1001 assert(all_of(FOR->users(), 1002 [&VPDT, HoistPoint](VPUser *U) { 1003 auto *R = cast<VPRecipeBase>(U); 1004 return HoistPoint == R || 1005 VPDT.properlyDominates(HoistPoint, R); 1006 }) && 1007 "HoistPoint must dominate all users of FOR"); 1008 1009 auto NeedsHoisting = [HoistPoint, &VPDT, 1010 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { 1011 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); 1012 if (!HoistCandidate) 1013 return nullptr; 1014 VPRegionBlock *EnclosingLoopRegion = 1015 HoistCandidate->getParent()->getEnclosingLoopRegion(); 1016 assert((!HoistCandidate->getParent()->getParent() || 1017 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && 1018 "CFG in VPlan should still be flat, without replicate regions"); 1019 // Hoist candidate was already visited, no need to hoist. 1020 if (!Visited.insert(HoistCandidate).second) 1021 return nullptr; 1022 1023 // Candidate is outside loop region or a header phi, dominates FOR users w/o 1024 // hoisting. 1025 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate)) 1026 return nullptr; 1027 1028 // If we reached a recipe that dominates HoistPoint, we don't need to 1029 // hoist the recipe. 1030 if (VPDT.properlyDominates(HoistCandidate, HoistPoint)) 1031 return nullptr; 1032 return HoistCandidate; 1033 }; 1034 auto CanHoist = [&](VPRecipeBase *HoistCandidate) { 1035 // Avoid hoisting candidates with side-effects, as we do not yet analyze 1036 // associated dependencies. 1037 return !HoistCandidate->mayHaveSideEffects(); 1038 }; 1039 1040 if (!NeedsHoisting(Previous->getVPSingleValue())) 1041 return true; 1042 1043 // Recursively try to hoist Previous and its operands before all users of FOR. 1044 HoistCandidates.push_back(Previous); 1045 1046 for (unsigned I = 0; I != HoistCandidates.size(); ++I) { 1047 VPRecipeBase *Current = HoistCandidates[I]; 1048 assert(Current->getNumDefinedValues() == 1 && 1049 "only recipes with a single defined value expected"); 1050 if (!CanHoist(Current)) 1051 return false; 1052 1053 for (VPValue *Op : Current->operands()) { 1054 // If we reach FOR, it means the original Previous depends on some other 1055 // recurrence that in turn depends on FOR. If that is the case, we would 1056 // also need to hoist recipes involving the other FOR, which may break 1057 // dependencies. 1058 if (Op == FOR) 1059 return false; 1060 1061 if (auto *R = NeedsHoisting(Op)) 1062 HoistCandidates.push_back(R); 1063 } 1064 } 1065 1066 // Order recipes to hoist by dominance so earlier instructions are processed 1067 // first. 1068 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 1069 return VPDT.properlyDominates(A, B); 1070 }); 1071 1072 for (VPRecipeBase *HoistCandidate : HoistCandidates) { 1073 HoistCandidate->moveBefore(*HoistPoint->getParent(), 1074 HoistPoint->getIterator()); 1075 } 1076 1077 return true; 1078 } 1079 1080 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 1081 VPBuilder &LoopBuilder) { 1082 VPDominatorTree VPDT; 1083 VPDT.recalculate(Plan); 1084 1085 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 1086 for (VPRecipeBase &R : 1087 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 1088 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 1089 RecurrencePhis.push_back(FOR); 1090 1091 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 1092 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 1093 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 1094 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 1095 // to terminate. 1096 while (auto *PrevPhi = 1097 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 1098 assert(PrevPhi->getParent() == FOR->getParent()); 1099 assert(SeenPhis.insert(PrevPhi).second); 1100 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 1101 } 1102 1103 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && 1104 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) 1105 return false; 1106 1107 // Introduce a recipe to combine the incoming and previous values of a 1108 // fixed-order recurrence. 1109 VPBasicBlock *InsertBlock = Previous->getParent(); 1110 if (isa<VPHeaderPHIRecipe>(Previous)) 1111 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 1112 else 1113 LoopBuilder.setInsertPoint(InsertBlock, 1114 std::next(Previous->getIterator())); 1115 1116 auto *RecurSplice = cast<VPInstruction>( 1117 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 1118 {FOR, FOR->getBackedgeValue()})); 1119 1120 FOR->replaceAllUsesWith(RecurSplice); 1121 // Set the first operand of RecurSplice to FOR again, after replacing 1122 // all users. 