1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 304 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 305 ++Lane) { 306 State->Instance->Lane = Lane; 307 // Visit the VPBlocks connected to \p this, starting from it. 308 for (VPBlockBase *Block : RPOT) { 309 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 310 Block->execute(State); 311 } 312 } 313 } 314 315 // Exit replicating mode. 316 State->Instance.reset(); 317 } 318 319 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 320 assert(!Parent && "Recipe already in some VPBasicBlock"); 321 assert(InsertPos->getParent() && 322 "Insertion position not in any VPBasicBlock"); 323 Parent = InsertPos->getParent(); 324 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 325 } 326 327 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 328 assert(!Parent && "Recipe already in some VPBasicBlock"); 329 assert(InsertPos->getParent() && 330 "Insertion position not in any VPBasicBlock"); 331 Parent = InsertPos->getParent(); 332 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 333 } 334 335 void VPRecipeBase::removeFromParent() { 336 assert(getParent() && "Recipe not in any VPBasicBlock"); 337 getParent()->getRecipeList().remove(getIterator()); 338 Parent = nullptr; 339 } 340 341 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 342 assert(getParent() && "Recipe not in any VPBasicBlock"); 343 return getParent()->getRecipeList().erase(getIterator()); 344 } 345 346 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 347 removeFromParent(); 348 insertAfter(InsertPos); 349 } 350 351 void VPInstruction::generateInstruction(VPTransformState &State, 352 unsigned Part) { 353 IRBuilder<> &Builder = State.Builder; 354 355 if (Instruction::isBinaryOp(getOpcode())) { 356 Value *A = State.get(getOperand(0), Part); 357 Value *B = State.get(getOperand(1), Part); 358 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 359 State.set(this, V, Part); 360 return; 361 } 362 363 switch (getOpcode()) { 364 case VPInstruction::Not: { 365 Value *A = State.get(getOperand(0), Part); 366 Value *V = Builder.CreateNot(A); 367 State.set(this, V, Part); 368 break; 369 } 370 case VPInstruction::ICmpULE: { 371 Value *IV = State.get(getOperand(0), Part); 372 Value *TC = State.get(getOperand(1), Part); 373 Value *V = Builder.CreateICmpULE(IV, TC); 374 State.set(this, V, Part); 375 break; 376 } 377 case Instruction::Select: { 378 Value *Cond = State.get(getOperand(0), Part); 379 Value *Op1 = State.get(getOperand(1), Part); 380 Value *Op2 = State.get(getOperand(2), Part); 381 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 382 State.set(this, V, Part); 383 break; 384 } 385 case VPInstruction::ActiveLaneMask: { 386 // Get first lane of vector induction variable. 387 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 388 // Get the original loop tripcount. 389 Value *ScalarTC = State.TripCount; 390 391 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 392 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 393 Instruction *Call = Builder.CreateIntrinsic( 394 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 395 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 396 State.set(this, Call, Part); 397 break; 398 } 399 default: 400 llvm_unreachable("Unsupported opcode for instruction"); 401 } 402 } 403 404 void VPInstruction::execute(VPTransformState &State) { 405 assert(!State.Instance && "VPInstruction executing an Instance"); 406 for (unsigned Part = 0; Part < State.UF; ++Part) 407 generateInstruction(State, Part); 408 } 409 410 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 411 VPSlotTracker &SlotTracker) const { 412 O << "\"EMIT "; 413 print(O, SlotTracker); 414 } 415 416 void VPInstruction::print(raw_ostream &O) const { 417 VPSlotTracker SlotTracker(getParent()->getPlan()); 418 print(O, SlotTracker); 419 } 420 421 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 422 if (hasResult()) { 423 printAsOperand(O, SlotTracker); 424 O << " = "; 425 } 426 427 switch (getOpcode()) { 428 case VPInstruction::Not: 429 O << "not"; 430 break; 431 case VPInstruction::ICmpULE: 432 O << "icmp ule"; 433 break; 434 case VPInstruction::SLPLoad: 435 O << "combined load"; 436 break; 437 case VPInstruction::SLPStore: 438 O << "combined store"; 439 break; 440 case VPInstruction::ActiveLaneMask: 441 O << "active lane mask"; 442 break; 443 444 default: 445 O << Instruction::getOpcodeName(getOpcode()); 446 } 447 448 for (const VPValue *Operand : operands()) { 449 O << " "; 450 Operand->printAsOperand(O, SlotTracker); 451 } 452 } 453 454 /// Generate the code inside the body of the vectorized loop. Assumes a single 455 /// LoopVectorBody