1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 75 Instr->print(OS, SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPRecipeBase::dump() const { 89 VPSlotTracker SlotTracker(nullptr); 90 print(dbgs(), "", SlotTracker); 91 dbgs() << "\n"; 92 } 93 94 VPUser *VPRecipeBase::toVPUser() { 95 if (auto *U = dyn_cast<VPInstruction>(this)) 96 return U; 97 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 100 return U; 101 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 102 return U; 103 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 104 return U; 105 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 106 return U; 107 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 108 return U; 109 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 110 return U; 111 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 112 return U; 113 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 114 return U; 115 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 116 return U; 117 if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this)) 118 return U; 119 return nullptr; 120 } 121 122 VPValue *VPRecipeBase::toVPValue() { 123 if (getNumDefinedValues() == 1) 124 return getVPValue(); 125 if (auto *V = dyn_cast<VPInstruction>(this)) 126 return V; 127 return nullptr; 128 } 129 130 const VPValue *VPRecipeBase::toVPValue() const { 131 if (getNumDefinedValues() == 1) 132 return getVPValue(); 133 if (auto *V = dyn_cast<VPInstruction>(this)) 134 return V; 135 return nullptr; 136 } 137 138 // Get the top-most entry block of \p Start. This is the entry block of the 139 // containing VPlan. This function is templated to support both const and non-const blocks 140 template <typename T> static T *getPlanEntry(T *Start) { 141 T *Next = Start; 142 T *Current = Start; 143 while ((Next = Next->getParent())) 144 Current = Next; 145 146 SmallSetVector<T *, 8> WorkList; 147 WorkList.insert(Current); 148 149 for (unsigned i = 0; i < WorkList.size(); i++) { 150 T *Current = WorkList[i]; 151 if (Current->getNumPredecessors() == 0) 152 return Current; 153 auto &Predecessors = Current->getPredecessors(); 154 WorkList.insert(Predecessors.begin(), Predecessors.end()); 155 } 156 157 llvm_unreachable("VPlan without any entry node without predecessors"); 158 } 159 160 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 161 162 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 163 164 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 165 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 166 const VPBlockBase *Block = this; 167 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 168 Block = Region->getEntry(); 169 return cast<VPBasicBlock>(Block); 170 } 171 172 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 173 VPBlockBase *Block = this; 174 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 175 Block = Region->getEntry(); 176 return cast<VPBasicBlock>(Block); 177 } 178 179 void VPBlockBase::setPlan(VPlan *ParentPlan) { 180 assert(ParentPlan->getEntry() == this && 181 "Can only set plan on its entry block."); 182 Plan = ParentPlan; 183 } 184 185 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 186 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 187 const VPBlockBase *Block = this; 188 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 189 Block = Region->getExit(); 190 return cast<VPBasicBlock>(Block); 191 } 192 193 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 194 VPBlockBase *Block = this; 195 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 196 Block = Region->getExit(); 197 return cast<VPBasicBlock>(Block); 198 } 199 200 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 201 if (!Successors.empty() || !Parent) 202 return this; 203 assert(Parent->getExit() == this && 204 "Block w/o successors not the exit of its parent."); 205 return Parent->getEnclosingBlockWithSuccessors(); 206 } 207 208 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 209 if (!Predecessors.empty() || !Parent) 210 return this; 211 assert(Parent->getEntry() == this && 212 "Block w/o predecessors not the entry of its parent."); 213 return Parent->getEnclosingBlockWithPredecessors(); 214 } 215 216 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 217 SmallVector<VPBlockBase *, 8> Blocks; 218 219 for (VPBlockBase *Block : depth_first(Entry)) 220 Blocks.push_back(Block); 221 222 for (VPBlockBase *Block : Blocks) 223 delete Block; 224 } 225 226 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 227 iterator It = begin(); 228 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 229 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 230 isa<VPPredInstPHIRecipe>(&*It) || 231 isa<VPWidenCanonicalIVRecipe>(&*It))) 232 It++; 233 return It; 234 } 235 236 BasicBlock * 237 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 238 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 239 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 240 BasicBlock *PrevBB = CFG.PrevBB; 241 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 242 PrevBB->getParent(), CFG.LastBB); 243 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 244 245 // Hook up the new basic block to its predecessors. 