1123 RecurSplice->setOperand(0, FOR); 1124 } 1125 return true; 1126 } 1127 1128 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 1129 for (VPRecipeBase &R : 1130 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 1131 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 1132 if (!PhiR) 1133 continue; 1134 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 1135 RecurKind RK = RdxDesc.getRecurrenceKind(); 1136 if (RK != RecurKind::Add && RK != RecurKind::Mul) 1137 continue; 1138 1139 for (VPUser *U : collectUsersRecursively(PhiR)) 1140 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 1141 RecWithFlags->dropPoisonGeneratingFlags(); 1142 } 1143 } 1144 } 1145 1146 /// Move loop-invariant recipes out of the vector loop region in \p Plan. 1147 static void licm(VPlan &Plan) { 1148 VPBasicBlock *Preheader = Plan.getVectorPreheader(); 1149 1150 // Return true if we do not know how to (mechanically) hoist a given recipe 1151 // out of a loop region. Does not address legality concerns such as aliasing 1152 // or speculation safety. 1153 auto CannotHoistRecipe = [](VPRecipeBase &R) { 1154 // Allocas cannot be hoisted. 1155 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 1156 return RepR && RepR->getOpcode() == Instruction::Alloca; 1157 }; 1158 1159 // Hoist any loop invariant recipes from the vector loop region to the 1160 // preheader. Preform a shallow traversal of the vector loop region, to 1161 // exclude recipes in replicate regions. 1162 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1163 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1164 vp_depth_first_shallow(LoopRegion->getEntry()))) { 1165 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1166 if (CannotHoistRecipe(R)) 1167 continue; 1168 // TODO: Relax checks in the future, e.g. we could also hoist reads, if 1169 // their memory location is not modified in the vector loop. 1170 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || 1171 any_of(R.operands(), [](VPValue *Op) { 1172 return !Op->isDefinedOutsideLoopRegions(); 1173 })) 1174 continue; 1175 R.moveBefore(*Preheader, Preheader->end()); 1176 } 1177 } 1178 } 1179 1180 void VPlanTransforms::truncateToMinimalBitwidths( 1181 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { 1182 #ifndef NDEBUG 1183 // Count the processed recipes and cross check the count later with MinBWs 1184 // size, to make sure all entries in MinBWs have been handled. 1185 unsigned NumProcessedRecipes = 0; 1186 #endif 1187 // Keep track of created truncates, so they can be re-used. Note that we 1188 // cannot use RAUW after creating a new truncate, as this would could make 1189 // other uses have different types for their operands, making them invalidly 1190 // typed. 1191 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1192 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1193 VPTypeAnalysis TypeInfo(CanonicalIVType); 1194 VPBasicBlock *PH = Plan.getVectorPreheader(); 1195 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1196 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1197 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1198 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1199 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1200 continue; 1201 1202 VPValue *ResultVPV = R.getVPSingleValue(); 1203 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1204 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1205 if (!NewResSizeInBits) 1206 continue; 1207 1208 #ifndef NDEBUG 1209 NumProcessedRecipes++; 1210 #endif 1211 // If the value wasn't vectorized, we must maintain the original scalar 1212 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1213 // skip casts which do not need to be handled explicitly here, as 1214 // redundant casts will be removed during recipe simplification. 1215 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1216 #ifndef NDEBUG 1217 // If any of the operands is a live-in and not used by VPWidenRecipe or 1218 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1219 // processed as well. When MinBWs is currently constructed, there is no 1220 // information about whether recipes are widened or replicated and in 1221 // case they are reciplicated the operands are not truncated. Counting 1222 // them them here ensures we do not miss any recipes in MinBWs. 1223 // TODO: Remove once the analysis is done on VPlan. 1224 for (VPValue *Op : R.operands()) { 1225 if (!Op->isLiveIn()) 1226 continue; 1227 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1228 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1229 none_of(Op->users(), 1230 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) { 1231 // Add an entry to ProcessedTruncs to avoid counting the same 1232 // operand multiple times. 1233 ProcessedTruncs[Op] = nullptr; 1234 NumProcessedRecipes += 1; 1235 } 1236 } 1237 #endif 1238 continue; 1239 } 1240 1241 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1242 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1243 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1244 (void)OldResSizeInBits; 1245 1246 LLVMContext &Ctx = CanonicalIVType->getContext(); 1247 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1248 1249 // Any wrapping introduced by shrinking this operation shouldn't be 1250 // considered undefined behavior. So, we can't unconditionally copy 1251 // arithmetic wrapping flags to VPW. 1252 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1253 VPW->dropPoisonGeneratingFlags(); 1254 1255 using namespace llvm::VPlanPatternMatch; 1256 if (OldResSizeInBits != NewResSizeInBits && 1257 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1258 // Extend result to original width. 