basic-block was created for this. Introduce additional 456 /// basic-blocks as needed, and fill them all. 457 void VPlan::execute(VPTransformState *State) { 458 // -1. Check if the backedge taken count is needed, and if so build it. 459 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 460 Value *TC = State->TripCount; 461 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 462 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 463 "trip.count.minus.1"); 464 auto VF = State->VF; 465 Value *VTCMO = 466 VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 467 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 468 State->set(BackedgeTakenCount, VTCMO, Part); 469 } 470 471 // 0. Set the reverse mapping from VPValues to Values for code generation. 472 for (auto &Entry : Value2VPValue) 473 State->VPValue2Value[Entry.second] = Entry.first; 474 475 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 476 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 477 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 478 479 // 1. Make room to generate basic-blocks inside loop body if needed. 480 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 481 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 482 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 483 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 484 // Remove the edge between Header and Latch to allow other connections. 485 // Temporarily terminate with unreachable until CFG is rewired. 486 // Note: this asserts the generated code's assumption that 487 // getFirstInsertionPt() can be dereferenced into an Instruction. 488 VectorHeaderBB->getTerminator()->eraseFromParent(); 489 State->Builder.SetInsertPoint(VectorHeaderBB); 490 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 491 State->Builder.SetInsertPoint(Terminator); 492 493 // 2. Generate code in loop body. 494 State->CFG.PrevVPBB = nullptr; 495 State->CFG.PrevBB = VectorHeaderBB; 496 State->CFG.LastBB = VectorLatchBB; 497 498 for (VPBlockBase *Block : depth_first(Entry)) 499 Block->execute(State); 500 501 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 502 // VPBB's successors. 503 for (auto VPBB : State->CFG.VPBBsToFix) { 504 assert(EnableVPlanNativePath && 505 "Unexpected VPBBsToFix in non VPlan-native path"); 506 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 507 assert(BB && "Unexpected null basic block for VPBB"); 508 509 unsigned Idx = 0; 510 auto *BBTerminator = BB->getTerminator(); 511 512 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 513 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 514 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 515 ++Idx; 516 } 517 } 518 519 // 3. Merge the temporary latch created with the last basic-block filled. 520 BasicBlock *LastBB = State->CFG.PrevBB; 521 // Connect LastBB to VectorLatchBB to facilitate their merge. 522 assert((EnableVPlanNativePath || 523 isa<UnreachableInst>(LastBB->getTerminator())) && 524 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 525 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 526 "Expected VPlan CFG to terminate with branch in NativePath"); 527 LastBB->getTerminator()->eraseFromParent(); 528 BranchInst::Create(VectorLatchBB, LastBB); 529 530 // Merge LastBB with Latch. 531 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 532 (void)Merged; 533 assert(Merged && "Could not merge last basic block with latch."); 534 VectorLatchBB = LastBB; 535 536 // We do not attempt to preserve DT for outer loop vectorization currently. 537 if (!EnableVPlanNativePath) 538 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 539 L->getExitBlock()); 540 } 541 542 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 543 LLVM_DUMP_METHOD 544 void VPlan::dump() const { dbgs() << *this << '\n'; } 545 #endif 546 547 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 548 BasicBlock *LoopLatchBB, 549 BasicBlock *LoopExitBB) { 550 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 551 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 552 // The vector body may be more than a single basic-block by this point. 553 // Update the dominator tree information inside the vector body by propagating 554 // it from header to latch, expecting only triangular control-flow, if any. 555 BasicBlock *PostDomSucc = nullptr; 556 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 557 // Get the list of successors of this block. 