1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements the construction of a VPlan-based Hierarchical CFG 12 /// (H-CFG) for an incoming IR. This construction comprises the following 13 /// components and steps: 14 // 15 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that 16 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top 17 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks 18 /// in the plain CFG. 19 /// NOTE: At this point, there is a direct correspondence between all the 20 /// VPBasicBlocks created for the initial plain CFG and the incoming 21 /// BasicBlocks. However, this might change in the future. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "VPlanHCFGBuilder.h" 26 #include "LoopVectorizationPlanner.h" 27 #include "llvm/Analysis/LoopIterator.h" 28 29 #define DEBUG_TYPE "loop-vectorize" 30 31 using namespace llvm; 32 33 namespace { 34 // Class that is used to build the plain CFG for the incoming IR. 35 class PlainCFGBuilder { 36 private: 37 // The outermost loop of the input loop nest considered for vectorization. 38 Loop *TheLoop; 39 40 // Loop Info analysis. 41 LoopInfo *LI; 42 43 // Vectorization plan that we are working on. 44 VPlan &Plan; 45 46 // Output Top Region. 47 VPRegionBlock *TopRegion = nullptr; 48 49 // Builder of the VPlan instruction-level representation. 50 VPBuilder VPIRBuilder; 51 52 // NOTE: The following maps are intentionally destroyed after the plain CFG 53 // construction because subsequent VPlan-to-VPlan transformation may 54 // invalidate them. 55 // Map incoming BasicBlocks to their newly-created VPBasicBlocks. 56 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; 57 // Map incoming Value definitions to their newly-created VPValues. 58 DenseMap<Value *, VPValue *> IRDef2VPValue; 59 60 // Hold phi node's that need to be fixed once the plain CFG has been built. 61 SmallVector<PHINode *, 8> PhisToFix; 62 63 // Utility functions. 64 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); 65 void fixPhiNodes(); 66 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); 67 bool isExternalDef(Value *Val); 68 VPValue *getOrCreateVPOperand(Value *IRVal); 69 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); 70 71 public: 72 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) 73 : TheLoop(Lp), LI(LI), Plan(P) {} 74 75 // Build the plain CFG and return its Top Region. 76 VPRegionBlock *buildPlainCFG(); 77 }; 78 } // anonymous namespace 79 80 // Return true if \p Inst is an incoming Instruction to be ignored in the VPlan 81 // representation. 82 static bool isInstructionToIgnore(Instruction *Inst) { 83 return isa<BranchInst>(Inst); 84 } 85 86 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB 87 // must have no predecessors. 88 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { 89 SmallVector<VPBlockBase *, 8> VPBBPreds; 90 // Collect VPBB predecessors. 91 for (BasicBlock *Pred : predecessors(BB)) 92 VPBBPreds.push_back(getOrCreateVPBB(Pred)); 93 94 VPBB->setPredecessors(VPBBPreds); 95 } 96 97 // Add operands to VPInstructions representing phi nodes from the input IR. 98 void PlainCFGBuilder::fixPhiNodes() { 99 for (auto *Phi : PhisToFix) { 100 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); 101 VPValue *VPVal = IRDef2VPValue[Phi]; 102 assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node."); 103 auto *VPPhi = cast<VPInstruction>(VPVal); 104 assert(VPPhi->getNumOperands() == 0 && 105 "Expected VPInstruction with no operands."); 106 107 for (Value *Op : Phi->operands()) 108 VPPhi->addOperand(getOrCreateVPOperand(Op)); 109 } 110 } 111 112 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an 113 // existing one if it was already created. 114 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { 115 auto BlockIt = BB2VPBB.find(BB); 116 if (BlockIt != BB2VPBB.end()) 117 // Retrieve existing VPBB. 118 return BlockIt->second; 119 120 // Create new VPBB. 121 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); 122 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); 123 BB2VPBB[BB] = VPBB; 124 VPBB->setParent(TopRegion); 125 return VPBB; 126 } 127 128 // Return true if \p Val is considered an external definition. An external 129 // definition is either: 130 // 1. A Value that is not an Instruction. This will be refined in the future. 