xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision fec64de261ff7ca2f56707d3d5e12e917b929c67)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/GenericDomTreeConstruction.h"
38 #include "llvm/Support/GraphWriter.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <cassert>
42 #include <iterator>
43 #include <string>
44 #include <vector>
45 
46 using namespace llvm;
47 extern cl::opt<bool> EnableVPlanNativePath;
48 
49 #define DEBUG_TYPE "vplan"
50 
51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
52   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
53   VPSlotTracker SlotTracker(
54       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
55   V.print(OS, SlotTracker);
56   return OS;
57 }
58 
59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
60   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
61     Instr->print(OS, SlotTracker);
62   else
63     printAsOperand(OS, SlotTracker);
64 }
65 
66 void VPValue::dump() const {
67   const VPInstruction *Instr = dyn_cast<VPInstruction>(this);
68   VPSlotTracker SlotTracker(
69       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
70   print(dbgs(), SlotTracker);
71   dbgs() << "\n";
72 }
73 
74 void VPRecipeBase::dump() const {
75   VPSlotTracker SlotTracker(nullptr);
76   print(dbgs(), "", SlotTracker);
77   dbgs() << "\n";
78 }
79 
80 VPUser *VPRecipeBase::toVPUser() {
81   if (auto *U = dyn_cast<VPInstruction>(this))
82     return U;
83   if (auto *U = dyn_cast<VPWidenRecipe>(this))
84     return U;
85   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
86     return U;
87   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
88     return U;
89   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
90     return U;
91   if (auto *U = dyn_cast<VPBlendRecipe>(this))
92     return U;
93   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
94     return U;
95   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
96     return U;
97   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
98     return U;
99   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
100     return U;
101   return nullptr;
102 }
103 
104 VPValue *VPRecipeBase::toVPValue() {
105   if (auto *V = dyn_cast<VPInstruction>(this))
106     return V;
107   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
108     return V;
109   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
110     return V;
111   return nullptr;
112 }
113 
114 const VPValue *VPRecipeBase::toVPValue() const {
115   if (auto *V = dyn_cast<VPInstruction>(this))
116     return V;
117   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
118     return V;
119   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
120     return V;
121   return nullptr;
122 }
123 
124 // Get the top-most entry block of \p Start. This is the entry block of the
125 // containing VPlan. This function is templated to support both const and non-const blocks
126 template <typename T> static T *getPlanEntry(T *Start) {
127   T *Next = Start;
128   T *Current = Start;
129   while ((Next = Next->getParent()))
130     Current = Next;
131 
132   SmallSetVector<T *, 8> WorkList;
133   WorkList.insert(Current);
134 
135   for (unsigned i = 0; i < WorkList.size(); i++) {
136     T *Current = WorkList[i];
137     if (Current->getNumPredecessors() == 0)
138       return Current;
139     auto &Predecessors = Current->getPredecessors();
140     WorkList.insert(Predecessors.begin(), Predecessors.end());
141   }
142 
143   llvm_unreachable("VPlan without any entry node without predecessors");
144 }
145 
146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
147 
148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
149 
150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
152   const VPBlockBase *Block = this;
153   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
154     Block = Region->getEntry();
155   return cast<VPBasicBlock>(Block);
156 }
157 
158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
159   VPBlockBase *Block = this;
160   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161     Block = Region->getEntry();
162   return cast<VPBasicBlock>(Block);
163 }
164 
165 void VPBlockBase::setPlan(VPlan *ParentPlan) {
166   assert(ParentPlan->getEntry() == this &&
167          "Can only set plan on its entry block.");
168   Plan = ParentPlan;
169 }
170 
171 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
172 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
173   const VPBlockBase *Block = this;
174   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
175     Block = Region->getExit();
176   return cast<VPBasicBlock>(Block);
177 }
178 
179 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
180   VPBlockBase *Block = this;
181   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
182     Block = Region->getExit();
183   return cast<VPBasicBlock>(Block);
184 }
185 
186 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
187   if (!Successors.empty() || !Parent)
188     return this;
189   assert(Parent->getExit() == this &&
190          "Block w/o successors not the exit of its parent.");
191   return Parent->getEnclosingBlockWithSuccessors();
192 }
193 
194 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
195   if (!Predecessors.empty() || !Parent)
196     return this;
197   assert(Parent->getEntry() == this &&
198          "Block w/o predecessors not the entry of its parent.");
199   return Parent->getEnclosingBlockWithPredecessors();
200 }
201 
202 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
203   SmallVector<VPBlockBase *, 8> Blocks;
204 
205   VPValue DummyValue;
206   for (VPBlockBase *Block : depth_first(Entry)) {
207     // Drop all references in VPBasicBlocks and replace all uses with
208     // DummyValue.