1259 auto *Ext = 1260 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1261 Ext->insertAfter(&R); 1262 ResultVPV->replaceAllUsesWith(Ext); 1263 Ext->setOperand(0, ResultVPV); 1264 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1265 } else { 1266 assert( 1267 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1268 "Only ICmps should not need extending the result."); 1269 } 1270 1271 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1272 if (isa<VPWidenLoadRecipe>(&R)) 1273 continue; 1274 1275 // Shrink operands by introducing truncates as needed. 1276 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1277 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1278 auto *Op = R.getOperand(Idx); 1279 unsigned OpSizeInBits = 1280 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1281 if (OpSizeInBits == NewResSizeInBits) 1282 continue; 1283 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1284 auto [ProcessedIter, IterIsEmpty] = 1285 ProcessedTruncs.insert({Op, nullptr}); 1286 VPWidenCastRecipe *NewOp = 1287 IterIsEmpty 1288 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1289 : ProcessedIter->second; 1290 R.setOperand(Idx, NewOp); 1291 if (!IterIsEmpty) 1292 continue; 1293 ProcessedIter->second = NewOp; 1294 if (!Op->isLiveIn()) { 1295 NewOp->insertBefore(&R); 1296 } else { 1297 PH->appendRecipe(NewOp); 1298 #ifndef NDEBUG 1299 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1300 bool IsContained = MinBWs.contains(OpInst); 1301 NumProcessedRecipes += IsContained; 1302 #endif 1303 } 1304 } 1305 1306 } 1307 } 1308 1309 assert(MinBWs.size() == NumProcessedRecipes && 1310 "some entries in MinBWs haven't been processed"); 1311 } 1312 1313 void VPlanTransforms::optimize(VPlan &Plan) { 1314 removeRedundantCanonicalIVs(Plan); 1315 removeRedundantInductionCasts(Plan); 1316 1317 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1318 legalizeAndOptimizeInductions(Plan); 1319 removeRedundantExpandSCEVRecipes(Plan); 1320 simplifyRecipes(Plan, Plan.getCanonicalIV()->getScalarType()); 1321 removeDeadRecipes(Plan); 1322 1323 createAndOptimizeReplicateRegions(Plan); 1324 mergeBlocksIntoPredecessors(Plan); 1325 licm(Plan); 1326 } 1327 1328 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1329 // the loop terminator with a branch-on-cond recipe with the negated 1330 // active-lane-mask as operand. Note that this turns the loop into an 1331 // uncountable one. Only the existing terminator is replaced, all other existing 1332 // recipes/users remain unchanged, except for poison-generating flags being 1333 // dropped from the canonical IV increment. Return the created 1334 // VPActiveLaneMaskPHIRecipe. 1335 // 1336 // The function uses the following definitions: 1337 // 1338 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1339 // calculate-trip-count-minus-VF (original TC) : original TC 1340 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1341 // CanonicalIVPhi : CanonicalIVIncrement 1342 // %StartV is the canonical induction start value. 1343 // 1344 // The function adds the following recipes: 1345 // 1346 // vector.ph: 1347 // %TripCount = calculate-trip-count-minus-VF (original TC) 1348 // [if DataWithControlFlowWithoutRuntimeCheck] 1349 // %EntryInc = canonical-iv-increment-for-part %StartV 1350 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1351 // 1352 // vector.body: 1353 // ... 1354 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1355 // ... 1356 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1357 // %ALM = active-lane-mask %InLoopInc, TripCount 1358 // %Negated = Not %ALM 1359 // branch-on-cond %Negated 1360 // 1361 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1362 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1363 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1364 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1365 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1366 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1367 1368 auto *CanonicalIVIncrement = 1369 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1370 // TODO: Check if dropping the flags is needed if 1371 // !DataAndControlFlowWithoutRuntimeCheck. 1372 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1373 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1374 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1375 // we have to take unrolling into account. Each part needs to start at 1376 // Part * VF 1377 auto *VecPreheader = Plan.getVectorPreheader(); 1378 VPBuilder Builder(VecPreheader); 1379 1380 // Create the ActiveLaneMask instruction using the correct start values. 1381 VPValue *TC = Plan.getTripCount(); 1382 1383 VPValue *TripCount, *IncrementValue; 1384 if (!DataAndControlFlowWithoutRuntimeCheck) { 1385 // When the loop is guarded by a runtime overflow check for the loop 1386 // induction variable increment by VF, we can increment the value before 1387 // the get.active.lane mask and use the unmodified tripcount. 