1 //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set of utility VPlan to VPlan transformations. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "VPlanTransforms.h" 15 #include "VPRecipeBuilder.h" 16 #include "VPlan.h" 17 #include "VPlanAnalysis.h" 18 #include "VPlanCFG.h" 19 #include "VPlanDominatorTree.h" 20 #include "VPlanPatternMatch.h" 21 #include "VPlanUtils.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/TypeSwitch.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/VectorUtils.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/PatternMatch.h" 30 31 using namespace llvm; 32 33 void VPlanTransforms::VPInstructionsToVPRecipes( 34 VPlanPtr &Plan, 35 function_ref<const InductionDescriptor *(PHINode *)> 36 GetIntOrFpInductionDescriptor, 37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) { 38 39 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 40 Plan->getVectorLoopRegion()); 41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 42 // Skip blocks outside region 43 if (!VPBB->getParent()) 44 break; 45 VPRecipeBase *Term = VPBB->getTerminator(); 46 auto EndIter = Term ? Term->getIterator() : VPBB->end(); 47 // Introduce each ingredient into VPlan. 48 for (VPRecipeBase &Ingredient : 49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) { 50 51 VPValue *VPV = Ingredient.getVPSingleValue(); 52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue()); 53 54 VPRecipeBase *NewRecipe = nullptr; 55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) { 56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue()); 57 const auto *II = GetIntOrFpInductionDescriptor(Phi); 58 if (!II) 59 continue; 60 61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue()); 62 VPValue *Step = 63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE); 64 NewRecipe = new VPWidenIntOrFpInductionRecipe( 65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); 66 } else { 67 assert(isa<VPInstruction>(&Ingredient) && 68 "only VPInstructions expected here"); 69 assert(!isa<PHINode>(Inst) && "phis should be handled above"); 70 // Create VPWidenMemoryRecipe for loads and stores. 71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 72 NewRecipe = new VPWidenLoadRecipe( 73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/, 74 false /*Consecutive*/, false /*Reverse*/, 75 Ingredient.getDebugLoc()); 76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) { 77 NewRecipe = new VPWidenStoreRecipe( 78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0), 79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, 80 Ingredient.getDebugLoc()); 81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { 82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); 83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 84 NewRecipe = new VPWidenIntrinsicRecipe( 85 *CI, getVectorIntrinsicIDForCall(CI, &TLI), 86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), 87 CI->getDebugLoc()); 88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) { 89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); 90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) { 91 NewRecipe = new VPWidenCastRecipe( 92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI); 93 } else { 94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); 95 } 96 } 97 98 NewRecipe->insertBefore(&Ingredient); 99 if (NewRecipe->getNumDefinedValues() == 1) 100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue()); 101 else 102 assert(NewRecipe->getNumDefinedValues() == 0 && 103 "Only recpies with zero or one defined values expected"); 104 Ingredient.eraseFromParent(); 105 } 106 } 107 } 108 109 static bool sinkScalarOperands(VPlan &Plan) { 110 auto Iter = vp_depth_first_deep(Plan.getEntry()); 111 bool Changed = false; 112 // First, collect the operands of all recipes in replicate blocks as seeds for 113 // sinking. 114 SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; 115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) { 116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); 117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) 118 continue; 119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]); 120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) 121 continue; 122 for (auto &Recipe : *VPBB) { 123 for (VPValue *Op : Recipe.operands()) 124 if (auto *Def = 125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 126 WorkList.insert(std::make_pair(VPBB, Def)); 127 } 128 } 129 130 bool ScalarVFOnly = Plan.hasScalarVFOnly(); 131 // Try to sink each replicate or scalar IV steps recipe in the worklist. 132 for (unsigned I = 0; I != WorkList.size(); ++I) { 133 VPBasicBlock *SinkTo; 134 VPSingleDefRecipe *SinkCandidate; 135 std::tie(SinkTo, SinkCandidate) = WorkList[I]; 136 if (SinkCandidate->getParent() == SinkTo || 137 SinkCandidate->mayHaveSideEffects() || 138 SinkCandidate->mayReadOrWriteMemory()) 139 continue; 140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) { 141 if (!ScalarVFOnly && RepR->isUniform()) 142 continue; 143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate)) 144 continue; 145 146 bool NeedsDuplicating = false; 147 // All recipe users of the sink candidate must be in the same block SinkTo 148 // or all users outside of SinkTo must be uniform-after-vectorization ( 149 // i.e., only first lane is used) . In the latter case, we need to duplicate 150 // SinkCandidate. 151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, 152 SinkCandidate](VPUser *U) { 153 auto *UI = cast<VPRecipeBase>(U); 154 if (UI->getParent() == SinkTo) 155 return true; 156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate); 157 // We only know how to duplicate VPRecipeRecipes for now. 158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate); 159 }; 160 if (!all_of(SinkCandidate->users(), CanSinkWithUser)) 161 continue; 162 163 if (NeedsDuplicating) { 164 if (ScalarVFOnly) 165 continue; 166 Instruction *I = SinkCandidate->getUnderlyingInstr(); 167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true); 168 // TODO: add ".cloned" suffix to name of Clone's VPValue. 169 170 Clone->insertBefore(SinkCandidate); 171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) { 172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo; 173 }); 174 } 175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi()); 176 for (VPValue *Op : SinkCandidate->operands()) 177 if (auto *Def = 178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe())) 179 WorkList.insert(std::make_pair(SinkTo, Def)); 180 Changed = true; 181 } 182 return Changed; 183 } 184 185 /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return 186 /// the mask. 187 VPValue *getPredicatedMask(VPRegionBlock *R) { 188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry()); 189 if (!EntryBB || EntryBB->size() != 1 || 190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin())) 191 return nullptr; 192 193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0); 194 } 195 196 /// If \p R is a triangle region, return the 'then' block of the triangle. 197 static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { 198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry()); 199 if (EntryBB->getNumSuccessors() != 2) 200 return nullptr; 201 202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]); 203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]); 204 if (!Succ0 || !Succ1) 205 return nullptr; 206 207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) 208 return nullptr; 209 if (Succ0->getSingleSuccessor() == Succ1) 210 return Succ0; 211 if (Succ1->getSingleSuccessor() == Succ0) 212 return Succ1; 213 return nullptr; 214 } 215 216 // Merge replicate regions in their successor region, if a replicate region 217 // is connected to a successor replicate region with the same predicate by a 218 // single, empty VPBasicBlock. 219 static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { 220 SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; 221 222 // Collect replicate regions followed by an empty block, followed by another 223 // replicate region with matching masks to process front. This is to avoid 224 // iterator invalidation issues while merging regions. 225 SmallVector<VPRegionBlock *, 8> WorkList; 226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( 227 vp_depth_first_deep(Plan.getEntry()))) { 228 if (!Region1->isReplicator()) 229 continue; 230 auto *MiddleBasicBlock = 231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor()); 232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) 233 continue; 234 235 auto *Region2 = 236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 237 if (!Region2 || !Region2->isReplicator()) 238 continue; 239 240 VPValue *Mask1 = getPredicatedMask(Region1); 241 VPValue *Mask2 = getPredicatedMask(Region2); 242 if (!Mask1 || Mask1 != Mask2) 243 continue; 244 245 assert(Mask1 && Mask2 && "both region must have conditions"); 246 WorkList.push_back(Region1); 247 } 248 249 // Move recipes from Region1 to its successor region, if both are triangles. 250 for (VPRegionBlock *Region1 : WorkList) { 251 if (TransformedRegions.contains(Region1)) 252 continue; 253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor()); 254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor()); 255 256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1); 257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2); 258 if (!Then1 || !Then2) 259 continue; 260 261 // Note: No fusion-preventing memory dependencies are expected in either 262 // region. Such dependencies should be rejected during earlier dependence 263 // checks, which guarantee accesses can be re-ordered for vectorization. 