1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 extern cl::opt<unsigned> ForceTargetInstructionCost; 59 60 static cl::opt<bool> PrintVPlansInDotFormat( 61 "vplan-print-in-dot-format", cl::Hidden, 62 cl::desc("Use dot format instead of plain text when dumping VPlans")); 63 64 #define DEBUG_TYPE "vplan" 65 66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 68 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 69 VPSlotTracker SlotTracker( 70 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 71 V.print(OS, SlotTracker); 72 return OS; 73 } 74 #endif 75 76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 77 const ElementCount &VF) const { 78 switch (LaneKind) { 79 case VPLane::Kind::ScalableLast: 80 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 81 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 82 Builder.getInt32(VF.getKnownMinValue() - Lane)); 83 case VPLane::Kind::First: 84 return Builder.getInt32(Lane); 85 } 86 llvm_unreachable("Unknown lane kind"); 87 } 88 89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 90 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 91 if (Def) 92 Def->addDefinedValue(this); 93 } 94 95 VPValue::~VPValue() { 96 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 97 if (Def) 98 Def->removeDefinedValue(this); 99 } 100 101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 103 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 104 R->print(OS, "", SlotTracker); 105 else 106 printAsOperand(OS, SlotTracker); 107 } 108 109 void VPValue::dump() const { 110 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 111 VPSlotTracker SlotTracker( 112 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 113 print(dbgs(), SlotTracker); 114 dbgs() << "\n"; 115 } 116 117 void VPDef::dump() const { 118 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 119 VPSlotTracker SlotTracker( 120 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 121 print(dbgs(), "", SlotTracker); 122 dbgs() << "\n"; 123 } 124 #endif 125 126 VPRecipeBase *VPValue::getDefiningRecipe() { 127 return cast_or_null<VPRecipeBase>(Def); 128 } 129 130 const VPRecipeBase *VPValue::getDefiningRecipe() const { 131 return cast_or_null<VPRecipeBase>(Def); 132 } 133 134 // Get the top-most entry block of \p Start. This is the entry block of the 135 // containing VPlan. This function is templated to support both const and non-const blocks 136 template <typename T> static T *getPlanEntry(T *Start) { 137 T *Next = Start; 138 T *Current = Start; 139 while ((Next = Next->getParent())) 140 Current = Next; 141 142 SmallSetVector<T *, 8> WorkList; 143 WorkList.insert(Current); 144 145 for (unsigned i = 0; i < WorkList.size(); i++) { 146 T *Current = WorkList[i]; 147 if (Current->getNumPredecessors() == 0) 148 return Current; 149 auto &Predecessors = Current->getPredecessors(); 150 WorkList.insert(Predecessors.begin(), Predecessors.end()); 151 } 152 153 llvm_unreachable("VPlan without any entry node without predecessors"); 154 } 155 156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 157 158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 159 160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getEntry(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getEntry(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 void VPBlockBase::setPlan(VPlan *ParentPlan) { 176 assert( 177 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 178 "Can only set plan on its entry or preheader block."); 179 Plan = ParentPlan; 180 } 181 182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 184 const VPBlockBase *Block = this; 185 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 186 Block = Region->getExiting(); 187 return cast<VPBasicBlock>(Block); 188 } 189 190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 191 VPBlockBase *Block = this; 192 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 193 Block = Region->getExiting(); 194 return cast<VPBasicBlock>(Block); 195 } 196 197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 198 if (!Successors.empty() || !Parent) 199 return this; 200 assert(Parent->getExiting() == this && 201 "Block w/o successors not the exiting block of its parent."); 202 return Parent->getEnclosingBlockWithSuccessors(); 203 } 204 205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 206 if (!Predecessors.empty() || !Parent) 207 return this; 208 assert(Parent->getEntry() == this && 209 "Block w/o predecessors not the entry of its parent."); 210 return Parent->getEnclosingBlockWithPredecessors(); 211 } 212 213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 214 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 215 delete Block; 216 } 217 218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 219 iterator It = begin(); 220 while (It != end() && It->isPhi()) 221 It++; 222 return It; 223 } 224 225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 226 DominatorTree *DT, IRBuilderBase &Builder, 227 InnerLoopVectorizer *ILV, VPlan *Plan) 228 : VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {} 230 231 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 232 if (Def->isLiveIn()) 233 return Def->getLiveInIRValue(); 234 235 if (hasScalarValue(Def, Instance)) { 236 return Data.VPV2Scalars[Def][Instance.Lane.mapToCacheIndex(VF)]; 237 } 238 if (!Instance.Lane.isFirstLane() && 239 vputils::isUniformAfterVectorization(Def) && 240 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 241 return Data.VPV2Scalars[Def][0]; 242 } 243 244 assert(hasVectorValue(Def)); 245 auto *VecPart = Data.VPV2Vector[Def]; 246 if (!VecPart->getType()->isVectorTy()) { 247 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 248 return VecPart; 249 } 250 // TODO: Cache created scalar values. 251 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 252 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 253 // set(Def, Extract, Instance); 254 return Extract; 255 } 256 257 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) { 258 if (NeedsScalar) { 259 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) || 260 !vputils::onlyFirstLaneUsed(Def) || 261 (hasScalarValue(Def, VPIteration(0, 0)) && 262 Data.VPV2Scalars[Def].size() == 1)) && 263 "Trying to access a single scalar per part but has multiple scalars " 264 "per part."); 265 return get(Def, VPIteration(0, 0)); 266 } 267 268 // If Values have been set for this Def return the one relevant for \p Part. 269 if (hasVectorValue(Def)) 270 return Data.VPV2Vector[Def]; 271 272 auto GetBroadcastInstrs = [this, Def](Value *V) { 273 bool SafeToHoist = Def->isDefinedOutsideLoopRegions(); 274 if (VF.isScalar()) 275 return V; 276 // Place the code for broadcasting invariant variables in the new preheader. 277 IRBuilder<>::InsertPointGuard Guard(Builder); 278 if (SafeToHoist) { 279 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 280 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 281 if (LoopVectorPreHeader) 282 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 283 } 284 285 // Place the code for broadcasting invariant variables in the new preheader. 286 // Broadcast the scalar into all locations in the vector. 