1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/IVDescriptors.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include <cassert> 43 #include <iterator> 44 #include <string> 45 #include <vector> 46 47 using namespace llvm; 48 extern cl::opt<bool> EnableVPlanNativePath; 49 50 #define DEBUG_TYPE "vplan" 51 52 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 53 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 54 VPSlotTracker SlotTracker( 55 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 56 V.print(OS, SlotTracker); 57 return OS; 58 } 59 60 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 61 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 62 if (Def) 63 Def->addDefinedValue(this); 64 } 65 66 VPValue::~VPValue() { 67 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 68 if (Def) 69 Def->removeDefinedValue(this); 70 } 71 72 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 73 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 74 Instr->print(OS, SlotTracker); 75 else 76 printAsOperand(OS, SlotTracker); 77 } 78 79 void VPValue::dump() const { 80 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 81 VPSlotTracker SlotTracker( 82 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 83 print(dbgs(), SlotTracker); 84 dbgs() << "\n"; 85 } 86 87 void VPRecipeBase::dump() const { 88 VPSlotTracker SlotTracker(nullptr); 89 print(dbgs(), "", SlotTracker); 90 dbgs() << "\n"; 91 } 92 93 VPUser *VPRecipeBase::toVPUser() { 94 if (auto *U = dyn_cast<VPInstruction>(this)) 95 return U; 96 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 97 return U; 98 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 99 return U; 100 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 101 return U; 102 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 103 return U; 104 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 105 return U; 106 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 107 return U; 108 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 109 return U; 110 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 111 return U; 112 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 113 return U; 114 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 115 return U; 116 if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this)) 117 return U; 118 return nullptr; 119 } 120 121 VPValue *VPRecipeBase::toVPValue() { 122 if (auto *V = dyn_cast<VPInstruction>(this)) 123 return V; 124 if (auto *V = dyn_cast<VPReductionRecipe>(this)) 125 return V; 126 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 127 return V; 128 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 129 return V; 130 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 131 return V; 132 if (auto *V = dyn_cast<VPWidenGEPRecipe>(this)) 133 return V; 134 if (auto *V = dyn_cast<VPWidenRecipe>(this)) 135 return V; 136 if (auto *V = dyn_cast<VPReplicateRecipe>(this)) 137 return V; 138 return nullptr; 139 } 140 141 const VPValue *VPRecipeBase::toVPValue() const { 142 if (auto *V = dyn_cast<VPInstruction>(this)) 143 return V; 144 if (auto *V = dyn_cast<VPReductionRecipe>(this)) 145 return V; 146 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 147 return V; 148 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 149 return V; 150 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 151 return V; 152 if (auto *V = dyn_cast<VPWidenGEPRecipe>(this)) 153 return V; 154 if (auto *V = dyn_cast<VPWidenRecipe>(this)) 155 return V; 156 if (auto *V = dyn_cast<VPReplicateRecipe>(this)) 157 return V; 158 return nullptr; 159 } 160 161 // Get the top-most entry block of \p Start. This is the entry block of the 162 // containing VPlan. This function is templated to support both const and non-const blocks 163 template <typename T> static T *getPlanEntry(T *Start) { 164 T *Next = Start; 165 T *Current = Start; 166 while ((Next = Next->getParent())) 167 Current = Next; 168 169 SmallSetVector<T *, 8> WorkList; 170 WorkList.insert(Current); 171 172 for (unsigned i = 0; i < WorkList.size(); i++) { 173 T *Current = WorkList[i]; 174 if (Current->getNumPredecessors() == 0) 175 return Current; 176 auto &Predecessors = Current->getPredecessors(); 177 WorkList.insert(Predecessors.begin(), Predecessors.end()); 178 } 179 180 llvm_unreachable("VPlan without any entry node without predecessors"); 181 } 182 183 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 184 185 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 186 187 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 188 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 189 const VPBlockBase *Block = this; 190 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 191 Block = Region->getEntry(); 192 return cast<VPBasicBlock>(Block); 193 } 194 195 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 