xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision f8101e4d68ba428fb6a700a183e39e8f5a766dfb)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
44 #include <cassert>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
55   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
56   VPSlotTracker SlotTracker(
57       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
58   V.print(OS, SlotTracker);
59   return OS;
60 }
61 #endif
62 
63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
64                                 const ElementCount &VF) const {
65   switch (LaneKind) {
66   case VPLane::Kind::ScalableLast:
67     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
68     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
69                              Builder.getInt32(VF.getKnownMinValue() - Lane));
70   case VPLane::Kind::First:
71     return Builder.getInt32(Lane);
72   }
73   llvm_unreachable("Unknown lane kind");
74 }
75 
76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
77     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
78   if (Def)
79     Def->addDefinedValue(this);
80 }
81 
82 VPValue::~VPValue() {
83   assert(Users.empty() && "trying to delete a VPValue with remaining users");
84   if (Def)
85     Def->removeDefinedValue(this);
86 }
87 
88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
90   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
91     R->print(OS, "", SlotTracker);
92   else
93     printAsOperand(OS, SlotTracker);
94 }
95 
96 void VPValue::dump() const {
97   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
98   VPSlotTracker SlotTracker(
99       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
100   print(dbgs(), SlotTracker);
101   dbgs() << "\n";
102 }
103 
104 void VPDef::dump() const {
105   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
106   VPSlotTracker SlotTracker(
107       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
108   print(dbgs(), "", SlotTracker);
109   dbgs() << "\n";
110 }
111 #endif
112 
113 // Get the top-most entry block of \p Start. This is the entry block of the
114 // containing VPlan. This function is templated to support both const and non-const blocks
115 template <typename T> static T *getPlanEntry(T *Start) {
116   T *Next = Start;
117   T *Current = Start;
118   while ((Next = Next->getParent()))
119     Current = Next;
120 
121   SmallSetVector<T *, 8> WorkList;
122   WorkList.insert(Current);
123 
124   for (unsigned i = 0; i < WorkList.size(); i++) {
125     T *Current = WorkList[i];
126     if (Current->getNumPredecessors() == 0)
127       return Current;
128     auto &Predecessors = Current->getPredecessors();
129     WorkList.insert(Predecessors.begin(), Predecessors.end());
130   }
131 
132   llvm_unreachable("VPlan without any entry node without predecessors");
133 }
134 
135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
136 
137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
138 
139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
141   const VPBlockBase *Block = this;
142   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
143     Block = Region->getEntry();
144   return cast<VPBasicBlock>(Block);
145 }
146 
147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
148   VPBlockBase *Block = this;
149   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
150     Block = Region->getEntry();
151   return cast<VPBasicBlock>(Block);
152 }
153 
154 void VPBlockBase::setPlan(VPlan *ParentPlan) {
155   assert(ParentPlan->getEntry() == this &&
156          "Can only set plan on its entry block.");
157   Plan = ParentPlan;
158 }
159 
160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getExit();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getExit();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
176   if (!Successors.empty() || !Parent)
177     return this;
178   assert(Parent->getExit() == this &&
179          "Block w/o successors not the exit of its parent.");
180   return Parent->getEnclosingBlockWithSuccessors();
181 }
182 
183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
184   if (!Predecessors.empty() || !Parent)
185     return this;
186   assert(Parent->getEntry() == this &&
187          "Block w/o predecessors not the entry of its parent.");
188   return Parent->getEnclosingBlockWithPredecessors();
189 }
190 
191 VPValue *VPBlockBase::getCondBit() {
192   return CondBitUser.getSingleOperandOrNull();
193 }
194 
195 const VPValue *VPBlockBase::getCondBit() const {
196   return CondBitUser.getSingleOperandOrNull();
197 }
198 
199 void VPBlockBase::setCondBit(VPValue *CV) { CondBitUser.resetSingleOpUser(CV); }
200 
201 VPValue *VPBlockBase::getPredicate() {
202   return PredicateUser.getSingleOperandOrNull();
203 }
204 
205 const VPValue *VPBlockBase::getPredicate() const {
206   return PredicateUser.getSingleOperandOrNull();
207 }
208 
209 void VPBlockBase::setPredicate(VPValue *CV) {
210   PredicateUser.resetSingleOpUser(CV);
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry));
215 
216   for (VPBlockBase *Block : Blocks)
217     delete Block;
218 }
219 
220 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
221   iterator It = begin();
222   while (It != end() && It->isPhi())
223     It++;
224   return It;
225 }
226 
227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228   if (!Def->getDef())
229     return Def->getLiveInIRValue();
230 
231   if (hasScalarValue(Def, Instance)) {
232     return Data
233         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234   }
235 
236   assert(hasVectorValue(Def, Instance.Part));
237   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
238   if (!VecPart->getType()->isVectorTy()) {
239     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240     return VecPart;
241   }
242   // TODO: Cache created scalar values.
243   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
244   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
245   // set(Def, Extract, Instance);
246   return Extract;
247 }
248 
249 BasicBlock *
250 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
251   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
252   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
253   BasicBlock *PrevBB = CFG.PrevBB;
254   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
255                                          PrevBB->getParent(), CFG.ExitBB);
256   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
257 
258   // Hook up the new basic block to its predecessors.
259   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
260     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
261     auto &PredVPSuccessors = PredVPBB->getSuccessors();
262     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
263 
264     // In outer loop vectorization scenario, the predecessor BBlock may not yet
265     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
266     // vectorization. We do not encounter this case in inner loop vectorization
267     // as we start out by building a loop skeleton with the vector loop header
268     // and latch blocks. As a result, we never enter this function for the
269     // header block in the non VPlan-native path.
270     if (!PredBB) {
271       assert(EnableVPlanNativePath &&
272              "Unexpected null predecessor in non VPlan-native path");
273       CFG.VPBBsToFix.push_back(PredVPBB);
274       continue;
275     }
276 
277     assert(PredBB && "Predecessor basic-block not found building successor.");
278     auto *PredBBTerminator = PredBB->getTerminator();
279     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
280     if (isa<UnreachableInst>(PredBBTerminator)) {
281       assert(PredVPSuccessors.size() == 1 &&
282              "Predecessor ending w/o branch must have single successor.");
283       PredBBTerminator->eraseFromParent();
284       BranchInst::Create(NewBB, PredBB);
285     } else {
286       assert(PredVPSuccessors.size() == 2 &&
287              "Predecessor ending with branch must have two successors.");
288       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
289       assert(!PredBBTerminator->getSuccessor(idx) &&
290              "Trying to reset an existing successor block.");
291       PredBBTerminator->setSuccessor(idx, NewBB);
292     }
293   }
294   return NewBB;
295 }
296 
297 void VPBasicBlock::execute(VPTransformState *State) {
298   bool Replica = State->Instance && !State->Instance->isFirstIteration();
299   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
300   VPBlockBase *SingleHPred = nullptr;
301   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
302 
303   // 1. Create an IR basic block, or reuse the last one if possible.
