xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlanAnalysis.cpp (revision 07b330132c0b7fd5b3ada1890840d0dbbd8cdb8e)
1 //===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "VPlanAnalysis.h"
10 #include "VPlan.h"
11 #include "llvm/ADT/TypeSwitch.h"
12 
13 using namespace llvm;
14 
15 #define DEBUG_TYPE "vplan"
16 
17 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
18   Type *ResTy = inferScalarType(R->getIncomingValue(0));
19   for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
20     VPValue *Inc = R->getIncomingValue(I);
21     assert(inferScalarType(Inc) == ResTy &&
22            "different types inferred for different incoming values");
23     CachedTypes[Inc] = ResTy;
24   }
25   return ResTy;
26 }
27 
28 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
29   switch (R->getOpcode()) {
30   case Instruction::Select: {
31     Type *ResTy = inferScalarType(R->getOperand(1));
32     VPValue *OtherV = R->getOperand(2);
33     assert(inferScalarType(OtherV) == ResTy &&
34            "different types inferred for different operands");
35     CachedTypes[OtherV] = ResTy;
36     return ResTy;
37   }
38   case Instruction::Or:
39   case Instruction::ICmp:
40   case VPInstruction::FirstOrderRecurrenceSplice: {
41     Type *ResTy = inferScalarType(R->getOperand(0));
42     VPValue *OtherV = R->getOperand(1);
43     assert(inferScalarType(OtherV) == ResTy &&
44            "different types inferred for different operands");
45     CachedTypes[OtherV] = ResTy;
46     return ResTy;
47   }
48   case VPInstruction::ExtractFromEnd: {
49     Type *BaseTy = inferScalarType(R->getOperand(0));
50     if (auto *VecTy = dyn_cast<VectorType>(BaseTy))
51       return VecTy->getElementType();
52     return BaseTy;
53   }
54   case VPInstruction::Not: {
55     Type *ResTy = inferScalarType(R->getOperand(0));
56     assert(IntegerType::get(Ctx, 1) == ResTy &&
57            "unexpected scalar type inferred for operand");
58     return ResTy;
59   }
60   case VPInstruction::PtrAdd:
61     // Return the type based on the pointer argument (i.e. first operand).
62     return inferScalarType(R->getOperand(0));
63   default:
64     break;
65   }
66   // Type inference not implemented for opcode.
67   LLVM_DEBUG({
68     dbgs() << "LV: Found unhandled opcode for: ";
69     R->getVPSingleValue()->dump();
70   });
71   llvm_unreachable("Unhandled opcode!");
72 }
73 
74 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
75   unsigned Opcode = R->getOpcode();
76   switch (Opcode) {
77   case Instruction::ICmp:
78   case Instruction::FCmp:
79     return IntegerType::get(Ctx, 1);
80   case Instruction::UDiv:
81   case Instruction::SDiv:
82   case Instruction::SRem:
83   case Instruction::URem:
84   case Instruction::Add:
85   case Instruction::FAdd:
86   case Instruction::Sub:
87   case Instruction::FSub:
88   case Instruction::Mul:
89   case Instruction::FMul:
90   case Instruction::FDiv:
91   case Instruction::FRem:
92   case Instruction::Shl:
93   case Instruction::LShr:
94   case Instruction::AShr:
95   case Instruction::And:
96   case Instruction::Or:
97   case Instruction::Xor: {
98     Type *ResTy = inferScalarType(R->getOperand(0));
99     assert(ResTy == inferScalarType(R->getOperand(1)) &&
100            "types for both operands must match for binary op");
101     CachedTypes[R->getOperand(1)] = ResTy;
102     return ResTy;
103   }
104   case Instruction::FNeg:
105   case Instruction::Freeze:
106     return inferScalarType(R->getOperand(0));
107   default:
108     break;
109   }
110 
111   // Type inference not implemented for opcode.
