xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp (revision 541e88dbc24a72bdf9a80362c6113d246eb806dc)
1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
13 //
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17 /// in the plain CFG.
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 
28 #define DEBUG_TYPE "loop-vectorize"
29 
30 using namespace llvm;
31 
32 namespace {
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder {
35 private:
36   // The outermost loop of the input loop nest considered for vectorization.
37   Loop *TheLoop;
38 
39   // Loop Info analysis.
40   LoopInfo *LI;
41 
42   // Vectorization plan that we are working on.
43   VPlan &Plan;
44 
45   // Builder of the VPlan instruction-level representation.
46   VPBuilder VPIRBuilder;
47 
48   // NOTE: The following maps are intentionally destroyed after the plain CFG
49   // construction because subsequent VPlan-to-VPlan transformation may
50   // invalidate them.
51   // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
52   DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
53   // Map incoming Value definitions to their newly-created VPValues.
54   DenseMap<Value *, VPValue *> IRDef2VPValue;
55 
56   // Hold phi node's that need to be fixed once the plain CFG has been built.
57   SmallVector<PHINode *, 8> PhisToFix;
58 
59   /// Maps loops in the original IR to their corresponding region.
60   DenseMap<Loop *, VPRegionBlock *> Loop2Region;
61 
62   // Utility functions.
63   void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64   void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB);
65   void fixPhiNodes();
66   VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
67 #ifndef NDEBUG
68   bool isExternalDef(Value *Val);
69 #endif
70   VPValue *getOrCreateVPOperand(Value *IRVal);
71   void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
72 
73 public:
74   PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
75       : TheLoop(Lp), LI(LI), Plan(P) {}
76 
77   /// Build plain CFG for TheLoop  and connects it to Plan's entry.
78   void buildPlainCFG();
79 };
80 } // anonymous namespace
81 
82 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
83 // must have no predecessors.
84 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
85   auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * {
86     auto *SinglePred = BB->getSinglePredecessor();
87     Loop *LoopForBB = LI->getLoopFor(BB);
88     if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB)
89       return nullptr;
90     // The input IR must be in loop-simplify form, ensuring a single predecessor
91     // for exit blocks.
92     assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() &&
93            "SinglePred must be the only loop latch");
94     return SinglePred;
95   };
96   if (auto *LatchBB = GetLatchOfExit(BB)) {
97     auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent();
98     assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) &&
99            "successor must already be set for PredRegion; it must have VPBB "
100            "as single successor");
101     VPBB->setPredecessors({PredRegion});
102     return;
103   }
104   // Collect VPBB predecessors.
105   SmallVector<VPBlockBase *, 2> VPBBPreds;
106   for (BasicBlock *Pred : predecessors(BB))
107     VPBBPreds.push_back(getOrCreateVPBB(Pred));
108   VPBB->setPredecessors(VPBBPreds);
109 }
110 
111 static bool isHeaderBB(BasicBlock *BB, Loop *L) {
112   return L && BB == L->getHeader();
113 }
114 
115 void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region,
116                                            BasicBlock *BB) {
117   // BB is a loop header block. Connect the region to the loop preheader.
118   Loop *LoopOfBB = LI->getLoopFor(BB);
119   Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())});
120 }
121 
122 // Add operands to VPInstructions representing phi nodes from the input IR.
123 void PlainCFGBuilder::fixPhiNodes() {
124   for (auto *Phi : PhisToFix) {
125     assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
126     VPValue *VPVal = IRDef2VPValue[Phi];
127     assert(isa<VPWidenPHIRecipe>(VPVal) &&
128            "Expected WidenPHIRecipe for phi node.");
129     auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
130     assert(VPPhi->getNumOperands() == 0 &&
131            "Expected VPInstruction with no operands.");
132 
133     Loop *L = LI->getLoopFor(Phi->getParent());
134     if (isHeaderBB(Phi->getParent(), L)) {
135       // For header phis, make sure the incoming value from the loop
136       // predecessor is the first operand of the recipe.