304   // The last IR basic block is reused, as an optimization, in three cases:
305   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
306   // B. when the current VPBB has a single (hierarchical) predecessor which
307   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
308   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
309   //    is the exit of this region from a previous instance, or the predecessor
310   //    of this region.
311   if (PrevVPBB && /* A */
312       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
313         SingleHPred->getExitBasicBlock() == PrevVPBB &&
314         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
315       !(Replica && getPredecessors().empty())) {       /* C */
316     NewBB = createEmptyBasicBlock(State->CFG);
317     State->Builder.SetInsertPoint(NewBB);
318     // Temporarily terminate with unreachable until CFG is rewired.
319     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
320     State->Builder.SetInsertPoint(Terminator);
321     State->CFG.PrevBB = NewBB;
322   }
323 
324   if (State->CurrentVectorLoop &&
325       !State->CurrentVectorLoop->contains(State->CFG.PrevBB)) {
326     // Register NewBB in its loop. In innermost loops its the same for all BB's.
327     State->CurrentVectorLoop->addBasicBlockToLoop(State->CFG.PrevBB,
328                                                   *State->LI);
329   }
330 
331   // 2. Fill the IR basic block with IR instructions.
332   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
333                     << " in BB:" << NewBB->getName() << '\n');
334 
335   State->CFG.VPBB2IRBB[this] = NewBB;
336   State->CFG.PrevVPBB = this;
337 
338   for (VPRecipeBase &Recipe : Recipes)
339     Recipe.execute(*State);
340 
341   VPValue *CBV;
342   if (EnableVPlanNativePath && (CBV = getCondBit())) {
343     assert(CBV->getUnderlyingValue() &&
344            "Unexpected null underlying value for condition bit");
345 
346     // Condition bit value in a VPBasicBlock is used as the branch selector. In
347     // the VPlan-native path case, since all branches are uniform we generate a
348     // branch instruction using the condition value from vector lane 0 and dummy
349     // successors. The successors are fixed later when the successor blocks are
350     // visited.
351     Value *NewCond = State->get(CBV, {0, 0});
352 
353     // Replace the temporary unreachable terminator with the new conditional
354     // branch.
355     auto *CurrentTerminator = NewBB->getTerminator();
356     assert(isa<UnreachableInst>(CurrentTerminator) &&
357            "Expected to replace unreachable terminator with conditional "
358            "branch.");
359     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
360     CondBr->setSuccessor(0, nullptr);
361     ReplaceInstWithInst(CurrentTerminator, CondBr);
362   }
363 
364   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
365 }
366 
367 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
368   for (VPRecipeBase &R : Recipes) {
369     for (auto *Def : R.definedValues())
370       Def->replaceAllUsesWith(NewValue);
371 
372     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
373       R.setOperand(I, NewValue);
374   }
375 }
376 
377 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
378   assert((SplitAt == end() || SplitAt->getParent() == this) &&
379          "can only split at a position in the same block");
380 
381   SmallVector<VPBlockBase *, 2> Succs(successors());
382   // First, disconnect the current block from its successors.
383   for (VPBlockBase *Succ : Succs)
384     VPBlockUtils::disconnectBlocks(this, Succ);
385 
386   // Create new empty block after the block to split.
387   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
388   VPBlockUtils::insertBlockAfter(SplitBlock, this);
389 
390   // Add successors for block to split to new block.
391   for (VPBlockBase *Succ : Succs)
392     VPBlockUtils::connectBlocks(SplitBlock, Succ);
393 
394   // Finally, move the recipes starting at SplitAt to new block.
395   for (VPRecipeBase &ToMove :
396        make_early_inc_range(make_range(SplitAt, this->end())))
397     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
398 
399   return SplitBlock;
400 }
401 
402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
403 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
404   if (getSuccessors().empty()) {
405     O << Indent << "No successors\n";
406   } else {
407     O << Indent << "Successor(s): ";
408     ListSeparator LS;
409     for (auto *Succ : getSuccessors())
410       O << LS << Succ->getName();
411     O << '\n';
412   }
413 }
414 
415 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
416                          VPSlotTracker &SlotTracker) const {
417   O << Indent << getName() << ":\n";
418   if (const VPValue *Pred = getPredicate()) {
419     O << Indent << "BlockPredicate:";
420     Pred->printAsOperand(O, SlotTracker);
421     if (const auto *PredInst = dyn_cast<VPInstruction>(Pred))
422       O << " (" << PredInst->getParent()->getName() << ")";
423     O << '\n';
424   }
425 
426   auto RecipeIndent = Indent + "  ";
427   for (const VPRecipeBase &Recipe : *this) {
428     Recipe.print(O, RecipeIndent, SlotTracker);
429     O << '\n';
430   }
431 
432   printSuccessors(O, Indent);
433 
434   if (const VPValue *CBV = getCondBit()) {
435     O << Indent << "CondBit: ";
436     CBV->printAsOperand(O, SlotTracker);
437     if (const auto *CBI = dyn_cast<VPInstruction>(CBV))
438       O << " (" << CBI->getParent()->getName() << ")";
439     O << '\n';
440   }
441 }
442 #endif
443 
444 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
445   for (VPBlockBase *Block : depth_first(Entry))
446     // Drop all references in VPBasicBlocks and replace all uses with
447     // DummyValue.
448     Block->dropAllReferences(NewValue);
449 }
450 
451 void VPRegionBlock::execute(VPTransformState *State) {
452   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
453 
454   if (!isReplicator()) {
455     // Create and register the new vector loop.
456     State->CurrentVectorLoop = State->LI->AllocateLoop();
457     Loop *ParentLoop = State->LI->getLoopFor(State->CFG.VectorPreHeader);
458 
459     // Insert the new loop into the loop nest and register the new basic blocks
460     // before calling any utilities such as SCEV that require valid LoopInfo.
461     if (ParentLoop)
462       ParentLoop->addChildLoop(State->CurrentVectorLoop);
463     else
464       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
465 
466     // Visit the VPBlocks connected to "this", starting from it.
467     for (VPBlockBase *Block : RPOT) {
468       if (EnableVPlanNativePath) {
469         // The inner loop vectorization path does not represent loop preheader
470         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
471         // vectorizing loop preheader block. In future, we may replace this
472         // check with the check for loop preheader.
473         if (Block->getNumPredecessors() == 0)
474           continue;
475 
476         // Skip vectorizing loop exit block. In future, we may replace this
477         // check with the check for loop exit.
478         if (Block->getNumSuccessors() == 0)
479           continue;
480       }
481 
482       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
483       Block->execute(State);
484     }
485     return;
486   }
487 
488   assert(!State->Instance && "Replicating a Region with non-null instance.");
489 
490   // Enter replicating mode.
491   State->Instance = VPIteration(0, 0);
492 
493   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
494     State->Instance->Part = Part;
495     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
496     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
497          ++Lane) {
498       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
499       // Visit the VPBlocks connected to \p this, starting from it.
500       for (VPBlockBase *Block : RPOT) {
501         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
502         Block->execute(State);
503       }
504     }
505   }
506 
507   // Exit replicating mode.