196 VPBlockBase *Block = this; 197 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 198 Block = Region->getEntry(); 199 return cast<VPBasicBlock>(Block); 200 } 201 202 void VPBlockBase::setPlan(VPlan *ParentPlan) { 203 assert(ParentPlan->getEntry() == this && 204 "Can only set plan on its entry block."); 205 Plan = ParentPlan; 206 } 207 208 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 209 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 210 const VPBlockBase *Block = this; 211 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 212 Block = Region->getExit(); 213 return cast<VPBasicBlock>(Block); 214 } 215 216 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 217 VPBlockBase *Block = this; 218 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 219 Block = Region->getExit(); 220 return cast<VPBasicBlock>(Block); 221 } 222 223 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 224 if (!Successors.empty() || !Parent) 225 return this; 226 assert(Parent->getExit() == this && 227 "Block w/o successors not the exit of its parent."); 228 return Parent->getEnclosingBlockWithSuccessors(); 229 } 230 231 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 232 if (!Predecessors.empty() || !Parent) 233 return this; 234 assert(Parent->getEntry() == this && 235 "Block w/o predecessors not the entry of its parent."); 236 return Parent->getEnclosingBlockWithPredecessors(); 237 } 238 239 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 240 SmallVector<VPBlockBase *, 8> Blocks; 241 242 for (VPBlockBase *Block : depth_first(Entry)) 243 Blocks.push_back(Block); 244 245 for (VPBlockBase *Block : Blocks) 246 delete Block; 247 } 248 249 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 250 iterator It = begin(); 251 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 252 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 253 isa<VPPredInstPHIRecipe>(&*It) || 254 isa<VPWidenCanonicalIVRecipe>(&*It))) 255 It++; 256 return It; 257 } 258 259 BasicBlock * 260 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 261 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 262 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 263 BasicBlock *PrevBB = CFG.PrevBB; 264 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 265 PrevBB->getParent(), CFG.LastBB); 266 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 267 268 // Hook up the new basic block to its predecessors. 269 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 270 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 271 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 272 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 273 274 // In outer loop vectorization scenario, the predecessor BBlock may not yet 275 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 276 // vectorization. We do not encounter this case in inner loop vectorization 277 // as we start out by building a loop skeleton with the vector loop header 278 // and latch blocks. As a result, we never enter this function for the 279 // header block in the non VPlan-native path. 280 if (!PredBB) { 281 assert(EnableVPlanNativePath && 282 "Unexpected null predecessor in non VPlan-native path"); 283 CFG.VPBBsToFix.push_back(PredVPBB); 284 continue; 285 } 286 287 assert(PredBB && "Predecessor basic-block not found building successor."); 288 auto *PredBBTerminator = PredBB->getTerminator(); 289 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 290 if (isa<UnreachableInst>(PredBBTerminator)) { 291 assert(PredVPSuccessors.size() == 1 && 292 "Predecessor ending w/o branch must have single successor."); 293 PredBBTerminator->eraseFromParent(); 294 BranchInst::Create(NewBB, PredBB); 295 } else { 296 assert(PredVPSuccessors.size() == 2 && 297 "Predecessor ending with branch must have two successors."); 298 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 299 assert(!PredBBTerminator->getSuccessor(idx) && 300 "Trying to reset an existing successor block."); 301 PredBBTerminator->setSuccessor(idx, NewBB); 302 } 303 } 304 return NewBB; 305 } 306 307 void VPBasicBlock::execute(VPTransformState *State) { 308 bool Replica = State->Instance && 309 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 310 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 311 VPBlockBase *SingleHPred = nullptr; 312 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 313 314 // 1. Create an IR basic block, or reuse the last one if possible. 315 // The last IR basic block is reused, as an optimization, in three cases: 316 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 317 // B. when the current VPBB has a single (hierarchical) predecessor which 318 // is PrevVPBB and the latter has a single (hierarchical) successor; and 319 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 320 // is the exit of this region from a previous instance, or the predecessor 321 // of this region. 