1388 IncrementValue = CanonicalIVIncrement; 1389 TripCount = TC; 1390 } else { 1391 // When avoiding a runtime check, the active.lane.mask inside the loop 1392 // uses a modified trip count and the induction variable increment is 1393 // done after the active.lane.mask intrinsic is called. 1394 IncrementValue = CanonicalIVPHI; 1395 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1396 {TC}, DL); 1397 } 1398 auto *EntryIncrement = Builder.createOverflowingOp( 1399 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1400 "index.part.next"); 1401 1402 // Create the active lane mask instruction in the VPlan preheader. 1403 auto *EntryALM = 1404 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1405 DL, "active.lane.mask.entry"); 1406 1407 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1408 // preheader ActiveLaneMask instruction. 1409 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1410 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1411 1412 // Create the active lane mask for the next iteration of the loop before the 1413 // original terminator. 1414 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1415 Builder.setInsertPoint(OriginalTerminator); 1416 auto *InLoopIncrement = 1417 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1418 {IncrementValue}, {false, false}, DL); 1419 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1420 {InLoopIncrement, TripCount}, DL, 1421 "active.lane.mask.next"); 1422 LaneMaskPhi->addOperand(ALM); 1423 1424 // Replace the original terminator with BranchOnCond. We have to invert the 1425 // mask here because a true condition means jumping to the exit block. 1426 auto *NotMask = Builder.createNot(ALM, DL); 1427 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1428 OriginalTerminator->eraseFromParent(); 1429 return LaneMaskPhi; 1430 } 1431 1432 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1433 /// WideCanonicalIV, backedge-taken-count) pattern. 1434 /// TODO: Introduce explicit recipe for header-mask instead of searching 1435 /// for the header-mask pattern manually. 1436 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1437 SmallVector<VPValue *> WideCanonicalIVs; 1438 auto *FoundWidenCanonicalIVUser = 1439 find_if(Plan.getCanonicalIV()->users(), 1440 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1441 assert(count_if(Plan.getCanonicalIV()->users(), 1442 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1443 1 && 1444 "Must have at most one VPWideCanonicalIVRecipe"); 1445 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1446 auto *WideCanonicalIV = 1447 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1448 WideCanonicalIVs.push_back(WideCanonicalIV); 1449 } 1450 1451 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1452 // version of the canonical induction. 1453 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1454 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1455 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1456 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1457 WideCanonicalIVs.push_back(WidenOriginalIV); 1458 } 1459 1460 // Walk users of wide canonical IVs and collect to all compares of the form 1461 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1462 SmallVector<VPValue *> HeaderMasks; 1463 for (auto *Wide : WideCanonicalIVs) { 1464 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1465 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1466 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1467 continue; 1468 1469 assert(HeaderMask->getOperand(0) == Wide && 1470 "WidenCanonicalIV must be the first operand of the compare"); 1471 HeaderMasks.push_back(HeaderMask); 1472 } 1473 } 1474 return HeaderMasks; 1475 } 1476 1477 void VPlanTransforms::addActiveLaneMask( 1478 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1479 bool DataAndControlFlowWithoutRuntimeCheck) { 1480 assert((!DataAndControlFlowWithoutRuntimeCheck || 1481 UseActiveLaneMaskForControlFlow) && 1482 "DataAndControlFlowWithoutRuntimeCheck implies " 1483 "UseActiveLaneMaskForControlFlow"); 1484 1485 auto *FoundWidenCanonicalIVUser = 1486 find_if(Plan.getCanonicalIV()->users(), 1487 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1488 assert(FoundWidenCanonicalIVUser && 1489 "Must have widened canonical IV when tail folding!"); 1490 auto *WideCanonicalIV = 1491 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1492 VPSingleDefRecipe *LaneMask; 1493 if (UseActiveLaneMaskForControlFlow) { 1494 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1495 Plan, DataAndControlFlowWithoutRuntimeCheck); 1496 } else { 1497 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1498 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1499 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1500 "active.lane.mask"); 1501 } 1502 1503 // Walk users of WideCanonicalIV and replace all compares of the form 1504 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1505 // active-lane-mask. 1506 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1507 HeaderMask->replaceAllUsesWith(LaneMask); 1508 } 1509 1510 /// Try to convert \p CurRecipe to a corresponding EVL-based recipe. Returns 1511 /// nullptr if no EVL-based recipe could be created. 