508   State->Instance.reset();
509 }
510 
511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
512 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
513                           VPSlotTracker &SlotTracker) const {
514   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
515   auto NewIndent = Indent + "  ";
516   for (auto *BlockBase : depth_first(Entry)) {
517     O << '\n';
518     BlockBase->print(O, NewIndent, SlotTracker);
519   }
520   O << Indent << "}\n";
521 
522   printSuccessors(O, Indent);
523 }
524 #endif
525 
526 bool VPRecipeBase::mayWriteToMemory() const {
527   switch (getVPDefID()) {
528   case VPWidenMemoryInstructionSC: {
529     return cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
530   }
531   case VPReplicateSC:
532   case VPWidenCallSC:
533     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
534         ->mayWriteToMemory();
535   case VPBranchOnMaskSC:
536     return false;
537   case VPWidenIntOrFpInductionSC:
538   case VPWidenCanonicalIVSC:
539   case VPWidenPHISC:
540   case VPBlendSC:
541   case VPWidenSC:
542   case VPWidenGEPSC:
543   case VPReductionSC:
544   case VPWidenSelectSC: {
545     const Instruction *I =
546         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
547     (void)I;
548     assert((!I || !I->mayWriteToMemory()) &&
549            "underlying instruction may write to memory");
550     return false;
551   }
552   default:
553     return true;
554   }
555 }
556 
557 bool VPRecipeBase::mayReadFromMemory() const {
558   switch (getVPDefID()) {
559   case VPWidenMemoryInstructionSC: {
560     return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore();
561   }
562   case VPReplicateSC:
563   case VPWidenCallSC:
564     return cast<Instruction>(getVPSingleValue()->getUnderlyingValue())
565         ->mayReadFromMemory();
566   case VPBranchOnMaskSC:
567     return false;
568   case VPWidenIntOrFpInductionSC:
569   case VPWidenCanonicalIVSC:
570   case VPWidenPHISC:
571   case VPBlendSC:
572   case VPWidenSC:
573   case VPWidenGEPSC:
574   case VPReductionSC:
575   case VPWidenSelectSC: {
576     const Instruction *I =
577         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
578     (void)I;
579     assert((!I || !I->mayReadFromMemory()) &&
580            "underlying instruction may read from memory");
581     return false;
582   }
583   default:
584     return true;
585   }
586 }
587 
588 bool VPRecipeBase::mayHaveSideEffects() const {
589   switch (getVPDefID()) {
590   case VPBranchOnMaskSC:
591     return false;
592   case VPWidenIntOrFpInductionSC:
593   case VPWidenPointerInductionSC:
594   case VPWidenCanonicalIVSC:
595   case VPWidenPHISC:
596   case VPBlendSC:
597   case VPWidenSC:
598   case VPWidenGEPSC:
599   case VPReductionSC:
600   case VPWidenSelectSC:
601   case VPScalarIVStepsSC: {
602     const Instruction *I =
603         dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue());
604     (void)I;
605     assert((!I || !I->mayHaveSideEffects()) &&
606            "underlying instruction has side-effects");
607     return false;
608   }
609   case VPReplicateSC: {
610     auto *R = cast<VPReplicateRecipe>(this);
611     return R->getUnderlyingInstr()->mayHaveSideEffects();
612   }
613   default:
614     return true;
615   }
616 }
617 
618 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
619   assert(!Parent && "Recipe already in some VPBasicBlock");
620   assert(InsertPos->getParent() &&
621          "Insertion position not in any VPBasicBlock");
622   Parent = InsertPos->getParent();
623   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
624 }
625 
626 void VPRecipeBase::insertBefore(VPBasicBlock &BB,
627                                 iplist<VPRecipeBase>::iterator I) {
628   assert(!Parent && "Recipe already in some VPBasicBlock");
629   assert(I == BB.end() || I->getParent() == &BB);
630   Parent = &BB;
631   BB.getRecipeList().insert(I, this);
632 }
633 
634 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
635   assert(!Parent && "Recipe already in some VPBasicBlock");
636   assert(InsertPos->getParent() &&
637          "Insertion position not in any VPBasicBlock");
638   Parent = InsertPos->getParent();
639   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
640 }
641 
642 void VPRecipeBase::removeFromParent() {
643   assert(getParent() && "Recipe not in any VPBasicBlock");
644   getParent()->getRecipeList().remove(getIterator());
645   Parent = nullptr;
646 }
647 
648 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
649   assert(getParent() && "Recipe not in any VPBasicBlock");
650   return getParent()->getRecipeList().erase(getIterator());
651 }
652 
653 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
654   removeFromParent();
655   insertAfter(InsertPos);
656 }
657 
658 void VPRecipeBase::moveBefore(VPBasicBlock &BB,
659                               iplist<VPRecipeBase>::iterator I) {
660   removeFromParent();
661   insertBefore(BB, I);
662 }
663 
664 void VPInstruction::generateInstruction(VPTransformState &State,
665                                         unsigned Part) {
666   IRBuilderBase &Builder = State.Builder;
667   Builder.SetCurrentDebugLocation(DL);
668 
669   if (Instruction::isBinaryOp(getOpcode())) {
670     Value *A = State.get(getOperand(0), Part);
671     Value *B = State.get(getOperand(1), Part);
672     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
673     State.set(this, V, Part);
674     return;
675   }
676 
677   switch (getOpcode()) {
678   case VPInstruction::Not: {
679     Value *A = State.get(getOperand(0), Part);
680     Value *V = Builder.CreateNot(A);
681     State.set(this, V, Part);
682     break;
683   }
684   case VPInstruction::ICmpULE: {
685     Value *IV = State.get(getOperand(0), Part);
686     Value *TC = State.get(getOperand(1), Part);
687     Value *V = Builder.CreateICmpULE(IV, TC);
688     State.set(this, V, Part);
689     break;
690   }
691   case Instruction::Select: {
692     Value *Cond = State.get(getOperand(0), Part);
693     Value *Op1 = State.get(getOperand(1), Part);
694     Value *Op2 = State.get(getOperand(2), Part);
695     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
696     State.set(this, V, Part);
697     break;
698   }
699   case VPInstruction::ActiveLaneMask: {
700     // Get first lane of vector induction variable.
701     Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0));
702     // Get the original loop tripcount.
703     Value *ScalarTC = State.get(getOperand(1), Part);
704 
705     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
706     auto *PredTy = VectorType::get(Int1Ty, State.VF);
707     Instruction *Call = Builder.CreateIntrinsic(
708         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
709         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
710     State.set(this, Call, Part);
711     break;
712   }
713   case VPInstruction::FirstOrderRecurrenceSplice: {
714     // Generate code to combine the previous and current values in vector v3.
715     //
716     //   vector.ph:
717     //     v_init = vector(..., ..., ..., a[-1])
718     //     br vector.body
719     //
720     //   vector.body
721     //     i = phi [0, vector.ph], [i+4, vector.body]
722     //     v1 = phi [v_init, vector.ph], [v2, vector.body]
723     //     v2 = a[i, i+1, i+2, i+3];
724     //     v3 = vector(v1(3), v2(0, 1, 2))
725 
726     // For the first part, use the recurrence phi (v1), otherwise v2.