264 // 265 // Move recipes to the successor region. 266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1))) 267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi()); 268 269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor()); 270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor()); 271 272 // Move VPPredInstPHIRecipes from the merge block to the successor region's 273 // merge block. Update all users inside the successor region to use the 274 // original values. 275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) { 276 VPValue *PredInst1 = 277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0); 278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); 279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) { 280 return cast<VPRecipeBase>(&U)->getParent() == Then2; 281 }); 282 283 // Remove phi recipes that are unused after merging the regions. 284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { 285 Phi1ToMove.eraseFromParent(); 286 continue; 287 } 288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin()); 289 } 290 291 // Finally, remove the first region. 292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) { 293 VPBlockUtils::disconnectBlocks(Pred, Region1); 294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock); 295 } 296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock); 297 TransformedRegions.insert(Region1); 298 } 299 300 return !TransformedRegions.empty(); 301 } 302 303 static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, 304 VPlan &Plan) { 305 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 306 // Build the triangular if-then region. 307 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 308 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 309 auto *BlockInMask = PredRecipe->getMask(); 310 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 311 auto *Entry = 312 Plan.createVPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 313 314 // Replace predicated replicate recipe with a replicate recipe without a 315 // mask but in the replicate region. 316 auto *RecipeWithoutMask = new VPReplicateRecipe( 317 PredRecipe->getUnderlyingInstr(), 318 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())), 319 PredRecipe->isUniform()); 320 auto *Pred = 321 Plan.createVPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask); 322 323 VPPredInstPHIRecipe *PHIRecipe = nullptr; 324 if (PredRecipe->getNumUsers() != 0) { 325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, 326 RecipeWithoutMask->getDebugLoc()); 327 PredRecipe->replaceAllUsesWith(PHIRecipe); 328 PHIRecipe->setOperand(0, RecipeWithoutMask); 329 } 330 PredRecipe->eraseFromParent(); 331 auto *Exiting = 332 Plan.createVPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 333 VPRegionBlock *Region = 334 Plan.createVPRegionBlock(Entry, Exiting, RegionName, true); 335 336 // Note: first set Entry as region entry and then connect successors starting 337 // from it in order, to propagate the "parent" of each VPBasicBlock. 338 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 339 VPBlockUtils::connectBlocks(Pred, Exiting); 340 341 return Region; 342 } 343 344 static void addReplicateRegions(VPlan &Plan) { 345 SmallVector<VPReplicateRecipe *> WorkList; 346 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 347 vp_depth_first_deep(Plan.getEntry()))) { 348 for (VPRecipeBase &R : *VPBB) 349 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) { 350 if (RepR->isPredicated()) 351 WorkList.push_back(RepR); 352 } 353 } 354 355 unsigned BBNum = 0; 356 for (VPReplicateRecipe *RepR : WorkList) { 357 VPBasicBlock *CurrentBlock = RepR->getParent(); 358 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator()); 359 360 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); 361 SplitBlock->setName( 362 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : ""); 363 // Record predicated instructions for above packing optimizations. 364 VPBlockBase *Region = createReplicateRegion(RepR, Plan); 365 Region->setParent(CurrentBlock->getParent()); 366 VPBlockUtils::insertOnEdge(CurrentBlock, SplitBlock, Region); 367 } 368 } 369 370 /// Remove redundant VPBasicBlocks by merging them into their predecessor if 371 /// the predecessor has a single successor. 372 static bool mergeBlocksIntoPredecessors(VPlan &Plan) { 373 SmallVector<VPBasicBlock *> WorkList; 374 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 375 vp_depth_first_deep(Plan.getEntry()))) { 376 // Don't fold the blocks in the skeleton of the Plan into their single 377 // predecessors for now. 378 // TODO: Remove restriction once more of the skeleton is modeled in VPlan. 379 if (!VPBB->getParent()) 380 continue; 381 auto *PredVPBB = 382 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor()); 383 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || 384 isa<VPIRBasicBlock>(PredVPBB)) 385 continue; 386 WorkList.push_back(VPBB); 387 } 388 389 for (VPBasicBlock *VPBB : WorkList) { 390 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor()); 391 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 392 R.moveBefore(*PredVPBB, PredVPBB->end()); 393 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 394 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent()); 395 if (ParentRegion && ParentRegion->getExiting() == VPBB) 396 ParentRegion->setExiting(PredVPBB); 397 for (auto *Succ : to_vector(VPBB->successors())) { 398 VPBlockUtils::disconnectBlocks(VPBB, Succ); 399 VPBlockUtils::connectBlocks(PredVPBB, Succ); 400 } 401 // VPBB is now dead and will be cleaned up when the plan gets destroyed. 402 } 403 return !WorkList.empty(); 404 } 405 406 void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { 407 // Convert masked VPReplicateRecipes to if-then region blocks. 408 addReplicateRegions(Plan); 409 410 bool ShouldSimplify = true; 411 while (ShouldSimplify) { 412 ShouldSimplify = sinkScalarOperands(Plan); 413 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); 414 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); 415 } 416 } 417 418 /// Remove redundant casts of inductions. 419 /// 420 /// Such redundant casts are casts of induction variables that can be ignored, 421 /// because we already proved that the casted phi is equal to the uncasted phi 422 /// in the vectorized loop. There is no need to vectorize the cast - the same 423 /// value can be used for both the phi and casts in the vector loop. 424 static void removeRedundantInductionCasts(VPlan &Plan) { 425 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 426 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 427 if (!IV || IV->getTruncInst()) 428 continue; 429 430 // A sequence of IR Casts has potentially been recorded for IV, which 431 // *must be bypassed* when the IV is vectorized, because the vectorized IV 432 // will produce the desired casted value. This sequence forms a def-use 433 // chain and is provided in reverse order, ending with the cast that uses 434 // the IV phi. Search for the recipe of the last cast in the chain and 435 // replace it with the original IV. Note that only the final cast is 436 // expected to have users outside the cast-chain and the dead casts left 437 // over will be cleaned up later. 438 auto &Casts = IV->getInductionDescriptor().getCastInsts(); 439 VPValue *FindMyCast = IV; 440 for (Instruction *IRCast : reverse(Casts)) { 441 VPSingleDefRecipe *FoundUserCast = nullptr; 442 for (auto *U : FindMyCast->users()) { 443 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U); 444 if (UserCast && UserCast->getUnderlyingValue() == IRCast) { 445 FoundUserCast = UserCast; 446 break; 447 } 448 } 449 FindMyCast = FoundUserCast; 450 } 451 FindMyCast->replaceAllUsesWith(IV); 452 } 453 } 454 455 /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV 456 /// recipe, if it exists. 457 static void removeRedundantCanonicalIVs(VPlan &Plan) { 458 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 459 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; 460 for (VPUser *U : CanonicalIV->users()) { 461 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U); 462 if (WidenNewIV) 463 break; 464 } 465 466 if (!WidenNewIV) 467 return; 468 469 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 470 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 471 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 472 473 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) 474 continue; 475 476 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides 477 // everything WidenNewIV's users need. That is, WidenOriginalIV will 478 // generate a vector phi or all users of WidenNewIV demand the first lane 479 // only. 480 if (any_of(WidenOriginalIV->users(), 481 [WidenOriginalIV](VPUser *U) { 482 return !U->usesScalars(WidenOriginalIV); 483 }) || 484 vputils::onlyFirstLaneUsed(WidenNewIV)) { 485 WidenNewIV->replaceAllUsesWith(WidenOriginalIV); 486 WidenNewIV->eraseFromParent(); 487 return; 488 } 489 } 490 } 491 492 /// Returns true if \p R is dead and can be removed. 493 static bool isDeadRecipe(VPRecipeBase &R) { 494 using namespace llvm::PatternMatch; 495 // Do remove conditional assume instructions as their conditions may be 496 // flattened. 