xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
13 //
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17 /// in the plain CFG.
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 
28 #define DEBUG_TYPE "loop-vectorize"
29 
30 using namespace llvm;
31 
32 namespace {
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder {
35 private:
36   // The outermost loop of the input loop nest considered for vectorization.
37   Loop *TheLoop;
38 
39   // Loop Info analysis.
40   LoopInfo *LI;
41 
42   // Vectorization plan that we are working on.
43   VPlan &Plan;
44 
45   // Output Top Region.
46   VPRegionBlock *TopRegion = nullptr;
47 
48   // Builder of the VPlan instruction-level representation.
49   VPBuilder VPIRBuilder;
50 
51   // NOTE: The following maps are intentionally destroyed after the plain CFG
52   // construction because subsequent VPlan-to-VPlan transformation may
53   // invalidate them.
54   // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
55   DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
56   // Map incoming Value definitions to their newly-created VPValues.
57   DenseMap<Value *, VPValue *> IRDef2VPValue;
58 
59   // Hold phi node's that need to be fixed once the plain CFG has been built.
60   SmallVector<PHINode *, 8> PhisToFix;
61 
62   // Utility functions.
63   void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64   void fixPhiNodes();
65   VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
66   bool isExternalDef(Value *Val);
67   VPValue *getOrCreateVPOperand(Value *IRVal);
68   void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
69 
70 public:
71   PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
72       : TheLoop(Lp), LI(LI), Plan(P) {}
73 
74   // Build the plain CFG and return its Top Region.
75   VPRegionBlock *buildPlainCFG();
76 };
77 } // anonymous namespace
78 
79 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
80 // must have no predecessors.
81 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
82   SmallVector<VPBlockBase *, 8> VPBBPreds;
83   // Collect VPBB predecessors.
84   for (BasicBlock *Pred : predecessors(BB))
85     VPBBPreds.push_back(getOrCreateVPBB(Pred));
86 
87   VPBB->setPredecessors(VPBBPreds);
88 }
89 
90 // Add operands to VPInstructions representing phi nodes from the input IR.
91 void PlainCFGBuilder::fixPhiNodes() {
92   for (auto *Phi : PhisToFix) {
93     assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
94     VPValue *VPVal = IRDef2VPValue[Phi];
95     assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
96     auto *VPPhi = cast<VPInstruction>(VPVal);
97     assert(VPPhi->getNumOperands() == 0 &&
98            "Expected VPInstruction with no operands.");
99 
100     for (Value *Op : Phi->operands())
101       VPPhi->addOperand(getOrCreateVPOperand(Op));
102   }
103 }
104 
105 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
106 // existing one if it was already created.
107 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
108   auto BlockIt = BB2VPBB.find(BB);
109   if (BlockIt != BB2VPBB.end())
110     // Retrieve existing VPBB.
111     return BlockIt->second;
112 
113   // Create new VPBB.
114   LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
115   VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
116   BB2VPBB[BB] = VPBB;
117   VPBB->setParent(TopRegion);
118   return VPBB;
119 }
120 
121 // Return true if \p Val is considered an external definition. An external
122 // definition is either:
123 // 1. A Value that is not an Instruction. This will be refined in the future.
124 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
125 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
126 // outermost loop exits.
127 bool PlainCFGBuilder::isExternalDef(Value *Val) {
128   // All the Values that are not Instructions are considered external
129   // definitions for now.
130   Instruction *Inst = dyn_cast<Instruction>(Val);
131   if (!Inst)
132     return true;
133 
134   BasicBlock *InstParent = Inst->getParent();
135   assert(InstParent && "Expected instruction parent.");
136 
137   // Check whether Instruction definition is in loop PH.
138   BasicBlock *PH = TheLoop->getLoopPreheader();
139   assert(PH && "Expected loop pre-header.");
140 
141   if (InstParent == PH)
142     // Instruction definition is in outermost loop PH.
143     return false;
144 
145   // Check whether Instruction definition is in the loop exit.