727     auto *V1 = State.get(getOperand(0), 0);
728     Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1);
729     if (!PartMinus1->getType()->isVectorTy()) {
730       State.set(this, PartMinus1, Part);
731     } else {
732       Value *V2 = State.get(getOperand(1), Part);
733       State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part);
734     }
735     break;
736   }
737 
738   case VPInstruction::CanonicalIVIncrement:
739   case VPInstruction::CanonicalIVIncrementNUW: {
740     Value *Next = nullptr;
741     if (Part == 0) {
742       bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW;
743       auto *Phi = State.get(getOperand(0), 0);
744       // The loop step is equal to the vectorization factor (num of SIMD
745       // elements) times the unroll factor (num of SIMD instructions).
746       Value *Step =
747           createStepForVF(Builder, Phi->getType(), State.VF, State.UF);
748       Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false);
749     } else {
750       Next = State.get(this, 0);
751     }
752 
753     State.set(this, Next, Part);
754     break;
755   }
756   case VPInstruction::BranchOnCount: {
757     if (Part != 0)
758       break;
759     // First create the compare.
760     Value *IV = State.get(getOperand(0), Part);
761     Value *TC = State.get(getOperand(1), Part);
762     Value *Cond = Builder.CreateICmpEQ(IV, TC);
763 
764     // Now create the branch.
765     auto *Plan = getParent()->getPlan();
766     VPRegionBlock *TopRegion = Plan->getVectorLoopRegion();
767     VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock();
768     if (Header->empty()) {
769       assert(EnableVPlanNativePath &&
770              "empty entry block only expected in VPlanNativePath");
771       Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
772     }
773     // TODO: Once the exit block is modeled in VPlan, use it instead of going
774     // through State.CFG.ExitBB.
775     BasicBlock *Exit = State.CFG.ExitBB;
776 
777     Builder.CreateCondBr(Cond, Exit, State.CFG.VPBB2IRBB[Header]);
778     Builder.GetInsertBlock()->getTerminator()->eraseFromParent();
779     break;
780   }
781   default:
782     llvm_unreachable("Unsupported opcode for instruction");
783   }
784 }
785 
786 void VPInstruction::execute(VPTransformState &State) {
787   assert(!State.Instance && "VPInstruction executing an Instance");
788   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
789   State.Builder.setFastMathFlags(FMF);
790   for (unsigned Part = 0; Part < State.UF; ++Part)
791     generateInstruction(State, Part);
792 }
793 
794 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
795 void VPInstruction::dump() const {
796   VPSlotTracker SlotTracker(getParent()->getPlan());
797   print(dbgs(), "", SlotTracker);
798 }
799 
800 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
801                           VPSlotTracker &SlotTracker) const {
802   O << Indent << "EMIT ";
803 
804   if (hasResult()) {
805     printAsOperand(O, SlotTracker);
806     O << " = ";
807   }
808 
809   switch (getOpcode()) {
810   case VPInstruction::Not:
811     O << "not";
812     break;
813   case VPInstruction::ICmpULE:
814     O << "icmp ule";
815     break;
816   case VPInstruction::SLPLoad:
817     O << "combined load";
818     break;
819   case VPInstruction::SLPStore:
820     O << "combined store";
821     break;
822   case VPInstruction::ActiveLaneMask:
823     O << "active lane mask";
824     break;
825   case VPInstruction::FirstOrderRecurrenceSplice:
826     O << "first-order splice";
827     break;
828   case VPInstruction::CanonicalIVIncrement:
829     O << "VF * UF + ";
830     break;
831   case VPInstruction::CanonicalIVIncrementNUW:
832     O << "VF * UF +(nuw) ";
833     break;
834   case VPInstruction::BranchOnCount:
835     O << "branch-on-count ";
836     break;
837   default:
838     O << Instruction::getOpcodeName(getOpcode());
839   }
840 
841   O << FMF;
842 
843   for (const VPValue *Operand : operands()) {
844     O << " ";
845     Operand->printAsOperand(O, SlotTracker);
846   }
847 
848   if (DL) {
849     O << ", !dbg ";
850     DL.print(O);
851   }
852 }
853 #endif
854 
855 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) {
856   // Make sure the VPInstruction is a floating-point operation.
857   assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul ||
858           Opcode == Instruction::FNeg || Opcode == Instruction::FSub ||
859           Opcode == Instruction::FDiv || Opcode == Instruction::FRem ||
860           Opcode == Instruction::FCmp) &&
861          "this op can't take fast-math flags");
862   FMF = FMFNew;
863 }
864 
865 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
866                              Value *CanonicalIVStartValue,
867                              VPTransformState &State) {
868   // Check if the trip count is needed, and if so build it.
869   if (TripCount && TripCount->getNumUsers()) {
870     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
871       State.set(TripCount, TripCountV, Part);
872   }
873 
874   // Check if the backedge taken count is needed, and if so build it.
875   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
876     IRBuilder<> Builder(State.CFG.VectorPreHeader->getTerminator());
877     auto *TCMO = Builder.CreateSub(TripCountV,
878                                    ConstantInt::get(TripCountV->getType(), 1),
879                                    "trip.count.minus.1");
880     auto VF = State.VF;
881     Value *VTCMO =
882         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
883     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
884       State.set(BackedgeTakenCount, VTCMO, Part);
885   }
886 
887   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
888     State.set(&VectorTripCount, VectorTripCountV, Part);
889 
890   // When vectorizing the epilogue loop, the canonical induction start value
891   // needs to be changed from zero to the value after the main vector loop.
892   if (CanonicalIVStartValue) {
893     VPValue *VPV = new VPValue(CanonicalIVStartValue);
894     addExternalDef(VPV);
895     auto *IV = getCanonicalIV();
896     assert(all_of(IV->users(),
897                   [](const VPUser *U) {
898                     if (isa<VPScalarIVStepsRecipe>(U))
899                       return true;
900                     auto *VPI = cast<VPInstruction>(U);
901                     return VPI->getOpcode() ==
902                                VPInstruction::CanonicalIVIncrement ||
903                            VPI->getOpcode() ==
904                                VPInstruction::CanonicalIVIncrementNUW;
905                   }) &&
906            "the canonical IV should only be used by its increments or "
907            "ScalarIVSteps when "
908            "resetting the start value");
909     IV->setOperand(0, VPV);
910   }
911 }
912 
913 /// Generate the code inside the body of the vectorized loop. Assumes a single
914 /// LoopVectorBody basic-block was created for this. Introduce additional
915 /// basic-blocks as needed, and fill them all.
916 void VPlan::execute(VPTransformState *State) {
917   // Set the reverse mapping from VPValues to Values for code generation.
918   for (auto &Entry : Value2VPValue)
919     State->VPValue2Value[Entry.second] = Entry.first;
920 
921   // Initialize CFG state.
