xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision fec0a0adac544aeb43da758749c463ff5151ac1e)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 Value *VPLane::getAsRuntimeExpr(IRBuilder<> &Builder,
62                                 const ElementCount &VF) const {
63   switch (LaneKind) {
64   case VPLane::Kind::ScalableLast:
65     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
66     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
67                              Builder.getInt32(VF.getKnownMinValue() - Lane));
68   case VPLane::Kind::First:
69     return Builder.getInt32(Lane);
70   }
71   llvm_unreachable("Unknown lane kind");
72 }
73 
74 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
75     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
76   if (Def)
77     Def->addDefinedValue(this);
78 }
79 
80 VPValue::~VPValue() {
81   assert(Users.empty() && "trying to delete a VPValue with remaining users");
82   if (Def)
83     Def->removeDefinedValue(this);
84 }
85 
86 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
87   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
88     R->print(OS, "", SlotTracker);
89   else
90     printAsOperand(OS, SlotTracker);
91 }
92 
93 void VPValue::dump() const {
94   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
95   VPSlotTracker SlotTracker(
96       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
97   print(dbgs(), SlotTracker);
98   dbgs() << "\n";
99 }
100 
101 void VPDef::dump() const {
102   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
103   VPSlotTracker SlotTracker(
104       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
105   print(dbgs(), "", SlotTracker);
106   dbgs() << "\n";
107 }
108 
109 // Get the top-most entry block of \p Start. This is the entry block of the
110 // containing VPlan. This function is templated to support both const and non-const blocks
111 template <typename T> static T *getPlanEntry(T *Start) {
112   T *Next = Start;
113   T *Current = Start;
114   while ((Next = Next->getParent()))
115     Current = Next;
116 
117   SmallSetVector<T *, 8> WorkList;
118   WorkList.insert(Current);
119 
120   for (unsigned i = 0; i < WorkList.size(); i++) {
121     T *Current = WorkList[i];
122     if (Current->getNumPredecessors() == 0)
123       return Current;
124     auto &Predecessors = Current->getPredecessors();
125     WorkList.insert(Predecessors.begin(), Predecessors.end());
126   }
127 
128   llvm_unreachable("VPlan without any entry node without predecessors");
129 }
130 
131 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
132 
133 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
134 
135 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
136 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
137   const VPBlockBase *Block = this;
138   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
139     Block = Region->getEntry();
140   return cast<VPBasicBlock>(Block);
141 }
142 
143 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
144   VPBlockBase *Block = this;
145   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
146     Block = Region->getEntry();
147   return cast<VPBasicBlock>(Block);
148 }
149 
150 void VPBlockBase::setPlan(VPlan *ParentPlan) {
151   assert(ParentPlan->getEntry() == this &&
152          "Can only set plan on its entry block.");
153   Plan = ParentPlan;
154 }
155 
156 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
157 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
158   const VPBlockBase *Block = this;
159   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
160     Block = Region->getExit();
161   return cast<VPBasicBlock>(Block);
162 }
163 
164 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
165   VPBlockBase *Block = this;
166   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
167     Block = Region->getExit();
168   return cast<VPBasicBlock>(Block);
169 }
170 
171 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
172   if (!Successors.empty() || !Parent)
173     return this;
174   assert(Parent->getExit() == this &&
175          "Block w/o successors not the exit of its parent.");
176   return Parent->getEnclosingBlockWithSuccessors();
177 }
178 
179 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
180   if (!Predecessors.empty() || !Parent)
181     return this;
182   assert(Parent->getEntry() == this &&
183          "Block w/o predecessors not the entry of its parent.");
184   return Parent->getEnclosingBlockWithPredecessors();
185 }
186 
187 static VPValue *getSingleOperandOrNull(VPUser &U) {
188   if (U.getNumOperands() == 1)
189     return U.getOperand(0);
190 
191   return nullptr;
192 }
193 
194 static const VPValue *getSingleOperandOrNull(const VPUser &U) {
195   if (U.getNumOperands() == 1)
196     return U.getOperand(0);
197 
198   return nullptr;
199 }
200 
201 static void resetSingleOpUser(VPUser &U, VPValue *NewVal) {
202   assert(U.getNumOperands() <= 1 && "Didn't expect more than one operand!");
203   if (!NewVal) {
204     if (U.getNumOperands() == 1)
205       U.removeLastOperand();
206     return;
207   }
208 
209   if (U.getNumOperands() == 1)
210     U.setOperand(0, NewVal);
211   else
212     U.addOperand(NewVal);
213 }
214 
215 VPValue *VPBlockBase::getCondBit() {
216   return getSingleOperandOrNull(CondBitUser);
217 }
218 
219 const VPValue *VPBlockBase::getCondBit() const {