209     if (auto *VPBB = dyn_cast<VPBasicBlock>(Block))
210       VPBB->dropAllReferences(&DummyValue);
211     Blocks.push_back(Block);
212   }
213 
214   for (VPBlockBase *Block : Blocks)
215     delete Block;
216 }
217 
218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
219   iterator It = begin();
220   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
221                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
222                          isa<VPPredInstPHIRecipe>(&*It) ||
223                          isa<VPWidenCanonicalIVRecipe>(&*It)))
224     It++;
225   return It;
226 }
227 
228 BasicBlock *
229 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
230   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
231   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
232   BasicBlock *PrevBB = CFG.PrevBB;
233   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
234                                          PrevBB->getParent(), CFG.LastBB);
235   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
236 
237   // Hook up the new basic block to its predecessors.
238   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
239     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
240     auto &PredVPSuccessors = PredVPBB->getSuccessors();
241     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
242 
243     // In outer loop vectorization scenario, the predecessor BBlock may not yet
244     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
245     // vectorization. We do not encounter this case in inner loop vectorization
246     // as we start out by building a loop skeleton with the vector loop header
247     // and latch blocks. As a result, we never enter this function for the
248     // header block in the non VPlan-native path.
249     if (!PredBB) {
250       assert(EnableVPlanNativePath &&
251              "Unexpected null predecessor in non VPlan-native path");
252       CFG.VPBBsToFix.push_back(PredVPBB);
253       continue;
254     }
255 
256     assert(PredBB && "Predecessor basic-block not found building successor.");
257     auto *PredBBTerminator = PredBB->getTerminator();
258     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
259     if (isa<UnreachableInst>(PredBBTerminator)) {
260       assert(PredVPSuccessors.size() == 1 &&
261              "Predecessor ending w/o branch must have single successor.");
262       PredBBTerminator->eraseFromParent();
263       BranchInst::Create(NewBB, PredBB);
264     } else {
265       assert(PredVPSuccessors.size() == 2 &&
266              "Predecessor ending with branch must have two successors.");
267       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
268       assert(!PredBBTerminator->getSuccessor(idx) &&
269              "Trying to reset an existing successor block.");
270       PredBBTerminator->setSuccessor(idx, NewBB);
271     }
272   }
273   return NewBB;
274 }
275 
276 void VPBasicBlock::execute(VPTransformState *State) {
277   bool Replica = State->Instance &&
278                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
279   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
280   VPBlockBase *SingleHPred = nullptr;
281   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
282 
283   // 1. Create an IR basic block, or reuse the last one if possible.
284   // The last IR basic block is reused, as an optimization, in three cases:
285   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
286   // B. when the current VPBB has a single (hierarchical) predecessor which
287   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
288   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
289   //    is the exit of this region from a previous instance, or the predecessor
290   //    of this region.
291   if (PrevVPBB && /* A */
292       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
293         SingleHPred->getExitBasicBlock() == PrevVPBB &&
294         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
295       !(Replica && getPredecessors().empty())) {       /* C */
296     NewBB = createEmptyBasicBlock(State->CFG);
297     State->Builder.SetInsertPoint(NewBB);
298     // Temporarily terminate with unreachable until CFG is rewired.
299     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
300     State->Builder.SetInsertPoint(Terminator);
301     // Register NewBB in its loop. In innermost loops its the same for all BB's.
302     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
303     L->addBasicBlockToLoop(NewBB, *State->LI);
304     State->CFG.PrevBB = NewBB;
305   }
306 
307   // 2. Fill the IR basic block with IR instructions.