922   State->CFG.PrevVPBB = nullptr;
923   BasicBlock *VectorHeaderBB = State->CFG.VectorPreHeader->getSingleSuccessor();
924   State->CFG.PrevBB = VectorHeaderBB;
925   State->CFG.ExitBB = VectorHeaderBB->getSingleSuccessor();
926   State->CurrentVectorLoop = State->LI->getLoopFor(VectorHeaderBB);
927 
928   // Remove the edge between Header and Latch to allow other connections.
929   // Temporarily terminate with unreachable until CFG is rewired.
930   // Note: this asserts the generated code's assumption that
931   // getFirstInsertionPt() can be dereferenced into an Instruction.
932   VectorHeaderBB->getTerminator()->eraseFromParent();
933   State->Builder.SetInsertPoint(VectorHeaderBB);
934   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
935   State->Builder.SetInsertPoint(Terminator);
936 
937   // Generate code in loop body.
938   for (VPBlockBase *Block : depth_first(Entry))
939     Block->execute(State);
940 
941   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
942   // VPBB's successors.
943   for (auto VPBB : State->CFG.VPBBsToFix) {
944     assert(EnableVPlanNativePath &&
945            "Unexpected VPBBsToFix in non VPlan-native path");
946     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
947     assert(BB && "Unexpected null basic block for VPBB");
948 
949     unsigned Idx = 0;
950     auto *BBTerminator = BB->getTerminator();
951 
952     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
953       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
954       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
955       ++Idx;
956     }
957   }
958 
959   BasicBlock *VectorLatchBB = State->CFG.PrevBB;
960 
961   // Fix the latch value of canonical, reduction and first-order recurrences
962   // phis in the vector loop.
963   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
964   if (Header->empty()) {
965     assert(EnableVPlanNativePath);
966     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
967   }
968   for (VPRecipeBase &R : Header->phis()) {
969     // Skip phi-like recipes that generate their backedege values themselves.
970     if (isa<VPWidenPHIRecipe>(&R))
971       continue;
972 
973     if (isa<VPWidenPointerInductionRecipe>(&R) ||
974         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
975       PHINode *Phi = nullptr;
976       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
977         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
978       } else {
979         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
980         // TODO: Split off the case that all users of a pointer phi are scalar
981         // from the VPWidenPointerInductionRecipe.
982         if (all_of(WidenPhi->users(), [WidenPhi](const VPUser *U) {
983               return cast<VPRecipeBase>(U)->usesScalars(WidenPhi);
984             }))
985           continue;
986 
987         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
988         Phi = cast<PHINode>(GEP->getPointerOperand());
989       }
990 
991       Phi->setIncomingBlock(1, VectorLatchBB);
992 
993       // Move the last step to the end of the latch block. This ensures
994       // consistent placement of all induction updates.
995       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
996       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
997       continue;
998     }
999 
1000     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1001     // For  canonical IV, first-order recurrences and in-order reduction phis,
1002     // only a single part is generated, which provides the last part from the
1003     // previous iteration. For non-ordered reductions all UF parts are
1004     // generated.
1005     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1006                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
1007                             cast<VPReductionPHIRecipe>(PhiR)->isOrdered();
1008     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1009 
1010     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1011       Value *Phi = State->get(PhiR, Part);
1012       Value *Val = State->get(PhiR->getBackedgeValue(),
1013                               SinglePartNeeded ? State->UF - 1 : Part);
1014       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1015     }
1016   }
1017 
1018   // We do not attempt to preserve DT for outer loop vectorization currently.
1019   if (!EnableVPlanNativePath)
1020     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
1021                         State->CFG.ExitBB);
1022 }
1023 
1024 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1025 LLVM_DUMP_METHOD
1026 void VPlan::print(raw_ostream &O) const {
1027   VPSlotTracker SlotTracker(this);
1028 
1029   O << "VPlan '" << Name << "' {";
1030 
1031   if (VectorTripCount.getNumUsers() > 0) {
1032     O << "\nLive-in ";
1033     VectorTripCount.printAsOperand(O, SlotTracker);
1034     O << " = vector-trip-count\n";
1035   }
1036 
1037   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1038     O << "\nLive-in ";
1039     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1040     O << " = backedge-taken count\n";
1041   }
1042 
1043   for (const VPBlockBase *Block : depth_first(getEntry())) {
1044     O << '\n';
1045     Block->print(O, "", SlotTracker);
1046   }
1047   O << "}\n";
1048 }
1049 
1050 LLVM_DUMP_METHOD
1051 void VPlan::printDOT(raw_ostream &O) const {
1052   VPlanPrinter Printer(O, *this);
1053   Printer.dump();
1054 }
1055 
1056 LLVM_DUMP_METHOD
1057 void VPlan::dump() const { print(dbgs()); }
1058 #endif
1059 
1060 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
1061                                 BasicBlock *LoopLatchBB,
1062                                 BasicBlock *LoopExitBB) {
1063   // The vector body may be more than a single basic-block by this point.
1064   // Update the dominator tree information inside the vector body by propagating
1065   // it from header to latch, expecting only triangular control-flow, if any.
1066   BasicBlock *PostDomSucc = nullptr;
1067   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
1068     // Get the list of successors of this block.
1069     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
1070     assert(Succs.size() <= 2 &&
1071            "Basic block in vector loop has more than 2 successors.");
1072     PostDomSucc = Succs[0];
1073     if (Succs.size() == 1) {
1074       assert(PostDomSucc->getSinglePredecessor() &&
1075              "PostDom successor has more than one predecessor.");
1076       DT->addNewBlock(PostDomSucc, BB);
1077       continue;
1078     }
1079     BasicBlock *InterimSucc = Succs[1];
1080     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
1081       PostDomSucc = Succs[1];
1082       InterimSucc = Succs[0];
1083     }
1084     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
1085            "One successor of a basic block does not lead to the other.");
1086     assert(InterimSucc->getSinglePredecessor() &&
1087            "Interim successor has more than one predecessor.");
1088     assert(PostDomSucc->hasNPredecessors(2) &&
1089            "PostDom successor has more than two predecessors.");
1090     DT->addNewBlock(InterimSucc, BB);
1091     DT->addNewBlock(PostDomSucc, BB);
1092   }
1093   // Latch block is a new dominator for the loop exit.
1094   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
1095   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
1096 }
1097 
1098 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1099 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1100   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1101          Twine(getOrCreateBID(Block));
1102 }
1103 
1104 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1105   const std::string &Name = Block->getName();
1106   if (!Name.empty())
1107     return Name;
1108   return "VPB" + Twine(getOrCreateBID(Block));
1109 }
1110 
1111 void VPlanPrinter::dump() {
1112   Depth = 1;
1113   bumpIndent(0);
1114   OS << "digraph VPlan {\n";
1115   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1116   if (!Plan.getName().empty())
1117     OS << "\\n" << DOT::EscapeString(Plan.getName());
1118   if (Plan.BackedgeTakenCount) {
1119     OS << ", where:\\n";
1120     Plan.BackedgeTakenCount->print(OS, SlotTracker);
1121     OS << " := BackedgeTakenCount";
1122   }
1123   OS << "\"]\n";
1124   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1125   OS << "edge [fontname=Courier, fontsize=30]\n";
1126   OS << "compound=true\n";
1127 
1128   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
1129     dumpBlock(Block);
1130 
1131   OS << "}\n";
1132 }
1133 
1134 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1135   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1136     dumpBasicBlock(BasicBlock);
1137   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1138     dumpRegion(Region);
1139   else
1140     llvm_unreachable("Unsupported kind of VPBlock.");
1141 }
1142 
1143 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1144                             bool Hidden, const Twine &Label) {
1145   // Due to "dot" we print an edge between two regions as an edge between the
1146   // exit basic block and the entry basic of the respective regions.