558 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 559 assert(Succs.size() <= 2 && 560 "Basic block in vector loop has more than 2 successors."); 561 PostDomSucc = Succs[0]; 562 if (Succs.size() == 1) { 563 assert(PostDomSucc->getSinglePredecessor() && 564 "PostDom successor has more than one predecessor."); 565 DT->addNewBlock(PostDomSucc, BB); 566 continue; 567 } 568 BasicBlock *InterimSucc = Succs[1]; 569 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 570 PostDomSucc = Succs[1]; 571 InterimSucc = Succs[0]; 572 } 573 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 574 "One successor of a basic block does not lead to the other."); 575 assert(InterimSucc->getSinglePredecessor() && 576 "Interim successor has more than one predecessor."); 577 assert(PostDomSucc->hasNPredecessors(2) && 578 "PostDom successor has more than two predecessors."); 579 DT->addNewBlock(InterimSucc, BB); 580 DT->addNewBlock(PostDomSucc, BB); 581 } 582 // Latch block is a new dominator for the loop exit. 583 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 584 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 585 } 586 587 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 588 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 589 Twine(getOrCreateBID(Block)); 590 } 591 592 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 593 const std::string &Name = Block->getName(); 594 if (!Name.empty()) 595 return Name; 596 return "VPB" + Twine(getOrCreateBID(Block)); 597 } 598 599 void VPlanPrinter::dump() { 600 Depth = 1; 601 bumpIndent(0); 602 OS << "digraph VPlan {\n"; 603 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 604 if (!Plan.getName().empty()) 605 OS << "\\n" << DOT::EscapeString(Plan.getName()); 606 if (Plan.BackedgeTakenCount) { 607 OS << ", where:\\n"; 608 Plan.BackedgeTakenCount->print(OS, SlotTracker); 609 OS << " := BackedgeTakenCount"; 610 } 611 OS << "\"]\n"; 612 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 613 OS << "edge [fontname=Courier, fontsize=30]\n"; 614 OS << "compound=true\n"; 615 616 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 617 dumpBlock(Block); 618 619 OS << "}\n"; 620 } 621 622 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 623 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 624 dumpBasicBlock(BasicBlock); 625 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 626 dumpRegion(Region); 627 else 628 llvm_unreachable("Unsupported kind of VPBlock."); 629 } 630 631 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 632 bool Hidden, const Twine &Label) { 633 // Due to "dot" we print an edge between two regions as an edge between the 634 // exit basic block and the entry basic of the respective regions. 635 const VPBlockBase *Tail = From->getExitBasicBlock(); 636 const VPBlockBase *Head = To->getEntryBasicBlock(); 637 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 638 OS << " [ label=\"" << Label << '\"'; 639 if (Tail != From) 640 OS << " ltail=" << getUID(From); 641 if (Head != To) 642 OS << " lhead=" << getUID(To); 643 if (Hidden) 644 OS << "; splines=none"; 645 OS << "]\n"; 646 } 647 648 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 649 auto &Successors = Block->getSuccessors(); 650 if (Successors.size() == 1) 651 drawEdge(Block, Successors.front(), false, ""); 652 else if (Successors.size() == 2) { 653 drawEdge(Block, Successors.front(), false, "T"); 654 drawEdge(Block, Successors.back(), false, "F"); 655 } else { 656 unsigned SuccessorNumber = 0; 657 for (auto *Successor : Successors) 658 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 659 } 660 } 661 662 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 663 OS << Indent << getUID(BasicBlock) << " [label =\n"; 664 bumpIndent(1); 665 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 666 bumpIndent(1); 667 668 // Dump the block predicate. 669 const VPValue *Pred = BasicBlock->getPredicate(); 670 if (Pred) { 671 OS << " +\n" << Indent << " \"BlockPredicate: "; 672 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 673 PredI->printAsOperand(OS, SlotTracker); 674 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 675 << ")\\l\""; 676 } else 677 Pred->printAsOperand(OS, SlotTracker); 678 } 679 680 for (const VPRecipeBase &Recipe : *BasicBlock) { 681 OS << " +\n" << Indent; 682 Recipe.print(OS, Indent, SlotTracker); 683 OS << "\\l\""; 684 } 685 686 // Dump the condition bit. 687 const VPValue *CBV = BasicBlock->getCondBit(); 688 if (CBV) { 689 OS << " +\n" << Indent << " \"CondBit: "; 690 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 691 CBI->printAsOperand(OS, SlotTracker); 692 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 693 } else { 694 CBV->printAsOperand(OS, SlotTracker); 695 OS << "\""; 696 } 697 } 698 699 bumpIndent(-2); 700 OS << "\n" << Indent << "]\n"; 701 dumpEdges(BasicBlock); 702 } 703 704 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 705 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 706 bumpIndent(1); 707 OS << Indent << "fontname=Courier\n" 708 << Indent << "label=\"" 709 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 710 << DOT::EscapeString(Region->getName()) << "\"\n"; 711 // Dump the blocks of the region. 