497 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 498 bool IsConditionalAssume = 499 RepR && RepR->isPredicated() && 500 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>()); 501 if (IsConditionalAssume) 502 return true; 503 504 if (R.mayHaveSideEffects()) 505 return false; 506 507 // Recipe is dead if no user keeps the recipe alive. 508 return all_of(R.definedValues(), 509 [](VPValue *V) { return V->getNumUsers() == 0; }); 510 } 511 512 void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { 513 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 514 Plan.getEntry()); 515 516 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) { 517 // The recipes in the block are processed in reverse order, to catch chains 518 // of dead recipes. 519 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) { 520 if (isDeadRecipe(R)) 521 R.eraseFromParent(); 522 } 523 } 524 } 525 526 static VPScalarIVStepsRecipe * 527 createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, 528 Instruction::BinaryOps InductionOpcode, 529 FPMathOperator *FPBinOp, Instruction *TruncI, 530 VPValue *StartV, VPValue *Step, VPBuilder &Builder) { 531 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 532 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); 533 VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( 534 Kind, FPBinOp, StartV, CanonicalIV, Step, "offset.idx"); 535 536 // Truncate base induction if needed. 537 Type *CanonicalIVType = CanonicalIV->getScalarType(); 538 VPTypeAnalysis TypeInfo(CanonicalIVType); 539 Type *ResultTy = TypeInfo.inferScalarType(BaseIV); 540 if (TruncI) { 541 Type *TruncTy = TruncI->getType(); 542 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && 543 "Not truncating."); 544 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type"); 545 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy); 546 ResultTy = TruncTy; 547 } 548 549 // Truncate step if needed. 550 Type *StepTy = TypeInfo.inferScalarType(Step); 551 if (ResultTy != StepTy) { 552 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && 553 "Not truncating."); 554 assert(StepTy->isIntegerTy() && "Truncation requires an integer type"); 555 auto *VecPreheader = 556 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor()); 557 VPBuilder::InsertPointGuard Guard(Builder); 558 Builder.setInsertPoint(VecPreheader); 559 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy); 560 } 561 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step); 562 } 563 564 /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd 565 /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as 566 /// VPWidenPointerInductionRecipe will generate vectors only. If some users 567 /// require vectors while other require scalars, the scalar uses need to extract 568 /// the scalars from the generated vectors (Note that this is different to how 569 /// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe, 570 /// if any of its users needs scalar values, by providing them scalar steps 571 /// built on the canonical scalar IV and update the original IV's users. This is 572 /// an optional optimization to reduce the needs of vector extracts. 573 static void legalizeAndOptimizeInductions(VPlan &Plan) { 574 SmallVector<VPRecipeBase *> ToRemove; 575 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 576 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1)); 577 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 578 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 579 // Replace wide pointer inductions which have only their scalars used by 580 // PtrAdd(IndStart, ScalarIVSteps (0, Step)). 581 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) { 582 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF())) 583 continue; 584 585 const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); 586 VPValue *StartV = 587 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0)); 588 VPValue *StepV = PtrIV->getOperand(1); 589 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 590 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr, 591 nullptr, StartV, StepV, Builder); 592 593 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps, 594 PtrIV->getDebugLoc(), "next.gep"); 595 596 PtrIV->replaceAllUsesWith(PtrAdd); 597 continue; 598 } 599 600 // Replace widened induction with scalar steps for users that only use 601 // scalars. 602 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 603 if (!WideIV) 604 continue; 605 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) { 606 return U->usesScalars(WideIV); 607 })) 608 continue; 609 610 const InductionDescriptor &ID = WideIV->getInductionDescriptor(); 611 VPScalarIVStepsRecipe *Steps = createScalarIVSteps( 612 Plan, ID.getKind(), ID.getInductionOpcode(), 613 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()), 614 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(), 615 Builder); 616 617 // Update scalar users of IV to use Step instead. 618 if (!HasOnlyVectorVFs) 619 WideIV->replaceAllUsesWith(Steps); 620 else 621 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) { 622 return U.usesScalars(WideIV); 623 }); 624 } 625 } 626 627 /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing 628 /// them with already existing recipes expanding the same SCEV expression. 629 static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { 630 DenseMap<const SCEV *, VPValue *> SCEV2VPV; 631 632 for (VPRecipeBase &R : 633 make_early_inc_range(*Plan.getEntry()->getEntryBasicBlock())) { 634 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R); 635 if (!ExpR) 636 continue; 637 638 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR}); 639 if (I.second) 640 continue; 641 ExpR->replaceAllUsesWith(I.first->second); 642 ExpR->eraseFromParent(); 643 } 644 } 645 646 static void recursivelyDeleteDeadRecipes(VPValue *V) { 647 SmallVector<VPValue *> WorkList; 648 SmallPtrSet<VPValue *, 8> Seen; 649 WorkList.push_back(V); 650 651 while (!WorkList.empty()) { 652 VPValue *Cur = WorkList.pop_back_val(); 653 if (!Seen.insert(Cur).second) 654 continue; 655 VPRecipeBase *R = Cur->getDefiningRecipe(); 656 if (!R) 657 continue; 658 if (!isDeadRecipe(*R)) 659 continue; 660 WorkList.append(R->op_begin(), R->op_end()); 661 R->eraseFromParent(); 662 } 663 } 664 665 void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, 666 unsigned BestUF, 667 PredicatedScalarEvolution &PSE) { 668 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan"); 669 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan"); 670 VPBasicBlock *ExitingVPBB = 671 Plan.getVectorLoopRegion()->getExitingBasicBlock(); 672 auto *Term = &ExitingVPBB->back(); 673 // Try to simplify the branch condition if TC <= VF * UF when preparing to 674 // execute the plan for the main vector loop. We only do this if the 675 // terminator is: 676 // 1. BranchOnCount, or 677 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 678 using namespace llvm::VPlanPatternMatch; 679 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) && 680 !match(Term, 681 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue()))))) 682 return; 683 684 ScalarEvolution &SE = *PSE.getSE(); 685 const SCEV *TripCount = 686 vputils::getSCEVExprForVPValue(Plan.getTripCount(), SE); 687 assert(!isa<SCEVCouldNotCompute>(TripCount) && 688 "Trip count SCEV must be computable"); 689 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF); 690 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements); 691 if (TripCount->isZero() || 692 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C)) 693 return; 694 695 LLVMContext &Ctx = SE.getContext(); 696 auto *BOC = new VPInstruction( 697 VPInstruction::BranchOnCond, 698 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc()); 699 700 SmallVector<VPValue *> PossiblyDead(Term->operands()); 701 Term->eraseFromParent(); 702 for (VPValue *Op : PossiblyDead) 703 recursivelyDeleteDeadRecipes(Op); 704 ExitingVPBB->appendRecipe(BOC); 705 Plan.setVF(BestVF); 706 Plan.setUF(BestUF); 707 // TODO: Further simplifications are possible 708 // 1. Replace inductions with constants. 709 // 2. Replace vector loop region with VPBasicBlock. 710 } 711 712 /// Sink users of \p FOR after the recipe defining the previous value \p 713 /// Previous of the recurrence. \returns true if all users of \p FOR could be 714 /// re-arranged as needed or false if it is not possible. 715 static bool 716 sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, 717 VPRecipeBase *Previous, 718 VPDominatorTree &VPDT) { 719 // Collect recipes that need sinking. 720 SmallVector<VPRecipeBase *> WorkList; 721 SmallPtrSet<VPRecipeBase *, 8> Seen; 722 Seen.insert(Previous); 723 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { 724 // The previous value must not depend on the users of the recurrence phi. In 725 // that case, FOR is not a fixed order recurrence. 726 if (SinkCandidate == Previous) 727 return false; 728 729 if (isa<VPHeaderPHIRecipe>(SinkCandidate) || 730 !Seen.insert(SinkCandidate).second || 731 VPDT.properlyDominates(Previous, SinkCandidate)) 732 return true; 733 734 if (SinkCandidate->mayHaveSideEffects()) 735 return false; 736 737 WorkList.push_back(SinkCandidate); 738 return true; 739 }; 740 741 // Recursively sink users of FOR after Previous. 742 WorkList.push_back(FOR); 743 for (unsigned I = 0; I != WorkList.size(); ++I) { 744 VPRecipeBase *Current = WorkList[I]; 745 assert(Current->getNumDefinedValues() == 1 && 746 "only recipes with a single defined value expected"); 747 748 for (VPUser *User : Current->getVPSingleValue()->users()) { 749 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User))) 750 return false; 751 } 752 } 753 754 // Keep recipes to sink ordered by dominance so earlier instructions are 755 // processed first. 