287 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 288 289 return Shuf; 290 }; 291 292 if (!hasScalarValue(Def, {0, 0})) { 293 assert(Def->isLiveIn() && "expected a live-in"); 294 Value *IRV = Def->getLiveInIRValue(); 295 Value *B = GetBroadcastInstrs(IRV); 296 set(Def, B); 297 return B; 298 } 299 300 Value *ScalarValue = get(Def, {0, 0}); 301 // If we aren't vectorizing, we can just copy the scalar map values over 302 // to the vector map. 303 if (VF.isScalar()) { 304 set(Def, ScalarValue); 305 return ScalarValue; 306 } 307 308 bool IsUniform = vputils::isUniformAfterVectorization(Def); 309 310 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 311 // Check if there is a scalar value for the selected lane. 312 if (!hasScalarValue(Def, {0, LastLane})) { 313 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 314 // VPExpandSCEVRecipes can also be uniform. 315 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 316 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 317 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 318 "unexpected recipe found to be invariant"); 319 IsUniform = true; 320 LastLane = 0; 321 } 322 323 auto *LastInst = cast<Instruction>(get(Def, {0, LastLane})); 324 // Set the insert point after the last scalarized instruction or after the 325 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 326 // will directly follow the scalar definitions. 327 auto OldIP = Builder.saveIP(); 328 auto NewIP = 329 isa<PHINode>(LastInst) 330 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 331 : std::next(BasicBlock::iterator(LastInst)); 332 Builder.SetInsertPoint(&*NewIP); 333 334 // However, if we are vectorizing, we need to construct the vector values. 335 // If the value is known to be uniform after vectorization, we can just 336 // broadcast the scalar value corresponding to lane zero for each unroll 337 // iteration. Otherwise, we construct the vector values using 338 // insertelement instructions. Since the resulting vectors are stored in 339 // State, we will only generate the insertelements once. 340 Value *VectorValue = nullptr; 341 if (IsUniform) { 342 VectorValue = GetBroadcastInstrs(ScalarValue); 343 set(Def, VectorValue); 344 } else { 345 // Initialize packing with insertelements to start from undef. 346 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 347 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 348 set(Def, Undef); 349 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 350 packScalarIntoVectorValue(Def, {0, Lane}); 351 VectorValue = get(Def); 352 } 353 Builder.restoreIP(OldIP); 354 return VectorValue; 355 } 356 357 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 358 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 359 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 360 } 361 362 void VPTransformState::addNewMetadata(Instruction *To, 363 const Instruction *Orig) { 364 // If the loop was versioned with memchecks, add the corresponding no-alias 365 // metadata. 366 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 367 LVer->annotateInstWithNoAlias(To, Orig); 368 } 369 370 void VPTransformState::addMetadata(Value *To, Instruction *From) { 371 // No source instruction to transfer metadata from? 372 if (!From) 373 return; 374 375 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 376 propagateMetadata(ToI, From); 377 addNewMetadata(ToI, From); 378 } 379 } 380 381 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 382 const DILocation *DIL = DL; 383 // When a FSDiscriminator is enabled, we don't need to add the multiply 384 // factors to the discriminators. 385 if (DIL && 386 Builder.GetInsertBlock() 387 ->getParent() 388 ->shouldEmitDebugInfoForProfiling() && 389 !EnableFSDiscriminator) { 390 // FIXME: For scalable vectors, assume vscale=1. 391 unsigned UF = Plan->getUF(); 392 auto NewDIL = 393 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 394 if (NewDIL) 395 Builder.SetCurrentDebugLocation(*NewDIL); 396 else 397 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 398 << DIL->getFilename() << " Line: " << DIL->getLine()); 399 } else 400 Builder.SetCurrentDebugLocation(DIL); 401 } 402 403 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 404 const VPIteration &Instance) { 405 Value *ScalarInst = get(Def, Instance); 406 Value *VectorValue = get(Def); 407 VectorValue = Builder.CreateInsertElement( 408 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 409 set(Def, VectorValue); 410 } 411 412 BasicBlock * 413 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 414 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 415 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 416 BasicBlock *PrevBB = CFG.PrevBB; 417 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 418 PrevBB->getParent(), CFG.ExitBB); 419 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 420 421 // Hook up the new basic block to its predecessors. 422 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 423 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 424 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 425 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 426 427 assert(PredBB && "Predecessor basic-block not found building successor."); 428 auto *PredBBTerminator = PredBB->getTerminator(); 429 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 430 431 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 432 if (isa<UnreachableInst>(PredBBTerminator)) { 433 assert(PredVPSuccessors.size() == 1 && 434 "Predecessor ending w/o branch must have single successor."); 435 DebugLoc DL = PredBBTerminator->getDebugLoc(); 436 PredBBTerminator->eraseFromParent(); 437 auto *Br = BranchInst::Create(NewBB, PredBB); 438 Br->setDebugLoc(DL); 439 } else if (TermBr && !TermBr->isConditional()) { 440 TermBr->setSuccessor(0, NewBB); 441 } else { 442 // Set each forward successor here when it is created, excluding 443 // backedges. A backward successor is set when the branch is created. 444 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 445 assert(!TermBr->getSuccessor(idx) && 446 "Trying to reset an existing successor block."); 447 TermBr->setSuccessor(idx, NewBB); 448 } 449 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 450 } 451 return NewBB; 452 } 453 454 void VPIRBasicBlock::execute(VPTransformState *State) { 455 assert(getHierarchicalSuccessors().size() <= 2 && 456 "VPIRBasicBlock can have at most two successors at the moment!"); 457 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 458 executeRecipes(State, getIRBasicBlock()); 459 if (getSingleSuccessor()) { 460 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 461 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 462 Br->setOperand(0, nullptr); 463 getIRBasicBlock()->getTerminator()->eraseFromParent(); 464 } 465 466 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 467 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 468 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 469 assert(PredBB && "Predecessor basic-block not found building successor."); 470 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 471 472 auto *PredBBTerminator = PredBB->getTerminator(); 473 auto *TermBr = cast<BranchInst>(PredBBTerminator); 474 // Set each forward successor here when it is created, excluding 475 // backedges. A backward successor is set when the branch is created. 