322 if (PrevVPBB && /* A */ 323 !((SingleHPred = getSingleHierarchicalPredecessor()) && 324 SingleHPred->getExitBasicBlock() == PrevVPBB && 325 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 326 !(Replica && getPredecessors().empty())) { /* C */ 327 NewBB = createEmptyBasicBlock(State->CFG); 328 State->Builder.SetInsertPoint(NewBB); 329 // Temporarily terminate with unreachable until CFG is rewired. 330 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 331 State->Builder.SetInsertPoint(Terminator); 332 // Register NewBB in its loop. In innermost loops its the same for all BB's. 333 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 334 L->addBasicBlockToLoop(NewBB, *State->LI); 335 State->CFG.PrevBB = NewBB; 336 } 337 338 // 2. Fill the IR basic block with IR instructions. 339 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 340 << " in BB:" << NewBB->getName() << '\n'); 341 342 State->CFG.VPBB2IRBB[this] = NewBB; 343 State->CFG.PrevVPBB = this; 344 345 for (VPRecipeBase &Recipe : Recipes) 346 Recipe.execute(*State); 347 348 VPValue *CBV; 349 if (EnableVPlanNativePath && (CBV = getCondBit())) { 350 Value *IRCBV = CBV->getUnderlyingValue(); 351 assert(IRCBV && "Unexpected null underlying value for condition bit"); 352 353 // Condition bit value in a VPBasicBlock is used as the branch selector. In 354 // the VPlan-native path case, since all branches are uniform we generate a 355 // branch instruction using the condition value from vector lane 0 and dummy 356 // successors. The successors are fixed later when the successor blocks are 357 // visited. 358 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 359 NewCond = State->Builder.CreateExtractElement(NewCond, 360 State->Builder.getInt32(0)); 361 362 // Replace the temporary unreachable terminator with the new conditional 363 // branch. 364 auto *CurrentTerminator = NewBB->getTerminator(); 365 assert(isa<UnreachableInst>(CurrentTerminator) && 366 "Expected to replace unreachable terminator with conditional " 367 "branch."); 368 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 369 CondBr->setSuccessor(0, nullptr); 370 ReplaceInstWithInst(CurrentTerminator, CondBr); 371 } 372 373 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 374 } 375 376 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 377 for (VPRecipeBase &R : Recipes) { 378 if (auto *VPV = R.toVPValue()) 379 VPV->replaceAllUsesWith(NewValue); 380 381 if (auto *User = R.toVPUser()) 382 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 383 User->setOperand(I, NewValue); 384 } 385 } 386 387 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 388 for (VPBlockBase *Block : depth_first(Entry)) 389 // Drop all references in VPBasicBlocks and replace all uses with 390 // DummyValue. 391 Block->dropAllReferences(NewValue); 392 } 393 394 void VPRegionBlock::execute(VPTransformState *State) { 395 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 396 397 if (!isReplicator()) { 398 // Visit the VPBlocks connected to "this", starting from it. 399 for (VPBlockBase *Block : RPOT) { 400 if (EnableVPlanNativePath) { 401 // The inner loop vectorization path does not represent loop preheader 402 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 403 // vectorizing loop preheader block. In future, we may replace this 404 // check with the check for loop preheader. 405 if (Block->getNumPredecessors() == 0) 406 continue; 407 408 // Skip vectorizing loop exit block. In future, we may replace this 409 // check with the check for loop exit. 410 if (Block->getNumSuccessors() == 0) 411 continue; 412 } 413 414 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 415 Block->execute(State); 416 } 417 return; 418 } 419 420 assert(!State->Instance && "Replicating a Region with non-null instance."); 421 422 // Enter replicating mode. 423 State->Instance = {0, 0}; 424 425 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 426 State->Instance->Part = Part; 427 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 428 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 429 ++Lane) { 430 State->Instance->Lane = Lane; 431 // Visit the VPBlocks connected to \p this, starting from it. 432 for (VPBlockBase *Block : RPOT) { 433 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 434 Block->execute(State); 435 } 436 } 437 } 438 439 // Exit replicating mode. 440 State->Instance.reset(); 441 } 442 443 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 444 assert(!Parent && "Recipe already in some VPBasicBlock"); 445 assert(InsertPos->getParent() && 446 "Insertion position not in any VPBasicBlock"); 447 Parent = InsertPos->getParent(); 448 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 449 } 450 451 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 