756 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 757 return VPDT.properlyDominates(A, B); 758 }); 759 760 for (VPRecipeBase *SinkCandidate : WorkList) { 761 if (SinkCandidate == FOR) 762 continue; 763 764 SinkCandidate->moveAfter(Previous); 765 Previous = SinkCandidate; 766 } 767 return true; 768 } 769 770 /// Try to hoist \p Previous and its operands before all users of \p FOR. 771 static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, 772 VPRecipeBase *Previous, 773 VPDominatorTree &VPDT) { 774 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) 775 return false; 776 777 // Collect recipes that need hoisting. 778 SmallVector<VPRecipeBase *> HoistCandidates; 779 SmallPtrSet<VPRecipeBase *, 8> Visited; 780 VPRecipeBase *HoistPoint = nullptr; 781 // Find the closest hoist point by looking at all users of FOR and selecting 782 // the recipe dominating all other users. 783 for (VPUser *U : FOR->users()) { 784 auto *R = cast<VPRecipeBase>(U); 785 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint)) 786 HoistPoint = R; 787 } 788 assert(all_of(FOR->users(), 789 [&VPDT, HoistPoint](VPUser *U) { 790 auto *R = cast<VPRecipeBase>(U); 791 return HoistPoint == R || 792 VPDT.properlyDominates(HoistPoint, R); 793 }) && 794 "HoistPoint must dominate all users of FOR"); 795 796 auto NeedsHoisting = [HoistPoint, &VPDT, 797 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { 798 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); 799 if (!HoistCandidate) 800 return nullptr; 801 VPRegionBlock *EnclosingLoopRegion = 802 HoistCandidate->getParent()->getEnclosingLoopRegion(); 803 assert((!HoistCandidate->getParent()->getParent() || 804 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && 805 "CFG in VPlan should still be flat, without replicate regions"); 806 // Hoist candidate was already visited, no need to hoist. 807 if (!Visited.insert(HoistCandidate).second) 808 return nullptr; 809 810 // Candidate is outside loop region or a header phi, dominates FOR users w/o 811 // hoisting. 812 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate)) 813 return nullptr; 814 815 // If we reached a recipe that dominates HoistPoint, we don't need to 816 // hoist the recipe. 817 if (VPDT.properlyDominates(HoistCandidate, HoistPoint)) 818 return nullptr; 819 return HoistCandidate; 820 }; 821 auto CanHoist = [&](VPRecipeBase *HoistCandidate) { 822 // Avoid hoisting candidates with side-effects, as we do not yet analyze 823 // associated dependencies. 824 return !HoistCandidate->mayHaveSideEffects(); 825 }; 826 827 if (!NeedsHoisting(Previous->getVPSingleValue())) 828 return true; 829 830 // Recursively try to hoist Previous and its operands before all users of FOR. 831 HoistCandidates.push_back(Previous); 832 833 for (unsigned I = 0; I != HoistCandidates.size(); ++I) { 834 VPRecipeBase *Current = HoistCandidates[I]; 835 assert(Current->getNumDefinedValues() == 1 && 836 "only recipes with a single defined value expected"); 837 if (!CanHoist(Current)) 838 return false; 839 840 for (VPValue *Op : Current->operands()) { 841 // If we reach FOR, it means the original Previous depends on some other 842 // recurrence that in turn depends on FOR. If that is the case, we would 843 // also need to hoist recipes involving the other FOR, which may break 844 // dependencies. 845 if (Op == FOR) 846 return false; 847 848 if (auto *R = NeedsHoisting(Op)) 849 HoistCandidates.push_back(R); 850 } 851 } 852 853 // Order recipes to hoist by dominance so earlier instructions are processed 854 // first. 855 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { 856 return VPDT.properlyDominates(A, B); 857 }); 858 859 for (VPRecipeBase *HoistCandidate : HoistCandidates) { 860 HoistCandidate->moveBefore(*HoistPoint->getParent(), 861 HoistPoint->getIterator()); 862 } 863 864 return true; 865 } 866 867 bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, 868 VPBuilder &LoopBuilder) { 869 VPDominatorTree VPDT; 870 VPDT.recalculate(Plan); 871 872 SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; 873 for (VPRecipeBase &R : 874 Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) 875 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 876 RecurrencePhis.push_back(FOR); 877 878 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { 879 SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; 880 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); 881 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed 882 // to terminate. 883 while (auto *PrevPhi = 884 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) { 885 assert(PrevPhi->getParent() == FOR->getParent()); 886 assert(SeenPhis.insert(PrevPhi).second); 887 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); 888 } 889 890 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && 891 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) 892 return false; 893 894 // Introduce a recipe to combine the incoming and previous values of a 895 // fixed-order recurrence. 896 VPBasicBlock *InsertBlock = Previous->getParent(); 897 if (isa<VPHeaderPHIRecipe>(Previous)) 898 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 899 else 900 LoopBuilder.setInsertPoint(InsertBlock, 901 std::next(Previous->getIterator())); 902 903 auto *RecurSplice = cast<VPInstruction>( 904 LoopBuilder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 905 {FOR, FOR->getBackedgeValue()})); 906 907 FOR->replaceAllUsesWith(RecurSplice); 908 // Set the first operand of RecurSplice to FOR again, after replacing 909 // all users. 910 RecurSplice->setOperand(0, FOR); 911 } 912 return true; 913 } 914 915 static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { 916 SetVector<VPUser *> Users(V->user_begin(), V->user_end()); 917 for (unsigned I = 0; I != Users.size(); ++I) { 918 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]); 919 if (isa<VPHeaderPHIRecipe>(Cur)) 920 continue; 921 for (VPValue *V : Cur->definedValues()) 922 Users.insert(V->user_begin(), V->user_end()); 923 } 924 return Users.takeVector(); 925 } 926 927 void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { 928 for (VPRecipeBase &R : 929 Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 930 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 931 if (!PhiR) 932 continue; 933 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 934 RecurKind RK = RdxDesc.getRecurrenceKind(); 935 if (RK != RecurKind::Add && RK != RecurKind::Mul) 936 continue; 937 938 for (VPUser *U : collectUsersRecursively(PhiR)) 939 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) { 940 RecWithFlags->dropPoisonGeneratingFlags(); 941 } 942 } 943 } 944 945 /// Try to simplify recipe \p R. 946 static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { 947 using namespace llvm::VPlanPatternMatch; 948 949 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) { 950 // Try to remove redundant blend recipes. 951 SmallPtrSet<VPValue *, 4> UniqueValues; 952 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False())) 953 UniqueValues.insert(Blend->getIncomingValue(0)); 954 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) 955 if (!match(Blend->getMask(I), m_False())) 956 UniqueValues.insert(Blend->getIncomingValue(I)); 957 958 if (UniqueValues.size() == 1) { 959 Blend->replaceAllUsesWith(*UniqueValues.begin()); 960 Blend->eraseFromParent(); 961 return; 962 } 963 964 if (Blend->isNormalized()) 965 return; 966 967 // Normalize the blend so its first incoming value is used as the initial 968 // value with the others blended into it. 969 970 unsigned StartIndex = 0; 971 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 972 // If a value's mask is used only by the blend then is can be deadcoded. 973 // TODO: Find the most expensive mask that can be deadcoded, or a mask 974 // that's used by multiple blends where it can be removed from them all. 975 VPValue *Mask = Blend->getMask(I); 976 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) { 977 StartIndex = I; 978 break; 979 } 980 } 981 982 SmallVector<VPValue *, 4> OperandsWithMask; 983 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex)); 984 985 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { 986 if (I == StartIndex) 987 continue; 988 OperandsWithMask.push_back(Blend->getIncomingValue(I)); 989 OperandsWithMask.push_back(Blend->getMask(I)); 990 } 991 992 auto *NewBlend = new VPBlendRecipe( 993 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask); 994 NewBlend->insertBefore(&R); 995 996 VPValue *DeadMask = Blend->getMask(StartIndex); 997 Blend->replaceAllUsesWith(NewBlend); 998 Blend->eraseFromParent(); 999 recursivelyDeleteDeadRecipes(DeadMask); 1000 return; 1001 } 1002 1003 VPValue *A; 1004 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) { 1005 VPValue *Trunc = R.getVPSingleValue(); 1006 Type *TruncTy = TypeInfo.inferScalarType(Trunc); 1007 Type *ATy = TypeInfo.inferScalarType(A); 1008 if (TruncTy == ATy) { 1009 Trunc->replaceAllUsesWith(A); 1010 } else { 1011 // Don't replace a scalarizing recipe with a widened cast. 1012 if (isa<VPReplicateRecipe>(&R)) 1013 return; 1014 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { 1015 1016 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue())) 1017 ? Instruction::SExt 1018 : Instruction::ZExt; 1019 auto *VPC = 1020 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); 1021 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) { 1022 // UnderlyingExt has distinct return type, used to retain legacy cost. 1023 VPC->setUnderlyingValue(UnderlyingExt); 1024 } 1025 VPC->insertBefore(&R); 1026 Trunc->replaceAllUsesWith(VPC); 1027 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { 1028 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); 1029 VPC->insertBefore(&R); 1030 Trunc->replaceAllUsesWith(VPC); 1031 } 1032 } 1033 #ifndef NDEBUG 1034 // Verify that the cached type info is for both A and its users is still 1035 // accurate by comparing it to freshly computed types. 