131 // 2. An Instruction that is outside of the CFG snippet represented in VPlan, 132 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) 133 // outermost loop exits. 134 bool PlainCFGBuilder::isExternalDef(Value *Val) { 135 // All the Values that are not Instructions are considered external 136 // definitions for now. 137 Instruction *Inst = dyn_cast<Instruction>(Val); 138 if (!Inst) 139 return true; 140 141 BasicBlock *InstParent = Inst->getParent(); 142 assert(InstParent && "Expected instruction parent."); 143 144 // Check whether Instruction definition is in loop PH. 145 BasicBlock *PH = TheLoop->getLoopPreheader(); 146 assert(PH && "Expected loop pre-header."); 147 148 if (InstParent == PH) 149 // Instruction definition is in outermost loop PH. 150 return false; 151 152 // Check whether Instruction definition is in the loop exit. 153 BasicBlock *Exit = TheLoop->getUniqueExitBlock(); 154 assert(Exit && "Expected loop with single exit."); 155 if (InstParent == Exit) { 156 // Instruction definition is in outermost loop exit. 157 return false; 158 } 159 160 // Check whether Instruction definition is in loop body. 161 return !TheLoop->contains(Inst); 162 } 163 164 // Create a new VPValue or retrieve an existing one for the Instruction's 165 // operand \p IRVal. This function must only be used to create/retrieve VPValues 166 // for *Instruction's operands* and not to create regular VPInstruction's. For 167 // the latter, please, look at 'createVPInstructionsForVPBB'. 168 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { 169 auto VPValIt = IRDef2VPValue.find(IRVal); 170 if (VPValIt != IRDef2VPValue.end()) 171 // Operand has an associated VPInstruction or VPValue that was previously 172 // created. 173 return VPValIt->second; 174 175 // Operand doesn't have a previously created VPInstruction/VPValue. This 176 // means that operand is: 177 // A) a definition external to VPlan, 178 // B) any other Value without specific representation in VPlan. 179 // For now, we use VPValue to represent A and B and classify both as external 180 // definitions. We may introduce specific VPValue subclasses for them in the 181 // future. 182 assert(isExternalDef(IRVal) && "Expected external definition as operand."); 183 184 // A and B: Create VPValue and add it to the pool of external definitions and 185 // to the Value->VPValue map. 186 VPValue *NewVPVal = new VPValue(IRVal); 187 Plan.addExternalDef(NewVPVal); 188 IRDef2VPValue[IRVal] = NewVPVal; 189 return NewVPVal; 190 } 191 192 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock 193 // counterpart. This function must be invoked in RPO so that the operands of a 194 // VPInstruction in \p BB have been visited before (except for Phi nodes). 195 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, 196 BasicBlock *BB) { 197 VPIRBuilder.setInsertPoint(VPBB); 198 for (Instruction &InstRef : *BB) { 199 Instruction *Inst = &InstRef; 200 if (isInstructionToIgnore(Inst)) 201 continue; 202 203 // There should't be any VPValue for Inst at this point. Otherwise, we 204 // visited Inst when we shouldn't, breaking the RPO traversal order. 205 assert(!IRDef2VPValue.count(Inst) && 206 "Instruction shouldn't have been visited."); 207 208 VPInstruction *NewVPInst; 209 if (PHINode *Phi = dyn_cast<PHINode>(Inst)) { 210 // Phi node's operands may have not been visited at this point. We create 211 // an empty VPInstruction that we will fix once the whole plain CFG has 212 // been built. 213 NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp( 214 Inst->getOpcode(), {} /*No operands*/, Inst)); 215 PhisToFix.push_back(Phi); 216 } else { 217 // Translate LLVM-IR operands into VPValue operands and set them in the 218 // new VPInstruction. 219 SmallVector<VPValue *, 4> VPOperands; 220 for (Value *Op : Inst->operands()) 221 VPOperands.push_back(getOrCreateVPOperand(Op)); 222 223 // Build VPInstruction for any arbitraty Instruction without specific 224 // representation in VPlan. 