1147   const VPBlockBase *Tail = From->getExitBasicBlock();
1148   const VPBlockBase *Head = To->getEntryBasicBlock();
1149   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1150   OS << " [ label=\"" << Label << '\"';
1151   if (Tail != From)
1152     OS << " ltail=" << getUID(From);
1153   if (Head != To)
1154     OS << " lhead=" << getUID(To);
1155   if (Hidden)
1156     OS << "; splines=none";
1157   OS << "]\n";
1158 }
1159 
1160 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1161   auto &Successors = Block->getSuccessors();
1162   if (Successors.size() == 1)
1163     drawEdge(Block, Successors.front(), false, "");
1164   else if (Successors.size() == 2) {
1165     drawEdge(Block, Successors.front(), false, "T");
1166     drawEdge(Block, Successors.back(), false, "F");
1167   } else {
1168     unsigned SuccessorNumber = 0;
1169     for (auto *Successor : Successors)
1170       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1171   }
1172 }
1173 
1174 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1175   // Implement dot-formatted dump by performing plain-text dump into the
1176   // temporary storage followed by some post-processing.
1177   OS << Indent << getUID(BasicBlock) << " [label =\n";
1178   bumpIndent(1);
1179   std::string Str;
1180   raw_string_ostream SS(Str);
1181   // Use no indentation as we need to wrap the lines into quotes ourselves.
1182   BasicBlock->print(SS, "", SlotTracker);
1183 
1184   // We need to process each line of the output separately, so split
1185   // single-string plain-text dump.
1186   SmallVector<StringRef, 0> Lines;
1187   StringRef(Str).rtrim('\n').split(Lines, "\n");
1188 
1189   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1190     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1191   };
1192 
1193   // Don't need the "+" after the last line.
1194   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1195     EmitLine(Line, " +\n");
1196   EmitLine(Lines.back(), "\n");
1197 
1198   bumpIndent(-1);
1199   OS << Indent << "]\n";
1200 
1201   dumpEdges(BasicBlock);
1202 }
1203 
1204 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1205   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1206   bumpIndent(1);
1207   OS << Indent << "fontname=Courier\n"
1208      << Indent << "label=\""
1209      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1210      << DOT::EscapeString(Region->getName()) << "\"\n";
1211   // Dump the blocks of the region.
1212   assert(Region->getEntry() && "Region contains no inner blocks.");
1213   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
1214     dumpBlock(Block);
1215   bumpIndent(-1);
1216   OS << Indent << "}\n";
1217   dumpEdges(Region);
1218 }
1219 
1220 void VPlanIngredient::print(raw_ostream &O) const {
1221   if (auto *Inst = dyn_cast<Instruction>(V)) {
1222     if (!Inst->getType()->isVoidTy()) {
1223       Inst->printAsOperand(O, false);
1224       O << " = ";
1225     }
1226     O << Inst->getOpcodeName() << " ";
1227     unsigned E = Inst->getNumOperands();
1228     if (E > 0) {
1229       Inst->getOperand(0)->printAsOperand(O, false);
1230       for (unsigned I = 1; I < E; ++I)
1231         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1232     }
1233   } else // !Inst
1234     V->printAsOperand(O, false);
1235 }
1236 
1237 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
1238                               VPSlotTracker &SlotTracker) const {
1239   O << Indent << "WIDEN-CALL ";
1240 
1241   auto *CI = cast<CallInst>(getUnderlyingInstr());
1242   if (CI->getType()->isVoidTy())
1243     O << "void ";
1244   else {
1245     printAsOperand(O, SlotTracker);
1246     O << " = ";
1247   }
1248 
1249   O << "call @" << CI->getCalledFunction()->getName() << "(";
1250   printOperands(O, SlotTracker);
1251   O << ")";
1252 }
1253 
1254 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
1255                                 VPSlotTracker &SlotTracker) const {
1256   O << Indent << "WIDEN-SELECT ";
1257   printAsOperand(O, SlotTracker);
1258   O << " = select ";
1259   getOperand(0)->printAsOperand(O, SlotTracker);
1260   O << ", ";
1261   getOperand(1)->printAsOperand(O, SlotTracker);
1262   O << ", ";
1263   getOperand(2)->printAsOperand(O, SlotTracker);
1264   O << (InvariantCond ? " (condition is loop invariant)" : "");
1265 }
1266 
1267 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
1268                           VPSlotTracker &SlotTracker) const {
1269   O << Indent << "WIDEN ";
1270   printAsOperand(O, SlotTracker);
1271   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
1272   printOperands(O, SlotTracker);
1273 }
1274 
1275 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1276                                           VPSlotTracker &SlotTracker) const {
1277   O << Indent << "WIDEN-INDUCTION";
1278   if (getTruncInst()) {
1279     O << "\\l\"";
1280     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
1281     O << " +\n" << Indent << "\"  ";
1282     getVPValue(0)->printAsOperand(O, SlotTracker);
1283   } else
1284     O << " " << VPlanIngredient(IV);
1285 }
1286 
1287 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent,
1288                                           VPSlotTracker &SlotTracker) const {
1289   O << Indent << "EMIT ";
1290   printAsOperand(O, SlotTracker);
1291   O << " = WIDEN-POINTER-INDUCTION ";
1292   getStartValue()->printAsOperand(O, SlotTracker);
1293   O << ", " << *IndDesc.getStep();
1294 }
1295 
1296 #endif
1297 
1298 bool VPWidenIntOrFpInductionRecipe::isCanonical() const {
1299   auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue());
1300   auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep());
1301   return StartC && StartC->isZero() && StepC && StepC->isOne();
1302 }
1303 
1304 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const {
1305   return cast<VPCanonicalIVPHIRecipe>(getOperand(0));
1306 }
1307 
1308 bool VPScalarIVStepsRecipe::isCanonical() const {
1309   auto *CanIV = getCanonicalIV();
1310   // The start value of the steps-recipe must match the start value of the
1311   // canonical induction and it must step by 1.