220   return getSingleOperandOrNull(CondBitUser);
221 }
222 
223 void VPBlockBase::setCondBit(VPValue *CV) {
224   resetSingleOpUser(CondBitUser, CV);
225 }
226 
227 VPValue *VPBlockBase::getPredicate() {
228   return getSingleOperandOrNull(PredicateUser);
229 }
230 
231 const VPValue *VPBlockBase::getPredicate() const {
232   return getSingleOperandOrNull(PredicateUser);
233 }
234 
235 void VPBlockBase::setPredicate(VPValue *CV) {
236   resetSingleOpUser(PredicateUser, CV);
237 }
238 
239 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
240   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
241 
242   for (VPBlockBase *Block : Blocks)
243     delete Block;
244 }
245 
246 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
247   iterator It = begin();
248   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
249                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
250                          isa<VPPredInstPHIRecipe>(&*It) ||
251                          isa<VPWidenCanonicalIVRecipe>(&*It)))
252     It++;
253   return It;
254 }
255 
256 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
257   if (!Def->getDef())
258     return Def->getLiveInIRValue();
259 
260   if (hasScalarValue(Def, Instance)) {
261     return Data
262         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
263   }
264 
265   assert(hasVectorValue(Def, Instance.Part));
266   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
267   if (!VecPart->getType()->isVectorTy()) {
268     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
269     return VecPart;
270   }
271   // TODO: Cache created scalar values.
272   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
273   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
274   // set(Def, Extract, Instance);
275   return Extract;
276 }
277 
278 BasicBlock *
279 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
280   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
281   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
282   BasicBlock *PrevBB = CFG.PrevBB;
283   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
284                                          PrevBB->getParent(), CFG.LastBB);
285   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
286 
287   // Hook up the new basic block to its predecessors.
288   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
289     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
290     auto &PredVPSuccessors = PredVPBB->getSuccessors();
291     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
292 
293     // In outer loop vectorization scenario, the predecessor BBlock may not yet
294     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
295     // vectorization. We do not encounter this case in inner loop vectorization
296     // as we start out by building a loop skeleton with the vector loop header
297     // and latch blocks. As a result, we never enter this function for the
298     // header block in the non VPlan-native path.
299     if (!PredBB) {
300       assert(EnableVPlanNativePath &&
301              "Unexpected null predecessor in non VPlan-native path");
302       CFG.VPBBsToFix.push_back(PredVPBB);
303       continue;
304     }
305 
306     assert(PredBB && "Predecessor basic-block not found building successor.");
307     auto *PredBBTerminator = PredBB->getTerminator();
308     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
309     if (isa<UnreachableInst>(PredBBTerminator)) {
310       assert(PredVPSuccessors.size() == 1 &&
311              "Predecessor ending w/o branch must have single successor.");
312       PredBBTerminator->eraseFromParent();
313       BranchInst::Create(NewBB, PredBB);
314     } else {
315       assert(PredVPSuccessors.size() == 2 &&
316              "Predecessor ending with branch must have two successors.");
317       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
318       assert(!PredBBTerminator->getSuccessor(idx) &&
319              "Trying to reset an existing successor block.");
320       PredBBTerminator->setSuccessor(idx, NewBB);
321     }
322   }
323   return NewBB;
324 }
325 
326 void VPBasicBlock::execute(VPTransformState *State) {
327   bool Replica = State->Instance && !State->Instance->isFirstIteration();
328   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
329   VPBlockBase *SingleHPred = nullptr;
330   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
331 
332   // 1. Create an IR basic block, or reuse the last one if possible.
333   // The last IR basic block is reused, as an optimization, in three cases:
334   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
335   // B. when the current VPBB has a single (hierarchical) predecessor which
336   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
337   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
338   //    is the exit of this region from a previous instance, or the predecessor
339   //    of this region.
340   if (PrevVPBB && /* A */
341       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
342         SingleHPred->getExitBasicBlock() == PrevVPBB &&
343         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
344       !(Replica && getPredecessors().empty())) {       /* C */
345     NewBB = createEmptyBasicBlock(State->CFG);
346     State->Builder.SetInsertPoint(NewBB);
347     // Temporarily terminate with unreachable until CFG is rewired.