137       assert(Phi->getNumOperands() == 2);
138       BasicBlock *LoopPred = L->getLoopPredecessor();
139       VPPhi->addIncoming(
140           getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)),
141           BB2VPBB[LoopPred]);
142       BasicBlock *LoopLatch = L->getLoopLatch();
143       VPPhi->addIncoming(
144           getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)),
145           BB2VPBB[LoopLatch]);
146       continue;
147     }
148 
149     for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
150       VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
151                          BB2VPBB[Phi->getIncomingBlock(I)]);
152   }
153 }
154 
155 static bool isHeaderVPBB(VPBasicBlock *VPBB) {
156   return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB;
157 }
158 
159 // Create a new empty VPBasicBlock for an incoming BasicBlock in the region
160 // corresponding to the containing loop  or retrieve an existing one if it was
161 // already created. If no region exists yet for the loop containing \p BB, a new
162 // one is created.
163 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
164   if (auto *VPBB = BB2VPBB.lookup(BB)) {
165     // Retrieve existing VPBB.
166     return VPBB;
167   }
168 
169   // Create new VPBB.
170   LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
171   VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
172   BB2VPBB[BB] = VPBB;
173 
174   // Get or create a region for the loop containing BB.
175   Loop *LoopOfBB = LI->getLoopFor(BB);
176   if (!LoopOfBB)
177     return VPBB;
178 
179   VPRegionBlock *RegionOfBB = Loop2Region.lookup(LoopOfBB);
180   assert((RegionOfBB != nullptr) ^ isHeaderBB(BB, LoopOfBB) &&
181          "region must exist or BB must be a loop header");
182   if (RegionOfBB) {
183     VPBB->setParent(RegionOfBB);
184   } else {
185     // If BB's loop is nested inside another loop within VPlan's scope, the
186     // header of that enclosing loop was already visited and its region
187     // constructed and recorded in Loop2Region. That region is now set as the
188     // parent of VPBB's region. Otherwise it is set to null.
189     auto *RegionOfVPBB = new VPRegionBlock(
190         LoopOfBB->getHeader()->getName().str(), false /*isReplicator*/);
191     RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]);
192     RegionOfVPBB->setEntry(VPBB);
193     Loop2Region[LoopOfBB] = RegionOfVPBB;
194   }
195   return VPBB;
196 }
197 
198 #ifndef NDEBUG
199 // Return true if \p Val is considered an external definition. An external
200 // definition is either:
201 // 1. A Value that is not an Instruction. This will be refined in the future.
202 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
203 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
204 // outermost loop exits.
205 bool PlainCFGBuilder::isExternalDef(Value *Val) {
206   // All the Values that are not Instructions are considered external
207   // definitions for now.
208   Instruction *Inst = dyn_cast<Instruction>(Val);
209   if (!Inst)
210     return true;
211 
212   BasicBlock *InstParent = Inst->getParent();
213   assert(InstParent && "Expected instruction parent.");
214 
215   // Check whether Instruction definition is in loop PH.
216   BasicBlock *PH = TheLoop->getLoopPreheader();
217   assert(PH && "Expected loop pre-header.");
218 
219   if (InstParent == PH)
220     // Instruction definition is in outermost loop PH.
221     return false;
222 
223   // Check whether Instruction definition is in the loop exit.
224   BasicBlock *Exit = TheLoop->getUniqueExitBlock();
225   assert(Exit && "Expected loop with single exit.");
226   if (InstParent == Exit) {
227     // Instruction definition is in outermost loop exit.
228     return false;
229   }
230 
231   // Check whether Instruction definition is in loop body.
232   return !TheLoop->contains(Inst);
233 }
234 #endif
235 
236 // Create a new VPValue or retrieve an existing one for the Instruction's
237 // operand \p IRVal. This function must only be used to create/retrieve VPValues
238 // for *Instruction's operands* and not to create regular VPInstruction's. For
239 // the latter, please, look at 'createVPInstructionsForVPBB'.