1312   if (CanIV->getStartValue() != getStartValue())
1313     return false;
1314   auto *StepVPV = getStepValue();
1315   if (StepVPV->getDef())
1316     return false;
1317   auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue());
1318   return StepC && StepC->isOne();
1319 }
1320 
1321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1322 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent,
1323                                   VPSlotTracker &SlotTracker) const {
1324   O << Indent;
1325   printAsOperand(O, SlotTracker);
1326   O << Indent << "= SCALAR-STEPS ";
1327   printOperands(O, SlotTracker);
1328 }
1329 
1330 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
1331                              VPSlotTracker &SlotTracker) const {
1332   O << Indent << "WIDEN-GEP ";
1333   O << (IsPtrLoopInvariant ? "Inv" : "Var");
1334   size_t IndicesNumber = IsIndexLoopInvariant.size();
1335   for (size_t I = 0; I < IndicesNumber; ++I)
1336     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
1337 
1338   O << " ";
1339   printAsOperand(O, SlotTracker);
1340   O << " = getelementptr ";
1341   printOperands(O, SlotTracker);
1342 }
1343 
1344 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1345                              VPSlotTracker &SlotTracker) const {
1346   O << Indent << "WIDEN-PHI ";
1347 
1348   auto *OriginalPhi = cast<PHINode>(getUnderlyingValue());
1349   // Unless all incoming values are modeled in VPlan  print the original PHI
1350   // directly.
1351   // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming
1352   // values as VPValues.
1353   if (getNumOperands() != OriginalPhi->getNumOperands()) {
1354     O << VPlanIngredient(OriginalPhi);
1355     return;
1356   }
1357 
1358   printAsOperand(O, SlotTracker);
1359   O << " = phi ";
1360   printOperands(O, SlotTracker);
1361 }
1362 
1363 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
1364                           VPSlotTracker &SlotTracker) const {
1365   O << Indent << "BLEND ";
1366   Phi->printAsOperand(O, false);
1367   O << " =";
1368   if (getNumIncomingValues() == 1) {
1369     // Not a User of any mask: not really blending, this is a
1370     // single-predecessor phi.
1371     O << " ";
1372     getIncomingValue(0)->printAsOperand(O, SlotTracker);
1373   } else {
1374     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
1375       O << " ";
1376       getIncomingValue(I)->printAsOperand(O, SlotTracker);
1377       O << "/";
1378       getMask(I)->printAsOperand(O, SlotTracker);
1379     }
1380   }
1381 }
1382 
1383 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
1384                               VPSlotTracker &SlotTracker) const {
1385   O << Indent << "REDUCE ";
1386   printAsOperand(O, SlotTracker);
1387   O << " = ";
1388   getChainOp()->printAsOperand(O, SlotTracker);
1389   O << " +";
1390   if (isa<FPMathOperator>(getUnderlyingInstr()))
1391     O << getUnderlyingInstr()->getFastMathFlags();
1392   O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " (";
1393   getVecOp()->printAsOperand(O, SlotTracker);
1394   if (getCondOp()) {
1395     O << ", ";
1396     getCondOp()->printAsOperand(O, SlotTracker);
1397   }
1398   O << ")";
1399 }
1400 
1401 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
1402                               VPSlotTracker &SlotTracker) const {
1403   O << Indent << (IsUniform ? "CLONE " : "REPLICATE ");
1404 
1405   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
1406     printAsOperand(O, SlotTracker);
1407     O << " = ";
1408   }
1409   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
1410   printOperands(O, SlotTracker);
1411 
1412   if (AlsoPack)
1413     O << " (S->V)";
1414 }
1415 
1416 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1417                                 VPSlotTracker &SlotTracker) const {
1418   O << Indent << "PHI-PREDICATED-INSTRUCTION ";
1419   printAsOperand(O, SlotTracker);
1420   O << " = ";
1421   printOperands(O, SlotTracker);
1422 }
1423 
1424 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1425                                            VPSlotTracker &SlotTracker) const {
1426   O << Indent << "WIDEN ";
1427 
1428   if (!isStore()) {
1429     printAsOperand(O, SlotTracker);
1430     O << " = ";
1431   }
1432   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1433 
1434   printOperands(O, SlotTracker);
1435 }
1436 #endif
1437 
1438 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) {
1439   Value *Start = getStartValue()->getLiveInIRValue();
1440   PHINode *EntryPart = PHINode::Create(
1441       Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt());
1442   EntryPart->addIncoming(Start, State.CFG.VectorPreHeader);
1443   EntryPart->setDebugLoc(DL);
1444   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1445     State.set(this, EntryPart, Part);
1446 }
1447 
1448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1449 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1450                                    VPSlotTracker &SlotTracker) const {
1451   O << Indent << "EMIT ";
1452   printAsOperand(O, SlotTracker);
1453   O << " = CANONICAL-INDUCTION";
1454 }
1455 #endif
1456 
1457 void VPExpandSCEVRecipe::execute(VPTransformState &State) {
1458   assert(!State.Instance && "cannot be used in per-lane");
1459   const DataLayout &DL =
1460       State.CFG.VectorPreHeader->getModule()->getDataLayout();
1461   SCEVExpander Exp(SE, DL, "induction");
1462   Value *Res = Exp.expandCodeFor(Expr, Expr->getType(),
1463                                  State.CFG.VectorPreHeader->getTerminator());
1464 
1465   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
1466     State.set(this, Res, Part);
1467 }
1468 
1469 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1470 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent,
1471                                VPSlotTracker &SlotTracker) const {
1472   O << Indent << "EMIT ";
1473   getVPSingleValue()->printAsOperand(O, SlotTracker);
1474   O << " = EXPAND SCEV " << *Expr;
1475 }
1476 #endif
1477 
1478 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1479   Value *CanonicalIV = State.get(getOperand(0), 0);
1480   Type *STy = CanonicalIV->getType();
1481   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1482   ElementCount VF = State.VF;
1483   Value *VStart = VF.isScalar()
1484                       ? CanonicalIV
1485                       : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast");
1486   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1487     Value *VStep = createStepForVF(Builder, STy, VF, Part);
1488     if (VF.isVector()) {
1489       VStep = Builder.CreateVectorSplat(VF, VStep);
1490       VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType()));
1491     }
1492     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1493     State.set(this, CanonicalVectorIV, Part);
1494   }
1495 }
1496 
1497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1498 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1499                                      VPSlotTracker &SlotTracker) const {
1500   O << Indent << "EMIT ";
1501   printAsOperand(O, SlotTracker);
1502   O << " = WIDEN-CANONICAL-INDUCTION ";
1503   printOperands(O, SlotTracker);
1504 }
1505 #endif
1506 
1507 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) {
1508   auto &Builder = State.Builder;
1509   // Create a vector from the initial value.
1510   auto *VectorInit = getStartValue()->getLiveInIRValue();
1511 
1512   Type *VecTy = State.VF.isScalar()
1513                     ? VectorInit->getType()
1514                     : VectorType::get(VectorInit->getType(), State.VF);
1515 
1516   if (State.VF.isVector()) {
1517     auto *IdxTy = Builder.getInt32Ty();
1518     auto *One = ConstantInt::get(IdxTy, 1);
1519     IRBuilder<>::InsertPointGuard Guard(Builder);
1520     Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1521     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF);
1522     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
1523     VectorInit = Builder.CreateInsertElement(
1524         PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init");
1525   }
1526 
1527   // Create a phi node for the new recurrence.