348     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
349     State->Builder.SetInsertPoint(Terminator);
350     // Register NewBB in its loop. In innermost loops its the same for all BB's.
351     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
352     L->addBasicBlockToLoop(NewBB, *State->LI);
353     State->CFG.PrevBB = NewBB;
354   }
355 
356   // 2. Fill the IR basic block with IR instructions.
357   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
358                     << " in BB:" << NewBB->getName() << '\n');
359 
360   State->CFG.VPBB2IRBB[this] = NewBB;
361   State->CFG.PrevVPBB = this;
362 
363   for (VPRecipeBase &Recipe : Recipes)
364     Recipe.execute(*State);
365 
366   VPValue *CBV;
367   if (EnableVPlanNativePath && (CBV = getCondBit())) {
368     assert(CBV->getUnderlyingValue() &&
369            "Unexpected null underlying value for condition bit");
370 
371     // Condition bit value in a VPBasicBlock is used as the branch selector. In
372     // the VPlan-native path case, since all branches are uniform we generate a
373     // branch instruction using the condition value from vector lane 0 and dummy
374     // successors. The successors are fixed later when the successor blocks are
375     // visited.
376     Value *NewCond = State->get(CBV, {0, 0});
377 
378     // Replace the temporary unreachable terminator with the new conditional
379     // branch.
380     auto *CurrentTerminator = NewBB->getTerminator();
381     assert(isa<UnreachableInst>(CurrentTerminator) &&
382            "Expected to replace unreachable terminator with conditional "
383            "branch.");
384     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
385     CondBr->setSuccessor(0, nullptr);
386     ReplaceInstWithInst(CurrentTerminator, CondBr);
387   }
388 
389   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
390 }
391 
392 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
393   for (VPRecipeBase &R : Recipes) {
394     for (auto *Def : R.definedValues())
395       Def->replaceAllUsesWith(NewValue);
396 
397     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
398       R.setOperand(I, NewValue);
399   }
400 }
401 
402 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
403   for (VPBlockBase *Block : depth_first(Entry))
404     // Drop all references in VPBasicBlocks and replace all uses with
405     // DummyValue.
406     Block->dropAllReferences(NewValue);
407 }
408 
409 void VPRegionBlock::execute(VPTransformState *State) {
410   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
411 
412   if (!isReplicator()) {
413     // Visit the VPBlocks connected to "this", starting from it.
414     for (VPBlockBase *Block : RPOT) {
415       if (EnableVPlanNativePath) {
416         // The inner loop vectorization path does not represent loop preheader
417         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
418         // vectorizing loop preheader block. In future, we may replace this
419         // check with the check for loop preheader.
420         if (Block->getNumPredecessors() == 0)
421           continue;
422 
423         // Skip vectorizing loop exit block. In future, we may replace this
424         // check with the check for loop exit.
425         if (Block->getNumSuccessors() == 0)
426           continue;
427       }
428 
429       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
430       Block->execute(State);
431     }
432     return;
433   }
434 
435   assert(!State->Instance && "Replicating a Region with non-null instance.");
436 
437   // Enter replicating mode.
438   State->Instance = VPIteration(0, 0);
439 
440   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
441     State->Instance->Part = Part;
442     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
443     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
444          ++Lane) {
445       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
446       // Visit the VPBlocks connected to \p this, starting from it.
447       for (VPBlockBase *Block : RPOT) {
448         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
449         Block->execute(State);
450       }
451     }
452   }
453 
454   // Exit replicating mode.