476 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 477 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 478 assert(!TermBr->getSuccessor(idx) && 479 "Trying to reset an existing successor block."); 480 TermBr->setSuccessor(idx, IRBB); 481 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 482 } 483 } 484 485 void VPBasicBlock::execute(VPTransformState *State) { 486 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 487 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 488 VPBlockBase *SingleHPred = nullptr; 489 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 490 491 auto IsLoopRegion = [](VPBlockBase *BB) { 492 auto *R = dyn_cast<VPRegionBlock>(BB); 493 return R && !R->isReplicator(); 494 }; 495 496 // 1. Create an IR basic block. 497 if (PrevVPBB && /* A */ 498 !((SingleHPred = getSingleHierarchicalPredecessor()) && 499 SingleHPred->getExitingBasicBlock() == PrevVPBB && 500 PrevVPBB->getSingleHierarchicalSuccessor() && 501 (SingleHPred->getParent() == getEnclosingLoopRegion() && 502 !IsLoopRegion(SingleHPred))) && /* B */ 503 !(Replica && getPredecessors().empty())) { /* C */ 504 // The last IR basic block is reused, as an optimization, in three cases: 505 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 506 // B. when the current VPBB has a single (hierarchical) predecessor which 507 // is PrevVPBB and the latter has a single (hierarchical) successor which 508 // both are in the same non-replicator region; and 509 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 510 // is the exiting VPBB of this region from a previous instance, or the 511 // predecessor of this region. 512 513 NewBB = createEmptyBasicBlock(State->CFG); 514 State->Builder.SetInsertPoint(NewBB); 515 // Temporarily terminate with unreachable until CFG is rewired. 516 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 517 // Register NewBB in its loop. In innermost loops its the same for all 518 // BB's. 519 if (State->CurrentVectorLoop) 520 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 521 State->Builder.SetInsertPoint(Terminator); 522 State->CFG.PrevBB = NewBB; 523 } 524 525 // 2. Fill the IR basic block with IR instructions. 526 executeRecipes(State, NewBB); 527 } 528 529 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 530 for (VPRecipeBase &R : Recipes) { 531 for (auto *Def : R.definedValues()) 532 Def->replaceAllUsesWith(NewValue); 533 534 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 535 R.setOperand(I, NewValue); 536 } 537 } 538 539 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 540 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 541 << " in BB:" << BB->getName() << '\n'); 542 543 State->CFG.VPBB2IRBB[this] = BB; 544 State->CFG.PrevVPBB = this; 545 546 for (VPRecipeBase &Recipe : Recipes) 547 Recipe.execute(*State); 548 549 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 550 } 551 552 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 553 assert((SplitAt == end() || SplitAt->getParent() == this) && 554 "can only split at a position in the same block"); 555 556 SmallVector<VPBlockBase *, 2> Succs(successors()); 557 // First, disconnect the current block from its successors. 558 for (VPBlockBase *Succ : Succs) 559 VPBlockUtils::disconnectBlocks(this, Succ); 560 561 // Create new empty block after the block to split. 562 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 563 VPBlockUtils::insertBlockAfter(SplitBlock, this); 564 565 // Add successors for block to split to new block. 566 for (VPBlockBase *Succ : Succs) 567 VPBlockUtils::connectBlocks(SplitBlock, Succ); 568 569 // Finally, move the recipes starting at SplitAt to new block. 570 for (VPRecipeBase &ToMove : 571 make_early_inc_range(make_range(SplitAt, this->end()))) 572 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 573 574 return SplitBlock; 575 } 576 577 /// Return the enclosing loop region for region \p P. The templated version is 578 /// used to support both const and non-const block arguments. 579 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) { 580 if (P && P->isReplicator()) { 581 P = P->getParent(); 582 assert(!cast<VPRegionBlock>(P)->isReplicator() && 583 "unexpected nested replicate regions"); 584 } 585 return P; 586 } 587 588 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 589 return getEnclosingLoopRegionForRegion(getParent()); 590 } 591 592 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const { 593 return getEnclosingLoopRegionForRegion(getParent()); 594 } 595 596 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 597 if (VPBB->empty()) { 598 assert( 599 VPBB->getNumSuccessors() < 2 && 600 "block with multiple successors doesn't have a recipe as terminator"); 601 return false; 602 } 603 604 const VPRecipeBase *R = &VPBB->back(); 605 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 606 match(R, m_BranchOnCond(m_VPValue())) || 607 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 608 (void)IsCondBranch; 609 610 if (VPBB->getNumSuccessors() >= 2 || 611 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 612 assert(IsCondBranch && "block with multiple successors not terminated by " 613 "conditional branch recipe"); 614 615 return true; 616 } 617 618 assert( 619 !IsCondBranch && 620 "block with 0 or 1 successors terminated by conditional branch recipe"); 621 return false; 622 } 623 624 VPRecipeBase *VPBasicBlock::getTerminator() { 625 if (hasConditionalTerminator(this)) 626 return &back(); 627 return nullptr; 628 } 629 630 const VPRecipeBase *VPBasicBlock::getTerminator() const { 631 if (hasConditionalTerminator(this)) 632 return &back(); 633 return nullptr; 634 } 635 636 bool VPBasicBlock::isExiting() const { 637 return getParent() && getParent()->getExitingBasicBlock() == this; 638 } 639 640 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 641 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 642 if (getSuccessors().empty()) { 643 O << Indent << "No successors\n"; 644 } else { 645 O << Indent << "Successor(s): "; 646 ListSeparator LS; 647 for (auto *Succ : getSuccessors()) 648 O << LS << Succ->getName(); 649 O << '\n'; 650 } 651 } 652 653 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 654 VPSlotTracker &SlotTracker) const { 655 O << Indent << getName() << ":\n"; 656 657 auto RecipeIndent = Indent + " "; 658 for (const VPRecipeBase &Recipe : *this) { 659 Recipe.print(O, RecipeIndent, SlotTracker); 660 O << '\n'; 661 } 662 663 printSuccessors(O, Indent); 664 } 665 #endif 666 667 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 668 669 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 670 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 671 // Remapping of operands must be done separately. Returns a pair with the new 672 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 673 // region, return nullptr for the exiting block. 674 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 675 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 676 VPBlockBase *Exiting = nullptr; 677 bool InRegion = Entry->getParent(); 678 // First, clone blocks reachable from Entry. 