308   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
309                     << " in BB:" << NewBB->getName() << '\n');
310 
311   State->CFG.VPBB2IRBB[this] = NewBB;
312   State->CFG.PrevVPBB = this;
313 
314   for (VPRecipeBase &Recipe : Recipes)
315     Recipe.execute(*State);
316 
317   VPValue *CBV;
318   if (EnableVPlanNativePath && (CBV = getCondBit())) {
319     Value *IRCBV = CBV->getUnderlyingValue();
320     assert(IRCBV && "Unexpected null underlying value for condition bit");
321 
322     // Condition bit value in a VPBasicBlock is used as the branch selector. In
323     // the VPlan-native path case, since all branches are uniform we generate a
324     // branch instruction using the condition value from vector lane 0 and dummy
325     // successors. The successors are fixed later when the successor blocks are
326     // visited.
327     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
328     NewCond = State->Builder.CreateExtractElement(NewCond,
329                                                   State->Builder.getInt32(0));
330 
331     // Replace the temporary unreachable terminator with the new conditional
332     // branch.
333     auto *CurrentTerminator = NewBB->getTerminator();
334     assert(isa<UnreachableInst>(CurrentTerminator) &&
335            "Expected to replace unreachable terminator with conditional "
336            "branch.");
337     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
338     CondBr->setSuccessor(0, nullptr);
339     ReplaceInstWithInst(CurrentTerminator, CondBr);
340   }
341 
342   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
343 }
344 
345 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
346   for (VPRecipeBase &R : Recipes) {
347     if (auto *VPV = R.toVPValue())
348       VPV->replaceAllUsesWith(NewValue);
349 
350     if (auto *User = R.toVPUser())
351       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
352         User->setOperand(I, NewValue);
353   }
354 }
355 
356 void VPRegionBlock::execute(VPTransformState *State) {
357   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
358 
359   if (!isReplicator()) {
360     // Visit the VPBlocks connected to "this", starting from it.
361     for (VPBlockBase *Block : RPOT) {
362       if (EnableVPlanNativePath) {
363         // The inner loop vectorization path does not represent loop preheader
364         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
365         // vectorizing loop preheader block. In future, we may replace this
366         // check with the check for loop preheader.
367         if (Block->getNumPredecessors() == 0)
368           continue;
369 
370         // Skip vectorizing loop exit block. In future, we may replace this
371         // check with the check for loop exit.
372         if (Block->getNumSuccessors() == 0)
373           continue;
374       }
375 
376       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
377       Block->execute(State);
378     }
379     return;
380   }
381 
382   assert(!State->Instance && "Replicating a Region with non-null instance.");
383 
384   // Enter replicating mode.
385   State->Instance = {0, 0};
386 
387   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
388     State->Instance->Part = Part;
389     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
390     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
391          ++Lane) {
392       State->Instance->Lane = Lane;
393       // Visit the VPBlocks connected to \p this, starting from it.
394       for (VPBlockBase *Block : RPOT) {
395         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
396         Block->execute(State);
397       }
398     }
399   }
400 
401   // Exit replicating mode.
402   State->Instance.reset();
403 }
404 
405 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
406   assert(!Parent && "Recipe already in some VPBasicBlock");
407   assert(InsertPos->getParent() &&
408          "Insertion position not in any VPBasicBlock");
409   Parent = InsertPos->getParent();
410   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
411 }
412 
413 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
414   assert(!Parent && "Recipe already in some VPBasicBlock");
415   assert(InsertPos->getParent() &&
416          "Insertion position not in any VPBasicBlock");
417   Parent = InsertPos->getParent();
418   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
419 }
420 
421 void VPRecipeBase::removeFromParent() {
422   assert(getParent() && "Recipe not in any VPBasicBlock");
423   getParent()->getRecipeList().remove(getIterator());
424   Parent = nullptr;
425 }
426 
427 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
428   assert(getParent() && "Recipe not in any VPBasicBlock");
429   return getParent()->getRecipeList().erase(getIterator());
430 }
431 
432 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
433   removeFromParent();
434   insertAfter(InsertPos);
435 }
436 
437 void VPInstruction::generateInstruction(VPTransformState &State,
438                                         unsigned Part) {
439   IRBuilder<> &Builder = State.Builder;
440 
441   if (Instruction::isBinaryOp(getOpcode())) {
442     Value *A = State.get(getOperand(0), Part);
443     Value *B = State.get(getOperand(1), Part);
444     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
445     State.set(this, V, Part);
446     return;
447   }
448 
449   switch (getOpcode()) {
450   case VPInstruction::Not: {
451     Value *A = State.get(getOperand(0), Part);
452     Value *V = Builder.CreateNot(A);
453     State.set(this, V, Part);
454     break;
455   }
456   case VPInstruction::ICmpULE: {
457     Value *IV = State.get(getOperand(0), Part);
458     Value *TC = State.get(getOperand(1), Part);
459     Value *V = Builder.CreateICmpULE(IV, TC);
460     State.set(this, V, Part);
461     break;
462   }
463   case Instruction::Select: {
464     Value *Cond = State.get(getOperand(0), Part);
465     Value *Op1 = State.get(getOperand(1), Part);
466     Value *Op2 = State.get(getOperand(2), Part);
467     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
468     State.set(this, V, Part);
469     break;
470   }
471   case VPInstruction::ActiveLaneMask: {
472     // Get first lane of vector induction variable.