246 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 247 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 248 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 249 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 250 251 // In outer loop vectorization scenario, the predecessor BBlock may not yet 252 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 253 // vectorization. We do not encounter this case in inner loop vectorization 254 // as we start out by building a loop skeleton with the vector loop header 255 // and latch blocks. As a result, we never enter this function for the 256 // header block in the non VPlan-native path. 257 if (!PredBB) { 258 assert(EnableVPlanNativePath && 259 "Unexpected null predecessor in non VPlan-native path"); 260 CFG.VPBBsToFix.push_back(PredVPBB); 261 continue; 262 } 263 264 assert(PredBB && "Predecessor basic-block not found building successor."); 265 auto *PredBBTerminator = PredBB->getTerminator(); 266 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 267 if (isa<UnreachableInst>(PredBBTerminator)) { 268 assert(PredVPSuccessors.size() == 1 && 269 "Predecessor ending w/o branch must have single successor."); 270 PredBBTerminator->eraseFromParent(); 271 BranchInst::Create(NewBB, PredBB); 272 } else { 273 assert(PredVPSuccessors.size() == 2 && 274 "Predecessor ending with branch must have two successors."); 275 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 276 assert(!PredBBTerminator->getSuccessor(idx) && 277 "Trying to reset an existing successor block."); 278 PredBBTerminator->setSuccessor(idx, NewBB); 279 } 280 } 281 return NewBB; 282 } 283 284 void VPBasicBlock::execute(VPTransformState *State) { 285 bool Replica = State->Instance && 286 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 287 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 288 VPBlockBase *SingleHPred = nullptr; 289 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 290 291 // 1. Create an IR basic block, or reuse the last one if possible. 292 // The last IR basic block is reused, as an optimization, in three cases: 293 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 294 // B. when the current VPBB has a single (hierarchical) predecessor which 295 // is PrevVPBB and the latter has a single (hierarchical) successor; and 296 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 297 // is the exit of this region from a previous instance, or the predecessor 298 // of this region. 299 if (PrevVPBB && /* A */ 300 !((SingleHPred = getSingleHierarchicalPredecessor()) && 301 SingleHPred->getExitBasicBlock() == PrevVPBB && 302 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 303 !(Replica && getPredecessors().empty())) { /* C */ 304 NewBB = createEmptyBasicBlock(State->CFG); 305 State->Builder.SetInsertPoint(NewBB); 306 // Temporarily terminate with unreachable until CFG is rewired. 307 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 308 State->Builder.SetInsertPoint(Terminator); 309 // Register NewBB in its loop. In innermost loops its the same for all BB's. 310 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 311 L->addBasicBlockToLoop(NewBB, *State->LI); 312 State->CFG.PrevBB = NewBB; 313 } 314 315 // 2. Fill the IR basic block with IR instructions. 316 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 317 << " in BB:" << NewBB->getName() << '\n'); 318 319 State->CFG.VPBB2IRBB[this] = NewBB; 320 State->CFG.PrevVPBB = this; 321 322 for (VPRecipeBase &Recipe : Recipes) 323 Recipe.execute(*State); 324 325 VPValue *CBV; 326 if (EnableVPlanNativePath && (CBV = getCondBit())) { 327 Value *IRCBV = CBV->getUnderlyingValue(); 328 assert(IRCBV && "Unexpected null underlying value for condition bit"); 329 330 // Condition bit value in a VPBasicBlock is used as the branch selector. In 331 // the VPlan-native path case, since all branches are uniform we generate a 332 // branch instruction using the condition value from vector lane 0 and dummy 333 // successors. The successors are fixed later when the successor blocks are 334 // visited. 