1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "VPlanTransforms.h" 25 #include "VPlanUtils.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/DomTreeUpdater.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CFG.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/GraphWriter.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopVersioning.h" 47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 48 #include <cassert> 49 #include <string> 50 #include <vector> 51 52 using namespace llvm; 53 using namespace llvm::VPlanPatternMatch; 54 55 namespace llvm { 56 extern cl::opt<bool> EnableVPlanNativePath; 57 } 58 59 static cl::opt<bool> PrintVPlansInDotFormat( 60 "vplan-print-in-dot-format", cl::Hidden, 61 cl::desc("Use dot format instead of plain text when dumping VPlans")); 62 63 #define DEBUG_TYPE "vplan" 64 65 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 67 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 68 VPSlotTracker SlotTracker( 69 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 70 V.print(OS, SlotTracker); 71 return OS; 72 } 73 #endif 74 75 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 76 const ElementCount &VF) const { 77 switch (LaneKind) { 78 case VPLane::Kind::ScalableLast: 79 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 80 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 81 Builder.getInt32(VF.getKnownMinValue() - Lane)); 82 case VPLane::Kind::First: 83 return Builder.getInt32(Lane); 84 } 85 llvm_unreachable("Unknown lane kind"); 86 } 87 88 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 89 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 90 if (Def) 91 Def->addDefinedValue(this); 92 } 93 94 VPValue::~VPValue() { 95 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 96 if (Def) 97 Def->removeDefinedValue(this); 98 } 99 100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 101 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 102 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 103 R->print(OS, "", SlotTracker); 104 else 105 printAsOperand(OS, SlotTracker); 106 } 107 108 void VPValue::dump() const { 109 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 110 VPSlotTracker SlotTracker( 111 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 112 print(dbgs(), SlotTracker); 113 dbgs() << "\n"; 114 } 115 116 void VPDef::dump() const { 117 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 118 VPSlotTracker SlotTracker( 119 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 120 print(dbgs(), "", SlotTracker); 121 dbgs() << "\n"; 122 } 123 #endif 124 125 VPRecipeBase *VPValue::getDefiningRecipe() { 126 return cast_or_null<VPRecipeBase>(Def); 127 } 128 129 const VPRecipeBase *VPValue::getDefiningRecipe() const { 130 return cast_or_null<VPRecipeBase>(Def); 131 } 132 133 // Get the top-most entry block of \p Start. This is the entry block of the 134 // containing VPlan. This function is templated to support both const and non-const blocks 135 template <typename T> static T *getPlanEntry(T *Start) { 136 T *Next = Start; 137 T *Current = Start; 138 while ((Next = Next->getParent())) 139 Current = Next; 140 141 SmallSetVector<T *, 8> WorkList; 142 WorkList.insert(Current); 143 144 for (unsigned i = 0; i < WorkList.size(); i++) { 145 T *Current = WorkList[i]; 146 if (Current->getNumPredecessors() == 0) 147 return Current; 148 auto &Predecessors = Current->getPredecessors(); 149 WorkList.insert(Predecessors.begin(), Predecessors.end()); 150 } 151 152 llvm_unreachable("VPlan without any entry node without predecessors"); 153 } 154 155 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 156 157 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 158 159 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 160 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 161 const VPBlockBase *Block = this; 162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getEntry(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 168 VPBlockBase *Block = this; 169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 170 Block = Region->getEntry(); 171 return cast<VPBasicBlock>(Block); 172 } 173 174 void VPBlockBase::setPlan(VPlan *ParentPlan) { 175 assert( 176 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 177 "Can only set plan on its entry or preheader block."); 178 Plan = ParentPlan; 179 } 180 181 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 182 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 183 const VPBlockBase *Block = this; 184 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 185 Block = Region->getExiting(); 186 return cast<VPBasicBlock>(Block); 187 } 188 189 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 190 VPBlockBase *Block = this; 191 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 192 Block = Region->getExiting(); 193 return cast<VPBasicBlock>(Block); 194 } 195 196 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 197 if (!Successors.empty() || !Parent) 198 return this; 199 assert(Parent->getExiting() == this && 200 "Block w/o successors not the exiting block of its parent."); 201 return Parent->getEnclosingBlockWithSuccessors(); 202 } 203 204 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 205 if (!Predecessors.empty() || !Parent) 206 return this; 207 assert(Parent->getEntry() == this && 208 "Block w/o predecessors not the entry of its parent."); 209 return Parent->getEnclosingBlockWithPredecessors(); 210 } 211 212 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 213 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 214 delete Block; 215 } 216 217 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 218 iterator It = begin(); 219 while (It != end() && It->isPhi()) 220 It++; 221 return It; 222 } 223 224 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 225 DominatorTree *DT, IRBuilderBase &Builder, 226 InnerLoopVectorizer *ILV, VPlan *Plan, 227 LLVMContext &Ctx) 228 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 229 LVer(nullptr), 230 TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} 231 232 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 233 if (Def->isLiveIn()) 234 return Def->getLiveInIRValue(); 235 236 if (hasScalarValue(Def, Instance)) { 237 return Data 238 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 239 } 240 if (!Instance.Lane.isFirstLane() && 241 vputils::isUniformAfterVectorization(Def) && 242 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 243 return Data.PerPartScalars[Def][Instance.Part][0]; 244 } 245 246 assert(hasVectorValue(Def, Instance.Part)); 247 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 248 if (!VecPart->getType()->isVectorTy()) { 249 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 250 return VecPart; 251 } 252 // TODO: Cache created scalar values. 253 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 254 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 255 // set(Def, Extract, Instance); 256 return Extract; 257 } 258 259 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 260 if (NeedsScalar) { 261 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 262 !vputils::onlyFirstLaneUsed(Def) || 263 (hasScalarValue(Def, VPIteration(Part, 0)) && 264 Data.PerPartScalars[Def][Part].size() == 1)) && 265 "Trying to access a single scalar per part but has multiple scalars " 266 "per part."); 267 return get(Def, VPIteration(Part, 0)); 268 } 269 270 // If Values have been set for this Def return the one relevant for \p Part. 271 if (hasVectorValue(Def, Part)) 272 return Data.PerPartOutput[Def][Part]; 273 274 auto GetBroadcastInstrs = [this, Def](Value *V) { 275 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 276 if (VF.isScalar()) 277 return V; 278 // Place the code for broadcasting invariant variables in the new preheader. 