473     Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
474     // Get the original loop tripcount.
475     Value *ScalarTC = State.TripCount;
476 
477     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
478     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
479     Instruction *Call = Builder.CreateIntrinsic(
480         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
481         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
482     State.set(this, Call, Part);
483     break;
484   }
485   default:
486     llvm_unreachable("Unsupported opcode for instruction");
487   }
488 }
489 
490 void VPInstruction::execute(VPTransformState &State) {
491   assert(!State.Instance && "VPInstruction executing an Instance");
492   for (unsigned Part = 0; Part < State.UF; ++Part)
493     generateInstruction(State, Part);
494 }
495 
496 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
497                           VPSlotTracker &SlotTracker) const {
498   O << "\"EMIT ";
499   print(O, SlotTracker);
500 }
501 
502 void VPInstruction::print(raw_ostream &O) const {
503   VPSlotTracker SlotTracker(getParent()->getPlan());
504   print(O, SlotTracker);
505 }
506 
507 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
508   if (hasResult()) {
509     printAsOperand(O, SlotTracker);
510     O << " = ";
511   }
512 
513   switch (getOpcode()) {
514   case VPInstruction::Not:
515     O << "not";
516     break;
517   case VPInstruction::ICmpULE:
518     O << "icmp ule";
519     break;
520   case VPInstruction::SLPLoad:
521     O << "combined load";
522     break;
523   case VPInstruction::SLPStore:
524     O << "combined store";
525     break;
526   case VPInstruction::ActiveLaneMask:
527     O << "active lane mask";
528     break;
529 
530   default:
531     O << Instruction::getOpcodeName(getOpcode());
532   }
533 
534   for (const VPValue *Operand : operands()) {
535     O << " ";
536     Operand->printAsOperand(O, SlotTracker);
537   }
538 }
539 
540 /// Generate the code inside the body of the vectorized loop. Assumes a single
541 /// LoopVectorBody basic-block was created for this. Introduce additional
542 /// basic-blocks as needed, and fill them all.
543 void VPlan::execute(VPTransformState *State) {
544   // -1. Check if the backedge taken count is needed, and if so build it.
545   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
546     Value *TC = State->TripCount;
547     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
548     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
549                                    "trip.count.minus.1");
550     auto VF = State->VF;
551     Value *VTCMO =
552         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
553     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
554       State->set(BackedgeTakenCount, VTCMO, Part);
555   }
556 
557   // 0. Set the reverse mapping from VPValues to Values for code generation.
558   for (auto &Entry : Value2VPValue)
559     State->VPValue2Value[Entry.second] = Entry.first;
560 
561   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
562   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
563   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
564 
565   // 1. Make room to generate basic-blocks inside loop body if needed.
566   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
567       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
568   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
569   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
570   // Remove the edge between Header and Latch to allow other connections.
571   // Temporarily terminate with unreachable until CFG is rewired.
572   // Note: this asserts the generated code's assumption that
573   // getFirstInsertionPt() can be dereferenced into an Instruction.
574   VectorHeaderBB->getTerminator()->eraseFromParent();
575   State->Builder.SetInsertPoint(VectorHeaderBB);
576   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
577   State->Builder.SetInsertPoint(Terminator);
578 
579   // 2. Generate code in loop body.