335 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 336 NewCond = State->Builder.CreateExtractElement(NewCond, 337 State->Builder.getInt32(0)); 338 339 // Replace the temporary unreachable terminator with the new conditional 340 // branch. 341 auto *CurrentTerminator = NewBB->getTerminator(); 342 assert(isa<UnreachableInst>(CurrentTerminator) && 343 "Expected to replace unreachable terminator with conditional " 344 "branch."); 345 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 346 CondBr->setSuccessor(0, nullptr); 347 ReplaceInstWithInst(CurrentTerminator, CondBr); 348 } 349 350 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 351 } 352 353 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 354 for (VPRecipeBase &R : Recipes) { 355 if (VPValue *Def = R.toVPValue()) 356 Def->replaceAllUsesWith(NewValue); 357 else if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) { 358 for (auto *Def : IR->definedValues()) 359 Def->replaceAllUsesWith(NewValue); 360 } 361 362 if (auto *User = R.toVPUser()) 363 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 364 User->setOperand(I, NewValue); 365 } 366 } 367 368 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 369 for (VPBlockBase *Block : depth_first(Entry)) 370 // Drop all references in VPBasicBlocks and replace all uses with 371 // DummyValue. 372 Block->dropAllReferences(NewValue); 373 } 374 375 void VPRegionBlock::execute(VPTransformState *State) { 376 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 377 378 if (!isReplicator()) { 379 // Visit the VPBlocks connected to "this", starting from it. 380 for (VPBlockBase *Block : RPOT) { 381 if (EnableVPlanNativePath) { 382 // The inner loop vectorization path does not represent loop preheader 383 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 384 // vectorizing loop preheader block. In future, we may replace this 385 // check with the check for loop preheader. 386 if (Block->getNumPredecessors() == 0) 387 continue; 388 389 // Skip vectorizing loop exit block. In future, we may replace this 390 // check with the check for loop exit. 391 if (Block->getNumSuccessors() == 0) 392 continue; 393 } 394 395 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 396 Block->execute(State); 397 } 398 return; 399 } 400 401 assert(!State->Instance && "Replicating a Region with non-null instance."); 402 403 // Enter replicating mode. 404 State->Instance = {0, 0}; 405 406 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 407 State->Instance->Part = Part; 408 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 409 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 410 ++Lane) { 411 State->Instance->Lane = Lane; 412 // Visit the VPBlocks connected to \p this, starting from it. 413 for (VPBlockBase *Block : RPOT) { 414 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 415 Block->execute(State); 416 } 417 } 418 } 419 420 // Exit replicating mode. 421 State->Instance.reset(); 422 } 423 424 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 425 assert(!Parent && "Recipe already in some VPBasicBlock"); 426 assert(InsertPos->getParent() && 427 "Insertion position not in any VPBasicBlock"); 428 Parent = InsertPos->getParent(); 429 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 430 } 431 432 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 433 assert(!Parent && "Recipe already in some VPBasicBlock"); 434 assert(InsertPos->getParent() && 435 "Insertion position not in any VPBasicBlock"); 436 Parent = InsertPos->getParent(); 437 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 438 } 439 440 void VPRecipeBase::removeFromParent() { 441 assert(getParent() && "Recipe not in any VPBasicBlock"); 442 getParent()->getRecipeList().remove(getIterator()); 443 Parent = nullptr; 444 } 445 446 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 447 assert(getParent() && "Recipe not in any VPBasicBlock"); 448 return getParent()->getRecipeList().erase(getIterator()); 449 } 450 451 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 452 removeFromParent(); 453 insertAfter(InsertPos); 454 } 455 456 void VPInstruction::generateInstruction(VPTransformState &State, 457 unsigned Part) { 458 IRBuilder<> &Builder = State.Builder; 459 460 if (Instruction::isBinaryOp(getOpcode())) { 461 Value *A = State.get(getOperand(0), Part); 462 Value *B = State.get(getOperand(1), Part); 463 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 464 State.set(this, V, Part); 465 return; 466 } 467 468 switch (getOpcode()) { 469 case