452 assert(!Parent && "Recipe already in some VPBasicBlock"); 453 assert(InsertPos->getParent() && 454 "Insertion position not in any VPBasicBlock"); 455 Parent = InsertPos->getParent(); 456 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 457 } 458 459 void VPRecipeBase::removeFromParent() { 460 assert(getParent() && "Recipe not in any VPBasicBlock"); 461 getParent()->getRecipeList().remove(getIterator()); 462 Parent = nullptr; 463 } 464 465 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 466 assert(getParent() && "Recipe not in any VPBasicBlock"); 467 return getParent()->getRecipeList().erase(getIterator()); 468 } 469 470 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 471 removeFromParent(); 472 insertAfter(InsertPos); 473 } 474 475 void VPInstruction::generateInstruction(VPTransformState &State, 476 unsigned Part) { 477 IRBuilder<> &Builder = State.Builder; 478 479 if (Instruction::isBinaryOp(getOpcode())) { 480 Value *A = State.get(getOperand(0), Part); 481 Value *B = State.get(getOperand(1), Part); 482 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 483 State.set(this, V, Part); 484 return; 485 } 486 487 switch (getOpcode()) { 488 case VPInstruction::Not: { 489 Value *A = State.get(getOperand(0), Part); 490 Value *V = Builder.CreateNot(A); 491 State.set(this, V, Part); 492 break; 493 } 494 case VPInstruction::ICmpULE: { 495 Value *IV = State.get(getOperand(0), Part); 496 Value *TC = State.get(getOperand(1), Part); 497 Value *V = Builder.CreateICmpULE(IV, TC); 498 State.set(this, V, Part); 499 break; 500 } 501 case Instruction::Select: { 502 Value *Cond = State.get(getOperand(0), Part); 503 Value *Op1 = State.get(getOperand(1), Part); 504 Value *Op2 = State.get(getOperand(2), Part); 505 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 506 State.set(this, V, Part); 507 break; 508 } 509 case VPInstruction::ActiveLaneMask: { 510 // Get first lane of vector induction variable. 511 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 512 // Get the original loop tripcount. 513 Value *ScalarTC = State.TripCount; 514 515 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 516 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 517 Instruction *Call = Builder.CreateIntrinsic( 518 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 519 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 520 State.set(this, Call, Part); 521 break; 522 } 523 default: 524 llvm_unreachable("Unsupported opcode for instruction"); 525 } 526 } 527 528 void VPInstruction::execute(VPTransformState &State) { 529 assert(!State.Instance && "VPInstruction executing an Instance"); 530 for (unsigned Part = 0; Part < State.UF; ++Part) 531 generateInstruction(State, Part); 532 } 533 534 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 535 VPSlotTracker &SlotTracker) const { 536 O << "\"EMIT "; 537 print(O, SlotTracker); 538 } 539 540 void VPInstruction::print(raw_ostream &O) const { 541 VPSlotTracker SlotTracker(getParent()->getPlan()); 542 print(O, SlotTracker); 543 } 544 545 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 546 if (hasResult()) { 547 printAsOperand(O, SlotTracker); 548 O << " = "; 549 } 550 551 switch (getOpcode()) { 552 case VPInstruction::Not: 553 O << "not"; 554 break; 555 case VPInstruction::ICmpULE: 556 O << "icmp ule"; 557 break; 558 case VPInstruction::SLPLoad: 559 O << "combined load"; 560 break; 561 case VPInstruction::SLPStore: 562 O << "combined store"; 563 break; 564 case VPInstruction::ActiveLaneMask: 565 O << "active lane mask"; 566 break; 567 568 default: 569 O << Instruction::getOpcodeName(getOpcode()); 570 } 571 572 for (const VPValue *Operand : operands()) { 573 O << " "; 574 Operand->printAsOperand(O, SlotTracker); 575 } 576 } 577 578 /// Generate the code inside the body of the vectorized loop. Assumes a single 579 /// LoopVectorBody basic-block was created for this. Introduce additional 580 /// basic-blocks as needed, and fill them all. 581 void VPlan::execute(VPTransformState *State) { 582 // -1. Check if the backedge taken count is needed, and if so build it. 583 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 584 Value *TC = State->TripCount; 585 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 586 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 587 "trip.count.minus.1"); 588 auto VF = State->VF; 589 Value *VTCMO = 590 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 591 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 592 State->set(BackedgeTakenCount, VTCMO, Part); 593 } 594 595 // 0. Set the reverse mapping from VPValues to Values for code generation. 596 for (auto &Entry : Value2VPValue) 597 State->VPValue2Value[Entry.second] = Entry.first; 598 599 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 600 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 601 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 602 603 // 1. Make room to generate basic-blocks inside loop body if needed. 