580   State->CFG.PrevVPBB = nullptr;
581   State->CFG.PrevBB = VectorHeaderBB;
582   State->CFG.LastBB = VectorLatchBB;
583 
584   for (VPBlockBase *Block : depth_first(Entry))
585     Block->execute(State);
586 
587   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
588   // VPBB's successors.
589   for (auto VPBB : State->CFG.VPBBsToFix) {
590     assert(EnableVPlanNativePath &&
591            "Unexpected VPBBsToFix in non VPlan-native path");
592     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
593     assert(BB && "Unexpected null basic block for VPBB");
594 
595     unsigned Idx = 0;
596     auto *BBTerminator = BB->getTerminator();
597 
598     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
599       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
600       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
601       ++Idx;
602     }
603   }
604 
605   // 3. Merge the temporary latch created with the last basic-block filled.
606   BasicBlock *LastBB = State->CFG.PrevBB;
607   // Connect LastBB to VectorLatchBB to facilitate their merge.
608   assert((EnableVPlanNativePath ||
609           isa<UnreachableInst>(LastBB->getTerminator())) &&
610          "Expected InnerLoop VPlan CFG to terminate with unreachable");
611   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
612          "Expected VPlan CFG to terminate with branch in NativePath");
613   LastBB->getTerminator()->eraseFromParent();
614   BranchInst::Create(VectorLatchBB, LastBB);
615 
616   // Merge LastBB with Latch.
617   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
618   (void)Merged;
619   assert(Merged && "Could not merge last basic block with latch.");
620   VectorLatchBB = LastBB;
621 
622   // We do not attempt to preserve DT for outer loop vectorization currently.
623   if (!EnableVPlanNativePath)
624     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
625                         L->getExitBlock());
626 }
627 
628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
629 LLVM_DUMP_METHOD
630 void VPlan::dump() const { dbgs() << *this << '\n'; }
631 #endif
632 
633 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
634                                 BasicBlock *LoopLatchBB,
635                                 BasicBlock *LoopExitBB) {
636   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
637   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
638   // The vector body may be more than a single basic-block by this point.
639   // Update the dominator tree information inside the vector body by propagating
640   // it from header to latch, expecting only triangular control-flow, if any.
641   BasicBlock *PostDomSucc = nullptr;
642   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
643     // Get the list of successors of this block.
644     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
645     assert(Succs.size() <= 2 &&
646            "Basic block in vector loop has more than 2 successors.");
647     PostDomSucc = Succs[0];
648     if (Succs.size() == 1) {
649       assert(PostDomSucc->getSinglePredecessor() &&
650              "PostDom successor has more than one predecessor.");
651       DT->addNewBlock(PostDomSucc, BB);
652       continue;
653     }
654     BasicBlock *InterimSucc = Succs[1];
655     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
656       PostDomSucc = Succs[1];
657       InterimSucc = Succs[0];
658     }
659     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
660            "One successor of a basic block does not lead to the other.");
661     assert(InterimSucc->getSinglePredecessor() &&
662            "Interim successor has more than one predecessor.");
663     assert(PostDomSucc->hasNPredecessors(2) &&
664            "PostDom successor has more than two predecessors.");
665     DT->addNewBlock(InterimSucc, BB);
666     DT->addNewBlock(PostDomSucc, BB);
667   }
668   // Latch block is a new dominator for the loop exit.
669   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
670   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
671 }
672 
673 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
674   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
675          Twine(getOrCreateBID(Block));
676 }
677 
678 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
679   const std::string &Name = Block->getName();
680   if (!Name.empty())
681     return Name;
682   return "VPB" + Twine(getOrCreateBID(Block));
683 }
684 
685 void VPlanPrinter::dump() {
686   Depth = 1;
687   bumpIndent(0);
688   OS << "digraph VPlan {\n";
689   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
690   if (!Plan.getName().empty())
691     OS << "\\n" << DOT::EscapeString(Plan.getName());
692   if (Plan.BackedgeTakenCount) {
693     OS << ", where:\\n";
694     Plan.BackedgeTakenCount->print(OS, SlotTracker);
695     OS << " := BackedgeTakenCount";
696   }
697   OS << "\"]\n";
698   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
699   OS << "edge [fontname=Courier, fontsize=30]\n";
700   OS << "compound=true\n";
701 
702   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
703     dumpBlock(Block);
704 
705   OS << "}\n";
706 }
707 
708 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
709   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
710     dumpBasicBlock(BasicBlock);
711   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
712     dumpRegion(Region);
713   else
714     llvm_unreachable("Unsupported kind of VPBlock.");
715 }
716 
717 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
718                             bool Hidden, const Twine &Label) {
719   // Due to "dot" we print an edge between two regions as an edge between the
720   // exit basic block and the entry basic of the respective regions.
