1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the construction of a VPlan-based Hierarchical CFG 11 /// (H-CFG) for an incoming IR. This construction comprises the following 12 /// components and steps: 13 // 14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that 15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top 16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks 17 /// in the plain CFG. 18 /// NOTE: At this point, there is a direct correspondence between all the 19 /// VPBasicBlocks created for the initial plain CFG and the incoming 20 /// BasicBlocks. However, this might change in the future. 21 /// 22 //===----------------------------------------------------------------------===// 23 24 #include "VPlanHCFGBuilder.h" 25 #include "LoopVectorizationPlanner.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 28 #define DEBUG_TYPE "loop-vectorize" 29 30 using namespace llvm; 31 32 namespace { 33 // Class that is used to build the plain CFG for the incoming IR. 34 class PlainCFGBuilder { 35 private: 36 // The outermost loop of the input loop nest considered for vectorization. 37 Loop *TheLoop; 38 39 // Loop Info analysis. 40 LoopInfo *LI; 41 42 // Vectorization plan that we are working on. 43 VPlan &Plan; 44 45 // Builder of the VPlan instruction-level representation. 46 VPBuilder VPIRBuilder; 47 48 // NOTE: The following maps are intentionally destroyed after the plain CFG 49 // construction because subsequent VPlan-to-VPlan transformation may 50 // invalidate them. 51 // Map incoming BasicBlocks to their newly-created VPBasicBlocks. 52 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; 53 // Map incoming Value definitions to their newly-created VPValues. 54 DenseMap<Value *, VPValue *> IRDef2VPValue; 55 56 // Hold phi node's that need to be fixed once the plain CFG has been built. 57 SmallVector<PHINode *, 8> PhisToFix; 58 59 /// Maps loops in the original IR to their corresponding region. 60 DenseMap<Loop *, VPRegionBlock *> Loop2Region; 61 62 // Utility functions. 63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); 64 void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB); 65 void fixPhiNodes(); 66 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); 67 #ifndef NDEBUG 68 bool isExternalDef(Value *Val); 69 #endif 70 VPValue *getOrCreateVPOperand(Value *IRVal); 71 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); 72 73 public: 74 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) 75 : TheLoop(Lp), LI(LI), Plan(P) {} 76 77 /// Build plain CFG for TheLoop and connects it to Plan's entry. 78 void buildPlainCFG(); 79 }; 80 } // anonymous namespace 81 82 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB 83 // must have no predecessors. 84 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { 85 auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * { 86 auto *SinglePred = BB->getSinglePredecessor(); 87 Loop *LoopForBB = LI->getLoopFor(BB); 88 if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB) 89 return nullptr; 90 // The input IR must be in loop-simplify form, ensuring a single predecessor 91 // for exit blocks. 92 assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() && 93 "SinglePred must be the only loop latch"); 94 return SinglePred; 95 }; 96 if (auto *LatchBB = GetLatchOfExit(BB)) { 97 auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent(); 98 assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) && 99 "successor must already be set for PredRegion; it must have VPBB " 100 "as single successor"); 101 VPBB->setPredecessors({PredRegion}); 102 return; 103 } 104 // Collect VPBB predecessors. 105 SmallVector<VPBlockBase *, 2> VPBBPreds; 106 for (BasicBlock *Pred : predecessors(BB)) 107 VPBBPreds.push_back(getOrCreateVPBB(Pred)); 108 VPBB->setPredecessors(VPBBPreds); 109 } 110 111 static bool isHeaderBB(BasicBlock *BB, Loop *L) { 112 return L && BB == L->getHeader(); 113 } 114 115 void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region, 116 BasicBlock *BB) { 117 // BB is a loop header block. Connect the region to the loop preheader. 