679 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 680 VPBlockBase *NewBB = BB->clone(); 681 Old2NewVPBlocks[BB] = NewBB; 682 if (InRegion && BB->getNumSuccessors() == 0) { 683 assert(!Exiting && "Multiple exiting blocks?"); 684 Exiting = BB; 685 } 686 } 687 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 688 689 // Second, update the predecessors & successors of the cloned blocks. 690 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 691 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 692 SmallVector<VPBlockBase *> NewPreds; 693 for (VPBlockBase *Pred : BB->getPredecessors()) { 694 NewPreds.push_back(Old2NewVPBlocks[Pred]); 695 } 696 NewBB->setPredecessors(NewPreds); 697 SmallVector<VPBlockBase *> NewSuccs; 698 for (VPBlockBase *Succ : BB->successors()) { 699 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 700 } 701 NewBB->setSuccessors(NewSuccs); 702 } 703 704 #if !defined(NDEBUG) 705 // Verify that the order of predecessors and successors matches in the cloned 706 // version. 707 for (const auto &[OldBB, NewBB] : 708 zip(vp_depth_first_shallow(Entry), 709 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 710 for (const auto &[OldPred, NewPred] : 711 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 712 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 713 714 for (const auto &[OldSucc, NewSucc] : 715 zip(OldBB->successors(), NewBB->successors())) 716 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 717 } 718 #endif 719 720 return std::make_pair(Old2NewVPBlocks[Entry], 721 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 722 } 723 724 VPRegionBlock *VPRegionBlock::clone() { 725 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 726 auto *NewRegion = 727 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 728 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 729 Block->setParent(NewRegion); 730 return NewRegion; 731 } 732 733 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 734 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 735 // Drop all references in VPBasicBlocks and replace all uses with 736 // DummyValue. 737 Block->dropAllReferences(NewValue); 738 } 739 740 void VPRegionBlock::execute(VPTransformState *State) { 741 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 742 RPOT(Entry); 743 744 if (!isReplicator()) { 745 // Create and register the new vector loop. 746 Loop *PrevLoop = State->CurrentVectorLoop; 747 State->CurrentVectorLoop = State->LI->AllocateLoop(); 748 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 749 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 750 751 // Insert the new loop into the loop nest and register the new basic blocks 752 // before calling any utilities such as SCEV that require valid LoopInfo. 753 if (ParentLoop) 754 ParentLoop->addChildLoop(State->CurrentVectorLoop); 755 else 756 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 757 758 // Visit the VPBlocks connected to "this", starting from it. 759 for (VPBlockBase *Block : RPOT) { 760 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 761 Block->execute(State); 762 } 763 764 State->CurrentVectorLoop = PrevLoop; 765 return; 766 } 767 768 assert(!State->Instance && "Replicating a Region with non-null instance."); 769 770 // Enter replicating mode. 771 State->Instance = VPIteration(0, 0); 772 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 773 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 774 ++Lane) { 775 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 776 // Visit the VPBlocks connected to \p this, starting from it. 777 for (VPBlockBase *Block : RPOT) { 778 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 779 Block->execute(State); 780 } 781 } 782 783 // Exit replicating mode. 784 State->Instance.reset(); 785 } 786 787 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 788 InstructionCost Cost = 0; 789 for (VPRecipeBase &R : Recipes) 790 Cost += R.cost(VF, Ctx); 791 return Cost; 792 } 793 794 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 795 if (!isReplicator()) { 796 InstructionCost Cost = 0; 797 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 798 Cost += Block->cost(VF, Ctx); 799 InstructionCost BackedgeCost = 800 ForceTargetInstructionCost.getNumOccurrences() 801 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences()) 802 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 803 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 804 << ": vector loop backedge\n"); 805 Cost += BackedgeCost; 806 return Cost; 807 } 808 809 // Compute the cost of a replicate region. Replicating isn't supported for 810 // scalable vectors, return an invalid cost for them. 811 // TODO: Discard scalable VPlans with replicate recipes earlier after 812 // construction. 813 if (VF.isScalable()) 814 return InstructionCost::getInvalid(); 815 816 // First compute the cost of the conditionally executed recipes, followed by 817 // account for the branching cost, except if the mask is a header mask or 818 // uniform condition. 819 using namespace llvm::VPlanPatternMatch; 820 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 821 InstructionCost ThenCost = Then->cost(VF, Ctx); 822 823 // For the scalar case, we may not always execute the original predicated 824 // block, Thus, scale the block's cost by the probability of executing it. 825 if (VF.isScalar()) 826 return ThenCost / getReciprocalPredBlockProb(); 827 828 return ThenCost; 829 } 830 831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 832 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 833 VPSlotTracker &SlotTracker) const { 834 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 835 auto NewIndent = Indent + " "; 836 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 837 O << '\n'; 838 BlockBase->print(O, NewIndent, SlotTracker); 839 } 840 O << Indent << "}\n"; 841 842 printSuccessors(O, Indent); 843 } 844 #endif 845 846 VPlan::~VPlan() { 847 for (auto &KV : LiveOuts) 848 delete KV.second; 849 LiveOuts.clear(); 850 851 if (Entry) { 852 VPValue DummyValue; 853 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 854 Block->dropAllReferences(&DummyValue); 855 856 VPBlockBase::deleteCFG(Entry); 857 858 Preheader->dropAllReferences(&DummyValue); 859 delete Preheader; 860 } 861 for (VPValue *VPV : VPLiveInsToFree) 862 delete VPV; 863 if (BackedgeTakenCount) 864 delete BackedgeTakenCount; 865 } 866 867 static VPIRBasicBlock *createVPIRBasicBlockFor(BasicBlock *BB) { 868 auto *VPIRBB = new VPIRBasicBlock(BB); 869 for (Instruction &I : 870 make_range(BB->begin(), BB->getTerminator()->getIterator())) 871 VPIRBB->appendRecipe(new VPIRInstruction(I)); 872 return VPIRBB; 873 } 874 875 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy, 876 PredicatedScalarEvolution &PSE, 877 bool RequiresScalarEpilogueCheck, 878 bool TailFolded, Loop *TheLoop) { 879 VPIRBasicBlock *Entry = createVPIRBasicBlockFor(TheLoop->getLoopPreheader()); 880 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 881 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 882 883 // Create SCEV and VPValue for the trip count. 884 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 885 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count"); 886 ScalarEvolution &SE = *PSE.getSE(); 887 const SCEV *TripCount = 888 SE.getTripCountFromExitCount(BackedgeTakenCount, InductionTy, TheLoop); 889 Plan->TripCount = 890 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 891 892 // Create VPRegionBlock, with empty header and latch blocks, to be filled 893 // during processing later. 