279 IRBuilder<>::InsertPointGuard Guard(Builder); 280 if (SafeToHoist) { 281 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 282 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 283 if (LoopVectorPreHeader) 284 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 285 } 286 287 // Place the code for broadcasting invariant variables in the new preheader. 288 // Broadcast the scalar into all locations in the vector. 289 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 290 291 return Shuf; 292 }; 293 294 if (!hasScalarValue(Def, {Part, 0})) { 295 assert(Def->isLiveIn() && "expected a live-in"); 296 if (Part != 0) 297 return get(Def, 0); 298 Value *IRV = Def->getLiveInIRValue(); 299 Value *B = GetBroadcastInstrs(IRV); 300 set(Def, B, Part); 301 return B; 302 } 303 304 Value *ScalarValue = get(Def, {Part, 0}); 305 // If we aren't vectorizing, we can just copy the scalar map values over 306 // to the vector map. 307 if (VF.isScalar()) { 308 set(Def, ScalarValue, Part); 309 return ScalarValue; 310 } 311 312 bool IsUniform = vputils::isUniformAfterVectorization(Def); 313 314 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 315 // Check if there is a scalar value for the selected lane. 316 if (!hasScalarValue(Def, {Part, LastLane})) { 317 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 318 // VPExpandSCEVRecipes can also be uniform. 319 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 320 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 321 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 322 "unexpected recipe found to be invariant"); 323 IsUniform = true; 324 LastLane = 0; 325 } 326 327 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 328 // Set the insert point after the last scalarized instruction or after the 329 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 330 // will directly follow the scalar definitions. 331 auto OldIP = Builder.saveIP(); 332 auto NewIP = 333 isa<PHINode>(LastInst) 334 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 335 : std::next(BasicBlock::iterator(LastInst)); 336 Builder.SetInsertPoint(&*NewIP); 337 338 // However, if we are vectorizing, we need to construct the vector values. 339 // If the value is known to be uniform after vectorization, we can just 340 // broadcast the scalar value corresponding to lane zero for each unroll 341 // iteration. Otherwise, we construct the vector values using 342 // insertelement instructions. Since the resulting vectors are stored in 343 // State, we will only generate the insertelements once. 344 Value *VectorValue = nullptr; 345 if (IsUniform) { 346 VectorValue = GetBroadcastInstrs(ScalarValue); 347 set(Def, VectorValue, Part); 348 } else { 349 // Initialize packing with insertelements to start from undef. 350 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 351 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 352 set(Def, Undef, Part); 353 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 354 packScalarIntoVectorValue(Def, {Part, Lane}); 355 VectorValue = get(Def, Part); 356 } 357 Builder.restoreIP(OldIP); 358 return VectorValue; 359 } 360 361 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 362 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 363 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 364 } 365 366 void VPTransformState::addNewMetadata(Instruction *To, 367 const Instruction *Orig) { 368 // If the loop was versioned with memchecks, add the corresponding no-alias 369 // metadata. 370 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 371 LVer->annotateInstWithNoAlias(To, Orig); 372 } 373 374 void VPTransformState::addMetadata(Value *To, Instruction *From) { 375 // No source instruction to transfer metadata from? 376 if (!From) 377 return; 378 379 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 380 propagateMetadata(ToI, From); 381 addNewMetadata(ToI, From); 382 } 383 } 384 385 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 386 const DILocation *DIL = DL; 387 // When a FSDiscriminator is enabled, we don't need to add the multiply 388 // factors to the discriminators. 389 if (DIL && 390 Builder.GetInsertBlock() 391 ->getParent() 392 ->shouldEmitDebugInfoForProfiling() && 393 !EnableFSDiscriminator) { 394 // FIXME: For scalable vectors, assume vscale=1. 395 auto NewDIL = 396 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 397 if (NewDIL) 398 Builder.SetCurrentDebugLocation(*NewDIL); 399 else 400 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 401 << DIL->getFilename() << " Line: " << DIL->getLine()); 402 } else 403 Builder.SetCurrentDebugLocation(DIL); 404 } 405 406 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 407 const VPIteration &Instance) { 408 Value *ScalarInst = get(Def, Instance); 409 Value *VectorValue = get(Def, Instance.Part); 410 VectorValue = Builder.CreateInsertElement( 411 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 412 set(Def, VectorValue, Instance.Part); 413 } 414 415 BasicBlock * 416 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 417 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 418 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 419 BasicBlock *PrevBB = CFG.PrevBB; 420 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 421 PrevBB->getParent(), CFG.ExitBB); 422 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 423 424 // Hook up the new basic block to its predecessors. 425 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 426 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 427 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 428 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 429 430 assert(PredBB && "Predecessor basic-block not found building successor."); 431 auto *PredBBTerminator = PredBB->getTerminator(); 432 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 433 434 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 435 if (isa<UnreachableInst>(PredBBTerminator)) { 436 assert(PredVPSuccessors.size() == 1 && 437 "Predecessor ending w/o branch must have single successor."); 438 DebugLoc DL = PredBBTerminator->getDebugLoc(); 439 PredBBTerminator->eraseFromParent(); 440 auto *Br = BranchInst::Create(NewBB, PredBB); 441 Br->setDebugLoc(DL); 442 } else if (TermBr && !TermBr->isConditional()) { 443 TermBr->setSuccessor(0, NewBB); 444 } else { 445 // Set each forward successor here when it is created, excluding 446 // backedges. A backward successor is set when the branch is created. 