146   BasicBlock *Exit = TheLoop->getUniqueExitBlock();
147   assert(Exit && "Expected loop with single exit.");
148   if (InstParent == Exit) {
149     // Instruction definition is in outermost loop exit.
150     return false;
151   }
152 
153   // Check whether Instruction definition is in loop body.
154   return !TheLoop->contains(Inst);
155 }
156 
157 // Create a new VPValue or retrieve an existing one for the Instruction's
158 // operand \p IRVal. This function must only be used to create/retrieve VPValues
159 // for *Instruction's operands* and not to create regular VPInstruction's. For
160 // the latter, please, look at 'createVPInstructionsForVPBB'.
161 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
162   auto VPValIt = IRDef2VPValue.find(IRVal);
163   if (VPValIt != IRDef2VPValue.end())
164     // Operand has an associated VPInstruction or VPValue that was previously
165     // created.
166     return VPValIt->second;
167 
168   // Operand doesn't have a previously created VPInstruction/VPValue. This
169   // means that operand is:
170   //   A) a definition external to VPlan,
171   //   B) any other Value without specific representation in VPlan.
172   // For now, we use VPValue to represent A and B and classify both as external
173   // definitions. We may introduce specific VPValue subclasses for them in the
174   // future.
175   assert(isExternalDef(IRVal) && "Expected external definition as operand.");
176 
177   // A and B: Create VPValue and add it to the pool of external definitions and
178   // to the Value->VPValue map.
179   VPValue *NewVPVal = new VPValue(IRVal);
180   Plan.addExternalDef(NewVPVal);
181   IRDef2VPValue[IRVal] = NewVPVal;
182   return NewVPVal;
183 }
184 
185 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
186 // counterpart. This function must be invoked in RPO so that the operands of a
187 // VPInstruction in \p BB have been visited before (except for Phi nodes).
188 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
189                                                   BasicBlock *BB) {
190   VPIRBuilder.setInsertPoint(VPBB);
191   for (Instruction &InstRef : *BB) {
192     Instruction *Inst = &InstRef;
193 
194     // There shouldn't be any VPValue for Inst at this point. Otherwise, we
195     // visited Inst when we shouldn't, breaking the RPO traversal order.
196     assert(!IRDef2VPValue.count(Inst) &&
197            "Instruction shouldn't have been visited.");
198 
199     if (auto *Br = dyn_cast<BranchInst>(Inst)) {
200       // Branch instruction is not explicitly represented in VPlan but we need
201       // to represent its condition bit when it's conditional.
202       if (Br->isConditional())
203         getOrCreateVPOperand(Br->getCondition());
204 
205       // Skip the rest of the Instruction processing for Branch instructions.
206       continue;
207     }
208 
209     VPInstruction *NewVPInst;
210     if (auto *Phi = dyn_cast<PHINode>(Inst)) {
211       // Phi node's operands may have not been visited at this point. We create
212       // an empty VPInstruction that we will fix once the whole plain CFG has
213       // been built.
214       NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
215           Inst->getOpcode(), {} /*No operands*/, Inst));
216       PhisToFix.push_back(Phi);
217     } else {
218       // Translate LLVM-IR operands into VPValue operands and set them in the
219       // new VPInstruction.
220       SmallVector<VPValue *, 4> VPOperands;
221       for (Value *Op : Inst->operands())
222         VPOperands.push_back(getOrCreateVPOperand(Op));
223 
224       // Build VPInstruction for any arbitraty Instruction without specific
225       // representation in VPlan.
226       NewVPInst = cast<VPInstruction>(
227           VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
228     }
229 
230     IRDef2VPValue[Inst] = NewVPInst;
231   }
232 }
233 
234 // Main interface to build the plain CFG.
235 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
236   // 1. Create the Top Region. It will be the parent of all VPBBs.
237   TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
238 
239   // 2. Scan the body of the loop in a topological order to visit each basic
240   // block after having visited its predecessor basic blocks. Create a VPBB for
241   // each BB and link it to its successor and predecessor VPBBs. Note that
242   // predecessors must be set in the same order as they are in the incomming IR.
243   // Otherwise, there might be problems with existing phi nodes and algorithm
244   // based on predecessors traversal.