894 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 895 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 896 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 897 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 898 false /*isReplicator*/); 899 900 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 901 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 902 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 903 904 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 905 if (!RequiresScalarEpilogueCheck) { 906 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 907 return Plan; 908 } 909 910 // If needed, add a check in the middle block to see if we have completed 911 // all of the iterations in the first vector loop. Three cases: 912 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 913 // Thus if tail is to be folded, we know we don't need to run the 914 // remainder and we can set the condition to true. 915 // 2) If we require a scalar epilogue, there is no conditional branch as 916 // we unconditionally branch to the scalar preheader. Do nothing. 917 // 3) Otherwise, construct a runtime check. 918 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 919 auto *VPExitBlock = createVPIRBasicBlockFor(IRExitBlock); 920 // The connection order corresponds to the operands of the conditional branch. 921 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 922 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 923 924 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 925 // Here we use the same DebugLoc as the scalar loop latch terminator instead 926 // of the corresponding compare because they may have ended up with 927 // different line numbers and we want to avoid awkward line stepping while 928 // debugging. Eg. if the compare has got a line number inside the loop. 929 VPBuilder Builder(MiddleVPBB); 930 VPValue *Cmp = 931 TailFolded 932 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 933 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 934 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 935 &Plan->getVectorTripCount(), 936 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 937 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 938 ScalarLatchTerm->getDebugLoc()); 939 return Plan; 940 } 941 942 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 943 Value *CanonicalIVStartValue, 944 VPTransformState &State) { 945 Type *TCTy = TripCountV->getType(); 946 // Check if the backedge taken count is needed, and if so build it. 947 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 948 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 949 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 950 "trip.count.minus.1"); 951 BackedgeTakenCount->setUnderlyingValue(TCMO); 952 } 953 954 VectorTripCount.setUnderlyingValue(VectorTripCountV); 955 956 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 957 // FIXME: Model VF * UF computation completely in VPlan. 958 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 959 unsigned UF = getUF(); 960 if (VF.getNumUsers()) { 961 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 962 VF.setUnderlyingValue(RuntimeVF); 963 VFxUF.setUnderlyingValue( 964 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF)) 965 : RuntimeVF); 966 } else { 967 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF)); 968 } 969 970 // When vectorizing the epilogue loop, the canonical induction start value 971 // needs to be changed from zero to the value after the main vector loop. 972 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 973 if (CanonicalIVStartValue) { 974 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 975 auto *IV = getCanonicalIV(); 976 assert(all_of(IV->users(), 977 [](const VPUser *U) { 978 return isa<VPScalarIVStepsRecipe>(U) || 979 isa<VPScalarCastRecipe>(U) || 980 isa<VPDerivedIVRecipe>(U) || 981 cast<VPInstruction>(U)->getOpcode() == 982 Instruction::Add; 983 }) && 984 "the canonical IV should only be used by its increment or " 985 "ScalarIVSteps when resetting the start value"); 986 IV->setOperand(0, VPV); 987 } 988 } 989 990 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 991 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must 992 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All 993 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock. 994 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 995 VPIRBasicBlock *IRVPBB = createVPIRBasicBlockFor(IRBB); 996 for (auto &R : make_early_inc_range(*VPBB)) { 997 assert(!R.isPhi() && "Tried to move phi recipe to end of block"); 998 R.moveBefore(*IRVPBB, IRVPBB->end()); 999 } 1000 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 1001 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 1002 VPBlockUtils::connectBlocks(PredVPBB, IRVPBB); 1003 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 1004 VPBlockUtils::connectBlocks(IRVPBB, Succ); 1005 VPBlockUtils::disconnectBlocks(VPBB, Succ); 1006 } 1007 delete VPBB; 1008 } 1009 1010 /// Generate the code inside the preheader and body of the vectorized loop. 1011 /// Assumes a single pre-header basic-block was created for this. Introduce 1012 /// additional basic-blocks as needed, and fill them all. 1013 void VPlan::execute(VPTransformState *State) { 1014 // Initialize CFG state. 1015 State->CFG.PrevVPBB = nullptr; 1016 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 1017 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 1018 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 1019 1020 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 1021 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1022 State->CFG.DTU.applyUpdates( 1023 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1024 1025 // Replace regular VPBB's for the middle and scalar preheader blocks with 1026 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1027 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1028 // VPlan execution rather than earlier during VPlan construction. 1029 BasicBlock *MiddleBB = State->CFG.ExitBB; 1030 VPBasicBlock *MiddleVPBB = 1031 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1032 // Find the VPBB for the scalar preheader, relying on the current structure 1033 // when creating the middle block and its successrs: if there's a single 1034 // predecessor, it must be the scalar preheader. Otherwise, the second 1035 // successor is the scalar preheader. 1036 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1037 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1038 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1039 "middle block has unexpected successors"); 1040 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1041 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1042 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1043 "scalar preheader cannot be wrapped already"); 1044 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1045 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1046 1047 // Disconnect the middle block from its single successor (the scalar loop 1048 // header) in both the CFG and DT. The branch will be recreated during VPlan 1049 // execution. 