447 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 448 assert(!TermBr->getSuccessor(idx) && 449 "Trying to reset an existing successor block."); 450 TermBr->setSuccessor(idx, NewBB); 451 } 452 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 453 } 454 return NewBB; 455 } 456 457 void VPIRBasicBlock::execute(VPTransformState *State) { 458 assert(getHierarchicalSuccessors().size() <= 2 && 459 "VPIRBasicBlock can have at most two successors at the moment!"); 460 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 461 executeRecipes(State, getIRBasicBlock()); 462 if (getSingleSuccessor()) { 463 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 464 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 465 Br->setOperand(0, nullptr); 466 getIRBasicBlock()->getTerminator()->eraseFromParent(); 467 } 468 469 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 470 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 471 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 472 assert(PredBB && "Predecessor basic-block not found building successor."); 473 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 474 475 auto *PredBBTerminator = PredBB->getTerminator(); 476 auto *TermBr = cast<BranchInst>(PredBBTerminator); 477 // Set each forward successor here when it is created, excluding 478 // backedges. A backward successor is set when the branch is created. 479 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 480 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 481 assert(!TermBr->getSuccessor(idx) && 482 "Trying to reset an existing successor block."); 483 TermBr->setSuccessor(idx, IRBB); 484 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 485 } 486 } 487 488 void VPBasicBlock::execute(VPTransformState *State) { 489 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 490 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 491 VPBlockBase *SingleHPred = nullptr; 492 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 493 494 auto IsLoopRegion = [](VPBlockBase *BB) { 495 auto *R = dyn_cast<VPRegionBlock>(BB); 496 return R && !R->isReplicator(); 497 }; 498 499 // 1. Create an IR basic block. 500 if (PrevVPBB && /* A */ 501 !((SingleHPred = getSingleHierarchicalPredecessor()) && 502 SingleHPred->getExitingBasicBlock() == PrevVPBB && 503 PrevVPBB->getSingleHierarchicalSuccessor() && 504 (SingleHPred->getParent() == getEnclosingLoopRegion() && 505 !IsLoopRegion(SingleHPred))) && /* B */ 506 !(Replica && getPredecessors().empty())) { /* C */ 507 // The last IR basic block is reused, as an optimization, in three cases: 508 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 509 // B. when the current VPBB has a single (hierarchical) predecessor which 510 // is PrevVPBB and the latter has a single (hierarchical) successor which 511 // both are in the same non-replicator region; and 512 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 513 // is the exiting VPBB of this region from a previous instance, or the 514 // predecessor of this region. 515 516 NewBB = createEmptyBasicBlock(State->CFG); 517 State->Builder.SetInsertPoint(NewBB); 518 // Temporarily terminate with unreachable until CFG is rewired. 519 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 520 // Register NewBB in its loop. In innermost loops its the same for all 521 // BB's. 522 if (State->CurrentVectorLoop) 523 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 524 State->Builder.SetInsertPoint(Terminator); 525 State->CFG.PrevBB = NewBB; 526 } 527 528 // 2. Fill the IR basic block with IR instructions. 529 executeRecipes(State, NewBB); 530 } 531 532 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 533 for (VPRecipeBase &R : Recipes) { 534 for (auto *Def : R.definedValues()) 535 Def->replaceAllUsesWith(NewValue); 536 537 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 538 R.setOperand(I, NewValue); 539 } 540 } 541 542 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 543 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 544 << " in BB:" << BB->getName() << '\n'); 545 546 State->CFG.VPBB2IRBB[this] = BB; 547 State->CFG.PrevVPBB = this; 548 549 for (VPRecipeBase &Recipe : Recipes) 550 Recipe.execute(*State); 551 552 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 553 } 554 555 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 556 assert((SplitAt == end() || SplitAt->getParent() == this) && 557 "can only split at a position in the same block"); 558 559 SmallVector<VPBlockBase *, 2> Succs(successors()); 560 // First, disconnect the current block from its successors. 561 for (VPBlockBase *Succ : Succs) 562 VPBlockUtils::disconnectBlocks(this, Succ); 563 564 // Create new empty block after the block to split. 565 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 566 VPBlockUtils::insertBlockAfter(SplitBlock, this); 567 568 // Add successors for block to split to new block. 569 for (VPBlockBase *Succ : Succs) 570 VPBlockUtils::connectBlocks(SplitBlock, Succ); 571 572 // Finally, move the recipes starting at SplitAt to new block. 573 for (VPRecipeBase &ToMove : 574 make_early_inc_range(make_range(SplitAt, this->end()))) 575 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 576 577 return SplitBlock; 578 } 579 580 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 581 VPRegionBlock *P = getParent(); 582 if (P && P->isReplicator()) { 583 P = P->getParent(); 584 assert(!cast<VPRegionBlock>(P)->isReplicator() && 585 "unexpected nested replicate regions"); 586 } 587 return P; 588 } 589 590 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 591 if (VPBB->empty()) { 592 assert( 593 VPBB->getNumSuccessors() < 2 && 594 "block with multiple successors doesn't have a recipe as terminator"); 595 return false; 596 } 597 598 const VPRecipeBase *R = &VPBB->back(); 599 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 600 match(R, m_BranchOnCond(m_VPValue())) || 601 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 602 (void)IsCondBranch; 603 604 if (VPBB->getNumSuccessors() >= 2 || 605 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 606 assert(IsCondBranch && "block with multiple successors not terminated by " 607 "conditional branch recipe"); 608 609 return true; 610 } 611 612 assert( 613 !IsCondBranch && 614 "block with 0 or 1 successors terminated by conditional branch recipe"); 615 return false; 616 } 617 618 VPRecipeBase *VPBasicBlock::getTerminator() { 619 if (hasConditionalTerminator(this)) 620 return &back(); 621 return nullptr; 622 } 623 624 const VPRecipeBase *VPBasicBlock::getTerminator() const { 625 if (hasConditionalTerminator(this)) 626 return &back(); 627 return nullptr; 628 } 629 630 bool VPBasicBlock::isExiting() const { 631 return getParent() && getParent()->getExitingBasicBlock() == this; 632 } 633 634 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 635 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 636 if (getSuccessors().empty()) { 637 O << Indent << "No successors\n"; 638 } else { 639 O << Indent << "Successor(s): "; 640 ListSeparator LS; 641 for (auto *Succ : getSuccessors()) 642 O << LS << Succ->getName(); 643 O << '\n'; 644 } 645 } 646 647 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 648 VPSlotTracker &SlotTracker) const { 649 O << Indent << getName() << ":\n"; 650 651 auto RecipeIndent = Indent + " "; 652 for (const VPRecipeBase &Recipe : *this) { 653 Recipe.print(O, RecipeIndent, SlotTracker); 654 O << '\n'; 655 } 656 657 printSuccessors(O, Indent); 658 } 659 #endif 660 661 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 662 663 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 664 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 665 // Remapping of operands must be done separately. Returns a pair with the new 666 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 667 // region, return nullptr for the exiting block. 