225 NewVPInst = cast<VPInstruction>( 226 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); 227 } 228 229 IRDef2VPValue[Inst] = NewVPInst; 230 } 231 } 232 233 // Main interface to build the plain CFG. 234 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() { 235 // 1. Create the Top Region. It will be the parent of all VPBBs. 236 TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/); 237 238 // 2. Scan the body of the loop in a topological order to visit each basic 239 // block after having visited its predecessor basic blocks. Create a VPBB for 240 // each BB and link it to its successor and predecessor VPBBs. Note that 241 // predecessors must be set in the same order as they are in the incomming IR. 242 // Otherwise, there might be problems with existing phi nodes and algorithm 243 // based on predecessors traversal. 244 245 // Loop PH needs to be explicitly visited since it's not taken into account by 246 // LoopBlocksDFS. 247 BasicBlock *PreheaderBB = TheLoop->getLoopPreheader(); 248 assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) && 249 "Unexpected loop preheader"); 250 VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB); 251 createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB); 252 // Create empty VPBB for Loop H so that we can link PH->H. 253 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); 254 // Preheader's predecessors will be set during the loop RPO traversal below. 255 PreheaderVPBB->setOneSuccessor(HeaderVPBB); 256 257 LoopBlocksRPO RPO(TheLoop); 258 RPO.perform(LI); 259 260 for (BasicBlock *BB : RPO) { 261 // Create or retrieve the VPBasicBlock for this BB and create its 262 // VPInstructions. 263 VPBasicBlock *VPBB = getOrCreateVPBB(BB); 264 createVPInstructionsForVPBB(VPBB, BB); 265 266 // Set VPBB successors. We create empty VPBBs for successors if they don't 267 // exist already. Recipes will be created when the successor is visited 268 // during the RPO traversal. 269 TerminatorInst *TI = BB->getTerminator(); 270 assert(TI && "Terminator expected."); 271 unsigned NumSuccs = TI->getNumSuccessors(); 272 273 if (NumSuccs == 1) { 274 VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); 275 assert(SuccVPBB && "VPBB Successor not found."); 276 VPBB->setOneSuccessor(SuccVPBB); 277 } else if (NumSuccs == 2) { 278 VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); 279 assert(SuccVPBB0 && "Successor 0 not found."); 280 VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); 281 assert(SuccVPBB1 && "Successor 1 not found."); 282 VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1); 283 } else 284 llvm_unreachable("Number of successors not supported."); 285 286 // Set VPBB predecessors in the same order as they are in the incoming BB. 287 setVPBBPredsFromBB(VPBB, BB); 288 } 289 290 // 3. Process outermost loop exit. We created an empty VPBB for the loop 291 // single exit BB during the RPO traversal of the loop body but Instructions 292 // weren't visited because it's not part of the the loop. 293 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); 294 assert(LoopExitBB && "Loops with multiple exits are not supported."); 295 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; 296 createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB); 297 // Loop exit was already set as successor of the loop exiting BB. 298 // We only set its predecessor VPBB now. 299 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); 300 301 // 4. The whole CFG has been built at this point so all the input Values must 302 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding 303 // VPlan operands. 304 fixPhiNodes(); 305 306 // 5. Final Top Region setup. Set outermost loop pre-header and single exit as 307 // Top Region entry and exit. 308 TopRegion->setEntry(PreheaderVPBB); 309 TopRegion->setExit(LoopExitVPBB); 310 return TopRegion; 311 } 312 313 // Public interface to build a H-CFG. 314 void VPlanHCFGBuilder::buildHierarchicalCFG(VPlan &Plan) { 315 // Build Top Region enclosing the plain CFG and set it as VPlan entry. 316 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); 317 VPRegionBlock *TopRegion = PCFGBuilder.buildPlainCFG(); 318 Plan.setEntry(TopRegion); 319 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); 320 321 Verifier.verifyHierarchicalCFG(TopRegion); 322 } 323