1050 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1051 BrInst->insertBefore(MiddleBB->getTerminator()); 1052 MiddleBB->getTerminator()->eraseFromParent(); 1053 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1054 1055 // Generate code in the loop pre-header and body. 1056 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1057 Block->execute(State); 1058 1059 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1060 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1061 1062 // Fix the latch value of canonical, reduction and first-order recurrences 1063 // phis in the vector loop. 1064 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1065 for (VPRecipeBase &R : Header->phis()) { 1066 // Skip phi-like recipes that generate their backedege values themselves. 1067 if (isa<VPWidenPHIRecipe>(&R)) 1068 continue; 1069 1070 if (isa<VPWidenPointerInductionRecipe>(&R) || 1071 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1072 PHINode *Phi = nullptr; 1073 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1074 Phi = cast<PHINode>(State->get(R.getVPSingleValue())); 1075 } else { 1076 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1077 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1078 "recipe generating only scalars should have been replaced"); 1079 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi)); 1080 Phi = cast<PHINode>(GEP->getPointerOperand()); 1081 } 1082 1083 Phi->setIncomingBlock(1, VectorLatchBB); 1084 1085 // Move the last step to the end of the latch block. This ensures 1086 // consistent placement of all induction updates. 1087 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1088 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1089 1090 // Use the steps for the last part as backedge value for the induction. 1091 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R)) 1092 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand())); 1093 continue; 1094 } 1095 1096 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1097 bool NeedsScalar = 1098 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1099 (isa<VPReductionPHIRecipe>(PhiR) && 1100 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1101 Value *Phi = State->get(PhiR, NeedsScalar); 1102 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar); 1103 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1104 } 1105 1106 State->CFG.DTU.flush(); 1107 assert(State->CFG.DTU.getDomTree().verify( 1108 DominatorTree::VerificationLevel::Fast) && 1109 "DT not preserved correctly"); 1110 } 1111 1112 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1113 // For now only return the cost of the vector loop region, ignoring any other 1114 // blocks, like the preheader or middle blocks. 1115 return getVectorLoopRegion()->cost(VF, Ctx); 1116 } 1117 1118 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1119 void VPlan::printLiveIns(raw_ostream &O) const { 1120 VPSlotTracker SlotTracker(this); 1121 1122 if (VF.getNumUsers() > 0) { 1123 O << "\nLive-in "; 1124 VF.printAsOperand(O, SlotTracker); 1125 O << " = VF"; 1126 } 1127 1128 if (VFxUF.getNumUsers() > 0) { 1129 O << "\nLive-in "; 1130 VFxUF.printAsOperand(O, SlotTracker); 1131 O << " = VF * UF"; 1132 } 1133 1134 if (VectorTripCount.getNumUsers() > 0) { 1135 O << "\nLive-in "; 1136 VectorTripCount.printAsOperand(O, SlotTracker); 1137 O << " = vector-trip-count"; 1138 } 1139 1140 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1141 O << "\nLive-in "; 1142 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1143 O << " = backedge-taken count"; 1144 } 1145 1146 O << "\n"; 1147 if (TripCount->isLiveIn()) 1148 O << "Live-in "; 1149 TripCount->printAsOperand(O, SlotTracker); 1150 O << " = original trip-count"; 1151 O << "\n"; 1152 } 1153 1154 LLVM_DUMP_METHOD 1155 void VPlan::print(raw_ostream &O) const { 1156 VPSlotTracker SlotTracker(this); 1157 1158 O << "VPlan '" << getName() << "' {"; 1159 1160 printLiveIns(O); 1161 1162 if (!getPreheader()->empty()) { 1163 O << "\n"; 1164 getPreheader()->print(O, "", SlotTracker); 1165 } 1166 1167 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1168 O << '\n'; 1169 Block->print(O, "", SlotTracker); 1170 } 1171 1172 if (!LiveOuts.empty()) 1173 O << "\n"; 1174 for (const auto &KV : LiveOuts) { 1175 KV.second->print(O, SlotTracker); 1176 } 1177 1178 O << "}\n"; 1179 } 1180 1181 std::string VPlan::getName() const { 1182 std::string Out; 1183 raw_string_ostream RSO(Out); 1184 RSO << Name << " for "; 1185 if (!VFs.empty()) { 1186 RSO << "VF={" << VFs[0]; 1187 for (ElementCount VF : drop_begin(VFs)) 1188 RSO << "," << VF; 1189 RSO << "},"; 1190 } 1191 1192 if (UFs.empty()) { 1193 RSO << "UF>=1"; 1194 } else { 1195 RSO << "UF={" << UFs[0]; 1196 for (unsigned UF : drop_begin(UFs)) 1197 RSO << "," << UF; 1198 RSO << "}"; 1199 } 1200 1201 return Out; 1202 } 1203 1204 LLVM_DUMP_METHOD 1205 void VPlan::printDOT(raw_ostream &O) const { 1206 VPlanPrinter Printer(O, *this); 1207 Printer.dump(); 1208 } 1209 1210 LLVM_DUMP_METHOD 1211 void VPlan::dump() const { print(dbgs()); } 1212 #endif 1213 1214 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1215 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1216 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1217 } 1218 1219 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1220 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1221 // Update the operands of all cloned recipes starting at NewEntry. This 1222 // traverses all reachable blocks. This is done in two steps, to handle cycles 1223 // in PHI recipes. 1224 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1225 OldDeepRPOT(Entry); 1226 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1227 NewDeepRPOT(NewEntry); 1228 // First, collect all mappings from old to new VPValues defined by cloned 1229 // recipes. 1230 for (const auto &[OldBB, NewBB] : 1231 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1232 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1233 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1234 "blocks must have the same number of recipes"); 1235 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1236 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1237 "recipes must have the same number of operands"); 1238 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1239 "recipes must define the same number of operands"); 1240 for (const auto &[OldV, NewV] : 1241 zip(OldR.definedValues(), NewR.definedValues())) 1242 Old2NewVPValues[OldV] = NewV; 1243 } 1244 } 1245 1246 // Update all operands to use cloned VPValues. 1247 for (VPBasicBlock *NewBB : 1248 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1249 for (VPRecipeBase &NewR : *NewBB) 1250 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1251 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1252 NewR.setOperand(I, NewOp); 1253 } 1254 } 1255 } 1256 1257 VPlan *VPlan::duplicate() { 1258 // Clone blocks. 