668 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 669 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 670 VPBlockBase *Exiting = nullptr; 671 bool InRegion = Entry->getParent(); 672 // First, clone blocks reachable from Entry. 673 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 674 VPBlockBase *NewBB = BB->clone(); 675 Old2NewVPBlocks[BB] = NewBB; 676 if (InRegion && BB->getNumSuccessors() == 0) { 677 assert(!Exiting && "Multiple exiting blocks?"); 678 Exiting = BB; 679 } 680 } 681 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 682 683 // Second, update the predecessors & successors of the cloned blocks. 684 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 685 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 686 SmallVector<VPBlockBase *> NewPreds; 687 for (VPBlockBase *Pred : BB->getPredecessors()) { 688 NewPreds.push_back(Old2NewVPBlocks[Pred]); 689 } 690 NewBB->setPredecessors(NewPreds); 691 SmallVector<VPBlockBase *> NewSuccs; 692 for (VPBlockBase *Succ : BB->successors()) { 693 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 694 } 695 NewBB->setSuccessors(NewSuccs); 696 } 697 698 #if !defined(NDEBUG) 699 // Verify that the order of predecessors and successors matches in the cloned 700 // version. 701 for (const auto &[OldBB, NewBB] : 702 zip(vp_depth_first_shallow(Entry), 703 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 704 for (const auto &[OldPred, NewPred] : 705 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 706 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 707 708 for (const auto &[OldSucc, NewSucc] : 709 zip(OldBB->successors(), NewBB->successors())) 710 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 711 } 712 #endif 713 714 return std::make_pair(Old2NewVPBlocks[Entry], 715 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 716 } 717 718 VPRegionBlock *VPRegionBlock::clone() { 719 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 720 auto *NewRegion = 721 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 722 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 723 Block->setParent(NewRegion); 724 return NewRegion; 725 } 726 727 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 728 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 729 // Drop all references in VPBasicBlocks and replace all uses with 730 // DummyValue. 731 Block->dropAllReferences(NewValue); 732 } 733 734 void VPRegionBlock::execute(VPTransformState *State) { 735 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 736 RPOT(Entry); 737 738 if (!isReplicator()) { 739 // Create and register the new vector loop. 740 Loop *PrevLoop = State->CurrentVectorLoop; 741 State->CurrentVectorLoop = State->LI->AllocateLoop(); 742 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 743 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 744 745 // Insert the new loop into the loop nest and register the new basic blocks 746 // before calling any utilities such as SCEV that require valid LoopInfo. 747 if (ParentLoop) 748 ParentLoop->addChildLoop(State->CurrentVectorLoop); 749 else 750 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 751 752 // Visit the VPBlocks connected to "this", starting from it. 753 for (VPBlockBase *Block : RPOT) { 754 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 755 Block->execute(State); 756 } 757 758 State->CurrentVectorLoop = PrevLoop; 759 return; 760 } 761 762 assert(!State->Instance && "Replicating a Region with non-null instance."); 763 764 // Enter replicating mode. 765 State->Instance = VPIteration(0, 0); 766 767 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 768 State->Instance->Part = Part; 769 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 770 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 771 ++Lane) { 772 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 773 // Visit the VPBlocks connected to \p this, starting from it. 774 for (VPBlockBase *Block : RPOT) { 775 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 776 Block->execute(State); 777 } 778 } 779 } 780 781 // Exit replicating mode. 782 State->Instance.reset(); 783 } 784 785 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 786 InstructionCost Cost = 0; 787 for (VPRecipeBase &R : Recipes) 788 Cost += R.cost(VF, Ctx); 789 return Cost; 790 } 791 792 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 793 if (!isReplicator()) { 794 InstructionCost Cost = 0; 795 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 796 Cost += Block->cost(VF, Ctx); 797 InstructionCost BackedgeCost = 798 Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 799 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 800 << ": vector loop backedge\n"); 801 Cost += BackedgeCost; 802 return Cost; 803 } 804 805 // Compute the cost of a replicate region. Replicating isn't supported for 806 // scalable vectors, return an invalid cost for them. 807 // TODO: Discard scalable VPlans with replicate recipes earlier after 808 // construction. 809 if (VF.isScalable()) 810 return InstructionCost::getInvalid(); 811 812 // First compute the cost of the conditionally executed recipes, followed by 813 // account for the branching cost, except if the mask is a header mask or 814 // uniform condition. 815 using namespace llvm::VPlanPatternMatch; 816 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 817 InstructionCost ThenCost = Then->cost(VF, Ctx); 818 819 // For the scalar case, we may not always execute the original predicated 820 // block, Thus, scale the block's cost by the probability of executing it. 821 if (VF.isScalar()) 822 return ThenCost / getReciprocalPredBlockProb(); 823 824 return ThenCost; 825 } 826 827 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 828 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 829 VPSlotTracker &SlotTracker) const { 830 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 831 auto NewIndent = Indent + " "; 832 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 833 O << '\n'; 834 BlockBase->print(O, NewIndent, SlotTracker); 835 } 836 O << Indent << "}\n"; 837 838 printSuccessors(O, Indent); 839 } 840 #endif 841 842 VPlan::~VPlan() { 843 for (auto &KV : LiveOuts) 844 delete KV.second; 845 LiveOuts.clear(); 846 847 if (Entry) { 848 VPValue DummyValue; 849 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 850 Block->dropAllReferences(&DummyValue); 851 852 VPBlockBase::deleteCFG(Entry); 853 854 Preheader->dropAllReferences(&DummyValue); 855 delete Preheader; 856 } 857 for (VPValue *VPV : VPLiveInsToFree) 858 delete VPV; 859 if (BackedgeTakenCount) 860 delete BackedgeTakenCount; 861 } 862 863 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE, 864 bool RequiresScalarEpilogueCheck, 865 bool TailFolded, Loop *TheLoop) { 866 VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader()); 867 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 868 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 869 Plan->TripCount = 870 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 871 // Create VPRegionBlock, with empty header and latch blocks, to be filled 872 // during processing later. 