1036 VPTypeAnalysis TypeInfo2( 1037 R.getParent()->getPlan()->getCanonicalIV()->getScalarType()); 1038 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); 1039 for (VPUser *U : A->users()) { 1040 auto *R = cast<VPRecipeBase>(U); 1041 for (VPValue *VPV : R->definedValues()) 1042 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); 1043 } 1044 #endif 1045 } 1046 1047 // Simplify (X && Y) || (X && !Y) -> X. 1048 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X 1049 // && (Y || Z) and (X || !X) into true. This requires queuing newly created 1050 // recipes to be visited during simplification. 1051 VPValue *X, *Y, *X1, *Y1; 1052 if (match(&R, 1053 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)), 1054 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) && 1055 X == X1 && Y == Y1) { 1056 R.getVPSingleValue()->replaceAllUsesWith(X); 1057 R.eraseFromParent(); 1058 return; 1059 } 1060 1061 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1)))) 1062 return R.getVPSingleValue()->replaceAllUsesWith(A); 1063 1064 if (match(&R, m_Not(m_Not(m_VPValue(A))))) 1065 return R.getVPSingleValue()->replaceAllUsesWith(A); 1066 1067 // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. 1068 if ((match(&R, 1069 m_DerivedIV(m_SpecificInt(0), m_VPValue(A), m_SpecificInt(1))) || 1070 match(&R, 1071 m_DerivedIV(m_SpecificInt(0), m_SpecificInt(0), m_VPValue()))) && 1072 TypeInfo.inferScalarType(R.getOperand(1)) == 1073 TypeInfo.inferScalarType(R.getVPSingleValue())) 1074 return R.getVPSingleValue()->replaceAllUsesWith(R.getOperand(1)); 1075 } 1076 1077 /// Move loop-invariant recipes out of the vector loop region in \p Plan. 1078 static void licm(VPlan &Plan) { 1079 VPBasicBlock *Preheader = Plan.getVectorPreheader(); 1080 1081 // Return true if we do not know how to (mechanically) hoist a given recipe 1082 // out of a loop region. Does not address legality concerns such as aliasing 1083 // or speculation safety. 1084 auto CannotHoistRecipe = [](VPRecipeBase &R) { 1085 // Allocas cannot be hoisted. 1086 auto *RepR = dyn_cast<VPReplicateRecipe>(&R); 1087 return RepR && RepR->getOpcode() == Instruction::Alloca; 1088 }; 1089 1090 // Hoist any loop invariant recipes from the vector loop region to the 1091 // preheader. Preform a shallow traversal of the vector loop region, to 1092 // exclude recipes in replicate regions. 1093 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1094 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1095 vp_depth_first_shallow(LoopRegion->getEntry()))) { 1096 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1097 if (CannotHoistRecipe(R)) 1098 continue; 1099 // TODO: Relax checks in the future, e.g. we could also hoist reads, if 1100 // their memory location is not modified in the vector loop. 1101 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || 1102 any_of(R.operands(), [](VPValue *Op) { 1103 return !Op->isDefinedOutsideLoopRegions(); 1104 })) 1105 continue; 1106 R.moveBefore(*Preheader, Preheader->end()); 1107 } 1108 } 1109 } 1110 1111 /// Try to simplify the recipes in \p Plan. 1112 static void simplifyRecipes(VPlan &Plan) { 1113 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( 1114 Plan.getEntry()); 1115 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1116 VPTypeAnalysis TypeInfo(CanonicalIVType); 1117 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) { 1118 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1119 simplifyRecipe(R, TypeInfo); 1120 } 1121 } 1122 } 1123 1124 void VPlanTransforms::truncateToMinimalBitwidths( 1125 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { 1126 #ifndef NDEBUG 1127 // Count the processed recipes and cross check the count later with MinBWs 1128 // size, to make sure all entries in MinBWs have been handled. 1129 unsigned NumProcessedRecipes = 0; 1130 #endif 1131 // Keep track of created truncates, so they can be re-used. Note that we 1132 // cannot use RAUW after creating a new truncate, as this would could make 1133 // other uses have different types for their operands, making them invalidly 1134 // typed. 1135 DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; 1136 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1137 VPTypeAnalysis TypeInfo(CanonicalIVType); 1138 VPBasicBlock *PH = Plan.getVectorPreheader(); 1139 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1140 vp_depth_first_deep(Plan.getVectorLoopRegion()))) { 1141 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) { 1142 if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, 1143 VPWidenSelectRecipe, VPWidenLoadRecipe>(&R)) 1144 continue; 1145 1146 VPValue *ResultVPV = R.getVPSingleValue(); 1147 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue()); 1148 unsigned NewResSizeInBits = MinBWs.lookup(UI); 1149 if (!NewResSizeInBits) 1150 continue; 1151 1152 #ifndef NDEBUG 1153 NumProcessedRecipes++; 1154 #endif 1155 // If the value wasn't vectorized, we must maintain the original scalar 1156 // type. Skip those here, after incrementing NumProcessedRecipes. Also 1157 // skip casts which do not need to be handled explicitly here, as 1158 // redundant casts will be removed during recipe simplification. 1159 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) { 1160 #ifndef NDEBUG 1161 // If any of the operands is a live-in and not used by VPWidenRecipe or 1162 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as 1163 // processed as well. When MinBWs is currently constructed, there is no 1164 // information about whether recipes are widened or replicated and in 1165 // case they are reciplicated the operands are not truncated. Counting 1166 // them them here ensures we do not miss any recipes in MinBWs. 1167 // TODO: Remove once the analysis is done on VPlan. 1168 for (VPValue *Op : R.operands()) { 1169 if (!Op->isLiveIn()) 1170 continue; 1171 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue()); 1172 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) && 1173 none_of(Op->users(), 1174 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) { 1175 // Add an entry to ProcessedTruncs to avoid counting the same 1176 // operand multiple times. 1177 ProcessedTruncs[Op] = nullptr; 1178 NumProcessedRecipes += 1; 1179 } 1180 } 1181 #endif 1182 continue; 1183 } 1184 1185 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV); 1186 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); 1187 assert(OldResTy->isIntegerTy() && "only integer types supported"); 1188 (void)OldResSizeInBits; 1189 1190 LLVMContext &Ctx = CanonicalIVType->getContext(); 1191 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits); 1192 1193 // Any wrapping introduced by shrinking this operation shouldn't be 1194 // considered undefined behavior. So, we can't unconditionally copy 1195 // arithmetic wrapping flags to VPW. 1196 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R)) 1197 VPW->dropPoisonGeneratingFlags(); 1198 1199 using namespace llvm::VPlanPatternMatch; 1200 if (OldResSizeInBits != NewResSizeInBits && 1201 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) { 1202 // Extend result to original width. 1203 auto *Ext = 1204 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); 1205 Ext->insertAfter(&R); 1206 ResultVPV->replaceAllUsesWith(Ext); 1207 Ext->setOperand(0, ResultVPV); 1208 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?"); 1209 } else { 1210 assert( 1211 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && 1212 "Only ICmps should not need extending the result."); 1213 } 1214 1215 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed"); 1216 if (isa<VPWidenLoadRecipe>(&R)) 1217 continue; 1218 1219 // Shrink operands by introducing truncates as needed. 1220 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0; 1221 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { 1222 auto *Op = R.getOperand(Idx); 1223 unsigned OpSizeInBits = 1224 TypeInfo.inferScalarType(Op)->getScalarSizeInBits(); 1225 if (OpSizeInBits == NewResSizeInBits) 1226 continue; 1227 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate"); 1228 auto [ProcessedIter, IterIsEmpty] = 1229 ProcessedTruncs.insert({Op, nullptr}); 1230 VPWidenCastRecipe *NewOp = 1231 IterIsEmpty 1232 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) 1233 : ProcessedIter->second; 1234 R.setOperand(Idx, NewOp); 1235 if (!IterIsEmpty) 1236 continue; 1237 ProcessedIter->second = NewOp; 1238 if (!Op->isLiveIn()) { 1239 NewOp->insertBefore(&R); 1240 } else { 1241 PH->appendRecipe(NewOp); 1242 #ifndef NDEBUG 1243 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue()); 1244 bool IsContained = MinBWs.contains(OpInst); 1245 NumProcessedRecipes += IsContained; 1246 #endif 1247 } 1248 } 1249 1250 } 1251 } 1252 1253 assert(MinBWs.size() == NumProcessedRecipes && 1254 "some entries in MinBWs haven't been processed"); 1255 } 1256 1257 void VPlanTransforms::optimize(VPlan &Plan) { 1258 removeRedundantCanonicalIVs(Plan); 1259 removeRedundantInductionCasts(Plan); 1260 1261 simplifyRecipes(Plan); 1262 legalizeAndOptimizeInductions(Plan); 1263 removeRedundantExpandSCEVRecipes(Plan); 1264 simplifyRecipes(Plan); 1265 removeDeadRecipes(Plan); 1266 1267 createAndOptimizeReplicateRegions(Plan); 1268 mergeBlocksIntoPredecessors(Plan); 1269 licm(Plan); 1270 } 1271 1272 // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace 1273 // the loop terminator with a branch-on-cond recipe with the negated 1274 // active-lane-mask as operand. Note that this turns the loop into an 1275 // uncountable one. Only the existing terminator is replaced, all other existing 1276 // recipes/users remain unchanged, except for poison-generating flags being 1277 // dropped from the canonical IV increment. Return the created 1278 // VPActiveLaneMaskPHIRecipe. 