118 Loop *LoopOfBB = LI->getLoopFor(BB); 119 Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())}); 120 } 121 122 // Add operands to VPInstructions representing phi nodes from the input IR. 123 void PlainCFGBuilder::fixPhiNodes() { 124 for (auto *Phi : PhisToFix) { 125 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); 126 VPValue *VPVal = IRDef2VPValue[Phi]; 127 assert(isa<VPWidenPHIRecipe>(VPVal) && 128 "Expected WidenPHIRecipe for phi node."); 129 auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal); 130 assert(VPPhi->getNumOperands() == 0 && 131 "Expected VPInstruction with no operands."); 132 133 Loop *L = LI->getLoopFor(Phi->getParent()); 134 if (isHeaderBB(Phi->getParent(), L)) { 135 // For header phis, make sure the incoming value from the loop 136 // predecessor is the first operand of the recipe. 137 assert(Phi->getNumOperands() == 2); 138 BasicBlock *LoopPred = L->getLoopPredecessor(); 139 VPPhi->addIncoming( 140 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)), 141 BB2VPBB[LoopPred]); 142 BasicBlock *LoopLatch = L->getLoopLatch(); 143 VPPhi->addIncoming( 144 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)), 145 BB2VPBB[LoopLatch]); 146 continue; 147 } 148 149 for (unsigned I = 0; I != Phi->getNumOperands(); ++I) 150 VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)), 151 BB2VPBB[Phi->getIncomingBlock(I)]); 152 } 153 } 154 155 static bool isHeaderVPBB(VPBasicBlock *VPBB) { 156 return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB; 157 } 158 159 // Create a new empty VPBasicBlock for an incoming BasicBlock in the region 160 // corresponding to the containing loop or retrieve an existing one if it was 161 // already created. If no region exists yet for the loop containing \p BB, a new 162 // one is created. 163 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { 164 if (auto *VPBB = BB2VPBB.lookup(BB)) { 165 // Retrieve existing VPBB. 166 return VPBB; 167 } 168 169 // Create new VPBB. 170 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); 171 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); 172 BB2VPBB[BB] = VPBB; 173 174 // Get or create a region for the loop containing BB. 175 Loop *LoopOfBB = LI->getLoopFor(BB); 176 if (!LoopOfBB) 177 return VPBB; 178 179 VPRegionBlock *RegionOfBB = Loop2Region.lookup(LoopOfBB); 180 assert((RegionOfBB != nullptr) ^ isHeaderBB(BB, LoopOfBB) && 181 "region must exist or BB must be a loop header"); 182 if (RegionOfBB) { 183 VPBB->setParent(RegionOfBB); 184 } else { 185 // If BB's loop is nested inside another loop within VPlan's scope, the 186 // header of that enclosing loop was already visited and its region 187 // constructed and recorded in Loop2Region. That region is now set as the 188 // parent of VPBB's region. Otherwise it is set to null. 189 auto *RegionOfVPBB = new VPRegionBlock( 190 LoopOfBB->getHeader()->getName().str(), false /*isReplicator*/); 191 RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]); 192 RegionOfVPBB->setEntry(VPBB); 193 Loop2Region[LoopOfBB] = RegionOfVPBB; 194 } 195 return VPBB; 196 } 197 198 #ifndef NDEBUG 199 // Return true if \p Val is considered an external definition. An external 200 // definition is either: 201 // 1. A Value that is not an Instruction. This will be refined in the future. 202 // 2. An Instruction that is outside of the CFG snippet represented in VPlan, 203 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) 204 // outermost loop exits. 205 bool PlainCFGBuilder::isExternalDef(Value *Val) { 206 // All the Values that are not Instructions are considered external 207 // definitions for now. 208 Instruction *Inst = dyn_cast<Instruction>(Val); 209 if (!Inst) 210 return true; 211 212 BasicBlock *InstParent = Inst->getParent(); 213 assert(InstParent && "Expected instruction parent."); 214 215 // Check whether Instruction definition is in loop PH. 216 BasicBlock *PH = TheLoop->getLoopPreheader(); 217 assert(PH && "Expected loop pre-header."); 218 219 if (InstParent == PH) 220 // Instruction definition is in outermost loop PH. 221 return false; 222 223 // Check whether Instruction definition is in the loop exit. 224 BasicBlock *Exit = TheLoop->getUniqueExitBlock(); 225 assert(Exit && "Expected loop with single exit."); 226 if (InstParent == Exit) { 227 // Instruction definition is in outermost loop exit. 228 return false; 229 } 230 231 // Check whether Instruction definition is in loop body. 232 return !TheLoop->contains(Inst); 233 } 234 #endif 235 236 // Create a new VPValue or retrieve an existing one for the Instruction's 237 // operand \p IRVal. This function must only be used to create/retrieve VPValues 238 // for *Instruction's operands* and not to create regular VPInstruction's. For 239 // the latter, please, look at 'createVPInstructionsForVPBB'. 