873 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 874 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 875 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 876 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 877 false /*isReplicator*/); 878 879 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 880 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 881 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 882 883 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 884 if (!RequiresScalarEpilogueCheck) { 885 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 886 return Plan; 887 } 888 889 // If needed, add a check in the middle block to see if we have completed 890 // all of the iterations in the first vector loop. Three cases: 891 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 892 // Thus if tail is to be folded, we know we don't need to run the 893 // remainder and we can set the condition to true. 894 // 2) If we require a scalar epilogue, there is no conditional branch as 895 // we unconditionally branch to the scalar preheader. Do nothing. 896 // 3) Otherwise, construct a runtime check. 897 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 898 auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock); 899 // The connection order corresponds to the operands of the conditional branch. 900 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 901 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 902 903 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 904 // Here we use the same DebugLoc as the scalar loop latch terminator instead 905 // of the corresponding compare because they may have ended up with 906 // different line numbers and we want to avoid awkward line stepping while 907 // debugging. Eg. if the compare has got a line number inside the loop. 908 VPBuilder Builder(MiddleVPBB); 909 VPValue *Cmp = 910 TailFolded 911 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 912 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 913 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 914 &Plan->getVectorTripCount(), 915 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 916 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 917 ScalarLatchTerm->getDebugLoc()); 918 return Plan; 919 } 920 921 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 922 Value *CanonicalIVStartValue, 923 VPTransformState &State) { 924 Type *TCTy = TripCountV->getType(); 925 // Check if the backedge taken count is needed, and if so build it. 926 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 927 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 928 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1), 929 "trip.count.minus.1"); 930 BackedgeTakenCount->setUnderlyingValue(TCMO); 931 } 932 933 VectorTripCount.setUnderlyingValue(VectorTripCountV); 934 935 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 936 // FIXME: Model VF * UF computation completely in VPlan. 937 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users"); 938 if (VF.getNumUsers()) { 939 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF); 940 VF.setUnderlyingValue(RuntimeVF); 941 VFxUF.setUnderlyingValue( 942 State.UF > 1 943 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, State.UF)) 944 : RuntimeVF); 945 } else { 946 VFxUF.setUnderlyingValue( 947 createStepForVF(Builder, TCTy, State.VF, State.UF)); 948 } 949 950 // When vectorizing the epilogue loop, the canonical induction start value 951 // needs to be changed from zero to the value after the main vector loop. 952 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 953 if (CanonicalIVStartValue) { 954 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 955 auto *IV = getCanonicalIV(); 956 assert(all_of(IV->users(), 957 [](const VPUser *U) { 958 return isa<VPScalarIVStepsRecipe>(U) || 959 isa<VPScalarCastRecipe>(U) || 960 isa<VPDerivedIVRecipe>(U) || 961 cast<VPInstruction>(U)->getOpcode() == 962 Instruction::Add; 963 }) && 964 "the canonical IV should only be used by its increment or " 965 "ScalarIVSteps when resetting the start value"); 966 IV->setOperand(0, VPV); 967 } 968 } 969 970 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 971 /// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single 972 /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of 973 /// VPBB, if any, are rewired to the new VPIRBasicBlock. 974 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 975 VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB); 976 for (auto &R : make_early_inc_range(*VPBB)) 977 R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end()); 978 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 979 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 980 VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB); 981 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 982 VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ); 983 VPBlockUtils::disconnectBlocks(VPBB, Succ); 984 } 985 delete VPBB; 986 } 987 988 /// Generate the code inside the preheader and body of the vectorized loop. 989 /// Assumes a single pre-header basic-block was created for this. Introduce 990 /// additional basic-blocks as needed, and fill them all. 991 void VPlan::execute(VPTransformState *State) { 992 // Initialize CFG state. 993 State->CFG.PrevVPBB = nullptr; 994 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 995 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 996 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 997 998 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 999 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 1000 State->CFG.DTU.applyUpdates( 1001 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 1002 1003 // Replace regular VPBB's for the middle and scalar preheader blocks with 1004 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 1005 // skeleton creation, so we can only create the VPIRBasicBlocks now during 1006 // VPlan execution rather than earlier during VPlan construction. 1007 BasicBlock *MiddleBB = State->CFG.ExitBB; 1008 VPBasicBlock *MiddleVPBB = 1009 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 1010 // Find the VPBB for the scalar preheader, relying on the current structure 1011 // when creating the middle block and its successrs: if there's a single 1012 // predecessor, it must be the scalar preheader. Otherwise, the second 1013 // successor is the scalar preheader. 1014 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1015 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1016 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1017 "middle block has unexpected successors"); 1018 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1019 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1020 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1021 "scalar preheader cannot be wrapped already"); 1022 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1023 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1024 1025 // Disconnect the middle block from its single successor (the scalar loop 1026 // header) in both the CFG and DT. The branch will be recreated during VPlan 1027 // execution. 