VPInstruction::Not: { 470 Value *A = State.get(getOperand(0), Part); 471 Value *V = Builder.CreateNot(A); 472 State.set(this, V, Part); 473 break; 474 } 475 case VPInstruction::ICmpULE: { 476 Value *IV = State.get(getOperand(0), Part); 477 Value *TC = State.get(getOperand(1), Part); 478 Value *V = Builder.CreateICmpULE(IV, TC); 479 State.set(this, V, Part); 480 break; 481 } 482 case Instruction::Select: { 483 Value *Cond = State.get(getOperand(0), Part); 484 Value *Op1 = State.get(getOperand(1), Part); 485 Value *Op2 = State.get(getOperand(2), Part); 486 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 487 State.set(this, V, Part); 488 break; 489 } 490 case VPInstruction::ActiveLaneMask: { 491 // Get first lane of vector induction variable. 492 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 493 // Get the original loop tripcount. 494 Value *ScalarTC = State.TripCount; 495 496 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 497 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 498 Instruction *Call = Builder.CreateIntrinsic( 499 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 500 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 501 State.set(this, Call, Part); 502 break; 503 } 504 default: 505 llvm_unreachable("Unsupported opcode for instruction"); 506 } 507 } 508 509 void VPInstruction::execute(VPTransformState &State) { 510 assert(!State.Instance && "VPInstruction executing an Instance"); 511 for (unsigned Part = 0; Part < State.UF; ++Part) 512 generateInstruction(State, Part); 513 } 514 515 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 516 VPSlotTracker &SlotTracker) const { 517 O << "\"EMIT "; 518 print(O, SlotTracker); 519 } 520 521 void VPInstruction::print(raw_ostream &O) const { 522 VPSlotTracker SlotTracker(getParent()->getPlan()); 523 print(O, SlotTracker); 524 } 525 526 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 527 if (hasResult()) { 528 printAsOperand(O, SlotTracker); 529 O << " = "; 530 } 531 532 switch (getOpcode()) { 533 case VPInstruction::Not: 534 O << "not"; 535 break; 536 case VPInstruction::ICmpULE: 537 O << "icmp ule"; 538 break; 539 case VPInstruction::SLPLoad: 540 O << "combined load"; 541 break; 542 case VPInstruction::SLPStore: 543 O << "combined store"; 544 break; 545 case VPInstruction::ActiveLaneMask: 546 O << "active lane mask"; 547 break; 548 549 default: 550 O << Instruction::getOpcodeName(getOpcode()); 551 } 552 553 for (const VPValue *Operand : operands()) { 554 O << " "; 555 Operand->printAsOperand(O, SlotTracker); 556 } 557 } 558 559 /// Generate the code inside the body of the vectorized loop. Assumes a single 560 /// LoopVectorBody basic-block was created for this. Introduce additional 561 /// basic-blocks as needed, and fill them all. 562 void VPlan::execute(VPTransformState *State) { 563 // -1. Check if the backedge taken count is needed, and if so build it. 564 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 565 Value *TC = State->TripCount; 566 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 567 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 568 "trip.count.minus.1"); 569 auto VF = State->VF; 570 Value *VTCMO = 571 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 572 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 573 State->set(BackedgeTakenCount, VTCMO, Part); 574 } 575 576 // 0. Set the reverse mapping from VPValues to Values for code generation. 577 for (auto &Entry : Value2VPValue) 578 State->VPValue2Value[Entry.second] = Entry.first; 579 580 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 581 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 582 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 583 584 // 1. Make room to generate basic-blocks inside loop body if needed. 585 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 586 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 587 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 588 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 589 // Remove the edge between Header and Latch to allow other connections. 590 // Temporarily terminate with unreachable until CFG is rewired. 591 // Note: this asserts the generated code's assumption that 592 // getFirstInsertionPt() can be dereferenced into an Instruction. 593 VectorHeaderBB->getTerminator()->eraseFromParent(); 594 State->Builder.SetInsertPoint(VectorHeaderBB); 595 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 596 State->Builder.SetInsertPoint(Terminator); 597 598 // 2. Generate code in loop body. 599 State->CFG.PrevVPBB = nullptr; 600 State->CFG.PrevBB = VectorHeaderBB; 601 State->CFG.LastBB = VectorLatchBB; 602 603 for (VPBlockBase *Block : depth_first(Entry)) 604 Block->execute(State); 605 606 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 607 // VPBB's successors. 