604 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 605 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 606 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 607 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 608 // Remove the edge between Header and Latch to allow other connections. 609 // Temporarily terminate with unreachable until CFG is rewired. 610 // Note: this asserts the generated code's assumption that 611 // getFirstInsertionPt() can be dereferenced into an Instruction. 612 VectorHeaderBB->getTerminator()->eraseFromParent(); 613 State->Builder.SetInsertPoint(VectorHeaderBB); 614 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 615 State->Builder.SetInsertPoint(Terminator); 616 617 // 2. Generate code in loop body. 618 State->CFG.PrevVPBB = nullptr; 619 State->CFG.PrevBB = VectorHeaderBB; 620 State->CFG.LastBB = VectorLatchBB; 621 622 for (VPBlockBase *Block : depth_first(Entry)) 623 Block->execute(State); 624 625 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 626 // VPBB's successors. 627 for (auto VPBB : State->CFG.VPBBsToFix) { 628 assert(EnableVPlanNativePath && 629 "Unexpected VPBBsToFix in non VPlan-native path"); 630 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 631 assert(BB && "Unexpected null basic block for VPBB"); 632 633 unsigned Idx = 0; 634 auto *BBTerminator = BB->getTerminator(); 635 636 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 637 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 638 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 639 ++Idx; 640 } 641 } 642 643 // 3. Merge the temporary latch created with the last basic-block filled. 644 BasicBlock *LastBB = State->CFG.PrevBB; 645 // Connect LastBB to VectorLatchBB to facilitate their merge. 646 assert((EnableVPlanNativePath || 647 isa<UnreachableInst>(LastBB->getTerminator())) && 648 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 649 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 650 "Expected VPlan CFG to terminate with branch in NativePath"); 651 LastBB->getTerminator()->eraseFromParent(); 652 BranchInst::Create(VectorLatchBB, LastBB); 653 654 // Merge LastBB with Latch. 655 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 656 (void)Merged; 657 assert(Merged && "Could not merge last basic block with latch."); 658 VectorLatchBB = LastBB; 659 660 // We do not attempt to preserve DT for outer loop vectorization currently. 661 if (!EnableVPlanNativePath) 662 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 663 L->getExitBlock()); 664 } 665 666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 667 LLVM_DUMP_METHOD 668 void VPlan::dump() const { dbgs() << *this << '\n'; } 669 #endif 670 671 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 672 BasicBlock *LoopLatchBB, 673 BasicBlock *LoopExitBB) { 674 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 675 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 676 // The vector body may be more than a single basic-block by this point. 677 // Update the dominator tree information inside the vector body by propagating 678 // it from header to latch, expecting only triangular control-flow, if any. 679 BasicBlock *PostDomSucc = nullptr; 680 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 681 // Get the list of successors of this block. 682 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 683 assert(Succs.size() <= 2 && 684 "Basic block in vector loop has more than 2 successors."); 685 PostDomSucc = Succs[0]; 686 if (Succs.size() == 1) { 687 assert(PostDomSucc->getSinglePredecessor() && 688 "PostDom successor has more than one predecessor."); 689 DT->addNewBlock(PostDomSucc, BB); 690 continue; 691 } 692 BasicBlock *InterimSucc = Succs[1]; 693 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 694 PostDomSucc = Succs[1]; 695 InterimSucc = Succs[0]; 696 } 697 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 698 "One successor of a basic block does not lead to the other."); 699 assert(InterimSucc->getSinglePredecessor() && 700 "Interim successor has more than one predecessor."); 701 assert(PostDomSucc->hasNPredecessors(2) && 702 "PostDom successor has more than two predecessors."); 703 DT->addNewBlock(InterimSucc, BB); 704 DT->addNewBlock(PostDomSucc, BB); 705 } 706 // Latch block is a new dominator for the loop exit. 707 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 708 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 709 } 710 711 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 712 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 713 Twine(getOrCreateBID(Block)); 714 } 715 716 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 717 const std::string &Name = Block->getName(); 