1279 // 1280 // The function uses the following definitions: 1281 // 1282 // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? 1283 // calculate-trip-count-minus-VF (original TC) : original TC 1284 // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? 1285 // CanonicalIVPhi : CanonicalIVIncrement 1286 // %StartV is the canonical induction start value. 1287 // 1288 // The function adds the following recipes: 1289 // 1290 // vector.ph: 1291 // %TripCount = calculate-trip-count-minus-VF (original TC) 1292 // [if DataWithControlFlowWithoutRuntimeCheck] 1293 // %EntryInc = canonical-iv-increment-for-part %StartV 1294 // %EntryALM = active-lane-mask %EntryInc, %TripCount 1295 // 1296 // vector.body: 1297 // ... 1298 // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] 1299 // ... 1300 // %InLoopInc = canonical-iv-increment-for-part %IncrementValue 1301 // %ALM = active-lane-mask %InLoopInc, TripCount 1302 // %Negated = Not %ALM 1303 // branch-on-cond %Negated 1304 // 1305 static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( 1306 VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { 1307 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 1308 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 1309 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1310 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1311 1312 auto *CanonicalIVIncrement = 1313 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1314 // TODO: Check if dropping the flags is needed if 1315 // !DataAndControlFlowWithoutRuntimeCheck. 1316 CanonicalIVIncrement->dropPoisonGeneratingFlags(); 1317 DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); 1318 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 1319 // we have to take unrolling into account. Each part needs to start at 1320 // Part * VF 1321 auto *VecPreheader = Plan.getVectorPreheader(); 1322 VPBuilder Builder(VecPreheader); 1323 1324 // Create the ActiveLaneMask instruction using the correct start values. 1325 VPValue *TC = Plan.getTripCount(); 1326 1327 VPValue *TripCount, *IncrementValue; 1328 if (!DataAndControlFlowWithoutRuntimeCheck) { 1329 // When the loop is guarded by a runtime overflow check for the loop 1330 // induction variable increment by VF, we can increment the value before 1331 // the get.active.lane mask and use the unmodified tripcount. 1332 IncrementValue = CanonicalIVIncrement; 1333 TripCount = TC; 1334 } else { 1335 // When avoiding a runtime check, the active.lane.mask inside the loop 1336 // uses a modified trip count and the induction variable increment is 1337 // done after the active.lane.mask intrinsic is called. 1338 IncrementValue = CanonicalIVPHI; 1339 TripCount = Builder.createNaryOp(VPInstruction::CalculateTripCountMinusVF, 1340 {TC}, DL); 1341 } 1342 auto *EntryIncrement = Builder.createOverflowingOp( 1343 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL, 1344 "index.part.next"); 1345 1346 // Create the active lane mask instruction in the VPlan preheader. 1347 auto *EntryALM = 1348 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC}, 1349 DL, "active.lane.mask.entry"); 1350 1351 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 1352 // preheader ActiveLaneMask instruction. 1353 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 1354 LaneMaskPhi->insertAfter(CanonicalIVPHI); 1355 1356 // Create the active lane mask for the next iteration of the loop before the 1357 // original terminator. 1358 VPRecipeBase *OriginalTerminator = EB->getTerminator(); 1359 Builder.setInsertPoint(OriginalTerminator); 1360 auto *InLoopIncrement = 1361 Builder.createOverflowingOp(VPInstruction::CanonicalIVIncrementForPart, 1362 {IncrementValue}, {false, false}, DL); 1363 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask, 1364 {InLoopIncrement, TripCount}, DL, 1365 "active.lane.mask.next"); 1366 LaneMaskPhi->addOperand(ALM); 1367 1368 // Replace the original terminator with BranchOnCond. We have to invert the 1369 // mask here because a true condition means jumping to the exit block. 1370 auto *NotMask = Builder.createNot(ALM, DL); 1371 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL); 1372 OriginalTerminator->eraseFromParent(); 1373 return LaneMaskPhi; 1374 } 1375 1376 /// Collect all VPValues representing a header mask through the (ICMP_ULE, 1377 /// WideCanonicalIV, backedge-taken-count) pattern. 1378 /// TODO: Introduce explicit recipe for header-mask instead of searching 1379 /// for the header-mask pattern manually. 1380 static SmallVector<VPValue *> collectAllHeaderMasks(VPlan &Plan) { 1381 SmallVector<VPValue *> WideCanonicalIVs; 1382 auto *FoundWidenCanonicalIVUser = 1383 find_if(Plan.getCanonicalIV()->users(), 1384 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1385 assert(count_if(Plan.getCanonicalIV()->users(), 1386 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= 1387 1 && 1388 "Must have at most one VPWideCanonicalIVRecipe"); 1389 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { 1390 auto *WideCanonicalIV = 1391 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1392 WideCanonicalIVs.push_back(WideCanonicalIV); 1393 } 1394 1395 // Also include VPWidenIntOrFpInductionRecipes that represent a widened 1396 // version of the canonical induction. 1397 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1398 for (VPRecipeBase &Phi : HeaderVPBB->phis()) { 1399 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi); 1400 if (WidenOriginalIV && WidenOriginalIV->isCanonical()) 1401 WideCanonicalIVs.push_back(WidenOriginalIV); 1402 } 1403 1404 // Walk users of wide canonical IVs and collect to all compares of the form 1405 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). 1406 SmallVector<VPValue *> HeaderMasks; 1407 for (auto *Wide : WideCanonicalIVs) { 1408 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { 1409 auto *HeaderMask = dyn_cast<VPInstruction>(U); 1410 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan)) 1411 continue; 1412 1413 assert(HeaderMask->getOperand(0) == Wide && 1414 "WidenCanonicalIV must be the first operand of the compare"); 1415 HeaderMasks.push_back(HeaderMask); 1416 } 1417 } 1418 return HeaderMasks; 1419 } 1420 1421 void VPlanTransforms::addActiveLaneMask( 1422 VPlan &Plan, bool UseActiveLaneMaskForControlFlow, 1423 bool DataAndControlFlowWithoutRuntimeCheck) { 1424 assert((!DataAndControlFlowWithoutRuntimeCheck || 1425 UseActiveLaneMaskForControlFlow) && 1426 "DataAndControlFlowWithoutRuntimeCheck implies " 1427 "UseActiveLaneMaskForControlFlow"); 1428 1429 auto *FoundWidenCanonicalIVUser = 1430 find_if(Plan.getCanonicalIV()->users(), 1431 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }); 1432 assert(FoundWidenCanonicalIVUser && 1433 "Must have widened canonical IV when tail folding!"); 1434 auto *WideCanonicalIV = 1435 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser); 1436 VPSingleDefRecipe *LaneMask; 1437 if (UseActiveLaneMaskForControlFlow) { 1438 LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( 1439 Plan, DataAndControlFlowWithoutRuntimeCheck); 1440 } else { 1441 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV); 1442 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask, 1443 {WideCanonicalIV, Plan.getTripCount()}, nullptr, 1444 "active.lane.mask"); 1445 } 1446 1447 // Walk users of WideCanonicalIV and replace all compares of the form 1448 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an 1449 // active-lane-mask. 1450 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) 1451 HeaderMask->replaceAllUsesWith(LaneMask); 1452 } 1453 1454 /// Try to convert \p CurRecipe to a corresponding EVL-based recipe. Returns 1455 /// nullptr if no EVL-based recipe could be created. 1456 /// \p HeaderMask Header Mask. 1457 /// \p CurRecipe Recipe to be transform. 1458 /// \p TypeInfo VPlan-based type analysis. 1459 /// \p AllOneMask The vector mask parameter of vector-predication intrinsics. 1460 /// \p EVL The explicit vector length parameter of vector-predication 1461 /// intrinsics. 