608 for (auto VPBB : State->CFG.VPBBsToFix) { 609 assert(EnableVPlanNativePath && 610 "Unexpected VPBBsToFix in non VPlan-native path"); 611 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 612 assert(BB && "Unexpected null basic block for VPBB"); 613 614 unsigned Idx = 0; 615 auto *BBTerminator = BB->getTerminator(); 616 617 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 618 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 619 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 620 ++Idx; 621 } 622 } 623 624 // 3. Merge the temporary latch created with the last basic-block filled. 625 BasicBlock *LastBB = State->CFG.PrevBB; 626 // Connect LastBB to VectorLatchBB to facilitate their merge. 627 assert((EnableVPlanNativePath || 628 isa<UnreachableInst>(LastBB->getTerminator())) && 629 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 630 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 631 "Expected VPlan CFG to terminate with branch in NativePath"); 632 LastBB->getTerminator()->eraseFromParent(); 633 BranchInst::Create(VectorLatchBB, LastBB); 634 635 // Merge LastBB with Latch. 636 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 637 (void)Merged; 638 assert(Merged && "Could not merge last basic block with latch."); 639 VectorLatchBB = LastBB; 640 641 // We do not attempt to preserve DT for outer loop vectorization currently. 642 if (!EnableVPlanNativePath) 643 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 644 L->getExitBlock()); 645 } 646 647 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 648 LLVM_DUMP_METHOD 649 void VPlan::dump() const { dbgs() << *this << '\n'; } 650 #endif 651 652 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 653 BasicBlock *LoopLatchBB, 654 BasicBlock *LoopExitBB) { 655 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 656 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 657 // The vector body may be more than a single basic-block by this point. 658 // Update the dominator tree information inside the vector body by propagating 659 // it from header to latch, expecting only triangular control-flow, if any. 660 BasicBlock *PostDomSucc = nullptr; 661 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 662 // Get the list of successors of this block. 663 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 664 assert(Succs.size() <= 2 && 665 "Basic block in vector loop has more than 2 successors."); 666 PostDomSucc = Succs[0]; 667 if (Succs.size() == 1) { 668 assert(PostDomSucc->getSinglePredecessor() && 669 "PostDom successor has more than one predecessor."); 670 DT->addNewBlock(PostDomSucc, BB); 671 continue; 672 } 673 BasicBlock *InterimSucc = Succs[1]; 674 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 675 PostDomSucc = Succs[1]; 676 InterimSucc = Succs[0]; 677 } 678 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 679 "One successor of a basic block does not lead to the other."); 680 assert(InterimSucc->getSinglePredecessor() && 681 "Interim successor has more than one predecessor."); 682 assert(PostDomSucc->hasNPredecessors(2) && 683 "PostDom successor has more than two predecessors."); 684 DT->addNewBlock(InterimSucc, BB); 685 DT->addNewBlock(PostDomSucc, BB); 686 } 687 // Latch block is a new dominator for the loop exit. 688 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 689 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 690 } 691 692 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 693 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 694 Twine(getOrCreateBID(Block)); 695 } 696 697 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 698 const std::string &Name = Block->getName(); 699 if (!Name.empty()) 700 return Name; 701 return "VPB" + Twine(getOrCreateBID(Block)); 702 } 703 704 void VPlanPrinter::dump() { 705 Depth = 1; 706 bumpIndent(0); 707 OS << "digraph VPlan {\n"; 708 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 709 if (!Plan.getName().empty()) 710 OS << "\\n" << DOT::EscapeString(Plan.getName()); 711 if (Plan.BackedgeTakenCount) { 712 OS << ", where:\\n"; 713 Plan.BackedgeTakenCount->print(OS, SlotTracker); 714 OS << " := BackedgeTakenCount"; 715 } 716 OS << "\"]\n"; 717 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 718 OS << "edge [fontname=Courier, fontsize=30]\n"; 719 OS << "compound=true\n"; 720 721 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 722 dumpBlock(Block); 723 724 OS << "}\n"; 725 } 726 727 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 728 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 729 dumpBasicBlock(BasicBlock); 730 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 731 dumpRegion(Region); 732 else 733 llvm_unreachable("Unsupported kind of VPBlock."); 734 } 735 736 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 737 bool Hidden, const Twine &Label) { 738 // Due to "dot" we print an edge between two regions as an edge between the 739 // exit basic block and the entry basic of the respective regions. 