455   State->Instance.reset();
456 }
457 
458 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
459   assert(!Parent && "Recipe already in some VPBasicBlock");
460   assert(InsertPos->getParent() &&
461          "Insertion position not in any VPBasicBlock");
462   Parent = InsertPos->getParent();
463   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
464 }
465 
466 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
467   assert(!Parent && "Recipe already in some VPBasicBlock");
468   assert(InsertPos->getParent() &&
469          "Insertion position not in any VPBasicBlock");
470   Parent = InsertPos->getParent();
471   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
472 }
473 
474 void VPRecipeBase::removeFromParent() {
475   assert(getParent() && "Recipe not in any VPBasicBlock");
476   getParent()->getRecipeList().remove(getIterator());
477   Parent = nullptr;
478 }
479 
480 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
481   assert(getParent() && "Recipe not in any VPBasicBlock");
482   return getParent()->getRecipeList().erase(getIterator());
483 }
484 
485 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
486   removeFromParent();
487   insertAfter(InsertPos);
488 }
489 
490 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
491                               iplist<VPRecipeBase>::iterator I) {
492   assert(I == BB.end() || I->getParent() == &BB);
493   removeFromParent();
494   Parent = &BB;
495   BB.getRecipeList().insert(I, this);
496 }
497 
498 void VPInstruction::generateInstruction(VPTransformState &State,
499                                         unsigned Part) {
500   IRBuilder<> &Builder = State.Builder;
501 
502   if (Instruction::isBinaryOp(getOpcode())) {
503     Value *A = State.get(getOperand(0), Part);
504     Value *B = State.get(getOperand(1), Part);
505     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
506     State.set(this, V, Part);
507     return;
508   }
509 
510   switch (getOpcode()) {
511   case VPInstruction::Not: {
512     Value *A = State.get(getOperand(0), Part);
513     Value *V = Builder.CreateNot(A);
514     State.set(this, V, Part);
515     break;
516   }
517   case VPInstruction::ICmpULE: {
518     Value *IV = State.get(getOperand(0), Part);
519     Value *TC = State.get(getOperand(1), Part);
520     Value *V = Builder.CreateICmpULE(IV, TC);
521     State.set(this, V, Part);
522     break;
523   }
524   case Instruction::Select: {
525     Value *Cond = State.get(getOperand(0), Part);
526     Value *Op1 = State.get(getOperand(1), Part);
527     Value *Op2 = State.get(getOperand(2), Part);
528     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
529     State.set(this, V, Part);
530     break;
531   }
532   case VPInstruction::ActiveLaneMask: {
533     // Get first lane of vector induction variable.
534     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
535     // Get the original loop tripcount.
536     Value *ScalarTC = State.TripCount;
537 
538     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
539     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
540     Instruction *Call = Builder.CreateIntrinsic(
541         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
542         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
543     State.set(this, Call, Part);
544     break;
545   }
546   default:
547     llvm_unreachable("Unsupported opcode for instruction");
548   }
549 }
550 
551 void VPInstruction::execute(VPTransformState &State) {
552   assert(!State.Instance && "VPInstruction executing an Instance");
553   for (unsigned Part = 0; Part < State.UF; ++Part)
554     generateInstruction(State, Part);
555 }
556 
557 void VPInstruction::dump() const {
558   VPSlotTracker SlotTracker(getParent()->getPlan());
559   print(dbgs(), "", SlotTracker);
560 }
561 
562 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
563                           VPSlotTracker &SlotTracker) const {
564   O << Indent << "EMIT ";
565 
566   if (hasResult()) {
567     printAsOperand(O, SlotTracker);
568     O << " = ";
569   }
570 
571   switch (getOpcode()) {
572   case VPInstruction::Not:
573     O << "not";
574     break;
575   case VPInstruction::ICmpULE:
576     O << "icmp ule";
577     break;
578   case VPInstruction::SLPLoad:
579     O << "combined load";
580     break;
581   case VPInstruction::SLPStore:
582     O << "combined store";
583     break;
584   case VPInstruction::ActiveLaneMask:
585     O << "active lane mask";
586     break;
587 
588   default:
589     O << Instruction::getOpcodeName(getOpcode());
590   }
591 
592   for (const VPValue *Operand : operands()) {
593     O << " ";
594     Operand->printAsOperand(O, SlotTracker);
595   }
596 }
597 
598 /// Generate the code inside the body of the vectorized loop. Assumes a single
599 /// LoopVectorBody basic-block was created for this. Introduce additional
600 /// basic-blocks as needed, and fill them all.
601 void VPlan::execute(VPTransformState *State) {
602   // -1. Check if the backedge taken count is needed, and if so build it.
603   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
604     Value *TC = State->TripCount;
605     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
606     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
607                                    "trip.count.minus.1");
608     auto VF = State->VF;
609     Value *VTCMO =
610         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
611     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
612       State->set(BackedgeTakenCount, VTCMO, Part);
613   }
614 
615   // 0. Set the reverse mapping from VPValues to Values for code generation.
616   for (auto &Entry : Value2VPValue)
617     State->VPValue2Value[Entry.second] = Entry.first;
618 
619   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
620   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
621   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
622 
623   // 1. Make room to generate basic-blocks inside loop body if needed.
624   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
625       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
626   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
627   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
628   // Remove the edge between Header and Latch to allow other connections.
629   // Temporarily terminate with unreachable until CFG is rewired.
630   // Note: this asserts the generated code's assumption that
631   // getFirstInsertionPt() can be dereferenced into an Instruction.