721   const VPBlockBase *Tail = From->getExitBasicBlock();
722   const VPBlockBase *Head = To->getEntryBasicBlock();
723   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
724   OS << " [ label=\"" << Label << '\"';
725   if (Tail != From)
726     OS << " ltail=" << getUID(From);
727   if (Head != To)
728     OS << " lhead=" << getUID(To);
729   if (Hidden)
730     OS << "; splines=none";
731   OS << "]\n";
732 }
733 
734 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
735   auto &Successors = Block->getSuccessors();
736   if (Successors.size() == 1)
737     drawEdge(Block, Successors.front(), false, "");
738   else if (Successors.size() == 2) {
739     drawEdge(Block, Successors.front(), false, "T");
740     drawEdge(Block, Successors.back(), false, "F");
741   } else {
742     unsigned SuccessorNumber = 0;
743     for (auto *Successor : Successors)
744       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
745   }
746 }
747 
748 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
749   OS << Indent << getUID(BasicBlock) << " [label =\n";
750   bumpIndent(1);
751   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
752   bumpIndent(1);
753 
754   // Dump the block predicate.
755   const VPValue *Pred = BasicBlock->getPredicate();
756   if (Pred) {
757     OS << " +\n" << Indent << " \"BlockPredicate: ";
758     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
759       PredI->printAsOperand(OS, SlotTracker);
760       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
761          << ")\\l\"";
762     } else
763       Pred->printAsOperand(OS, SlotTracker);
764   }
765 
766   for (const VPRecipeBase &Recipe : *BasicBlock) {
767     OS << " +\n" << Indent;
768     Recipe.print(OS, Indent, SlotTracker);
769     OS << "\\l\"";
770   }
771 
772   // Dump the condition bit.
773   const VPValue *CBV = BasicBlock->getCondBit();
774   if (CBV) {
775     OS << " +\n" << Indent << " \"CondBit: ";
776     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
777       CBI->printAsOperand(OS, SlotTracker);
778       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
779     } else {
780       CBV->printAsOperand(OS, SlotTracker);
781       OS << "\"";
782     }
783   }
784 
785   bumpIndent(-2);
786   OS << "\n" << Indent << "]\n";
787   dumpEdges(BasicBlock);
788 }
789 
790 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
791   OS << Indent << "subgraph " << getUID(Region) << " {\n";
792   bumpIndent(1);
793   OS << Indent << "fontname=Courier\n"
794      << Indent << "label=\""
795      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
796      << DOT::EscapeString(Region->getName()) << "\"\n";
797   // Dump the blocks of the region.