740 const VPBlockBase *Tail = From->getExitBasicBlock(); 741 const VPBlockBase *Head = To->getEntryBasicBlock(); 742 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 743 OS << " [ label=\"" << Label << '\"'; 744 if (Tail != From) 745 OS << " ltail=" << getUID(From); 746 if (Head != To) 747 OS << " lhead=" << getUID(To); 748 if (Hidden) 749 OS << "; splines=none"; 750 OS << "]\n"; 751 } 752 753 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 754 auto &Successors = Block->getSuccessors(); 755 if (Successors.size() == 1) 756 drawEdge(Block, Successors.front(), false, ""); 757 else if (Successors.size() == 2) { 758 drawEdge(Block, Successors.front(), false, "T"); 759 drawEdge(Block, Successors.back(), false, "F"); 760 } else { 761 unsigned SuccessorNumber = 0; 762 for (auto *Successor : Successors) 763 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 764 } 765 } 766 767 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 768 OS << Indent << getUID(BasicBlock) << " [label =\n"; 769 bumpIndent(1); 770 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 771 bumpIndent(1); 772 773 // Dump the block predicate. 774 const VPValue *Pred = BasicBlock->getPredicate(); 775 if (Pred) { 776 OS << " +\n" << Indent << " \"BlockPredicate: "; 777 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 778 PredI->printAsOperand(OS, SlotTracker); 779 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 780 << ")\\l\""; 781 } else 782 Pred->printAsOperand(OS, SlotTracker); 783 } 784 785 for (const VPRecipeBase &Recipe : *BasicBlock) { 786 OS << " +\n" << Indent; 787 Recipe.print(OS, Indent, SlotTracker); 788 OS << "\\l\""; 789 } 790 791 // Dump the condition bit. 792 const VPValue *CBV = BasicBlock->getCondBit(); 793 if (CBV) { 794 OS << " +\n" << Indent << " \"CondBit: "; 795 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 796 CBI->printAsOperand(OS, SlotTracker); 797 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 798 } else { 799 CBV->printAsOperand(OS, SlotTracker); 800 OS << "\""; 801 } 802 } 803 804 bumpIndent(-2); 805 OS << "\n" << Indent << "]\n"; 806 dumpEdges(BasicBlock); 807 } 808 809 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 810 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 811 bumpIndent(1); 812 OS << Indent << "fontname=Courier\n" 813 << Indent << "label=\"" 814 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 815 << DOT::EscapeString(Region->getName()) << "\"\n"; 816 // Dump the blocks of the region. 817 assert(Region->getEntry() && "Region contains no inner blocks."); 818 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 819 dumpBlock(Block); 820 bumpIndent(-1); 821 OS << Indent << "}\n"; 822 dumpEdges(Region); 823 } 824 825 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 826 std::string IngredientString; 827 raw_string_ostream RSO(IngredientString); 828 if (auto *Inst = dyn_cast<Instruction>(V)) { 829 if (!Inst->getType()->isVoidTy()) { 830 Inst->printAsOperand(RSO, false); 831 RSO << " = "; 832 } 833 RSO << Inst->getOpcodeName() << " "; 834 unsigned E = Inst->getNumOperands(); 835 if (E > 0) { 836 Inst->getOperand(0)->printAsOperand(RSO, false); 837 for (unsigned I = 1; I < E; ++I) 838 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 839 } 840 } else // !Inst 841 V->printAsOperand(RSO, false); 842 RSO.flush(); 843 O << DOT::EscapeString(IngredientString); 844 } 845 846 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 847 VPSlotTracker &SlotTracker) const { 848 O << "\"WIDEN-CALL "; 849 850 auto *CI = cast<CallInst>(getUnderlyingInstr()); 851 if (CI->getType()->isVoidTy()) 852 O << "void "; 853 else { 854 printAsOperand(O, SlotTracker); 855 O << " = "; 856 } 857 858 O << "call @" << CI->getCalledFunction()->getName() << "("; 859 printOperands(O, SlotTracker); 860 O << ")"; 861 } 862 863 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 864 VPSlotTracker &SlotTracker) const { 865 O << "\"WIDEN-SELECT "; 866 