712 assert(Region->getEntry() && "Region contains no inner blocks."); 713 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 714 dumpBlock(Block); 715 bumpIndent(-1); 716 OS << Indent << "}\n"; 717 dumpEdges(Region); 718 } 719 720 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 721 std::string IngredientString; 722 raw_string_ostream RSO(IngredientString); 723 if (auto *Inst = dyn_cast<Instruction>(V)) { 724 if (!Inst->getType()->isVoidTy()) { 725 Inst->printAsOperand(RSO, false); 726 RSO << " = "; 727 } 728 RSO << Inst->getOpcodeName() << " "; 729 unsigned E = Inst->getNumOperands(); 730 if (E > 0) { 731 Inst->getOperand(0)->printAsOperand(RSO, false); 732 for (unsigned I = 1; I < E; ++I) 733 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 734 } 735 } else // !Inst 736 V->printAsOperand(RSO, false); 737 RSO.flush(); 738 O << DOT::EscapeString(IngredientString); 739 } 740 741 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 742 VPSlotTracker &SlotTracker) const { 743 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 744 } 745 746 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 747 VPSlotTracker &SlotTracker) const { 748 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 749 << (InvariantCond ? " (condition is loop invariant)" : ""); 750 } 751 752 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 753 VPSlotTracker &SlotTracker) const { 754 O << "\"WIDEN\\l\""; 755 O << "\" " << VPlanIngredient(&Ingredient); 756 } 757 758 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 759 VPSlotTracker &SlotTracker) const { 760 O << "\"WIDEN-INDUCTION"; 761 if (Trunc) { 762 O << "\\l\""; 763 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 764 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 765 } else 766 O << " " << VPlanIngredient(IV); 767 } 768 769 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 770 VPSlotTracker &SlotTracker) const { 771 O << "\"WIDEN-GEP "; 772 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 773 size_t IndicesNumber = IsIndexLoopInvariant.size(); 774 for (size_t I = 0; I < IndicesNumber; ++I) 775 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 776 O << "\\l\""; 777 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 778 } 779 780 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 781 VPSlotTracker &SlotTracker) const { 782 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 783 } 784 785 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 786 VPSlotTracker &SlotTracker) const { 787 O << "\"BLEND "; 788 Phi->printAsOperand(O, false); 789 O << " ="; 790 if (getNumIncomingValues() == 1) { 791 // Not a User of any mask: not really blending, this is a 792 // single-predecessor phi. 793 O << " "; 794 getIncomingValue(0)->printAsOperand(O, SlotTracker); 795 } else { 796 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 797 O << " "; 798 getIncomingValue(I)->printAsOperand(O, SlotTracker); 799 O << "/"; 800 getMask(I)->printAsOperand(O, SlotTracker); 801 } 802 } 803 } 804 805 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 806 VPSlotTracker &SlotTracker) const { 807 O << "\"REDUCE of" << *I << " as "; 808 ChainOp->printAsOperand(O, SlotTracker); 809 O << " + reduce("; 810 VecOp->printAsOperand(O, SlotTracker); 811 O << ")"; 812 } 813 814 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 815 VPSlotTracker &SlotTracker) const { 816 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 817 << VPlanIngredient(Ingredient); 818 if (AlsoPack) 819 O << " (S->V)"; 820 } 821 822 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 823 VPSlotTracker &SlotTracker) const { 824 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 825 } 826 827 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 828 VPSlotTracker &SlotTracker) const { 829 O << "\"WIDEN " << VPlanIngredient(&Instr); 830 O << ", "; 831 getAddr()->printAsOperand(O, SlotTracker); 832 VPValue *Mask = getMask(); 833 if (Mask) { 834 O << ", "; 835 Mask->printAsOperand(O, SlotTracker); 836 } 837 } 838 839 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 840 Value *CanonicalIV = State.CanonicalIV; 841 Type *STy = CanonicalIV->getType(); 842 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 843 ElementCount VF = State.VF; 844 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 845 Value *VStart = VF.isScalar() 846 ? CanonicalIV 847 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 848 CanonicalIV, "broadcast"); 849 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 850 SmallVector<Constant *, 8> Indices; 851 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 852 Indices.push_back( 853 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 854 // If VF == 1, there is only one iteration in the loop above, thus the 855 // element pushed back into Indices is ConstantInt::get(STy, Part) 856 Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); 857 // Add the consecutive indices to the vector value. 