1512 /// \p HeaderMask Header Mask. 1513 /// \p CurRecipe Recipe to be transform. 1514 /// \p TypeInfo VPlan-based type analysis. 1515 /// \p AllOneMask The vector mask parameter of vector-predication intrinsics. 1516 /// \p EVL The explicit vector length parameter of vector-predication 1517 /// intrinsics. 1518 static VPRecipeBase *createEVLRecipe(VPValue *HeaderMask, 1519 VPRecipeBase &CurRecipe, 1520 VPTypeAnalysis &TypeInfo, 1521 VPValue &AllOneMask, VPValue &EVL) { 1522 using namespace llvm::VPlanPatternMatch; 1523 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1524 assert(OrigMask && "Unmasked recipe when folding tail"); 1525 return HeaderMask == OrigMask ? nullptr : OrigMask; 1526 }; 1527 1528 return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe) 1529 .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) { 1530 VPValue *NewMask = GetNewMask(L->getMask()); 1531 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); 1532 }) 1533 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) { 1534 VPValue *NewMask = GetNewMask(S->getMask()); 1535 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); 1536 }) 1537 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * { 1538 unsigned Opcode = W->getOpcode(); 1539 if (!Instruction::isBinaryOp(Opcode) && !Instruction::isUnaryOp(Opcode)) 1540 return nullptr; 1541 return new VPWidenEVLRecipe(*W, EVL); 1542 }) 1543 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) { 1544 VPValue *NewMask = GetNewMask(Red->getCondOp()); 1545 return new VPReductionEVLRecipe(*Red, EVL, NewMask); 1546 }) 1547 .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>( 1548 [&](auto *CR) -> VPRecipeBase * { 1549 Intrinsic::ID VPID; 1550 if (auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) { 1551 VPID = 1552 VPIntrinsic::getForIntrinsic(CallR->getVectorIntrinsicID()); 1553 } else { 1554 auto *CastR = cast<VPWidenCastRecipe>(CR); 1555 VPID = VPIntrinsic::getForOpcode(CastR->getOpcode()); 1556 } 1557 1558 // Not all intrinsics have a corresponding VP intrinsic. 1559 if (VPID == Intrinsic::not_intrinsic) 1560 return nullptr; 1561 assert(VPIntrinsic::getMaskParamPos(VPID) && 1562 VPIntrinsic::getVectorLengthParamPos(VPID) && 1563 "Expected VP intrinsic to have mask and EVL"); 1564 1565 SmallVector<VPValue *> Ops(CR->operands()); 1566 Ops.push_back(&AllOneMask); 1567 Ops.push_back(&EVL); 1568 return new VPWidenIntrinsicRecipe( 1569 VPID, Ops, TypeInfo.inferScalarType(CR), CR->getDebugLoc()); 1570 }) 1571 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) { 1572 SmallVector<VPValue *> Ops(Sel->operands()); 1573 Ops.push_back(&EVL); 1574 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops, 1575 TypeInfo.inferScalarType(Sel), 1576 Sel->getDebugLoc()); 1577 }) 1578 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * { 1579 VPValue *LHS, *RHS; 1580 // Transform select with a header mask condition 1581 // select(header_mask, LHS, RHS) 1582 // into vector predication merge. 1583 // vp.merge(all-true, LHS, RHS, EVL) 1584 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS), 1585 m_VPValue(RHS)))) 1586 return nullptr; 1587 // Use all true as the condition because this transformation is 1588 // limited to selects whose condition is a header mask. 1589 return new VPWidenIntrinsicRecipe( 1590 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL}, 1591 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc()); 1592 }) 1593 .Default([&](VPRecipeBase *R) { return nullptr; }); 1594 } 1595 1596 /// Replace recipes with their EVL variants. 1597 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { 1598 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1599 VPTypeAnalysis TypeInfo(CanonicalIVType); 1600 LLVMContext &Ctx = CanonicalIVType->getContext(); 1601 VPValue *AllOneMask = Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1602 1603 for (VPUser *U : Plan.getVF().users()) { 1604 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U)) 1605 R->setOperand(1, &EVL); 1606 } 1607 1608 SmallVector<VPRecipeBase *> ToErase; 1609 1610 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1611 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1612 auto *CurRecipe = cast<VPRecipeBase>(U); 1613 VPRecipeBase *EVLRecipe = 1614 createEVLRecipe(HeaderMask, *CurRecipe, TypeInfo, *AllOneMask, EVL); 1615 if (!EVLRecipe) 1616 continue; 1617 1618 [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues(); 1619 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1620 "New recipe must define the same number of values as the " 1621 "original."); 1622 assert( 1623 NumDefVal <= 1 && 1624 "Only supports recipes with a single definition or without users."); 1625 EVLRecipe->insertBefore(CurRecipe); 1626 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) { 1627 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1628 CurVPV->replaceAllUsesWith(EVLRecipe->getVPSingleValue()); 1629 } 1630 // Defer erasing recipes till the end so that we don't invalidate the 1631 // VPTypeAnalysis cache. 