112   LLVM_DEBUG({
113     dbgs() << "LV: Found unhandled opcode for: ";
114     R->getVPSingleValue()->dump();
115   });
116   llvm_unreachable("Unhandled opcode!");
117 }
118 
119 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
120   auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
121   return CI.getType();
122 }
123 
124 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenMemoryRecipe *R) {
125   assert((isa<VPWidenLoadRecipe>(R) || isa<VPWidenLoadEVLRecipe>(R)) &&
126          "Store recipes should not define any values");
127   return cast<LoadInst>(&R->getIngredient())->getType();
128 }
129 
130 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenSelectRecipe *R) {
131   Type *ResTy = inferScalarType(R->getOperand(1));
132   VPValue *OtherV = R->getOperand(2);
133   assert(inferScalarType(OtherV) == ResTy &&
134          "different types inferred for different operands");
135   CachedTypes[OtherV] = ResTy;
136   return ResTy;
137 }
138 
139 Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
140   switch (R->getUnderlyingInstr()->getOpcode()) {
141   case Instruction::Call: {
142     unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
143     return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
144         ->getReturnType();
145   }
146   case Instruction::UDiv:
147   case Instruction::SDiv:
148   case Instruction::SRem:
149   case Instruction::URem:
150   case Instruction::Add:
151   case Instruction::FAdd:
152   case Instruction::Sub:
153   case Instruction::FSub:
154   case Instruction::Mul:
155   case Instruction::FMul:
156   case Instruction::FDiv:
157   case Instruction::FRem:
158   case Instruction::Shl:
159   case Instruction::LShr:
160   case Instruction::AShr:
161   case Instruction::And:
162   case Instruction::Or:
163   case Instruction::Xor: {
164     Type *ResTy = inferScalarType(R->getOperand(0));
165     assert(ResTy == inferScalarType(R->getOperand(1)) &&
166            "inferred types for operands of binary op don't match");
167     CachedTypes[R->getOperand(1)] = ResTy;
168     return ResTy;
169   }
170   case Instruction::Select: {
171     Type *ResTy = inferScalarType(R->getOperand(1));
172     assert(ResTy == inferScalarType(R->getOperand(2)) &&
173            "inferred types for operands of select op don't match");
174     CachedTypes[R->getOperand(2)] = ResTy;
175     return ResTy;
176   }
177   case Instruction::ICmp:
178   case Instruction::FCmp:
179     return IntegerType::get(Ctx, 1);
180   case Instruction::AddrSpaceCast:
181   case Instruction::Alloca:
182   case Instruction::BitCast:
183   case Instruction::Trunc:
184   case Instruction::SExt:
185   case Instruction::ZExt:
186   case Instruction::FPExt:
187   case Instruction::FPTrunc:
188   case Instruction::ExtractValue:
189   case Instruction::SIToFP:
190   case Instruction::UIToFP:
191   case Instruction::FPToSI:
192   case Instruction::FPToUI:
193   case Instruction::PtrToInt:
194   case Instruction::IntToPtr:
195     return R->getUnderlyingInstr()->getType();
196   case Instruction::Freeze:
197   case Instruction::FNeg:
198   case Instruction::GetElementPtr:
199     return inferScalarType(R->getOperand(0));
200   case Instruction::Load:
201     return cast<LoadInst>(R->getUnderlyingInstr())->getType();
202   case Instruction::Store:
203     // FIXME: VPReplicateRecipes with store opcodes still define a result
204     // VPValue, so we need to handle them here. Remove the code here once this
205     // is modeled accurately in VPlan.
206     return Type::getVoidTy(Ctx);
207   default:
208     break;
209   }
210   // Type inference not implemented for opcode.
211   LLVM_DEBUG({
212     dbgs() << "LV: Found unhandled opcode for: ";
213     R->getVPSingleValue()->dump();
214   });
215   llvm_unreachable("Unhandled opcode");
216 }
217 
218 Type *VPTypeAnalysis::inferScalarType(const VPValue *V) {
219   if (Type *CachedTy = CachedTypes.lookup(V))
220     return CachedTy;
221 
222   if (V->isLiveIn()) {
223     if (auto *IRValue = V->getLiveInIRValue())
224       return IRValue->getType();
225     // All VPValues without any underlying IR value (like the vector trip count
226     // or the backedge-taken count) have the same type as the canonical IV.
227     return CanonicalIVTy;
228   }
229 
230   Type *ResultTy =
231       TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
232           .Case<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe,
233                 VPReductionPHIRecipe, VPWidenPointerInductionRecipe,
234                 VPEVLBasedIVPHIRecipe>([this](const auto *R) {
235             // Handle header phi recipes, except VPWidenIntOrFpInduction
236             // which needs special handling due it being possibly truncated.
237             // TODO: consider inferring/caching type of siblings, e.g.,
238             // backedge value, here and in cases below.
239             return inferScalarType(R->getStartValue());
240           })
241           .Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
242               [](const auto *R) { return R->getScalarType(); })
243           .Case<VPPredInstPHIRecipe, VPWidenPHIRecipe, VPScalarIVStepsRecipe,
244                 VPWidenGEPRecipe>([this](const VPRecipeBase *R) {
245             return inferScalarType(R->getOperand(0));
246           })
247           .Case<VPBlendRecipe, VPInstruction, VPWidenRecipe, VPReplicateRecipe,
248                 VPWidenCallRecipe, VPWidenMemoryRecipe, VPWidenSelectRecipe>(
249               [this](const auto *R) { return inferScalarTypeForRecipe(R); })
250           .Case<VPInterleaveRecipe>([V](const VPInterleaveRecipe *R) {
251             // TODO: Use info from interleave group.
252             return V->getUnderlyingValue()->getType();
253           })
254           .Case<VPWidenCastRecipe>(
255               [](const VPWidenCastRecipe *R) { return R->getResultType(); })
256           .Case<VPScalarCastRecipe>(
257               [](const VPScalarCastRecipe *R) { return R->getResultType(); })
258           .Case<VPExpandSCEVRecipe>([](const VPExpandSCEVRecipe *R) {
259             return R->getSCEV()->getType();
260           });
261 
262   assert(ResultTy && "could not infer type for the given VPValue");
263   CachedTypes[V] = ResultTy;
264   return ResultTy;
265 }
266