798   assert(Region->getEntry() && "Region contains no inner blocks.");
799   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
800     dumpBlock(Block);
801   bumpIndent(-1);
802   OS << Indent << "}\n";
803   dumpEdges(Region);
804 }
805 
806 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
807   std::string IngredientString;
808   raw_string_ostream RSO(IngredientString);
809   if (auto *Inst = dyn_cast<Instruction>(V)) {
810     if (!Inst->getType()->isVoidTy()) {
811       Inst->printAsOperand(RSO, false);
812       RSO << " = ";
813     }
814     RSO << Inst->getOpcodeName() << " ";
815     unsigned E = Inst->getNumOperands();
816     if (E > 0) {
817       Inst->getOperand(0)->printAsOperand(RSO, false);
818       for (unsigned I = 1; I < E; ++I)
819         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
820     }
821   } else // !Inst
822     V->printAsOperand(RSO, false);
823   RSO.flush();
824   O << DOT::EscapeString(IngredientString);
825 }
826 
827 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
828                               VPSlotTracker &SlotTracker) const {
829   O << "\"WIDEN-CALL ";
830 
831   auto *CI = cast<CallInst>(getUnderlyingInstr());
832   if (CI->getType()->isVoidTy())
833     O << "void ";
834   else {
835     printAsOperand(O, SlotTracker);
836     O << " = ";
837   }
838 
839   O << "call @" << CI->getCalledFunction()->getName() << "(";
840   printOperands(O, SlotTracker);
841   O << ")";
842 }
843 
844 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
845                                 VPSlotTracker &SlotTracker) const {
846   O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient)
847     << (InvariantCond ? " (condition is loop invariant)" : "");
848 }
849 
850 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
851                           VPSlotTracker &SlotTracker) const {
852   O << "\"WIDEN\\l\"";
853   O << "\"  " << VPlanIngredient(&Ingredient);
854 }
855 
856 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
857                                           VPSlotTracker &SlotTracker) const {
858   O << "\"WIDEN-INDUCTION";
859   if (Trunc) {
860     O << "\\l\"";
861     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
862     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
863   } else
864     O << " " << VPlanIngredient(IV);
865 }
866 
867 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
868                              VPSlotTracker &SlotTracker) const {
869   O << "\"WIDEN-GEP ";
870   O << (IsPtrLoopInvariant ? "Inv" : "Var");
871   size_t IndicesNumber = IsIndexLoopInvariant.size();
872   for (size_t I = 0; I < IndicesNumber; ++I)
873     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
874   O << "\\l\"";
875   O << " +\n" << Indent << "\"  " << VPlanIngredient(GEP);
876 }
877 
878 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
879                              VPSlotTracker &SlotTracker) const {
880   O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
881 }
882 
883 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
884                           VPSlotTracker &SlotTracker) const {
885   O << "\"BLEND ";
886   Phi->printAsOperand(O, false);
887   O << " =";
888   if (getNumIncomingValues() == 1) {
889     // Not a User of any mask: not really blending, this is a
890     // single-predecessor phi.
891     O << " ";
892     getIncomingValue(0)->printAsOperand(O, SlotTracker);
893   } else {
894     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
895       O << " ";
896       getIncomingValue(I)->printAsOperand(O, SlotTracker);
897       O << "/";
898       getMask(I)->printAsOperand(O, SlotTracker);
899     }
900   }
901 }
902 
903 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
904                               VPSlotTracker &SlotTracker) const {
905   O << "\"REDUCE of" << *I << " as ";
906   ChainOp->printAsOperand(O, SlotTracker);
907   O << " + reduce(";
908   VecOp->printAsOperand(O, SlotTracker);
909   if (CondOp) {
910     O << ", ";
911     CondOp->printAsOperand(O, SlotTracker);
912   }
913   O << ")";
914 }
915 
916 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
917                               VPSlotTracker &SlotTracker) const {
918   O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ")
919     << VPlanIngredient(Ingredient);
920   if (AlsoPack)
921     O << " (S->V)";
922 }
923 
924 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
925                                 VPSlotTracker &SlotTracker) const {
926   O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst);
927 }
928 
929 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
930                                            VPSlotTracker &SlotTracker) const {
931   O << "\"WIDEN "
932     << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
933 
934   printOperands(O, SlotTracker);
935 }
936 
937 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
938   Value *CanonicalIV = State.CanonicalIV;
939   Type *STy = CanonicalIV->getType();
940   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
941   ElementCount VF = State.VF;
942   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
943   Value *VStart = VF.isScalar()
944                       ? CanonicalIV
945                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
946                                                   CanonicalIV, "broadcast");
947   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
948     SmallVector<Constant *, 8> Indices;
949     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
950       Indices.push_back(
951           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
952     // If VF == 1, there is only one iteration in the loop above, thus the
953     // element pushed back into Indices is ConstantInt::get(STy, Part)
954     Constant *VStep =
955         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
956     // Add the consecutive indices to the vector value.
957     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
958     State.set(getVPValue(), CanonicalVectorIV, Part);
959   }
960 }
961 
962 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
963                                      VPSlotTracker &SlotTracker) const {
964   O << "\"EMIT ";
965   getVPValue()->printAsOperand(O, SlotTracker);
966   O << " = WIDEN-CANONICAL-INDUCTION";
967 }
968 
969 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
970 
971 void VPValue::replaceAllUsesWith(VPValue *New) {
972   for (unsigned J = 0; J < getNumUsers();) {
973     VPUser *User = Users[J];
974     unsigned NumUsers = getNumUsers();
975     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
976       if (User->getOperand(I) == this)
977         User->setOperand(I, New);
978     // If a user got removed after updating the current user, the next user to
979     // update will be moved to the current position, so we only need to
980     // increment the index if the number of users did not change.