1632 ToErase.push_back(CurRecipe); 1633 } 1634 } 1635 1636 for (VPRecipeBase *R : reverse(ToErase)) { 1637 SmallVector<VPValue *> PossiblyDead(R->operands()); 1638 R->eraseFromParent(); 1639 for (VPValue *Op : PossiblyDead) 1640 recursivelyDeleteDeadRecipes(Op); 1641 } 1642 } 1643 1644 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1645 /// replaces all uses except the canonical IV increment of 1646 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1647 /// is used only for loop iterations counting after this transformation. 1648 /// 1649 /// The function uses the following definitions: 1650 /// %StartV is the canonical induction start value. 1651 /// 1652 /// The function adds the following recipes: 1653 /// 1654 /// vector.ph: 1655 /// ... 1656 /// 1657 /// vector.body: 1658 /// ... 1659 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1660 /// [ %NextEVLIV, %vector.body ] 1661 /// %AVL = sub original TC, %EVLPhi 1662 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL 1663 /// ... 1664 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1665 /// ... 1666 /// 1667 /// If MaxSafeElements is provided, the function adds the following recipes: 1668 /// vector.ph: 1669 /// ... 1670 /// 1671 /// vector.body: 1672 /// ... 1673 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1674 /// [ %NextEVLIV, %vector.body ] 1675 /// %AVL = sub original TC, %EVLPhi 1676 /// %cmp = cmp ult %AVL, MaxSafeElements 1677 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements 1678 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL 1679 /// ... 1680 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi 1681 /// ... 1682 /// 1683 bool VPlanTransforms::tryAddExplicitVectorLength( 1684 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { 1685 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1686 // The transform updates all users of inductions to work based on EVL, instead 1687 // of the VF directly. At the moment, widened inductions cannot be updated, so 1688 // bail out if the plan contains any. 1689 bool ContainsWidenInductions = any_of( 1690 Header->phis(), 1691 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>); 1692 if (ContainsWidenInductions) 1693 return false; 1694 1695 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1696 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1697 1698 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1699 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1700 EVLPhi->insertAfter(CanonicalIVPHI); 1701 VPBuilder Builder(Header, Header->getFirstNonPhi()); 1702 // Compute original TC - IV as the AVL (application vector length). 1703 VPValue *AVL = Builder.createNaryOp( 1704 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl"); 1705 if (MaxSafeElements) { 1706 // Support for MaxSafeDist for correct loop emission. 1707 VPValue *AVLSafe = Plan.getOrAddLiveIn( 1708 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements)); 1709 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe); 1710 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl"); 1711 } 1712 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL, 1713 DebugLoc()); 1714 1715 auto *CanonicalIVIncrement = 1716 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1717 VPSingleDefRecipe *OpVPEVL = VPEVL; 1718 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1719 IVSize != 32) { 1720 OpVPEVL = new VPScalarCastRecipe( 1721 IVSize < 32 ? Instruction::Trunc : Instruction::ZExt, OpVPEVL, 1722 CanonicalIVPHI->getScalarType(), CanonicalIVIncrement->getDebugLoc()); 1723 OpVPEVL->insertBefore(CanonicalIVIncrement); 1724 } 1725 auto *NextEVLIV = 1726 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1727 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1728 CanonicalIVIncrement->hasNoSignedWrap()}, 1729 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1730 NextEVLIV->insertBefore(CanonicalIVIncrement); 1731 EVLPhi->addOperand(NextEVLIV); 1732 1733 transformRecipestoEVLRecipes(Plan, *VPEVL); 1734 1735 // Replace all uses of VPCanonicalIVPHIRecipe by 1736 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1737 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1738 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1739 // TODO: support unroll factor > 1. 1740 Plan.setUF(1); 1741 return true; 1742 } 1743 1744 void VPlanTransforms::dropPoisonGeneratingRecipes( 1745 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1746 // Collect recipes in the backward slice of `Root` that may generate a poison 1747 // value that is used after vectorization. 1748 SmallPtrSet<VPRecipeBase *, 16> Visited; 1749 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1750 SmallVector<VPRecipeBase *, 16> Worklist; 1751 Worklist.push_back(Root); 1752 1753 // Traverse the backward slice of Root through its use-def chain. 