1528   PHINode *EntryPart = PHINode::Create(
1529       VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt());
1530   EntryPart->addIncoming(VectorInit, State.CFG.VectorPreHeader);
1531   State.set(this, EntryPart, 0);
1532 }
1533 
1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1535 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent,
1536                                             VPSlotTracker &SlotTracker) const {
1537   O << Indent << "FIRST-ORDER-RECURRENCE-PHI ";
1538   printAsOperand(O, SlotTracker);
1539   O << " = phi ";
1540   printOperands(O, SlotTracker);
1541 }
1542 #endif
1543 
1544 void VPReductionPHIRecipe::execute(VPTransformState &State) {
1545   PHINode *PN = cast<PHINode>(getUnderlyingValue());
1546   auto &Builder = State.Builder;
1547 
1548   // In order to support recurrences we need to be able to vectorize Phi nodes.
1549   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
1550   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
1551   // this value when we vectorize all of the instructions that use the PHI.
1552   bool ScalarPHI = State.VF.isScalar() || IsInLoop;
1553   Type *VecTy =
1554       ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
1555 
1556   BasicBlock *HeaderBB = State.CFG.PrevBB;
1557   assert(State.CurrentVectorLoop->getHeader() == HeaderBB &&
1558          "recipe must be in the vector loop header");
1559   unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF;
1560   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1561     Value *EntryPart =
1562         PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt());
1563     State.set(this, EntryPart, Part);
1564   }
1565 
1566   // Reductions do not have to start at zero. They can start with
1567   // any loop invariant values.
1568   VPValue *StartVPV = getStartValue();
1569   Value *StartV = StartVPV->getLiveInIRValue();
1570 
1571   Value *Iden = nullptr;
1572   RecurKind RK = RdxDesc.getRecurrenceKind();
1573   if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) ||
1574       RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) {
1575     // MinMax reduction have the start value as their identify.
1576     if (ScalarPHI) {
1577       Iden = StartV;
1578     } else {
1579       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1580       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1581       StartV = Iden =
1582           Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
1583     }
1584   } else {
1585     Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(),
1586                                          RdxDesc.getFastMathFlags());
1587 
1588     if (!ScalarPHI) {
1589       Iden = Builder.CreateVectorSplat(State.VF, Iden);
1590       IRBuilderBase::InsertPointGuard IPBuilder(Builder);
1591       Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator());
1592       Constant *Zero = Builder.getInt32(0);
1593       StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
1594     }
1595   }
1596 
1597   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1598     Value *EntryPart = State.get(this, Part);
1599     // Make sure to add the reduction start value only to the
1600     // first unroll part.
1601     Value *StartVal = (Part == 0) ? StartV : Iden;
1602     cast<PHINode>(EntryPart)->addIncoming(StartVal, State.CFG.VectorPreHeader);
1603   }
1604 }
1605 
1606 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1607 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent,
1608                                  VPSlotTracker &SlotTracker) const {
1609   O << Indent << "WIDEN-REDUCTION-PHI ";
1610 
1611   printAsOperand(O, SlotTracker);
1612   O << " = phi ";
1613   printOperands(O, SlotTracker);
1614 }
1615 #endif
1616 
1617 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1618 
1619 void VPValue::replaceAllUsesWith(VPValue *New) {
1620   for (unsigned J = 0; J < getNumUsers();) {
1621     VPUser *User = Users[J];
1622     unsigned NumUsers = getNumUsers();
1623     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1624       if (User->getOperand(I) == this)
1625         User->setOperand(I, New);
1626     // If a user got removed after updating the current user, the next user to
1627     // update will be moved to the current position, so we only need to
1628     // increment the index if the number of users did not change.
1629     if (NumUsers == getNumUsers())
1630       J++;
1631   }
1632 }
1633 
1634 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1635 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1636   if (const Value *UV = getUnderlyingValue()) {
1637     OS << "ir<";
1638     UV->printAsOperand(OS, false);
1639     OS << ">";
1640     return;
1641   }
1642 
1643   unsigned Slot = Tracker.getSlot(this);
1644   if (Slot == unsigned(-1))
1645     OS << "<badref>";
1646   else
1647     OS << "vp<%" << Tracker.getSlot(this) << ">";
1648 }
1649 
1650 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1651   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1652     Op->printAsOperand(O, SlotTracker);
1653   });
1654 }
1655 #endif
1656 
1657 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1658                                           Old2NewTy &Old2New,
1659                                           InterleavedAccessInfo &IAI) {
1660   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1661   for (VPBlockBase *Base : RPOT) {
1662     visitBlock(Base, Old2New, IAI);
1663   }
1664 }
1665 
1666 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1667                                          InterleavedAccessInfo &IAI) {
1668   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1669     for (VPRecipeBase &VPI : *VPBB) {
1670       if (isa<VPHeaderPHIRecipe>(&VPI))
1671         continue;
1672       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1673       auto *VPInst = cast<VPInstruction>(&VPI);
1674       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1675       auto *IG = IAI.getInterleaveGroup(Inst);
1676       if (!IG)
1677         continue;
1678 
1679       auto NewIGIter = Old2New.find(IG);
1680       if (NewIGIter == Old2New.end())
1681         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1682             IG->getFactor(), IG->isReverse(), IG->getAlign());
1683 
1684       if (Inst == IG->getInsertPos())
1685         Old2New[IG]->setInsertPos(VPInst);
1686 
1687       InterleaveGroupMap[VPInst] = Old2New[IG];
1688       InterleaveGroupMap[VPInst]->insertMember(
1689           VPInst, IG->getIndex(Inst),
1690           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1691                                 : IG->getFactor()));
1692     }
1693   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1694     visitRegion(Region, Old2New, IAI);
1695   else
1696     llvm_unreachable("Unsupported kind of VPBlock.");
1697 }
1698 
1699 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1700                                                  InterleavedAccessInfo &IAI) {
1701   Old2NewTy Old2New;
1702   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1703 }
1704 
1705 void VPSlotTracker::assignSlot(const VPValue *V) {
1706   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1707   Slots[V] = NextSlot++;
1708 }
1709 
1710 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1711 
1712   for (const VPValue *V : Plan.VPExternalDefs)
1713     assignSlot(V);
1714 
1715   assignSlot(&Plan.VectorTripCount);
1716   if (Plan.BackedgeTakenCount)
1717     assignSlot(Plan.BackedgeTakenCount);
1718 
1719   ReversePostOrderTraversal<
1720       VPBlockRecursiveTraversalWrapper<const VPBlockBase *>>
1721       RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>(
1722           Plan.getEntry()));
1723   for (const VPBasicBlock *VPBB :
1724        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1725     for (const VPRecipeBase &Recipe : *VPBB)
1726       for (VPValue *Def : Recipe.definedValues())
1727         assignSlot(Def);
1728 }
1729 
1730 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1731   return all_of(Def->users(), [Def](VPUser *U) {
1732     return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(Def);
1733   });
1734 }
1735