981     if (NumUsers == getNumUsers())
982       J++;
983   }
984 }
985 
986 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
987   if (const Value *UV = getUnderlyingValue()) {
988     OS << "ir<";
989     UV->printAsOperand(OS, false);
990     OS << ">";
991     return;
992   }
993 
994   unsigned Slot = Tracker.getSlot(this);
995   if (Slot == unsigned(-1))
996     OS << "<badref>";
997   else
998     OS << "vp<%" << Tracker.getSlot(this) << ">";
999 }
1000 
1001 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1002   bool First = true;
1003   for (VPValue *Op : operands()) {
1004     if (!First)
1005       O << ", ";
1006     Op->printAsOperand(O, SlotTracker);
1007     First = false;
1008   }
1009 }
1010 
1011 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1012                                           Old2NewTy &Old2New,
1013                                           InterleavedAccessInfo &IAI) {
1014   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1015   for (VPBlockBase *Base : RPOT) {
1016     visitBlock(Base, Old2New, IAI);
1017   }
1018 }
1019 
1020 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1021                                          InterleavedAccessInfo &IAI) {
1022   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1023     for (VPRecipeBase &VPI : *VPBB) {
1024       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1025       auto *VPInst = cast<VPInstruction>(&VPI);
1026       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1027       auto *IG = IAI.getInterleaveGroup(Inst);
1028       if (!IG)
1029         continue;
1030 
1031       auto NewIGIter = Old2New.find(IG);
1032       if (NewIGIter == Old2New.end())
1033         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1034             IG->getFactor(), IG->isReverse(), IG->getAlign());
1035 
1036       if (Inst == IG->getInsertPos())
1037         Old2New[IG]->setInsertPos(VPInst);
1038 
1039       InterleaveGroupMap[VPInst] = Old2New[IG];
1040       InterleaveGroupMap[VPInst]->insertMember(
1041           VPInst, IG->getIndex(Inst),
1042           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1043                                 : IG->getFactor()));
1044     }
1045   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1046     visitRegion(Region, Old2New, IAI);
1047   else
1048     llvm_unreachable("Unsupported kind of VPBlock.");
1049 }
1050 
1051 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1052                                                  InterleavedAccessInfo &IAI) {
1053   Old2NewTy Old2New;
1054   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1055 }
1056 
1057 void VPSlotTracker::assignSlot(const VPValue *V) {
1058   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1059   const Value *UV = V->getUnderlyingValue();
1060   if (UV)
1061     return;
1062   const auto *VPI = dyn_cast<VPInstruction>(V);
1063   if (VPI && !VPI->hasResult())
1064     return;
1065 
1066   Slots[V] = NextSlot++;
1067 }
1068 
1069 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1070   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1071     assignSlots(Region);
1072   else
1073     assignSlots(cast<VPBasicBlock>(VPBB));
1074 }
1075 
1076 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1077   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1078   for (const VPBlockBase *Block : RPOT)
1079     assignSlots(Block);
1080 }
1081 
1082 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1083   for (const VPRecipeBase &Recipe : *VPBB) {
1084     if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
1085       assignSlot(VPI);
1086     else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
1087       assignSlot(VPIV->getVPValue());
1088   }
1089 }
1090 
1091 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1092 
1093   for (const VPValue *V : Plan.VPExternalDefs)
1094     assignSlot(V);
1095 
1096   for (auto &E : Plan.Value2VPValue)
1097     if (!isa<VPInstruction>(E.second))
1098       assignSlot(E.second);
1099 
1100   for (const VPValue *V : Plan.VPCBVs)
1101     assignSlot(V);
1102 
1103   if (Plan.BackedgeTakenCount)
1104     assignSlot(Plan.BackedgeTakenCount);
1105 
1106   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1107   for (const VPBlockBase *Block : RPOT)
1108     assignSlots(Block);
1109 }
1110