632   VectorHeaderBB->getTerminator()->eraseFromParent();
633   State->Builder.SetInsertPoint(VectorHeaderBB);
634   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
635   State->Builder.SetInsertPoint(Terminator);
636 
637   // 2. Generate code in loop body.
638   State->CFG.PrevVPBB = nullptr;
639   State->CFG.PrevBB = VectorHeaderBB;
640   State->CFG.LastBB = VectorLatchBB;
641 
642   for (VPBlockBase *Block : depth_first(Entry))
643     Block->execute(State);
644 
645   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
646   // VPBB's successors.
647   for (auto VPBB : State->CFG.VPBBsToFix) {
648     assert(EnableVPlanNativePath &&
649            "Unexpected VPBBsToFix in non VPlan-native path");
650     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
651     assert(BB && "Unexpected null basic block for VPBB");
652 
653     unsigned Idx = 0;
654     auto *BBTerminator = BB->getTerminator();
655 
656     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
657       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
658       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
659       ++Idx;
660     }
661   }
662 
663   // 3. Merge the temporary latch created with the last basic-block filled.
664   BasicBlock *LastBB = State->CFG.PrevBB;
665   // Connect LastBB to VectorLatchBB to facilitate their merge.
666   assert((EnableVPlanNativePath ||
667           isa<UnreachableInst>(LastBB->getTerminator())) &&
668          "Expected InnerLoop VPlan CFG to terminate with unreachable");
669   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
670          "Expected VPlan CFG to terminate with branch in NativePath");
671   LastBB->getTerminator()->eraseFromParent();
672   BranchInst::Create(VectorLatchBB, LastBB);
673 
674   // Merge LastBB with Latch.
675   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
676   (void)Merged;
677   assert(Merged && "Could not merge last basic block with latch.");
678   VectorLatchBB = LastBB;
679 
680   // We do not attempt to preserve DT for outer loop vectorization currently.
681   if (!EnableVPlanNativePath)
682     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
683                         L->getExitBlock());
684 }
685 
686 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
687 LLVM_DUMP_METHOD
688 void VPlan::dump() const { dbgs() << *this << '\n'; }
689 #endif
690 
691 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
692                                 BasicBlock *LoopLatchBB,
693                                 BasicBlock *LoopExitBB) {
694   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
695   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
696   // The vector body may be more than a single basic-block by this point.
697   // Update the dominator tree information inside the vector body by propagating
698   // it from header to latch, expecting only triangular control-flow, if any.
699   BasicBlock *PostDomSucc = nullptr;
700   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
701     // Get the list of successors of this block.
702     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
703     assert(Succs.size() <= 2 &&
704            "Basic block in vector loop has more than 2 successors.");
705     PostDomSucc = Succs[0];
706     if (Succs.size() == 1) {
707       assert(PostDomSucc->getSinglePredecessor() &&
708              "PostDom successor has more than one predecessor.");
709       DT->addNewBlock(PostDomSucc, BB);
710       continue;
711     }
712     BasicBlock *InterimSucc = Succs[1];
713     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
714       PostDomSucc = Succs[1];
715       InterimSucc = Succs[0];
716     }
717     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
718            "One successor of a basic block does not lead to the other.");
719     assert(InterimSucc->getSinglePredecessor() &&
720            "Interim successor has more than one predecessor.");
721     assert(PostDomSucc->hasNPredecessors(2) &&
722            "PostDom successor has more than two predecessors.");
723     DT->addNewBlock(InterimSucc, BB);
724     DT->addNewBlock(PostDomSucc, BB);
725   }
726   // Latch block is a new dominator for the loop exit.
727   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
728   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
729 }
730 
731 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
732   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
733          Twine(getOrCreateBID(Block));
734 }
735 
736 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
737   const std::string &Name = Block->getName();
738   if (!Name.empty())
739     return Name;
740   return "VPB" + Twine(getOrCreateBID(Block));
741 }
742 
743 void VPlanPrinter::dump() {
744   Depth = 1;
745   bumpIndent(0);
746   OS << "digraph VPlan {\n";
747   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
748   if (!Plan.getName().empty())
749     OS << "\\n" << DOT::EscapeString(Plan.getName());
750   if (Plan.BackedgeTakenCount) {
751     OS << ", where:\\n";
752     Plan.BackedgeTakenCount->print(OS, SlotTracker);
753     OS << " := BackedgeTakenCount";
754   }
755   OS << "\"]\n";
756   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
757   OS << "edge [fontname=Courier, fontsize=30]\n";
758   OS << "compound=true\n";
759 
760   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
761     dumpBlock(Block);
762 
763   OS << "}\n";
764 }
765 
766 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
767   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
768     dumpBasicBlock(BasicBlock);
769   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
770     dumpRegion(Region);
771   else
772     llvm_unreachable("Unsupported kind of VPBlock.");
773 }
774 
775 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
776                             bool Hidden, const Twine &Label) {
777   // Due to "dot" we print an edge between two regions as an edge between the
778   // exit basic block and the entry basic of the respective regions.