1259 VPBasicBlock *NewPreheader = Preheader->clone(); 1260 const auto &[NewEntry, __] = cloneFrom(Entry); 1261 1262 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1263 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1264 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1265 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1266 Old2NewVPValues[OldLiveIn] = 1267 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1268 } 1269 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1270 Old2NewVPValues[&VF] = &NewPlan->VF; 1271 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1272 if (BackedgeTakenCount) { 1273 NewPlan->BackedgeTakenCount = new VPValue(); 1274 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1275 } 1276 assert(TripCount && "trip count must be set"); 1277 if (TripCount->isLiveIn()) 1278 Old2NewVPValues[TripCount] = 1279 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1280 // else NewTripCount will be created and inserted into Old2NewVPValues when 1281 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1282 1283 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1284 remapOperands(Entry, NewEntry, Old2NewVPValues); 1285 1286 // Clone live-outs. 1287 for (const auto &[_, LO] : LiveOuts) 1288 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1289 1290 // Initialize remaining fields of cloned VPlan. 1291 NewPlan->VFs = VFs; 1292 NewPlan->UFs = UFs; 1293 // TODO: Adjust names. 1294 NewPlan->Name = Name; 1295 assert(Old2NewVPValues.contains(TripCount) && 1296 "TripCount must have been added to Old2NewVPValues"); 1297 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1298 return NewPlan; 1299 } 1300 1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1302 1303 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1304 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1305 Twine(getOrCreateBID(Block)); 1306 } 1307 1308 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1309 const std::string &Name = Block->getName(); 1310 if (!Name.empty()) 1311 return Name; 1312 return "VPB" + Twine(getOrCreateBID(Block)); 1313 } 1314 1315 void VPlanPrinter::dump() { 1316 Depth = 1; 1317 bumpIndent(0); 1318 OS << "digraph VPlan {\n"; 1319 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1320 if (!Plan.getName().empty()) 1321 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1322 1323 { 1324 // Print live-ins. 1325 std::string Str; 1326 raw_string_ostream SS(Str); 1327 Plan.printLiveIns(SS); 1328 SmallVector<StringRef, 0> Lines; 1329 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1330 for (auto Line : Lines) 1331 OS << DOT::EscapeString(Line.str()) << "\\n"; 1332 } 1333 1334 OS << "\"]\n"; 1335 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1336 OS << "edge [fontname=Courier, fontsize=30]\n"; 1337 OS << "compound=true\n"; 1338 1339 dumpBlock(Plan.getPreheader()); 1340 1341 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1342 dumpBlock(Block); 1343 1344 OS << "}\n"; 1345 } 1346 1347 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1348 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1349 dumpBasicBlock(BasicBlock); 1350 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1351 dumpRegion(Region); 1352 else 1353 llvm_unreachable("Unsupported kind of VPBlock."); 1354 } 1355 1356 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1357 bool Hidden, const Twine &Label) { 1358 // Due to "dot" we print an edge between two regions as an edge between the 1359 // exiting basic block and the entry basic of the respective regions. 1360 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1361 const VPBlockBase *Head = To->getEntryBasicBlock(); 1362 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1363 OS << " [ label=\"" << Label << '\"'; 1364 if (Tail != From) 1365 OS << " ltail=" << getUID(From); 1366 if (Head != To) 1367 OS << " lhead=" << getUID(To); 1368 if (Hidden) 1369 OS << "; splines=none"; 1370 OS << "]\n"; 1371 } 1372 1373 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1374 auto &Successors = Block->getSuccessors(); 1375 if (Successors.size() == 1) 1376 drawEdge(Block, Successors.front(), false, ""); 1377 else if (Successors.size() == 2) { 1378 drawEdge(Block, Successors.front(), false, "T"); 1379 drawEdge(Block, Successors.back(), false, "F"); 1380 } else { 1381 unsigned SuccessorNumber = 0; 1382 for (auto *Successor : Successors) 1383 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1384 } 1385 } 1386 1387 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1388 // Implement dot-formatted dump by performing plain-text dump into the 1389 // temporary storage followed by some post-processing. 1390 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1391 bumpIndent(1); 1392 std::string Str; 1393 raw_string_ostream SS(Str); 1394 // Use no indentation as we need to wrap the lines into quotes ourselves. 1395 BasicBlock->print(SS, "", SlotTracker); 1396 1397 // We need to process each line of the output separately, so split 1398 // single-string plain-text dump. 1399 SmallVector<StringRef, 0> Lines; 1400 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1401 1402 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1403 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1404 }; 1405 1406 // Don't need the "+" after the last line. 1407 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1408 EmitLine(Line, " +\n"); 1409 EmitLine(Lines.back(), "\n"); 1410 1411 bumpIndent(-1); 1412 OS << Indent << "]\n"; 1413 1414 dumpEdges(BasicBlock); 1415 } 1416 1417 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1418 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1419 bumpIndent(1); 1420 OS << Indent << "fontname=Courier\n" 1421 << Indent << "label=\"" 1422 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1423 << DOT::EscapeString(Region->getName()) << "\"\n"; 1424 // Dump the blocks of the region. 1425 assert(Region->getEntry() && "Region contains no inner blocks."); 1426 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1427 dumpBlock(Block); 1428 bumpIndent(-1); 1429 OS << Indent << "}\n"; 1430 dumpEdges(Region); 1431 } 1432 1433 void VPlanIngredient::print(raw_ostream &O) const { 1434 if (auto *Inst = dyn_cast<Instruction>(V)) { 1435 if (!Inst->getType()->isVoidTy()) { 1436 Inst->printAsOperand(O, false); 1437 O << " = "; 1438 } 1439 O << Inst->getOpcodeName() << " "; 1440 unsigned E = Inst->getNumOperands(); 1441 if (E > 0) { 1442 Inst->getOperand(0)->printAsOperand(O, false); 1443 for (unsigned I = 1; I < E; ++I) 1444 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1445 } 1446 } else // !Inst 1447 V->printAsOperand(O, false); 1448 } 1449 1450 #endif 1451 1452 bool VPValue::isDefinedOutsideLoopRegions() const { 1453 return !hasDefiningRecipe() || 1454 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion(); 1455 } 1456 1457 void VPValue::replaceAllUsesWith(VPValue *New) { 1458 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1459 } 1460 1461 void VPValue::replaceUsesWithIf( 1462 VPValue *New, 1463 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1464 // Note that this early exit is required for correctness; the implementation 1465 // below relies on the number of users for this VPValue to decrease, which 1466 // isn't the case if this == New. 1467 if (this == New) 1468 return; 1469 1470 for (unsigned J = 0; J < getNumUsers();) { 1471 VPUser *User = Users[J]; 1472 bool RemovedUser = false; 1473 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1474 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1475 continue; 1476 1477 RemovedUser = true; 1478 User->setOperand(I, New); 1479 } 1480 // If a user got removed after updating the current user, the next user to 1481 // update will be moved to the current position, so we only need to 1482 // increment the index if the number of users did not change. 