718 if (!Name.empty()) 719 return Name; 720 return "VPB" + Twine(getOrCreateBID(Block)); 721 } 722 723 void VPlanPrinter::dump() { 724 Depth = 1; 725 bumpIndent(0); 726 OS << "digraph VPlan {\n"; 727 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 728 if (!Plan.getName().empty()) 729 OS << "\\n" << DOT::EscapeString(Plan.getName()); 730 if (Plan.BackedgeTakenCount) { 731 OS << ", where:\\n"; 732 Plan.BackedgeTakenCount->print(OS, SlotTracker); 733 OS << " := BackedgeTakenCount"; 734 } 735 OS << "\"]\n"; 736 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 737 OS << "edge [fontname=Courier, fontsize=30]\n"; 738 OS << "compound=true\n"; 739 740 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 741 dumpBlock(Block); 742 743 OS << "}\n"; 744 } 745 746 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 747 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 748 dumpBasicBlock(BasicBlock); 749 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 750 dumpRegion(Region); 751 else 752 llvm_unreachable("Unsupported kind of VPBlock."); 753 } 754 755 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 756 bool Hidden, const Twine &Label) { 757 // Due to "dot" we print an edge between two regions as an edge between the 758 // exit basic block and the entry basic of the respective regions. 759 const VPBlockBase *Tail = From->getExitBasicBlock(); 760 const VPBlockBase *Head = To->getEntryBasicBlock(); 761 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 762 OS << " [ label=\"" << Label << '\"'; 763 if (Tail != From) 764 OS << " ltail=" << getUID(From); 765 if (Head != To) 766 OS << " lhead=" << getUID(To); 767 if (Hidden) 768 OS << "; splines=none"; 769 OS << "]\n"; 770 } 771 772 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 773 auto &Successors = Block->getSuccessors(); 774 if (Successors.size() == 1) 775 drawEdge(Block, Successors.front(), false, ""); 776 else if (Successors.size() == 2) { 777 drawEdge(Block, Successors.front(), false, "T"); 778 drawEdge(Block, Successors.back(), false, "F"); 779 } else { 780 unsigned SuccessorNumber = 0; 781 for (auto *Successor : Successors) 782 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 783 } 784 } 785 786 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 787 OS << Indent << getUID(BasicBlock) << " [label =\n"; 788 bumpIndent(1); 789 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 790 bumpIndent(1); 791 792 // Dump the block predicate. 793 const VPValue *Pred = BasicBlock->getPredicate(); 794 if (Pred) { 795 OS << " +\n" << Indent << " \"BlockPredicate: "; 796 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 797 PredI->printAsOperand(OS, SlotTracker); 798 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 799 << ")\\l\""; 800 } else 801 Pred->printAsOperand(OS, SlotTracker); 802 } 803 804 for (const VPRecipeBase &Recipe : *BasicBlock) { 805 OS << " +\n" << Indent; 806 Recipe.print(OS, Indent, SlotTracker); 807 OS << "\\l\""; 808 } 809 810 // Dump the condition bit. 811 const VPValue *CBV = BasicBlock->getCondBit(); 812 if (CBV) { 813 OS << " +\n" << Indent << " \"CondBit: "; 814 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 815 CBI->printAsOperand(OS, SlotTracker); 816 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 817 } else { 818 CBV->printAsOperand(OS, SlotTracker); 819 OS << "\""; 820 } 821 } 822 823 bumpIndent(-2); 824 OS << "\n" << Indent << "]\n"; 825 dumpEdges(BasicBlock); 826 } 827 828 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 829 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 830 bumpIndent(1); 831 OS << Indent << "fontname=Courier\n" 832 << Indent << "label=\"" 833 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 834 << DOT::EscapeString(Region->getName()) << "\"\n"; 835 // Dump the blocks of the region. 836 assert(Region->getEntry() && "Region contains no inner blocks."); 837 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 838 dumpBlock(Block); 839 bumpIndent(-1); 840 OS << Indent << "}\n"; 841 dumpEdges(Region); 842 } 843 844 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 845 std::string IngredientString; 846 raw_string_ostream RSO(IngredientString); 847 if (auto *Inst = dyn_cast<Instruction>(V)) { 848 if (!Inst->getType()->isVoidTy()) { 849 Inst->printAsOperand(RSO, false); 850 RSO << " = "; 851 } 852 RSO << Inst->getOpcodeName() << " "; 853 unsigned E = Inst->getNumOperands(); 854 if (E > 0) { 855 Inst->getOperand(0)->printAsOperand(RSO, false); 856 for (unsigned I = 1; I < E; ++I) 857 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 858 } 859 } else // !Inst 860 V->printAsOperand(RSO, false); 861 RSO.flush(); 862 O << DOT::EscapeString(IngredientString); 863 } 864 865 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 866 VPSlotTracker &SlotTracker) const { 867 O << "\"WIDEN-CALL "; 