779   const VPBlockBase *Tail = From->getExitBasicBlock();
780   const VPBlockBase *Head = To->getEntryBasicBlock();
781   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
782   OS << " [ label=\"" << Label << '\"';
783   if (Tail != From)
784     OS << " ltail=" << getUID(From);
785   if (Head != To)
786     OS << " lhead=" << getUID(To);
787   if (Hidden)
788     OS << "; splines=none";
789   OS << "]\n";
790 }
791 
792 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
793   auto &Successors = Block->getSuccessors();
794   if (Successors.size() == 1)
795     drawEdge(Block, Successors.front(), false, "");
796   else if (Successors.size() == 2) {
797     drawEdge(Block, Successors.front(), false, "T");
798     drawEdge(Block, Successors.back(), false, "F");
799   } else {
800     unsigned SuccessorNumber = 0;
801     for (auto *Successor : Successors)
802       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
803   }
804 }
805 
806 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
807   OS << Indent << getUID(BasicBlock) << " [label =\n";
808   bumpIndent(1);
809   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
810   bumpIndent(1);
811 
812   // Dump the block predicate.
813   const VPValue *Pred = BasicBlock->getPredicate();
814   if (Pred) {
815     OS << " +\n" << Indent << " \"BlockPredicate: \"";
816     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
817       PredI->printAsOperand(OS, SlotTracker);
818       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
819          << ")\\l\"";
820     } else
821       Pred->printAsOperand(OS, SlotTracker);
822   }
823 
824   for (const VPRecipeBase &Recipe : *BasicBlock) {
825     OS << " +\n" << Indent << "\"";
826     // Don't indent inside the recipe printer as we printed it before the
827     // opening quote already.
828     Recipe.print(OS, "", SlotTracker);
829     OS << "\\l\"";
830   }
831 
832   // Dump the condition bit.
833   const VPValue *CBV = BasicBlock->getCondBit();
834   if (CBV) {
835     OS << " +\n" << Indent << " \"CondBit: ";
836     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
837       CBI->printAsOperand(OS, SlotTracker);
838       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
839     } else {
840       CBV->printAsOperand(OS, SlotTracker);
841       OS << "\"";
842     }
843   }
844 
845   bumpIndent(-2);
846   OS << "\n" << Indent << "]\n";
847   dumpEdges(BasicBlock);
848 }
849 
850 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
851   OS << Indent << "subgraph " << getUID(Region) << " {\n";
852   bumpIndent(1);
853   OS << Indent << "fontname=Courier\n"
854      << Indent << "label=\""
855      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
856      << DOT::EscapeString(Region->getName()) << "\"\n";
857   // Dump the blocks of the region.