printAsOperand(O, SlotTracker); 867 O << " = select "; 868 getOperand(0)->printAsOperand(O, SlotTracker); 869 O << ", "; 870 getOperand(1)->printAsOperand(O, SlotTracker); 871 O << ", "; 872 getOperand(2)->printAsOperand(O, SlotTracker); 873 O << (InvariantCond ? " (condition is loop invariant)" : ""); 874 } 875 876 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 877 VPSlotTracker &SlotTracker) const { 878 O << "\"WIDEN "; 879 printAsOperand(O, SlotTracker); 880 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 881 printOperands(O, SlotTracker); 882 } 883 884 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 885 VPSlotTracker &SlotTracker) const { 886 O << "\"WIDEN-INDUCTION"; 887 if (Trunc) { 888 O << "\\l\""; 889 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 890 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 891 } else 892 O << " " << VPlanIngredient(IV); 893 } 894 895 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 896 VPSlotTracker &SlotTracker) const { 897 O << "\"WIDEN-GEP "; 898 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 899 size_t IndicesNumber = IsIndexLoopInvariant.size(); 900 for (size_t I = 0; I < IndicesNumber; ++I) 901 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 902 903 O << " "; 904 printAsOperand(O, SlotTracker); 905 O << " = getelementptr "; 906 printOperands(O, SlotTracker); 907 } 908 909 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 910 VPSlotTracker &SlotTracker) const { 911 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 912 } 913 914 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 915 VPSlotTracker &SlotTracker) const { 916 O << "\"BLEND "; 917 Phi->printAsOperand(O, false); 918 O << " ="; 919 if (getNumIncomingValues() == 1) { 920 // Not a User of any mask: not really blending, this is a 921 // single-predecessor phi. 922 O << " "; 923 getIncomingValue(0)->printAsOperand(O, SlotTracker); 924 } else { 925 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 926 O << " "; 927 getIncomingValue(I)->printAsOperand(O, SlotTracker); 928 O << "/"; 929 getMask(I)->printAsOperand(O, SlotTracker); 930 } 931 } 932 } 933 934 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 935 VPSlotTracker &SlotTracker) const { 936 O << "\"REDUCE "; 937 printAsOperand(O, SlotTracker); 938 O << " = "; 939 getChainOp()->printAsOperand(O, SlotTracker); 940 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp()) 941 << " ("; 942 getVecOp()->printAsOperand(O, SlotTracker); 943 if (getCondOp()) { 944 O << ", "; 945 getCondOp()->printAsOperand(O, SlotTracker); 946 } 947 O << ")"; 948 } 949 950 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 951 VPSlotTracker &SlotTracker) const { 952 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE "); 953 954 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 955 printAsOperand(O, SlotTracker); 956 O << " = "; 957 } 958 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 959 printOperands(O, SlotTracker); 960 961 if (AlsoPack) 962 O << " (S->V)"; 963 } 964 965 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 966 VPSlotTracker &SlotTracker) const { 967 O << "\"PHI-PREDICATED-INSTRUCTION "; 968 printOperands(O, SlotTracker); 969 } 970 971 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 972 VPSlotTracker &SlotTracker) const { 973 O << "\"WIDEN "; 974 975 if (!isStore()) { 976 getVPValue()->printAsOperand(O, SlotTracker); 977 O << " = "; 978 } 979 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 980 981 printOperands(O, SlotTracker); 982 } 983 984 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 985 Value *CanonicalIV = State.CanonicalIV; 986 Type *STy = CanonicalIV->getType(); 987 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 988 ElementCount VF = State.VF; 989 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 990 Value *VStart = VF.isScalar() 991 ? CanonicalIV 992 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 993 CanonicalIV, "broadcast"); 994 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 995 SmallVector<Constant *, 8> Indices; 996 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 997 Indices.push_back( 998 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 999 // If VF == 1, there is only one iteration in the loop above, thus the 1000 // element pushed back into Indices is ConstantInt::get(STy, Part) 1001 Constant *VStep = 1002 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1003 // Add the consecutive indices to the vector value. 