868 869 auto *CI = cast<CallInst>(getUnderlyingInstr()); 870 if (CI->getType()->isVoidTy()) 871 O << "void "; 872 else { 873 printAsOperand(O, SlotTracker); 874 O << " = "; 875 } 876 877 O << "call @" << CI->getCalledFunction()->getName() << "("; 878 printOperands(O, SlotTracker); 879 O << ")"; 880 } 881 882 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 883 VPSlotTracker &SlotTracker) const { 884 O << "\"WIDEN-SELECT "; 885 printAsOperand(O, SlotTracker); 886 O << " = select "; 887 getOperand(0)->printAsOperand(O, SlotTracker); 888 O << ", "; 889 getOperand(1)->printAsOperand(O, SlotTracker); 890 O << ", "; 891 getOperand(2)->printAsOperand(O, SlotTracker); 892 O << (InvariantCond ? " (condition is loop invariant)" : ""); 893 } 894 895 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 896 VPSlotTracker &SlotTracker) const { 897 O << "\"WIDEN "; 898 printAsOperand(O, SlotTracker); 899 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 900 printOperands(O, SlotTracker); 901 } 902 903 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 904 VPSlotTracker &SlotTracker) const { 905 O << "\"WIDEN-INDUCTION"; 906 if (Trunc) { 907 O << "\\l\""; 908 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 909 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 910 } else 911 O << " " << VPlanIngredient(IV); 912 } 913 914 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 915 VPSlotTracker &SlotTracker) const { 916 O << "\"WIDEN-GEP "; 917 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 918 size_t IndicesNumber = IsIndexLoopInvariant.size(); 919 for (size_t I = 0; I < IndicesNumber; ++I) 920 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 921 922 O << " "; 923 printAsOperand(O, SlotTracker); 924 O << " = getelementptr "; 925 printOperands(O, SlotTracker); 926 } 927 928 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 929 VPSlotTracker &SlotTracker) const { 930 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 931 } 932 933 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 934 VPSlotTracker &SlotTracker) const { 935 O << "\"BLEND "; 936 Phi->printAsOperand(O, false); 937 O << " ="; 938 if (getNumIncomingValues() == 1) { 939 // Not a User of any mask: not really blending, this is a 940 // single-predecessor phi. 941 O << " "; 942 getIncomingValue(0)->printAsOperand(O, SlotTracker); 943 } else { 944 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 945 O << " "; 946 getIncomingValue(I)->printAsOperand(O, SlotTracker); 947 O << "/"; 948 getMask(I)->printAsOperand(O, SlotTracker); 949 } 950 } 951 } 952 953 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 954 VPSlotTracker &SlotTracker) const { 955 O << "\"REDUCE "; 956 printAsOperand(O, SlotTracker); 957 O << " = "; 958 getChainOp()->printAsOperand(O, SlotTracker); 959 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp()) 960 << " ("; 961 getVecOp()->printAsOperand(O, SlotTracker); 962 if (getCondOp()) { 963 O << ", "; 964 getCondOp()->printAsOperand(O, SlotTracker); 965 } 966 O << ")"; 967 } 968 969 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 970 VPSlotTracker &SlotTracker) const { 971 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE "); 972 973 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 974 printAsOperand(O, SlotTracker); 975 O << " = "; 976 } 977 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 978 printOperands(O, SlotTracker); 979 980 if (AlsoPack) 981 O << " (S->V)"; 982 } 983 984 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 985 VPSlotTracker &SlotTracker) const { 986 O << "\"PHI-PREDICATED-INSTRUCTION "; 987 printOperands(O, SlotTracker); 988 } 989 990 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 991 VPSlotTracker &SlotTracker) const { 992 O << "\"WIDEN "; 993 994 if (!isStore()) { 995 printAsOperand(O, SlotTracker); 996 O << " = "; 997 } 998 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 999 1000 printOperands(O, SlotTracker); 1001 } 1002 1003 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1004 Value *CanonicalIV = State.CanonicalIV; 1005 Type *STy = CanonicalIV->getType(); 1006 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1007 ElementCount VF = State.VF; 1008 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 1009 Value *VStart = VF.isScalar() 1010 ? CanonicalIV 1011 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 1012 CanonicalIV, "broadcast"); 1013 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1014 SmallVector<Constant *, 8> Indices; 1015 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1016 Indices.push_back( 1017 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1018 // If VF == 1, there is only one iteration in the loop above, thus the 1019 // element pushed back into Indices is ConstantInt::get(STy, Part) 1020 Constant *VStep = 1021 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1022 // Add the consecutive indices to the vector value. 