858   assert(Region->getEntry() && "Region contains no inner blocks.");
859   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
860     dumpBlock(Block);
861   bumpIndent(-1);
862   OS << Indent << "}\n";
863   dumpEdges(Region);
864 }
865 
866 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
867   std::string IngredientString;
868   raw_string_ostream RSO(IngredientString);
869   if (auto *Inst = dyn_cast<Instruction>(V)) {
870     if (!Inst->getType()->isVoidTy()) {
871       Inst->printAsOperand(RSO, false);
872       RSO << " = ";
873     }
874     RSO << Inst->getOpcodeName() << " ";
875     unsigned E = Inst->getNumOperands();
876     if (E > 0) {
877       Inst->getOperand(0)->printAsOperand(RSO, false);
878       for (unsigned I = 1; I < E; ++I)
879         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
880     }
881   } else // !Inst
882     V->printAsOperand(RSO, false);
883   RSO.flush();
884   O << DOT::EscapeString(IngredientString);
885 }
886 
887 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
888                               VPSlotTracker &SlotTracker) const {
889   O << Indent << "WIDEN-CALL ";
890 
891   auto *CI = cast<CallInst>(getUnderlyingInstr());
892   if (CI->getType()->isVoidTy())
893     O << "void ";
894   else {
895     printAsOperand(O, SlotTracker);
896     O << " = ";
897   }
898 
899   O << "call @" << CI->getCalledFunction()->getName() << "(";
900   printOperands(O, SlotTracker);
901   O << ")";
902 }
903 
904 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
905                                 VPSlotTracker &SlotTracker) const {
906   O << Indent << "WIDEN-SELECT ";
907   printAsOperand(O, SlotTracker);
908   O << " = select ";
909   getOperand(0)->printAsOperand(O, SlotTracker);
910   O << ", ";
911   getOperand(1)->printAsOperand(O, SlotTracker);
912   O << ", ";
913   getOperand(2)->printAsOperand(O, SlotTracker);
914   O << (InvariantCond ? " (condition is loop invariant)" : "");
915 }
916 
917 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
918                           VPSlotTracker &SlotTracker) const {
919   O << Indent << "WIDEN ";
920   printAsOperand(O, SlotTracker);
921   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
922   printOperands(O, SlotTracker);
923 }
924 
925 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
926                                           VPSlotTracker &SlotTracker) const {
927   O << Indent << "WIDEN-INDUCTION";
928   if (getTruncInst()) {
929     O << "\\l\"";
930     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
931     O << " +\n" << Indent << "\"  ";
932     getVPValue(0)->printAsOperand(O, SlotTracker);
933   } else
934     O << " " << VPlanIngredient(IV);
935 }
936 
937 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
938                              VPSlotTracker &SlotTracker) const {
939   O << Indent << "WIDEN-GEP ";
940   O << (IsPtrLoopInvariant ? "Inv" : "Var");
941   size_t IndicesNumber = IsIndexLoopInvariant.size();
942   for (size_t I = 0; I < IndicesNumber; ++I)
943     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
944 
945   O << " ";
946   printAsOperand(O, SlotTracker);
947   O << " = getelementptr ";
948   printOperands(O, SlotTracker);
949 }
950 
951 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
952                              VPSlotTracker &SlotTracker) const {
953   O << Indent << "WIDEN-PHI " << VPlanIngredient(getUnderlyingValue());
954 }
955 
956 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
957                           VPSlotTracker &SlotTracker) const {
958   O << Indent << "BLEND ";
959   Phi->printAsOperand(O, false);
960   O << " =";
961   if (getNumIncomingValues() == 1) {
962     // Not a User of any mask: not really blending, this is a
963     // single-predecessor phi.
964     O << " ";
965     getIncomingValue(0)->printAsOperand(O, SlotTracker);
966   } else {
967     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
968       O << " ";
969       getIncomingValue(I)->printAsOperand(O, SlotTracker);
970       O << "/";
971       getMask(I)->printAsOperand(O, SlotTracker);
972     }
973   }
974 }
975 
976 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
977                               VPSlotTracker &SlotTracker) const {
978   O << Indent << "REDUCE ";
979   printAsOperand(O, SlotTracker);
980   O << " = ";
981   getChainOp()->printAsOperand(O, SlotTracker);
982   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode())
983     << " (";
984   getVecOp()->printAsOperand(O, SlotTracker);
985   if (getCondOp()) {
986     O << ", ";
987     getCondOp()->printAsOperand(O, SlotTracker);
988   }
989   O << ")";
990 }
991 
992 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
993                               VPSlotTracker &SlotTracker) const {
994   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
995 
996   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
997     printAsOperand(O, SlotTracker);
998     O << " = ";
999   }
1000   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1001   printOperands(O, SlotTracker);
1002 
1003   if (AlsoPack)
1004     O << " (S->V)";
1005 }
1006 
1007 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1008                                 VPSlotTracker &SlotTracker) const {
1009   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1010   printAsOperand(O, SlotTracker);
1011   O << " = ";
1012   printOperands(O, SlotTracker);
1013 }
1014 
1015 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1016                                            VPSlotTracker &SlotTracker) const {
1017   O << Indent << "WIDEN ";
1018 
1019   if (!isStore()) {
1020     getVPValue()->printAsOperand(O, SlotTracker);
1021     O << " = ";
1022   }
1023   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1024 
1025   printOperands(O, SlotTracker);
1026 }
1027 
1028 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1029   Value *CanonicalIV = State.CanonicalIV;
1030   Type *STy = CanonicalIV->getType();
1031   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1032   ElementCount VF = State.VF;
1033   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1034   Value *VStart = VF.isScalar()
1035                       ? CanonicalIV
1036                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1037                                                   CanonicalIV, "broadcast");
1038   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1039     SmallVector<Constant *, 8> Indices;
1040     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1041       Indices.push_back(
1042           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1043     // If VF == 1, there is only one iteration in the loop above, thus the
1044     // element pushed back into Indices is ConstantInt::get(STy, Part)
1045     Constant *VStep =
1046         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1047     // Add the consecutive indices to the vector value.