1462 static VPRecipeBase *createEVLRecipe(VPValue *HeaderMask, 1463 VPRecipeBase &CurRecipe, 1464 VPTypeAnalysis &TypeInfo, 1465 VPValue &AllOneMask, VPValue &EVL) { 1466 using namespace llvm::VPlanPatternMatch; 1467 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { 1468 assert(OrigMask && "Unmasked recipe when folding tail"); 1469 return HeaderMask == OrigMask ? nullptr : OrigMask; 1470 }; 1471 1472 return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe) 1473 .Case<VPWidenLoadRecipe>([&](VPWidenLoadRecipe *L) { 1474 VPValue *NewMask = GetNewMask(L->getMask()); 1475 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); 1476 }) 1477 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) { 1478 VPValue *NewMask = GetNewMask(S->getMask()); 1479 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); 1480 }) 1481 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * { 1482 unsigned Opcode = W->getOpcode(); 1483 if (!Instruction::isBinaryOp(Opcode) && !Instruction::isUnaryOp(Opcode)) 1484 return nullptr; 1485 return new VPWidenEVLRecipe(*W, EVL); 1486 }) 1487 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) { 1488 VPValue *NewMask = GetNewMask(Red->getCondOp()); 1489 return new VPReductionEVLRecipe(*Red, EVL, NewMask); 1490 }) 1491 .Case<VPWidenIntrinsicRecipe, VPWidenCastRecipe>( 1492 [&](auto *CR) -> VPRecipeBase * { 1493 Intrinsic::ID VPID; 1494 if (auto *CallR = dyn_cast<VPWidenIntrinsicRecipe>(CR)) { 1495 VPID = 1496 VPIntrinsic::getForIntrinsic(CallR->getVectorIntrinsicID()); 1497 } else { 1498 auto *CastR = cast<VPWidenCastRecipe>(CR); 1499 VPID = VPIntrinsic::getForOpcode(CastR->getOpcode()); 1500 } 1501 assert(VPID != Intrinsic::not_intrinsic && "Expected VP intrinsic"); 1502 assert(VPIntrinsic::getMaskParamPos(VPID) && 1503 VPIntrinsic::getVectorLengthParamPos(VPID) && 1504 "Expected VP intrinsic"); 1505 1506 SmallVector<VPValue *> Ops(CR->operands()); 1507 Ops.push_back(&AllOneMask); 1508 Ops.push_back(&EVL); 1509 return new VPWidenIntrinsicRecipe( 1510 VPID, Ops, TypeInfo.inferScalarType(CR), CR->getDebugLoc()); 1511 }) 1512 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) { 1513 SmallVector<VPValue *> Ops(Sel->operands()); 1514 Ops.push_back(&EVL); 1515 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops, 1516 TypeInfo.inferScalarType(Sel), 1517 Sel->getDebugLoc()); 1518 }) 1519 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * { 1520 VPValue *LHS, *RHS; 1521 // Transform select with a header mask condition 1522 // select(header_mask, LHS, RHS) 1523 // into vector predication merge. 1524 // vp.merge(all-true, LHS, RHS, EVL) 1525 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS), 1526 m_VPValue(RHS)))) 1527 return nullptr; 1528 // Use all true as the condition because this transformation is 1529 // limited to selects whose condition is a header mask. 1530 return new VPWidenIntrinsicRecipe( 1531 Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL}, 1532 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc()); 1533 }) 1534 .Default([&](VPRecipeBase *R) { return nullptr; }); 1535 } 1536 1537 /// Replace recipes with their EVL variants. 1538 static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { 1539 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); 1540 VPTypeAnalysis TypeInfo(CanonicalIVType); 1541 LLVMContext &Ctx = CanonicalIVType->getContext(); 1542 VPValue *AllOneMask = Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx)); 1543 1544 for (VPUser *U : Plan.getVF().users()) { 1545 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U)) 1546 R->setOperand(1, &EVL); 1547 } 1548 1549 SmallVector<VPRecipeBase *> ToErase; 1550 1551 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) { 1552 for (VPUser *U : collectUsersRecursively(HeaderMask)) { 1553 auto *CurRecipe = cast<VPRecipeBase>(U); 1554 VPRecipeBase *EVLRecipe = 1555 createEVLRecipe(HeaderMask, *CurRecipe, TypeInfo, *AllOneMask, EVL); 1556 if (!EVLRecipe) 1557 continue; 1558 1559 [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues(); 1560 assert(NumDefVal == CurRecipe->getNumDefinedValues() && 1561 "New recipe must define the same number of values as the " 1562 "original."); 1563 assert( 1564 NumDefVal <= 1 && 1565 "Only supports recipes with a single definition or without users."); 1566 EVLRecipe->insertBefore(CurRecipe); 1567 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(EVLRecipe)) { 1568 VPValue *CurVPV = CurRecipe->getVPSingleValue(); 1569 CurVPV->replaceAllUsesWith(EVLRecipe->getVPSingleValue()); 1570 } 1571 // Defer erasing recipes till the end so that we don't invalidate the 1572 // VPTypeAnalysis cache. 1573 ToErase.push_back(CurRecipe); 1574 } 1575 } 1576 1577 for (VPRecipeBase *R : reverse(ToErase)) { 1578 SmallVector<VPValue *> PossiblyDead(R->operands()); 1579 R->eraseFromParent(); 1580 for (VPValue *Op : PossiblyDead) 1581 recursivelyDeleteDeadRecipes(Op); 1582 } 1583 } 1584 1585 /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and 1586 /// replaces all uses except the canonical IV increment of 1587 /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe 1588 /// is used only for loop iterations counting after this transformation. 1589 /// 1590 /// The function uses the following definitions: 1591 /// %StartV is the canonical induction start value. 1592 /// 1593 /// The function adds the following recipes: 1594 /// 1595 /// vector.ph: 1596 /// ... 1597 /// 1598 /// vector.body: 1599 /// ... 1600 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1601 /// [ %NextEVLIV, %vector.body ] 1602 /// %AVL = sub original TC, %EVLPhi 1603 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL 1604 /// ... 1605 /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi 1606 /// ... 1607 /// 1608 /// If MaxSafeElements is provided, the function adds the following recipes: 1609 /// vector.ph: 1610 /// ... 1611 /// 1612 /// vector.body: 1613 /// ... 1614 /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], 1615 /// [ %NextEVLIV, %vector.body ] 1616 /// %AVL = sub original TC, %EVLPhi 1617 /// %cmp = cmp ult %AVL, MaxSafeElements 1618 /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements 1619 /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL 1620 /// ... 1621 /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi 1622 /// ... 1623 /// 1624 bool VPlanTransforms::tryAddExplicitVectorLength( 1625 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { 1626 VPBasicBlock *Header = Plan.getVectorLoopRegion()->getEntryBasicBlock(); 1627 // The transform updates all users of inductions to work based on EVL, instead 1628 // of the VF directly. At the moment, widened inductions cannot be updated, so 1629 // bail out if the plan contains any. 1630 bool ContainsWidenInductions = any_of( 1631 Header->phis(), 1632 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>); 1633 if (ContainsWidenInductions) 1634 return false; 1635 1636 auto *CanonicalIVPHI = Plan.getCanonicalIV(); 1637 VPValue *StartV = CanonicalIVPHI->getStartValue(); 1638 1639 // Create the ExplicitVectorLengthPhi recipe in the main loop. 1640 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); 1641 EVLPhi->insertAfter(CanonicalIVPHI); 1642 VPBuilder Builder(Header, Header->getFirstNonPhi()); 1643 // Compute original TC - IV as the AVL (application vector length). 1644 VPValue *AVL = Builder.createNaryOp( 1645 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl"); 1646 if (MaxSafeElements) { 1647 // Support for MaxSafeDist for correct loop emission. 1648 VPValue *AVLSafe = Plan.getOrAddLiveIn( 1649 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements)); 1650 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe); 1651 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl"); 1652 } 1653 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL, 1654 DebugLoc()); 1655 1656 auto *CanonicalIVIncrement = 1657 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue()); 1658 VPSingleDefRecipe *OpVPEVL = VPEVL; 1659 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits(); 1660 IVSize != 32) { 1661 OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc 1662 : Instruction::ZExt, 1663 OpVPEVL, CanonicalIVPHI->getScalarType()); 1664 OpVPEVL->insertBefore(CanonicalIVIncrement); 1665 } 1666 auto *NextEVLIV = 1667 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi}, 1668 {CanonicalIVIncrement->hasNoUnsignedWrap(), 1669 CanonicalIVIncrement->hasNoSignedWrap()}, 1670 CanonicalIVIncrement->getDebugLoc(), "index.evl.next"); 1671 NextEVLIV->insertBefore(CanonicalIVIncrement); 1672 EVLPhi->addOperand(NextEVLIV); 1673 1674 transformRecipestoEVLRecipes(Plan, *VPEVL); 1675 1676 // Replace all uses of VPCanonicalIVPHIRecipe by 1677 // VPEVLBasedIVPHIRecipe except for the canonical IV increment. 1678 CanonicalIVPHI->replaceAllUsesWith(EVLPhi); 1679 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI); 1680 // TODO: support unroll factor > 1. 1681 Plan.setUF(1); 1682 return true; 1683 } 1684 1685 void VPlanTransforms::dropPoisonGeneratingRecipes( 1686 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) { 1687 // Collect recipes in the backward slice of `Root` that may generate a poison 1688 // value that is used after vectorization. 1689 SmallPtrSet<VPRecipeBase *, 16> Visited; 1690 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1691 SmallVector<VPRecipeBase *, 16> Worklist; 1692 Worklist.push_back(Root); 1693 1694 // Traverse the backward slice of Root through its use-def chain. 1695 while (!Worklist.empty()) { 1696 VPRecipeBase *CurRec = Worklist.pop_back_val(); 1697 1698 if (!Visited.insert(CurRec).second) 1699 continue; 1700 1701 // Prune search if we find another recipe generating a widen memory 1702 // instruction. Widen memory instructions involved in address computation 1703 // will lead to gather/scatter instructions, which don't need to be 1704 // handled. 1705 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, 1706 VPHeaderPHIRecipe>(CurRec)) 1707 continue; 1708 1709 // This recipe contributes to the address computation of a widen 1710 // load/store. If the underlying instruction has poison-generating flags, 1711 // drop them directly. 