1028 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1029 BrInst->insertBefore(MiddleBB->getTerminator()); 1030 MiddleBB->getTerminator()->eraseFromParent(); 1031 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1032 1033 // Generate code in the loop pre-header and body. 1034 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1035 Block->execute(State); 1036 1037 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1038 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1039 1040 // Fix the latch value of canonical, reduction and first-order recurrences 1041 // phis in the vector loop. 1042 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1043 for (VPRecipeBase &R : Header->phis()) { 1044 // Skip phi-like recipes that generate their backedege values themselves. 1045 if (isa<VPWidenPHIRecipe>(&R)) 1046 continue; 1047 1048 if (isa<VPWidenPointerInductionRecipe>(&R) || 1049 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1050 PHINode *Phi = nullptr; 1051 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1052 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1053 } else { 1054 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1055 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1056 "recipe generating only scalars should have been replaced"); 1057 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1058 Phi = cast<PHINode>(GEP->getPointerOperand()); 1059 } 1060 1061 Phi->setIncomingBlock(1, VectorLatchBB); 1062 1063 // Move the last step to the end of the latch block. This ensures 1064 // consistent placement of all induction updates. 1065 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1066 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1067 continue; 1068 } 1069 1070 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1071 // For canonical IV, first-order recurrences and in-order reduction phis, 1072 // only a single part is generated, which provides the last part from the 1073 // previous iteration. For non-ordered reductions all UF parts are 1074 // generated. 1075 bool SinglePartNeeded = 1076 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1077 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1078 (isa<VPReductionPHIRecipe>(PhiR) && 1079 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1080 bool NeedsScalar = 1081 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1082 (isa<VPReductionPHIRecipe>(PhiR) && 1083 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1084 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1085 1086 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1087 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1088 Value *Val = 1089 State->get(PhiR->getBackedgeValue(), 1090 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1091 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1092 } 1093 } 1094 1095 State->CFG.DTU.flush(); 1096 assert(State->CFG.DTU.getDomTree().verify( 1097 DominatorTree::VerificationLevel::Fast) && 1098 "DT not preserved correctly"); 1099 } 1100 1101 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1102 // For now only return the cost of the vector loop region, ignoring any other 1103 // blocks, like the preheader or middle blocks. 1104 return getVectorLoopRegion()->cost(VF, Ctx); 1105 } 1106 1107 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1108 void VPlan::printLiveIns(raw_ostream &O) const { 1109 VPSlotTracker SlotTracker(this); 1110 1111 if (VF.getNumUsers() > 0) { 1112 O << "\nLive-in "; 1113 VF.printAsOperand(O, SlotTracker); 1114 O << " = VF"; 1115 } 1116 1117 if (VFxUF.getNumUsers() > 0) { 1118 O << "\nLive-in "; 1119 VFxUF.printAsOperand(O, SlotTracker); 1120 O << " = VF * UF"; 1121 } 1122 1123 if (VectorTripCount.getNumUsers() > 0) { 1124 O << "\nLive-in "; 1125 VectorTripCount.printAsOperand(O, SlotTracker); 1126 O << " = vector-trip-count"; 1127 } 1128 1129 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1130 O << "\nLive-in "; 1131 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1132 O << " = backedge-taken count"; 1133 } 1134 1135 O << "\n"; 1136 if (TripCount->isLiveIn()) 1137 O << "Live-in "; 1138 TripCount->printAsOperand(O, SlotTracker); 1139 O << " = original trip-count"; 1140 O << "\n"; 1141 } 1142 1143 LLVM_DUMP_METHOD 1144 void VPlan::print(raw_ostream &O) const { 1145 VPSlotTracker SlotTracker(this); 1146 1147 O << "VPlan '" << getName() << "' {"; 1148 1149 printLiveIns(O); 1150 1151 if (!getPreheader()->empty()) { 1152 O << "\n"; 1153 getPreheader()->print(O, "", SlotTracker); 1154 } 1155 1156 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1157 O << '\n'; 1158 Block->print(O, "", SlotTracker); 1159 } 1160 1161 if (!LiveOuts.empty()) 1162 O << "\n"; 1163 for (const auto &KV : LiveOuts) { 1164 KV.second->print(O, SlotTracker); 1165 } 1166 1167 O << "}\n"; 1168 } 1169 1170 std::string VPlan::getName() const { 1171 std::string Out; 1172 raw_string_ostream RSO(Out); 1173 RSO << Name << " for "; 1174 if (!VFs.empty()) { 1175 RSO << "VF={" << VFs[0]; 1176 for (ElementCount VF : drop_begin(VFs)) 1177 RSO << "," << VF; 1178 RSO << "},"; 1179 } 1180 1181 if (UFs.empty()) { 1182 RSO << "UF>=1"; 1183 } else { 1184 RSO << "UF={" << UFs[0]; 1185 for (unsigned UF : drop_begin(UFs)) 1186 RSO << "," << UF; 1187 RSO << "}"; 1188 } 1189 1190 return Out; 1191 } 1192 1193 LLVM_DUMP_METHOD 1194 void VPlan::printDOT(raw_ostream &O) const { 1195 VPlanPrinter Printer(O, *this); 1196 Printer.dump(); 1197 } 1198 1199 LLVM_DUMP_METHOD 1200 void VPlan::dump() const { print(dbgs()); } 1201 #endif 1202 1203 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1204 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1205 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1206 } 1207 1208 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1209 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1210 // Update the operands of all cloned recipes starting at NewEntry. This 1211 // traverses all reachable blocks. This is done in two steps, to handle cycles 1212 // in PHI recipes. 1213 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1214 OldDeepRPOT(Entry); 1215 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1216 NewDeepRPOT(NewEntry); 1217 // First, collect all mappings from old to new VPValues defined by cloned 1218 // recipes. 1219 for (const auto &[OldBB, NewBB] : 1220 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1221 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1222 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1223 "blocks must have the same number of recipes"); 1224 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1225 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1226 "recipes must have the same number of operands"); 1227 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1228 "recipes must define the same number of operands"); 1229 for (const auto &[OldV, NewV] : 1230 zip(OldR.definedValues(), NewR.definedValues())) 1231 Old2NewVPValues[OldV] = NewV; 1232 } 1233 } 1234 1235 // Update all operands to use cloned VPValues. 1236 for (VPBasicBlock *NewBB : 1237 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1238 for (VPRecipeBase &NewR : *NewBB) 1239 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1240 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1241 NewR.setOperand(I, NewOp); 1242 } 1243 } 1244 } 1245 1246 VPlan *VPlan::duplicate() { 1247 // Clone blocks. 