1004 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1005 State.set(getVPValue(), CanonicalVectorIV, Part); 1006 } 1007 } 1008 1009 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1010 VPSlotTracker &SlotTracker) const { 1011 O << "\"EMIT "; 1012 getVPValue()->printAsOperand(O, SlotTracker); 1013 O << " = WIDEN-CANONICAL-INDUCTION"; 1014 } 1015 1016 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1017 1018 void VPValue::replaceAllUsesWith(VPValue *New) { 1019 for (unsigned J = 0; J < getNumUsers();) { 1020 VPUser *User = Users[J]; 1021 unsigned NumUsers = getNumUsers(); 1022 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1023 if (User->getOperand(I) == this) 1024 User->setOperand(I, New); 1025 // If a user got removed after updating the current user, the next user to 1026 // update will be moved to the current position, so we only need to 1027 // increment the index if the number of users did not change. 1028 if (NumUsers == getNumUsers()) 1029 J++; 1030 } 1031 } 1032 1033 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1034 if (const Value *UV = getUnderlyingValue()) { 1035 OS << "ir<"; 1036 UV->printAsOperand(OS, false); 1037 OS << ">"; 1038 return; 1039 } 1040 1041 unsigned Slot = Tracker.getSlot(this); 1042 if (Slot == unsigned(-1)) 1043 OS << "<badref>"; 1044 else 1045 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1046 } 1047 1048 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1049 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1050 Op->printAsOperand(O, SlotTracker); 1051 }); 1052 } 1053 1054 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1055 Old2NewTy &Old2New, 1056 InterleavedAccessInfo &IAI) { 1057 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1058 for (VPBlockBase *Base : RPOT) { 1059 visitBlock(Base, Old2New, IAI); 1060 } 1061 } 1062 1063 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1064 InterleavedAccessInfo &IAI) { 1065 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1066 for (VPRecipeBase &VPI : *VPBB) { 1067 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1068 auto *VPInst = cast<VPInstruction>(&VPI); 1069 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1070 auto *IG = IAI.getInterleaveGroup(Inst); 1071 if (!IG) 1072 continue; 1073 1074 auto NewIGIter = Old2New.find(IG); 1075 if (NewIGIter == Old2New.end()) 1076 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1077 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1078 1079 if (Inst == IG->getInsertPos()) 1080 Old2New[IG]->setInsertPos(VPInst); 1081 1082 InterleaveGroupMap[VPInst] = Old2New[IG]; 1083 InterleaveGroupMap[VPInst]->insertMember( 1084 VPInst, IG->getIndex(Inst), 1085 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1086 : IG->getFactor())); 1087 } 1088 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1089 visitRegion(Region, Old2New, IAI); 1090 else 1091 llvm_unreachable("Unsupported kind of VPBlock."); 1092 } 1093 1094 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1095 InterleavedAccessInfo &IAI) { 1096 Old2NewTy Old2New; 1097 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1098 } 1099 1100 void VPSlotTracker::assignSlot(const VPValue *V) { 1101 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1102 const Value *UV = V->getUnderlyingValue(); 1103 if (UV) 1104 return; 1105 const auto *VPI = dyn_cast<VPInstruction>(V); 1106 if (VPI && !VPI->hasResult()) 1107 return; 1108 1109 Slots[V] = NextSlot++; 1110 } 1111 1112 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1113 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1114 assignSlots(Region); 1115 else 1116 assignSlots(cast<VPBasicBlock>(VPBB)); 1117 } 1118 1119 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1120 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1121 for (const VPBlockBase *Block : RPOT) 1122 assignSlots(Block); 1123 } 1124 1125 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1126 for (const VPRecipeBase &Recipe : *VPBB) { 1127 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1128 assignSlot(VPI); 1129 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1130 assignSlot(VPIV->getVPValue()); 1131 } 1132 } 1133 1134 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1135 1136 for (const VPValue *V : Plan.VPExternalDefs) 1137 assignSlot(V); 1138 1139 for (auto &E : Plan.Value2VPValue) 1140 if (!isa<VPInstruction>(E.second)) 1141 assignSlot(E.second); 1142 1143 for (const VPValue *V : Plan.VPCBVs) 1144 assignSlot(V); 1145 1146 if (Plan.BackedgeTakenCount) 1147 assignSlot(Plan.BackedgeTakenCount); 1148 1149 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1150 for (const VPBlockBase *Block : RPOT) 1151 assignSlots(Block); 1152 } 1153