1712 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) { 1713 VPValue *A, *B; 1714 using namespace llvm::VPlanPatternMatch; 1715 // Dropping disjoint from an OR may yield incorrect results, as some 1716 // analysis may have converted it to an Add implicitly (e.g. SCEV used 1717 // for dependence analysis). Instead, replace it with an equivalent Add. 1718 // This is possible as all users of the disjoint OR only access lanes 1719 // where the operands are disjoint or poison otherwise. 1720 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) && 1721 RecWithFlags->isDisjoint()) { 1722 VPBuilder Builder(RecWithFlags); 1723 VPInstruction *New = Builder.createOverflowingOp( 1724 Instruction::Add, {A, B}, {false, false}, 1725 RecWithFlags->getDebugLoc()); 1726 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); 1727 RecWithFlags->replaceAllUsesWith(New); 1728 RecWithFlags->eraseFromParent(); 1729 CurRec = New; 1730 } else 1731 RecWithFlags->dropPoisonGeneratingFlags(); 1732 } else { 1733 Instruction *Instr = dyn_cast_or_null<Instruction>( 1734 CurRec->getVPSingleValue()->getUnderlyingValue()); 1735 (void)Instr; 1736 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && 1737 "found instruction with poison generating flags not covered by " 1738 "VPRecipeWithIRFlags"); 1739 } 1740 1741 // Add new definitions to the worklist. 1742 for (VPValue *Operand : CurRec->operands()) 1743 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) 1744 Worklist.push_back(OpDef); 1745 } 1746 }); 1747 1748 // Traverse all the recipes in the VPlan and collect the poison-generating 1749 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1750 // VPInterleaveRecipe. 1751 auto Iter = vp_depth_first_deep(Plan.getEntry()); 1752 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1753 for (VPRecipeBase &Recipe : *VPBB) { 1754 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) { 1755 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1756 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); 1757 if (AddrDef && WidenRec->isConsecutive() && 1758 BlockNeedsPredication(UnderlyingInstr.getParent())) 1759 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1760 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1761 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); 1762 if (AddrDef) { 1763 // Check if any member of the interleave group needs predication. 1764 const InterleaveGroup<Instruction> *InterGroup = 1765 InterleaveRec->getInterleaveGroup(); 1766 bool NeedPredication = false; 1767 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1768 I < NumMembers; ++I) { 1769 Instruction *Member = InterGroup->getMember(I); 1770 if (Member) 1771 NeedPredication |= BlockNeedsPredication(Member->getParent()); 1772 } 1773 1774 if (NeedPredication) 1775 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); 1776 } 1777 } 1778 } 1779 } 1780 } 1781 1782 void VPlanTransforms::createInterleaveGroups( 1783 VPlan &Plan, 1784 const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> 1785 &InterleaveGroups, 1786 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) { 1787 if (InterleaveGroups.empty()) 1788 return; 1789 1790 // Interleave memory: for each Interleave Group we marked earlier as relevant 1791 // for this VPlan, replace the Recipes widening its memory instructions with a 1792 // single VPInterleaveRecipe at its insertion point. 1793 VPDominatorTree VPDT; 1794 VPDT.recalculate(Plan); 1795 for (const auto *IG : InterleaveGroups) { 1796 SmallVector<VPValue *, 4> StoredValues; 1797 for (unsigned i = 0; i < IG->getFactor(); ++i) 1798 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 1799 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI)); 1800 StoredValues.push_back(StoreR->getStoredValue()); 1801 } 1802 1803 bool NeedsMaskForGaps = 1804 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; 1805 1806 Instruction *IRInsertPos = IG->getInsertPos(); 1807 auto *InsertPos = 1808 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos)); 1809 1810 // Get or create the start address for the interleave group. 1811 auto *Start = 1812 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0))); 1813 VPValue *Addr = Start->getAddr(); 1814 VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); 1815 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) { 1816 // TODO: Hoist Addr's defining recipe (and any operands as needed) to 1817 // InsertPos or sink loads above zero members to join it. 1818 bool InBounds = false; 1819 if (auto *Gep = dyn_cast<GetElementPtrInst>( 1820 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts())) 1821 InBounds = Gep->isInBounds(); 1822 1823 // We cannot re-use the address of member zero because it does not 1824 // dominate the insert position. Instead, use the address of the insert 1825 // position and create a PtrAdd adjusting it to the address of member 1826 // zero. 1827 assert(IG->getIndex(IRInsertPos) != 0 && 1828 "index of insert position shouldn't be zero"); 1829 auto &DL = IRInsertPos->getDataLayout(); 1830 APInt Offset(32, 1831 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) * 1832 IG->getIndex(IRInsertPos), 1833 /*IsSigned=*/true); 1834 VPValue *OffsetVPV = Plan.getOrAddLiveIn( 1835 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset)); 1836 VPBuilder B(InsertPos); 1837 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV) 1838 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV); 1839 } 1840 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, 1841 InsertPos->getMask(), NeedsMaskForGaps); 1842 VPIG->insertBefore(InsertPos); 1843 1844 unsigned J = 0; 1845 for (unsigned i = 0; i < IG->getFactor(); ++i) 1846 if (Instruction *Member = IG->getMember(i)) { 1847 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member); 1848 if (!Member->getType()->isVoidTy()) { 1849 VPValue *OriginalV = MemberR->getVPSingleValue(); 1850 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 1851 J++; 1852 } 1853 MemberR->eraseFromParent(); 1854 } 1855 } 1856 } 1857 1858 void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan) { 1859 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( 1860 vp_depth_first_deep(Plan.getEntry()))) { 1861 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) { 1862 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R)) 1863 continue; 1864 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1865 StringRef Name = 1866 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv"; 1867 auto *ScalarR = 1868 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(), 1869 PhiR->getDebugLoc(), Name); 1870 ScalarR->insertBefore(PhiR); 1871 PhiR->replaceAllUsesWith(ScalarR); 1872 PhiR->eraseFromParent(); 1873 } 1874 } 1875 } 1876 1877 void VPlanTransforms::handleUncountableEarlyExit( 1878 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, 1879 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) { 1880 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); 1881 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting()); 1882 VPBuilder Builder(LatchVPBB->getTerminator()); 1883 auto *MiddleVPBB = Plan.getMiddleBlock(); 1884 VPValue *IsEarlyExitTaken = nullptr; 1885 1886 // Process the uncountable exiting block. Update IsEarlyExitTaken, which 1887 // tracks if the uncountable early exit has been taken. Also split the middle 1888 // block and have it conditionally branch to the early exit block if 1889 // EarlyExitTaken. 1890 auto *EarlyExitingBranch = 1891 cast<BranchInst>(UncountableExitingBlock->getTerminator()); 1892 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0); 1893 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1); 1894 1895 // The early exit block may or may not be the same as the "countable" exit 1896 // block. Creates a new VPIRBB for the early exit block in case it is distinct 1897 // from the countable exit block. 1898 // TODO: Introduce both exit blocks during VPlan skeleton construction. 1899 VPIRBasicBlock *VPEarlyExitBlock; 1900 if (OrigLoop->getUniqueExitBlock()) { 1901 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]); 1902 } else { 1903 VPEarlyExitBlock = Plan.createVPIRBasicBlock( 1904 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1905 } 1906 1907 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask( 1908 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc); 1909 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond); 1910 IsEarlyExitTaken = 1911 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond}); 1912 1913 VPBasicBlock *NewMiddle = Plan.createVPBasicBlock("middle.split"); 1914 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle); 1915 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock); 1916 NewMiddle->swapSuccessors(); 1917 1918 VPBuilder MiddleBuilder(NewMiddle); 1919 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken}); 1920 1921 // Replace the condition controlling the non-early exit from the vector loop 1922 // with one exiting if either the original condition of the vector latch is 1923 // true or the early exit has been taken. 1924 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator()); 1925 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && 1926 "Unexpected terminator"); 1927 auto *IsLatchExitTaken = 1928 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0), 1929 LatchExitingBranch->getOperand(1)); 1930 auto *AnyExitTaken = Builder.createNaryOp( 1931 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken}); 1932 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken); 1933 LatchExitingBranch->eraseFromParent(); 1934 } 1935