1483 if (!RemovedUser) 1484 J++; 1485 } 1486 } 1487 1488 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1489 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1490 OS << Tracker.getOrCreateName(this); 1491 } 1492 1493 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1494 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1495 Op->printAsOperand(O, SlotTracker); 1496 }); 1497 } 1498 #endif 1499 1500 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1501 Old2NewTy &Old2New, 1502 InterleavedAccessInfo &IAI) { 1503 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1504 RPOT(Region->getEntry()); 1505 for (VPBlockBase *Base : RPOT) { 1506 visitBlock(Base, Old2New, IAI); 1507 } 1508 } 1509 1510 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1511 InterleavedAccessInfo &IAI) { 1512 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1513 for (VPRecipeBase &VPI : *VPBB) { 1514 if (isa<VPWidenPHIRecipe>(&VPI)) 1515 continue; 1516 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1517 auto *VPInst = cast<VPInstruction>(&VPI); 1518 1519 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1520 if (!Inst) 1521 continue; 1522 auto *IG = IAI.getInterleaveGroup(Inst); 1523 if (!IG) 1524 continue; 1525 1526 auto NewIGIter = Old2New.find(IG); 1527 if (NewIGIter == Old2New.end()) 1528 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1529 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1530 1531 if (Inst == IG->getInsertPos()) 1532 Old2New[IG]->setInsertPos(VPInst); 1533 1534 InterleaveGroupMap[VPInst] = Old2New[IG]; 1535 InterleaveGroupMap[VPInst]->insertMember( 1536 VPInst, IG->getIndex(Inst), 1537 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1538 : IG->getFactor())); 1539 } 1540 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1541 visitRegion(Region, Old2New, IAI); 1542 else 1543 llvm_unreachable("Unsupported kind of VPBlock."); 1544 } 1545 1546 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1547 InterleavedAccessInfo &IAI) { 1548 Old2NewTy Old2New; 1549 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1550 } 1551 1552 void VPSlotTracker::assignName(const VPValue *V) { 1553 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1554 auto *UV = V->getUnderlyingValue(); 1555 if (!UV) { 1556 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1557 NextSlot++; 1558 return; 1559 } 1560 1561 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1562 // appending ".Number" to the name if there are multiple uses. 1563 std::string Name; 1564 raw_string_ostream S(Name); 1565 UV->printAsOperand(S, false); 1566 assert(!Name.empty() && "Name cannot be empty."); 1567 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1568 1569 // First assign the base name for V. 1570 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1571 // Integer or FP constants with different types will result in he same string 1572 // due to stripping types. 1573 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1574 return; 1575 1576 // If it is already used by C > 0 other VPValues, increase the version counter 1577 // C and use it for V. 1578 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1579 if (!UseInserted) { 1580 C->second++; 1581 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1582 } 1583 } 1584 1585 void VPSlotTracker::assignNames(const VPlan &Plan) { 1586 if (Plan.VF.getNumUsers() > 0) 1587 assignName(&Plan.VF); 1588 if (Plan.VFxUF.getNumUsers() > 0) 1589 assignName(&Plan.VFxUF); 1590 assignName(&Plan.VectorTripCount); 1591 if (Plan.BackedgeTakenCount) 1592 assignName(Plan.BackedgeTakenCount); 1593 for (VPValue *LI : Plan.VPLiveInsToFree) 1594 assignName(LI); 1595 assignNames(Plan.getPreheader()); 1596 1597 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1598 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1599 for (const VPBasicBlock *VPBB : 1600 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1601 assignNames(VPBB); 1602 } 1603 1604 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1605 for (const VPRecipeBase &Recipe : *VPBB) 1606 for (VPValue *Def : Recipe.definedValues()) 1607 assignName(Def); 1608 } 1609 1610 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1611 std::string Name = VPValue2Name.lookup(V); 1612 if (!Name.empty()) 1613 return Name; 1614 1615 // If no name was assigned, no VPlan was provided when creating the slot 1616 // tracker or it is not reachable from the provided VPlan. This can happen, 1617 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1618 // in a debugger. 1619 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1620 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1621 // here. 1622 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1623 (void)DefR; 1624 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1625 "VPValue defined by a recipe in a VPlan?"); 1626 1627 // Use the underlying value's name, if there is one. 1628 if (auto *UV = V->getUnderlyingValue()) { 1629 std::string Name; 1630 raw_string_ostream S(Name); 1631 UV->printAsOperand(S, false); 1632 return (Twine("ir<") + Name + ">").str(); 1633 } 1634 1635 return "<badref>"; 1636 } 1637 1638 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1639 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1640 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1641 bool PredicateAtRangeStart = Predicate(Range.Start); 1642 1643 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1644 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1645 Range.End = TmpVF; 1646 break; 1647 } 1648 1649 return PredicateAtRangeStart; 1650 } 1651 1652 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1653 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1654 /// of VF's starting at a given VF and extending it as much as possible. Each 1655 /// vectorization decision can potentially shorten this sub-range during 1656 /// buildVPlan(). 1657 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1658 ElementCount MaxVF) { 1659 auto MaxVFTimes2 = MaxVF * 2; 1660 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1661 VFRange SubRange = {VF, MaxVFTimes2}; 1662 auto Plan = buildVPlan(SubRange); 1663 VPlanTransforms::optimize(*Plan); 1664 VPlans.push_back(std::move(Plan)); 1665 VF = SubRange.End; 1666 } 1667 } 1668 1669 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1670 assert(count_if(VPlans, 1671 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1672 1 && 1673 "Multiple VPlans for VF."); 1674 1675 for (const VPlanPtr &Plan : VPlans) { 1676 if (Plan->hasVF(VF)) 1677 return *Plan.get(); 1678 } 1679 llvm_unreachable("No plan found!"); 1680 } 1681 1682 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1683 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1684 if (VPlans.empty()) { 1685 O << "LV: No VPlans built.\n"; 1686 return; 1687 } 1688 for (const auto &Plan : VPlans) 1689 if (PrintVPlansInDotFormat) 1690 Plan->printDOT(O); 1691 else 1692 Plan->print(O); 1693 } 1694 #endif 1695