1248 VPBasicBlock *NewPreheader = Preheader->clone(); 1249 const auto &[NewEntry, __] = cloneFrom(Entry); 1250 1251 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1252 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1253 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1254 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1255 Old2NewVPValues[OldLiveIn] = 1256 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1257 } 1258 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1259 Old2NewVPValues[&VF] = &NewPlan->VF; 1260 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1261 if (BackedgeTakenCount) { 1262 NewPlan->BackedgeTakenCount = new VPValue(); 1263 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1264 } 1265 assert(TripCount && "trip count must be set"); 1266 if (TripCount->isLiveIn()) 1267 Old2NewVPValues[TripCount] = 1268 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1269 // else NewTripCount will be created and inserted into Old2NewVPValues when 1270 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1271 1272 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1273 remapOperands(Entry, NewEntry, Old2NewVPValues); 1274 1275 // Clone live-outs. 1276 for (const auto &[_, LO] : LiveOuts) 1277 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1278 1279 // Initialize remaining fields of cloned VPlan. 1280 NewPlan->VFs = VFs; 1281 NewPlan->UFs = UFs; 1282 // TODO: Adjust names. 1283 NewPlan->Name = Name; 1284 assert(Old2NewVPValues.contains(TripCount) && 1285 "TripCount must have been added to Old2NewVPValues"); 1286 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1287 return NewPlan; 1288 } 1289 1290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1291 1292 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1293 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1294 Twine(getOrCreateBID(Block)); 1295 } 1296 1297 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1298 const std::string &Name = Block->getName(); 1299 if (!Name.empty()) 1300 return Name; 1301 return "VPB" + Twine(getOrCreateBID(Block)); 1302 } 1303 1304 void VPlanPrinter::dump() { 1305 Depth = 1; 1306 bumpIndent(0); 1307 OS << "digraph VPlan {\n"; 1308 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1309 if (!Plan.getName().empty()) 1310 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1311 1312 { 1313 // Print live-ins. 1314 std::string Str; 1315 raw_string_ostream SS(Str); 1316 Plan.printLiveIns(SS); 1317 SmallVector<StringRef, 0> Lines; 1318 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1319 for (auto Line : Lines) 1320 OS << DOT::EscapeString(Line.str()) << "\\n"; 1321 } 1322 1323 OS << "\"]\n"; 1324 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1325 OS << "edge [fontname=Courier, fontsize=30]\n"; 1326 OS << "compound=true\n"; 1327 1328 dumpBlock(Plan.getPreheader()); 1329 1330 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1331 dumpBlock(Block); 1332 1333 OS << "}\n"; 1334 } 1335 1336 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1337 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1338 dumpBasicBlock(BasicBlock); 1339 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1340 dumpRegion(Region); 1341 else 1342 llvm_unreachable("Unsupported kind of VPBlock."); 1343 } 1344 1345 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1346 bool Hidden, const Twine &Label) { 1347 // Due to "dot" we print an edge between two regions as an edge between the 1348 // exiting basic block and the entry basic of the respective regions. 1349 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1350 const VPBlockBase *Head = To->getEntryBasicBlock(); 1351 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1352 OS << " [ label=\"" << Label << '\"'; 1353 if (Tail != From) 1354 OS << " ltail=" << getUID(From); 1355 if (Head != To) 1356 OS << " lhead=" << getUID(To); 1357 if (Hidden) 1358 OS << "; splines=none"; 1359 OS << "]\n"; 1360 } 1361 1362 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1363 auto &Successors = Block->getSuccessors(); 1364 if (Successors.size() == 1) 1365 drawEdge(Block, Successors.front(), false, ""); 1366 else if (Successors.size() == 2) { 1367 drawEdge(Block, Successors.front(), false, "T"); 1368 drawEdge(Block, Successors.back(), false, "F"); 1369 } else { 1370 unsigned SuccessorNumber = 0; 1371 for (auto *Successor : Successors) 1372 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1373 } 1374 } 1375 1376 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1377 // Implement dot-formatted dump by performing plain-text dump into the 1378 // temporary storage followed by some post-processing. 1379 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1380 bumpIndent(1); 1381 std::string Str; 1382 raw_string_ostream SS(Str); 1383 // Use no indentation as we need to wrap the lines into quotes ourselves. 1384 BasicBlock->print(SS, "", SlotTracker); 1385 1386 // We need to process each line of the output separately, so split 1387 // single-string plain-text dump. 1388 SmallVector<StringRef, 0> Lines; 1389 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1390 1391 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1392 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1393 }; 1394 1395 // Don't need the "+" after the last line. 1396 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1397 EmitLine(Line, " +\n"); 1398 EmitLine(Lines.back(), "\n"); 1399 1400 bumpIndent(-1); 1401 OS << Indent << "]\n"; 1402 1403 dumpEdges(BasicBlock); 1404 } 1405 1406 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1407 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1408 bumpIndent(1); 1409 OS << Indent << "fontname=Courier\n" 1410 << Indent << "label=\"" 1411 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1412 << DOT::EscapeString(Region->getName()) << "\"\n"; 1413 // Dump the blocks of the region. 1414 assert(Region->getEntry() && "Region contains no inner blocks."); 1415 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1416 dumpBlock(Block); 1417 bumpIndent(-1); 1418 OS << Indent << "}\n"; 1419 dumpEdges(Region); 1420 } 1421 1422 void VPlanIngredient::print(raw_ostream &O) const { 1423 if (auto *Inst = dyn_cast<Instruction>(V)) { 1424 if (!Inst->getType()->isVoidTy()) { 1425 Inst->printAsOperand(O, false); 1426 O << " = "; 1427 } 1428 O << Inst->getOpcodeName() << " "; 1429 unsigned E = Inst->getNumOperands(); 1430 if (E > 0) { 1431 Inst->getOperand(0)->printAsOperand(O, false); 1432 for (unsigned I = 1; I < E; ++I) 1433 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1434 } 1435 } else // !Inst 1436 V->printAsOperand(O, false); 1437 } 1438 1439 #endif 1440 1441 void VPValue::replaceAllUsesWith(VPValue *New) { 1442 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1443 } 1444 1445 void VPValue::replaceUsesWithIf( 1446 VPValue *New, 1447 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1448 // Note that this early exit is required for correctness; the implementation 1449 // below relies on the number of users for this VPValue to decrease, which 1450 // isn't the case if this == New. 1451 if (this == New) 1452 return; 1453 1454 for (unsigned J = 0; J < getNumUsers();) { 1455 VPUser *User = Users[J]; 1456 bool RemovedUser = false; 1457 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1458 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1459 continue; 1460 1461 RemovedUser = true; 1462 User->setOperand(I, New); 1463 } 1464 // If a user got removed after updating the current user, the next user to 1465 // update will be moved to the current position, so we only need to 1466 // increment the index if the number of users did not change. 