1754 while (!Worklist.empty()) { 1755 VPRecipeBase *CurRec = Worklist.pop_back_val(); 1756 1757 if (!Visited.insert(CurRec).second) 1758 continue; 1759 1760 // Prune search if we find another recipe generating a widen memory 1761 // instruction. Widen memory instructions involved in address computation 1762 // will lead to gather/scatter instructions, which don't need to be 1763 // handled. 1764 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, 1765 VPHeaderPHIRecipe>(CurRec)) 1766 continue; 1767 1768 // This recipe contributes to the address computation of a widen 1769 // load/store. If the underlying instruction has poison-generating flags, 1770 // drop them directly. 1771 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1772 VPValue *A, *B; 1773 using namespace llvm::VPlanPatternMatch; 1774 // Dropping disjoint from an OR may yield incorrect results, as some 1775 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1776 // for dependence analysis). Instead, replace it with an equivalent Add. 1777 // This is possible as all users of the disjoint OR only access lanes 1778 // where the operands are disjoint or poison otherwise. 1779 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1780 RecWithFlags->isDisjoint()) { 1781 VPBuilder Builder(RecWithFlags); 1782 VPInstruction *New = Builder.createOverflowingOp( 1783 Instruction::Add, {A, B}, {false, false}, 1784 RecWithFlags->getDebugLoc()); 1785 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1786 RecWithFlags->replaceAllUsesWith(New); 1787 RecWithFlags->eraseFromParent(); 1788 CurRec = New; 1789 } else 1790 RecWithFlags->dropPoisonGeneratingFlags(); 1791 } else { 1792 Instruction *Instr = dyn_cast_or_null<Instruction>( 1793 CurRec->getVPSingleValue()->getUnderlyingValue()); 1794 (void)Instr; 1795 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1796 "found instruction with poison generating flags not covered by " 1797 "VPRecipeWithIRFlags"); 1798 } 1799 1800 // Add new definitions to the worklist. 1801 for (VPValue *Operand : CurRec->operands()) 1802 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) 1803 Worklist.push_back(OpDef); 1804 } 1805 }); 1806 1807 // Traverse all the recipes in the VPlan and collect the poison-generating 1808 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1809 // VPInterleaveRecipe. 1810 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1811 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1812 for (VPRecipeBase &Recipe : *VPBB) { 1813 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1814 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1815 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1816 if (AddrDef && WidenRec->isConsecutive() && 1817 BlockNeedsPredication(UnderlyingInstr.getParent())) 1818 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1819 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1820 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1821 if (AddrDef) { 1822 // Check if any member of the interleave group needs predication. 1823 const InterleaveGroup<Instruction> *InterGroup = 1824 InterleaveRec->getInterleaveGroup(); 1825 bool NeedPredication = false; 1826 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1827 I < NumMembers; ++I) { 1828 Instruction *Member = InterGroup->getMember(I); 1829 if (Member) 1830 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1831 } 1832 1833 if (NeedPredication) 1834 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1835 } 1836 } 1837 } 1838 } 1839 } 1840 1841 void VPlanTransforms::createInterleaveGroups( 1842 VPlan &Plan, 1843 const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> 1844 &InterleaveGroups, 1845 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) { 1846 if (InterleaveGroups.empty()) 1847 return; 1848 1849 // Interleave memory: for each Interleave Group we marked earlier as relevant 1850 // for this VPlan, replace the Recipes widening its memory instructions with a 1851 // single VPInterleaveRecipe at its insertion point. 1852 VPDominatorTree VPDT; 1853 VPDT.recalculate(Plan); 1854 for (const auto *IG : InterleaveGroups) { 1855 SmallVector<VPValue *, 4> StoredValues; 1856 for (unsigned i = 0; i < IG->getFactor(); ++i) 1857 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 1858 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); 1859 StoredValues.push_back(StoreR->getStoredValue()); 1860 } 1861 1862 bool NeedsMaskForGaps = 1863 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; 1864 1865 Instruction *IRInsertPos = IG->getInsertPos(); 1866 auto *InsertPos = 1867 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos)); 1868 1869 // Get or create the start address for the interleave group. 