240 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
241   auto VPValIt = IRDef2VPValue.find(IRVal);
242   if (VPValIt != IRDef2VPValue.end())
243     // Operand has an associated VPInstruction or VPValue that was previously
244     // created.
245     return VPValIt->second;
246 
247   // Operand doesn't have a previously created VPInstruction/VPValue. This
248   // means that operand is:
249   //   A) a definition external to VPlan,
250   //   B) any other Value without specific representation in VPlan.
251   // For now, we use VPValue to represent A and B and classify both as external
252   // definitions. We may introduce specific VPValue subclasses for them in the
253   // future.
254   assert(isExternalDef(IRVal) && "Expected external definition as operand.");
255 
256   // A and B: Create VPValue and add it to the pool of external definitions and
257   // to the Value->VPValue map.
258   VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal);
259   IRDef2VPValue[IRVal] = NewVPVal;
260   return NewVPVal;
261 }
262 
263 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
264 // counterpart. This function must be invoked in RPO so that the operands of a
265 // VPInstruction in \p BB have been visited before (except for Phi nodes).
266 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
267                                                   BasicBlock *BB) {
268   VPIRBuilder.setInsertPoint(VPBB);
269   for (Instruction &InstRef : *BB) {
270     Instruction *Inst = &InstRef;
271 
272     // There shouldn't be any VPValue for Inst at this point. Otherwise, we
273     // visited Inst when we shouldn't, breaking the RPO traversal order.
274     assert(!IRDef2VPValue.count(Inst) &&
275            "Instruction shouldn't have been visited.");
276 
277     if (auto *Br = dyn_cast<BranchInst>(Inst)) {
278       // Conditional branch instruction are represented using BranchOnCond
279       // recipes.
280       if (Br->isConditional()) {
281         VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
282         VPBB->appendRecipe(
283             new VPInstruction(VPInstruction::BranchOnCond, {Cond}));
284       }
285 
286       // Skip the rest of the Instruction processing for Branch instructions.
287       continue;
288     }
289 
290     VPValue *NewVPV;
291     if (auto *Phi = dyn_cast<PHINode>(Inst)) {
292       // Phi node's operands may have not been visited at this point. We create
293       // an empty VPInstruction that we will fix once the whole plain CFG has
294       // been built.
295       NewVPV = new VPWidenPHIRecipe(Phi);
296       VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
297       PhisToFix.push_back(Phi);
298     } else {
299       // Translate LLVM-IR operands into VPValue operands and set them in the
300       // new VPInstruction.
301       SmallVector<VPValue *, 4> VPOperands;
302       for (Value *Op : Inst->operands())
303         VPOperands.push_back(getOrCreateVPOperand(Op));
304 
305       // Build VPInstruction for any arbitrary Instruction without specific
306       // representation in VPlan.
307       NewVPV = cast<VPInstruction>(
308           VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
309     }
310 
311     IRDef2VPValue[Inst] = NewVPV;
312   }
313 }
314 
315 // Main interface to build the plain CFG.
316 void PlainCFGBuilder::buildPlainCFG() {
317   // 1. Scan the body of the loop in a topological order to visit each basic
318   // block after having visited its predecessor basic blocks. Create a VPBB for
319   // each BB and link it to its successor and predecessor VPBBs. Note that
320   // predecessors must be set in the same order as they are in the incomming IR.
321   // Otherwise, there might be problems with existing phi nodes and algorithm
322   // based on predecessors traversal.
323 
324   // Loop PH needs to be explicitly visited since it's not taken into account by
325   // LoopBlocksDFS.
326   BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
327   assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
328          "Unexpected loop preheader");
329   // buildPlainCFG needs to be called after createInitialVPlan, which creates
330   // the initial skeleton (including the preheader VPBB). buildPlainCFG builds
331   // the CFG for the loop nest and hooks it up to the initial skeleton.