858 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 859 State.set(getVPValue(), CanonicalVectorIV, Part); 860 } 861 } 862 863 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 864 VPSlotTracker &SlotTracker) const { 865 O << "\"EMIT "; 866 getVPValue()->printAsOperand(O, SlotTracker); 867 O << " = WIDEN-CANONICAL-INDUCTION"; 868 } 869 870 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 871 872 void VPValue::replaceAllUsesWith(VPValue *New) { 873 for (VPUser *User : users()) 874 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 875 if (User->getOperand(I) == this) 876 User->setOperand(I, New); 877 } 878 879 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 880 if (const Value *UV = getUnderlyingValue()) { 881 OS << "ir<"; 882 UV->printAsOperand(OS, false); 883 OS << ">"; 884 return; 885 } 886 887 unsigned Slot = Tracker.getSlot(this); 888 if (Slot == unsigned(-1)) 889 OS << "<badref>"; 890 else 891 OS << "vp<%" << Tracker.getSlot(this) << ">"; 892 } 893 894 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 895 Old2NewTy &Old2New, 896 InterleavedAccessInfo &IAI) { 897 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 898 for (VPBlockBase *Base : RPOT) { 899 visitBlock(Base, Old2New, IAI); 900 } 901 } 902 903 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 904 InterleavedAccessInfo &IAI) { 905 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 906 for (VPRecipeBase &VPI : *VPBB) { 907 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 908 auto *VPInst = cast<VPInstruction>(&VPI); 909 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 910 auto *IG = IAI.getInterleaveGroup(Inst); 911 if (!IG) 912 continue; 913 914 auto NewIGIter = Old2New.find(IG); 915 if (NewIGIter == Old2New.end()) 916 Old2New[IG] = new InterleaveGroup<VPInstruction>( 917 IG->getFactor(), IG->isReverse(), IG->getAlign()); 918 919 if (Inst == IG->getInsertPos()) 920 Old2New[IG]->setInsertPos(VPInst); 921 922 InterleaveGroupMap[VPInst] = Old2New[IG]; 923 InterleaveGroupMap[VPInst]->insertMember( 924 VPInst, IG->getIndex(Inst), 925 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 926 : IG->getFactor())); 927 } 928 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 929 visitRegion(Region, Old2New, IAI); 930 else 931 llvm_unreachable("Unsupported kind of VPBlock."); 932 } 933 934 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 935 InterleavedAccessInfo &IAI) { 936 Old2NewTy Old2New; 937 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 938 } 939 940 void VPSlotTracker::assignSlot(const VPValue *V) { 941 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 942 const Value *UV = V->getUnderlyingValue(); 943 if (UV) 944 return; 945 const auto *VPI = dyn_cast<VPInstruction>(V); 946 if (VPI && !VPI->hasResult()) 947 return; 948 949 Slots[V] = NextSlot++; 950 } 951 952 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 953 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 954 assignSlots(Region); 955 else 956 assignSlots(cast<VPBasicBlock>(VPBB)); 957 } 958 959 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 960 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 961 for (const VPBlockBase *Block : RPOT) 962 assignSlots(Block); 963 } 964 965 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 966 for (const VPRecipeBase &Recipe : *VPBB) { 967 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 968 assignSlot(VPI); 969 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 970 assignSlot(VPIV->getVPValue()); 971 } 972 } 973 974 void VPSlotTracker::assignSlots(const VPlan &Plan) { 975 976 for (const VPValue *V : Plan.VPExternalDefs) 977 assignSlot(V); 978 979 for (auto &E : Plan.Value2VPValue) 980 if (!isa<VPInstruction>(E.second)) 981 assignSlot(E.second); 982 983 for (const VPValue *V : Plan.VPCBVs) 984 assignSlot(V); 985 986 if (Plan.BackedgeTakenCount) 987 assignSlot(Plan.BackedgeTakenCount); 988 989 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 990 for (const VPBlockBase *Block : RPOT) 991 assignSlots(Block); 992 } 993