1467 if (!RemovedUser) 1468 J++; 1469 } 1470 } 1471 1472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1473 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1474 OS << Tracker.getOrCreateName(this); 1475 } 1476 1477 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1478 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1479 Op->printAsOperand(O, SlotTracker); 1480 }); 1481 } 1482 #endif 1483 1484 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1485 Old2NewTy &Old2New, 1486 InterleavedAccessInfo &IAI) { 1487 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1488 RPOT(Region->getEntry()); 1489 for (VPBlockBase *Base : RPOT) { 1490 visitBlock(Base, Old2New, IAI); 1491 } 1492 } 1493 1494 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1495 InterleavedAccessInfo &IAI) { 1496 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1497 for (VPRecipeBase &VPI : *VPBB) { 1498 if (isa<VPWidenPHIRecipe>(&VPI)) 1499 continue; 1500 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1501 auto *VPInst = cast<VPInstruction>(&VPI); 1502 1503 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1504 if (!Inst) 1505 continue; 1506 auto *IG = IAI.getInterleaveGroup(Inst); 1507 if (!IG) 1508 continue; 1509 1510 auto NewIGIter = Old2New.find(IG); 1511 if (NewIGIter == Old2New.end()) 1512 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1513 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1514 1515 if (Inst == IG->getInsertPos()) 1516 Old2New[IG]->setInsertPos(VPInst); 1517 1518 InterleaveGroupMap[VPInst] = Old2New[IG]; 1519 InterleaveGroupMap[VPInst]->insertMember( 1520 VPInst, IG->getIndex(Inst), 1521 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1522 : IG->getFactor())); 1523 } 1524 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1525 visitRegion(Region, Old2New, IAI); 1526 else 1527 llvm_unreachable("Unsupported kind of VPBlock."); 1528 } 1529 1530 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1531 InterleavedAccessInfo &IAI) { 1532 Old2NewTy Old2New; 1533 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1534 } 1535 1536 void VPSlotTracker::assignName(const VPValue *V) { 1537 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1538 auto *UV = V->getUnderlyingValue(); 1539 if (!UV) { 1540 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1541 NextSlot++; 1542 return; 1543 } 1544 1545 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1546 // appending ".Number" to the name if there are multiple uses. 1547 std::string Name; 1548 raw_string_ostream S(Name); 1549 UV->printAsOperand(S, false); 1550 assert(!Name.empty() && "Name cannot be empty."); 1551 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1552 1553 // First assign the base name for V. 1554 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1555 // Integer or FP constants with different types will result in he same string 1556 // due to stripping types. 1557 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1558 return; 1559 1560 // If it is already used by C > 0 other VPValues, increase the version counter 1561 // C and use it for V. 1562 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1563 if (!UseInserted) { 1564 C->second++; 1565 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1566 } 1567 } 1568 1569 void VPSlotTracker::assignNames(const VPlan &Plan) { 1570 if (Plan.VF.getNumUsers() > 0) 1571 assignName(&Plan.VF); 1572 if (Plan.VFxUF.getNumUsers() > 0) 1573 assignName(&Plan.VFxUF); 1574 assignName(&Plan.VectorTripCount); 1575 if (Plan.BackedgeTakenCount) 1576 assignName(Plan.BackedgeTakenCount); 1577 for (VPValue *LI : Plan.VPLiveInsToFree) 1578 assignName(LI); 1579 assignNames(Plan.getPreheader()); 1580 1581 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1582 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1583 for (const VPBasicBlock *VPBB : 1584 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1585 assignNames(VPBB); 1586 } 1587 1588 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1589 for (const VPRecipeBase &Recipe : *VPBB) 1590 for (VPValue *Def : Recipe.definedValues()) 1591 assignName(Def); 1592 } 1593 1594 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1595 std::string Name = VPValue2Name.lookup(V); 1596 if (!Name.empty()) 1597 return Name; 1598 1599 // If no name was assigned, no VPlan was provided when creating the slot 1600 // tracker or it is not reachable from the provided VPlan. This can happen, 1601 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1602 // in a debugger. 1603 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1604 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1605 // here. 1606 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1607 (void)DefR; 1608 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1609 "VPValue defined by a recipe in a VPlan?"); 1610 1611 // Use the underlying value's name, if there is one. 1612 if (auto *UV = V->getUnderlyingValue()) { 1613 std::string Name; 1614 raw_string_ostream S(Name); 1615 UV->printAsOperand(S, false); 1616 return (Twine("ir<") + Name + ">").str(); 1617 } 1618 1619 return "<badref>"; 1620 } 1621 1622 bool LoopVectorizationPlanner::getDecisionAndClampRange( 1623 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 1624 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 1625 bool PredicateAtRangeStart = Predicate(Range.Start); 1626 1627 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End)) 1628 if (Predicate(TmpVF) != PredicateAtRangeStart) { 1629 Range.End = TmpVF; 1630 break; 1631 } 1632 1633 return PredicateAtRangeStart; 1634 } 1635 1636 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 1637 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 1638 /// of VF's starting at a given VF and extending it as much as possible. Each 1639 /// vectorization decision can potentially shorten this sub-range during 1640 /// buildVPlan(). 1641 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 1642 ElementCount MaxVF) { 1643 auto MaxVFTimes2 = MaxVF * 2; 1644 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) { 1645 VFRange SubRange = {VF, MaxVFTimes2}; 1646 auto Plan = buildVPlan(SubRange); 1647 VPlanTransforms::optimize(*Plan); 1648 VPlans.push_back(std::move(Plan)); 1649 VF = SubRange.End; 1650 } 1651 } 1652 1653 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const { 1654 assert(count_if(VPlans, 1655 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1656 1 && 1657 "Multiple VPlans for VF."); 1658 1659 for (const VPlanPtr &Plan : VPlans) { 1660 if (Plan->hasVF(VF)) 1661 return *Plan.get(); 1662 } 1663 llvm_unreachable("No plan found!"); 1664 } 1665 1666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1667 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 1668 if (VPlans.empty()) { 1669 O << "LV: No VPlans built.\n"; 1670 return; 1671 } 1672 for (const auto &Plan : VPlans) 1673 if (PrintVPlansInDotFormat) 1674 Plan->printDOT(O); 1675 else 1676 Plan->print(O); 1677 } 1678 #endif 1679