240 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { 241 auto VPValIt = IRDef2VPValue.find(IRVal); 242 if (VPValIt != IRDef2VPValue.end()) 243 // Operand has an associated VPInstruction or VPValue that was previously 244 // created. 245 return VPValIt->second; 246 247 // Operand doesn't have a previously created VPInstruction/VPValue. This 248 // means that operand is: 249 // A) a definition external to VPlan, 250 // B) any other Value without specific representation in VPlan. 251 // For now, we use VPValue to represent A and B and classify both as external 252 // definitions. We may introduce specific VPValue subclasses for them in the 253 // future. 254 assert(isExternalDef(IRVal) && "Expected external definition as operand."); 255 256 // A and B: Create VPValue and add it to the pool of external definitions and 257 // to the Value->VPValue map. 258 VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal); 259 IRDef2VPValue[IRVal] = NewVPVal; 260 return NewVPVal; 261 } 262 263 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock 264 // counterpart. This function must be invoked in RPO so that the operands of a 265 // VPInstruction in \p BB have been visited before (except for Phi nodes). 266 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, 267 BasicBlock *BB) { 268 VPIRBuilder.setInsertPoint(VPBB); 269 for (Instruction &InstRef : *BB) { 270 Instruction *Inst = &InstRef; 271 272 // There shouldn't be any VPValue for Inst at this point. Otherwise, we 273 // visited Inst when we shouldn't, breaking the RPO traversal order. 274 assert(!IRDef2VPValue.count(Inst) && 275 "Instruction shouldn't have been visited."); 276 277 if (auto *Br = dyn_cast<BranchInst>(Inst)) { 278 // Conditional branch instruction are represented using BranchOnCond 279 // recipes. 280 if (Br->isConditional()) { 281 VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); 282 VPBB->appendRecipe( 283 new VPInstruction(VPInstruction::BranchOnCond, {Cond})); 284 } 285 286 // Skip the rest of the Instruction processing for Branch instructions. 287 continue; 288 } 289 290 VPValue *NewVPV; 291 if (auto *Phi = dyn_cast<PHINode>(Inst)) { 292 // Phi node's operands may have not been visited at this point. We create 293 // an empty VPInstruction that we will fix once the whole plain CFG has 294 // been built. 295 NewVPV = new VPWidenPHIRecipe(Phi); 296 VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV)); 297 PhisToFix.push_back(Phi); 298 } else { 299 // Translate LLVM-IR operands into VPValue operands and set them in the 300 // new VPInstruction. 301 SmallVector<VPValue *, 4> VPOperands; 302 for (Value *Op : Inst->operands()) 303 VPOperands.push_back(getOrCreateVPOperand(Op)); 304 305 // Build VPInstruction for any arbitrary Instruction without specific 306 // representation in VPlan. 307 NewVPV = cast<VPInstruction>( 308 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); 309 } 310 311 IRDef2VPValue[Inst] = NewVPV; 312 } 313 } 314 315 // Main interface to build the plain CFG. 316 void PlainCFGBuilder::buildPlainCFG() { 317 // 1. Scan the body of the loop in a topological order to visit each basic 318 // block after having visited its predecessor basic blocks. Create a VPBB for 319 // each BB and link it to its successor and predecessor VPBBs. Note that 320 // predecessors must be set in the same order as they are in the incomming IR. 321 // Otherwise, there might be problems with existing phi nodes and algorithm 322 // based on predecessors traversal. 323 324 // Loop PH needs to be explicitly visited since it's not taken into account by 325 // LoopBlocksDFS. 326 BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); 327 assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && 328 "Unexpected loop preheader"); 329 // buildPlainCFG needs to be called after createInitialVPlan, which creates 330 // the initial skeleton (including the preheader VPBB). buildPlainCFG builds 331 // the CFG for the loop nest and hooks it up to the initial skeleton. 