1048     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1049     State.set(getVPValue(), CanonicalVectorIV, Part);
1050   }
1051 }
1052 
1053 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1054                                      VPSlotTracker &SlotTracker) const {
1055   O << Indent << "EMIT ";
1056   getVPValue()->printAsOperand(O, SlotTracker);
1057   O << " = WIDEN-CANONICAL-INDUCTION";
1058 }
1059 
1060 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1061 
1062 void VPValue::replaceAllUsesWith(VPValue *New) {
1063   for (unsigned J = 0; J < getNumUsers();) {
1064     VPUser *User = Users[J];
1065     unsigned NumUsers = getNumUsers();
1066     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1067       if (User->getOperand(I) == this)
1068         User->setOperand(I, New);
1069     // If a user got removed after updating the current user, the next user to
1070     // update will be moved to the current position, so we only need to
1071     // increment the index if the number of users did not change.
1072     if (NumUsers == getNumUsers())
1073       J++;
1074   }
1075 }
1076 
1077 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1078   if (const Value *UV = getUnderlyingValue()) {
1079     OS << "ir<";
1080     UV->printAsOperand(OS, false);
1081     OS << ">";
1082     return;
1083   }
1084 
1085   unsigned Slot = Tracker.getSlot(this);
1086   if (Slot == unsigned(-1))
1087     OS << "<badref>";
1088   else
1089     OS << "vp<%" << Tracker.getSlot(this) << ">";
1090 }
1091 
1092 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1093   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1094     Op->printAsOperand(O, SlotTracker);
1095   });
1096 }
1097 
1098 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1099                                           Old2NewTy &Old2New,
1100                                           InterleavedAccessInfo &IAI) {
1101   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1102   for (VPBlockBase *Base : RPOT) {
1103     visitBlock(Base, Old2New, IAI);
1104   }
1105 }
1106 
1107 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1108                                          InterleavedAccessInfo &IAI) {
1109   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1110     for (VPRecipeBase &VPI : *VPBB) {
1111       if (isa<VPWidenPHIRecipe>(&VPI))
1112         continue;
1113       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1114       auto *VPInst = cast<VPInstruction>(&VPI);
1115       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1116       auto *IG = IAI.getInterleaveGroup(Inst);
1117       if (!IG)
1118         continue;
1119 
1120       auto NewIGIter = Old2New.find(IG);
1121       if (NewIGIter == Old2New.end())
1122         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1123             IG->getFactor(), IG->isReverse(), IG->getAlign());
1124 
1125       if (Inst == IG->getInsertPos())
1126         Old2New[IG]->setInsertPos(VPInst);
1127 
1128       InterleaveGroupMap[VPInst] = Old2New[IG];
1129       InterleaveGroupMap[VPInst]->insertMember(
1130           VPInst, IG->getIndex(Inst),
1131           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1132                                 : IG->getFactor()));
1133     }
1134   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1135     visitRegion(Region, Old2New, IAI);
1136   else
1137     llvm_unreachable("Unsupported kind of VPBlock.");
1138 }
1139 
1140 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1141                                                  InterleavedAccessInfo &IAI) {
1142   Old2NewTy Old2New;
1143   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1144 }
1145 
1146 void VPSlotTracker::assignSlot(const VPValue *V) {
1147   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1148   Slots[V] = NextSlot++;
1149 }
1150 
1151 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1152   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1153     assignSlots(Region);
1154   else
1155     assignSlots(cast<VPBasicBlock>(VPBB));
1156 }
1157 
1158 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1159   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1160   for (const VPBlockBase *Block : RPOT)
1161     assignSlots(Block);
1162 }
1163 
1164 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1165   for (const VPRecipeBase &Recipe : *VPBB) {
1166     for (VPValue *Def : Recipe.definedValues())
1167       assignSlot(Def);
1168   }
1169 }
1170 
1171 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1172 
1173   for (const VPValue *V : Plan.VPExternalDefs)
1174     assignSlot(V);
1175 
1176   if (Plan.BackedgeTakenCount)
1177     assignSlot(Plan.BackedgeTakenCount);
1178 
1179   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1180   for (const VPBlockBase *Block : RPOT)
1181     assignSlots(Block);
1182 }
1183