1870 auto *Start = 1871 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0))); 1872 VPValue *Addr = Start->getAddr(); 1873 VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); 1874 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) { 1875 // TODO: Hoist Addr's defining recipe (and any operands as needed) to 1876 // InsertPos or sink loads above zero members to join it. 1877 bool InBounds = false; 1878 if (auto *Gep = dyn_cast<GetElementPtrInst>( 1879 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts())) 1880 InBounds = Gep->isInBounds(); 1881 1882 // We cannot re-use the address of member zero because it does not 1883 // dominate the insert position. Instead, use the address of the insert 1884 // position and create a PtrAdd adjusting it to the address of member 1885 // zero. 1886 assert(IG->getIndex(IRInsertPos) != 0 && 1887 "index of insert position shouldn't be zero"); 1888 auto &DL = IRInsertPos->getDataLayout(); 1889 APInt Offset(32, 1890 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) * 1891 IG->getIndex(IRInsertPos), 1892 /*IsSigned=*/true); 1893 VPValue *OffsetVPV = Plan.getOrAddLiveIn( 1894 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset)); 1895 VPBuilder B(InsertPos); 1896 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV) 1897 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV); 1898 } 1899 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, 1900 InsertPos->getMask(), NeedsMaskForGaps); 1901 VPIG->insertBefore(InsertPos); 1902 1903 unsigned J = 0; 1904 for (unsigned i = 0; i < IG->getFactor(); ++i) 1905 if (Instruction *Member = IG->getMember(i)) { 1906 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); 1907 if (!Member->getType()->isVoidTy()) { 1908 VPValue *OriginalV = MemberR->getVPSingleValue(); 1909 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 1910 J++; 1911 } 1912 MemberR->eraseFromParent(); 1913 } 1914 } 1915 } 1916 1917 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { 1918 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1919 vp_depth_first_deep(Plan.getEntry()))) { 1920 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) { 1921 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R)) 1922 continue; 1923 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1924 StringRef Name = 1925 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv"; 1926 auto *ScalarR = 1927 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(), 1928 PhiR->getDebugLoc(), Name); 1929 ScalarR->insertBefore(PhiR); 1930 PhiR->replaceAllUsesWith(ScalarR); 1931 PhiR->eraseFromParent(); 1932 } 1933 } 1934 } 1935 1936 void VPlanTransforms::handleUncountableEarlyExit( 1937 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, 1938 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) { 1939 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1940 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting()); 1941 VPBuilder Builder(LatchVPBB->getTerminator()); 1942 auto *MiddleVPBB = Plan.getMiddleBlock(); 1943 VPValue *IsEarlyExitTaken = nullptr; 1944 1945 // Process the uncountable exiting block. Update IsEarlyExitTaken, which 1946 // tracks if the uncountable early exit has been taken. Also split the middle 1947 // block and have it conditionally branch to the early exit block if 1948 // EarlyExitTaken. 1949 auto *EarlyExitingBranch = 1950 cast<BranchInst>(UncountableExitingBlock->getTerminator()); 1951 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0); 1952 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1); 1953 1954 // The early exit block may or may not be the same as the "countable" exit 1955 // block. Creates a new VPIRBB for the early exit block in case it is distinct 1956 // from the countable exit block. 1957 // TODO: Introduce both exit blocks during VPlan skeleton construction. 1958 VPIRBasicBlock *VPEarlyExitBlock; 1959 if (OrigLoop->getUniqueExitBlock()) { 1960 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]); 1961 } else { 1962 VPEarlyExitBlock = Plan.createVPIRBasicBlock( 1963 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1964 } 1965 1966 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask( 1967 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1968 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond); 1969 IsEarlyExitTaken = 1970 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond}); 1971 1972 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split"); 1973 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle); 1974 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock); 1975 NewMiddle->swapSuccessors(); 1976 1977 VPBuilder MiddleBuilder(NewMiddle); 1978 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken}); 1979 1980 // Replace the condition controlling the non-early exit from the vector loop 1981 // with one exiting if either the original condition of the vector latch is 1982 // true or the early exit has been taken. 1983 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator()); 1984 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && 1985 "Unexpected terminator"); 1986 auto *IsLatchExitTaken = 1987 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0), 1988 LatchExitingBranch->getOperand(1)); 1989 auto *AnyExitTaken = Builder.createNaryOp( 1990 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken}); 1991 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken); 1992 LatchExitingBranch->eraseFromParent(); 1993 } 1994