332 VPBasicBlock *ThePreheaderVPBB = Plan.getEntry(); 333 BB2VPBB[ThePreheaderBB] = ThePreheaderVPBB; 334 ThePreheaderVPBB->setName("vector.ph"); 335 for (auto &I : *ThePreheaderBB) { 336 if (I.getType()->isVoidTy()) 337 continue; 338 IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I); 339 } 340 // Create region (and header block) for the outer loop, so that we can link 341 // PH->Region. 342 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); 343 HeaderVPBB->setName("vector.body"); 344 ThePreheaderVPBB->setOneSuccessor(HeaderVPBB->getParent()); 345 346 LoopBlocksRPO RPO(TheLoop); 347 RPO.perform(LI); 348 349 for (BasicBlock *BB : RPO) { 350 // Create or retrieve the VPBasicBlock for this BB and create its 351 // VPInstructions. 352 VPBasicBlock *VPBB = getOrCreateVPBB(BB); 353 VPRegionBlock *Region = VPBB->getParent(); 354 createVPInstructionsForVPBB(VPBB, BB); 355 Loop *LoopForBB = LI->getLoopFor(BB); 356 // Set VPBB predecessors in the same order as they are in the incoming BB. 357 if (!isHeaderBB(BB, LoopForBB)) 358 setVPBBPredsFromBB(VPBB, BB); 359 else { 360 // BB is a loop header, set the predecessor for the region. 361 assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree"); 362 setRegionPredsFromBB(Region, BB); 363 } 364 365 // Set VPBB successors. We create empty VPBBs for successors if they don't 366 // exist already. Recipes will be created when the successor is visited 367 // during the RPO traversal. 368 auto *BI = cast<BranchInst>(BB->getTerminator()); 369 unsigned NumSuccs = succ_size(BB); 370 if (NumSuccs == 1) { 371 auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor()); 372 VPBB->setOneSuccessor(isHeaderVPBB(Successor) 373 ? Successor->getParent() 374 : static_cast<VPBlockBase *>(Successor)); 375 continue; 376 } 377 assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && 378 "block must have conditional branch with 2 successors"); 379 // Look up the branch condition to get the corresponding VPValue 380 // representing the condition bit in VPlan (which may be in another VPBB). 381 assert(IRDef2VPValue.contains(BI->getCondition()) && 382 "Missing condition bit in IRDef2VPValue!"); 383 VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0)); 384 VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1)); 385 if (!LoopForBB || BB != LoopForBB->getLoopLatch()) { 386 VPBB->setTwoSuccessors(Successor0, Successor1); 387 continue; 388 } 389 // For a latch we need to set the successor of the region rather than that 390 // of VPBB and it should be set to the exit, i.e., non-header successor. 391 Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1 : Successor0); 392 Region->setExiting(VPBB); 393 } 394 395 // 2. Process outermost loop exit. We created an empty VPBB for the loop 396 // single exit BB during the RPO traversal of the loop body but Instructions 397 // weren't visited because it's not part of the loop. 398 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); 399 assert(LoopExitBB && "Loops with multiple exits are not supported."); 400 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; 401 // Loop exit was already set as successor of the loop exiting BB. 402 // We only set its predecessor VPBB now. 403 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); 404 405 // 3. The whole CFG has been built at this point so all the input Values must 406 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding 407 // VPlan operands. 408 fixPhiNodes(); 409 } 410 411 void VPlanHCFGBuilder::buildPlainCFG() { 412 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); 413 PCFGBuilder.buildPlainCFG(); 414 } 415 416 // Public interface to build a H-CFG. 417 void VPlanHCFGBuilder::buildHierarchicalCFG() { 418 // Build Top Region enclosing the plain CFG. 419 buildPlainCFG(); 420 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); 421 422 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 423 Verifier.verifyHierarchicalCFG(TopRegion); 424 425 // Compute plain CFG dom tree for VPLInfo. 426 VPDomTree.recalculate(Plan); 427 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; 428 VPDomTree.print(dbgs())); 429 } 430