245 
246   // Loop PH needs to be explicitly visited since it's not taken into account by
247   // LoopBlocksDFS.
248   BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
249   assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
250          "Unexpected loop preheader");
251   VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
252   createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
253   // Create empty VPBB for Loop H so that we can link PH->H.
254   VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
255   // Preheader's predecessors will be set during the loop RPO traversal below.
256   PreheaderVPBB->setOneSuccessor(HeaderVPBB);
257 
258   LoopBlocksRPO RPO(TheLoop);
259   RPO.perform(LI);
260 
261   for (BasicBlock *BB : RPO) {
262     // Create or retrieve the VPBasicBlock for this BB and create its
263     // VPInstructions.
264     VPBasicBlock *VPBB = getOrCreateVPBB(BB);
265     createVPInstructionsForVPBB(VPBB, BB);
266 
267     // Set VPBB successors. We create empty VPBBs for successors if they don't
268     // exist already. Recipes will be created when the successor is visited
269     // during the RPO traversal.
270     Instruction *TI = BB->getTerminator();
271     assert(TI && "Terminator expected.");
272     unsigned NumSuccs = TI->getNumSuccessors();
273 
274     if (NumSuccs == 1) {
275       VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
276       assert(SuccVPBB && "VPBB Successor not found.");
277       VPBB->setOneSuccessor(SuccVPBB);
278     } else if (NumSuccs == 2) {
279       VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
280       assert(SuccVPBB0 && "Successor 0 not found.");
281       VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
282       assert(SuccVPBB1 && "Successor 1 not found.");
283 
284       // Get VPBB's condition bit.
285       assert(isa<BranchInst>(TI) && "Unsupported terminator!");
286       auto *Br = cast<BranchInst>(TI);
287       Value *BrCond = Br->getCondition();
288       // Look up the branch condition to get the corresponding VPValue
289       // representing the condition bit in VPlan (which may be in another VPBB).
290       assert(IRDef2VPValue.count(BrCond) &&
291              "Missing condition bit in IRDef2VPValue!");
292       VPValue *VPCondBit = IRDef2VPValue[BrCond];
293 
294       // Link successors using condition bit.
295       VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
296     } else
297       llvm_unreachable("Number of successors not supported.");
298 
299     // Set VPBB predecessors in the same order as they are in the incoming BB.
300     setVPBBPredsFromBB(VPBB, BB);
301   }
302 
303   // 3. Process outermost loop exit. We created an empty VPBB for the loop
304   // single exit BB during the RPO traversal of the loop body but Instructions
305   // weren't visited because it's not part of the the loop.
306   BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
307   assert(LoopExitBB && "Loops with multiple exits are not supported.");
308   VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
309   createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
310   // Loop exit was already set as successor of the loop exiting BB.
311   // We only set its predecessor VPBB now.
312   setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
313 
314   // 4. The whole CFG has been built at this point so all the input Values must
315   // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
316   // VPlan operands.
317   fixPhiNodes();
318 
319   // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
320   // Top Region entry and exit.
321   TopRegion->setEntry(PreheaderVPBB);
322   TopRegion->setExit(LoopExitVPBB);
323   return TopRegion;
324 }
325 
326 VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
327   PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
328   return PCFGBuilder.buildPlainCFG();
329 }
330 
331 // Public interface to build a H-CFG.
332 void VPlanHCFGBuilder::buildHierarchicalCFG() {
333   // Build Top Region enclosing the plain CFG and set it as VPlan entry.
334   VPRegionBlock *TopRegion = buildPlainCFG();
335   Plan.setEntry(TopRegion);
336   LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
337 
338   Verifier.verifyHierarchicalCFG(TopRegion);
339 
340   // Compute plain CFG dom tree for VPLInfo.
341   VPDomTree.recalculate(*TopRegion);
342   LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
343              VPDomTree.print(dbgs()));
344 
345   // Compute VPLInfo and keep it in Plan.
346   VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
347   VPLInfo.analyze(VPDomTree);
348   LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
349              VPLInfo.print(dbgs()));
350 }
351