1023 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1024 State.set(getVPValue(), CanonicalVectorIV, Part); 1025 } 1026 } 1027 1028 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1029 VPSlotTracker &SlotTracker) const { 1030 O << "\"EMIT "; 1031 getVPValue()->printAsOperand(O, SlotTracker); 1032 O << " = WIDEN-CANONICAL-INDUCTION"; 1033 } 1034 1035 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1036 1037 void VPValue::replaceAllUsesWith(VPValue *New) { 1038 for (unsigned J = 0; J < getNumUsers();) { 1039 VPUser *User = Users[J]; 1040 unsigned NumUsers = getNumUsers(); 1041 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1042 if (User->getOperand(I) == this) 1043 User->setOperand(I, New); 1044 // If a user got removed after updating the current user, the next user to 1045 // update will be moved to the current position, so we only need to 1046 // increment the index if the number of users did not change. 1047 if (NumUsers == getNumUsers()) 1048 J++; 1049 } 1050 } 1051 1052 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1053 if (const Value *UV = getUnderlyingValue()) { 1054 OS << "ir<"; 1055 UV->printAsOperand(OS, false); 1056 OS << ">"; 1057 return; 1058 } 1059 1060 unsigned Slot = Tracker.getSlot(this); 1061 if (Slot == unsigned(-1)) 1062 OS << "<badref>"; 1063 else 1064 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1065 } 1066 1067 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1068 bool First = true; 1069 for (VPValue *Op : operands()) { 1070 if (!First) 1071 O << ", "; 1072 Op->printAsOperand(O, SlotTracker); 1073 First = false; 1074 } 1075 } 1076 1077 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1078 Old2NewTy &Old2New, 1079 InterleavedAccessInfo &IAI) { 1080 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1081 for (VPBlockBase *Base : RPOT) { 1082 visitBlock(Base, Old2New, IAI); 1083 } 1084 } 1085 1086 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1087 InterleavedAccessInfo &IAI) { 1088 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1089 for (VPRecipeBase &VPI : *VPBB) { 1090 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1091 auto *VPInst = cast<VPInstruction>(&VPI); 1092 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1093 auto *IG = IAI.getInterleaveGroup(Inst); 1094 if (!IG) 1095 continue; 1096 1097 auto NewIGIter = Old2New.find(IG); 1098 if (NewIGIter == Old2New.end()) 1099 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1100 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1101 1102 if (Inst == IG->getInsertPos()) 1103 Old2New[IG]->setInsertPos(VPInst); 1104 1105 InterleaveGroupMap[VPInst] = Old2New[IG]; 1106 InterleaveGroupMap[VPInst]->insertMember( 1107 VPInst, IG->getIndex(Inst), 1108 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1109 : IG->getFactor())); 1110 } 1111 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1112 visitRegion(Region, Old2New, IAI); 1113 else 1114 llvm_unreachable("Unsupported kind of VPBlock."); 1115 } 1116 1117 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1118 InterleavedAccessInfo &IAI) { 1119 Old2NewTy Old2New; 1120 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1121 } 1122 1123 void VPSlotTracker::assignSlot(const VPValue *V) { 1124 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1125 const Value *UV = V->getUnderlyingValue(); 1126 if (UV) 1127 return; 1128 const auto *VPI = dyn_cast<VPInstruction>(V); 1129 if (VPI && !VPI->hasResult()) 1130 return; 1131 1132 Slots[V] = NextSlot++; 1133 } 1134 1135 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1136 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1137 assignSlots(Region); 1138 else 1139 assignSlots(cast<VPBasicBlock>(VPBB)); 1140 } 1141 1142 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1143 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1144 for (const VPBlockBase *Block : RPOT) 1145 assignSlots(Block); 1146 } 1147 1148 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1149 for (const VPRecipeBase &Recipe : *VPBB) { 1150 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1151 assignSlot(VPI); 1152 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1153 assignSlot(VPIV->getVPValue()); 1154 } 1155 } 1156 1157 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1158 1159 for (const VPValue *V : Plan.VPExternalDefs) 1160 assignSlot(V); 1161 1162 for (auto &E : Plan.Value2VPValue) 1163 if (!isa<VPInstruction>(E.second)) 1164 assignSlot(E.second); 1165 1166 for (const VPValue *V : Plan.VPCBVs) 1167 assignSlot(V); 1168 1169 if (Plan.BackedgeTakenCount) 1170 assignSlot(Plan.BackedgeTakenCount); 1171 1172 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1173 for (const VPBlockBase *Block : RPOT) 1174 assignSlots(Block); 1175 } 1176