332   VPBasicBlock *ThePreheaderVPBB = Plan.getEntry();
333   BB2VPBB[ThePreheaderBB] = ThePreheaderVPBB;
334   ThePreheaderVPBB->setName("vector.ph");
335   for (auto &I : *ThePreheaderBB) {
336     if (I.getType()->isVoidTy())
337       continue;
338     IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I);
339   }
340   // Create region (and header block) for the outer loop, so that we can link
341   // PH->Region.
342   VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
343   HeaderVPBB->setName("vector.body");
344   ThePreheaderVPBB->setOneSuccessor(HeaderVPBB->getParent());
345 
346   LoopBlocksRPO RPO(TheLoop);
347   RPO.perform(LI);
348 
349   for (BasicBlock *BB : RPO) {
350     // Create or retrieve the VPBasicBlock for this BB and create its
351     // VPInstructions.
352     VPBasicBlock *VPBB = getOrCreateVPBB(BB);
353     VPRegionBlock *Region = VPBB->getParent();
354     createVPInstructionsForVPBB(VPBB, BB);
355     Loop *LoopForBB = LI->getLoopFor(BB);
356     // Set VPBB predecessors in the same order as they are in the incoming BB.
357     if (!isHeaderBB(BB, LoopForBB))
358       setVPBBPredsFromBB(VPBB, BB);
359     else {
360       // BB is a loop header, set the predecessor for the region.
361       assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree");
362       setRegionPredsFromBB(Region, BB);
363     }
364 
365     // Set VPBB successors. We create empty VPBBs for successors if they don't
366     // exist already. Recipes will be created when the successor is visited
367     // during the RPO traversal.
368     auto *BI = cast<BranchInst>(BB->getTerminator());
369     unsigned NumSuccs = succ_size(BB);
370     if (NumSuccs == 1) {
371       auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor());
372       VPBB->setOneSuccessor(isHeaderVPBB(Successor)
373                                 ? Successor->getParent()
374                                 : static_cast<VPBlockBase *>(Successor));
375       continue;
376     }
377     assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
378            "block must have conditional branch with 2 successors");
379     // Look up the branch condition to get the corresponding VPValue
380     // representing the condition bit in VPlan (which may be in another VPBB).
381     assert(IRDef2VPValue.contains(BI->getCondition()) &&
382            "Missing condition bit in IRDef2VPValue!");
383     VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0));
384     VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1));
385     if (!LoopForBB || BB != LoopForBB->getLoopLatch()) {
386       VPBB->setTwoSuccessors(Successor0, Successor1);
387       continue;
388     }
389     // For a latch we need to set the successor of the region rather than that
390     // of VPBB and it should be set to the exit, i.e., non-header successor.
391     Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1 : Successor0);
392     Region->setExiting(VPBB);
393   }
394 
395   // 2. Process outermost loop exit. We created an empty VPBB for the loop
396   // single exit BB during the RPO traversal of the loop body but Instructions
397   // weren't visited because it's not part of the loop.
398   BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
399   assert(LoopExitBB && "Loops with multiple exits are not supported.");
400   VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
401   // Loop exit was already set as successor of the loop exiting BB.
402   // We only set its predecessor VPBB now.
403   setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
404 
405   // 3. The whole CFG has been built at this point so all the input Values must
406   // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
407   // VPlan operands.
408   fixPhiNodes();
409 }
410 
411 void VPlanHCFGBuilder::buildPlainCFG() {
412   PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
413   PCFGBuilder.buildPlainCFG();
414 }
415 
416 // Public interface to build a H-CFG.
417 void VPlanHCFGBuilder::buildHierarchicalCFG() {
418   // Build Top Region enclosing the plain CFG.
419   buildPlainCFG();
420   LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
421 
422   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
423   Verifier.verifyHierarchicalCFG(TopRegion);
424 
425   // Compute plain CFG dom tree for VPLInfo.
426   VPDomTree.recalculate(Plan);
427   LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
428              VPDomTree.print(dbgs()));
429 }
430