xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision ef217a0f6b37a7f5e7ca5e9333df8c2ab8c84c30)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "LoopVectorizationPlanner.h"
21 #include "VPlanCFG.h"
22 #include "VPlanDominatorTree.h"
23 #include "VPlanPatternMatch.h"
24 #include "VPlanTransforms.h"
25 #include "VPlanUtils.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/GraphWriter.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopVersioning.h"
47 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
48 #include <cassert>
49 #include <string>
50 #include <vector>
51 
52 using namespace llvm;
53 using namespace llvm::VPlanPatternMatch;
54 
55 namespace llvm {
56 extern cl::opt<bool> EnableVPlanNativePath;
57 }
58 extern cl::opt<unsigned> ForceTargetInstructionCost;
59 
60 static cl::opt<bool> PrintVPlansInDotFormat(
61     "vplan-print-in-dot-format", cl::Hidden,
62     cl::desc("Use dot format instead of plain text when dumping VPlans"));
63 
64 #define DEBUG_TYPE "vplan"
65 
66 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
67 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
68   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
69   VPSlotTracker SlotTracker(
70       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
71   V.print(OS, SlotTracker);
72   return OS;
73 }
74 #endif
75 
76 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
77                                 const ElementCount &VF) const {
78   switch (LaneKind) {
79   case VPLane::Kind::ScalableLast:
80     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
81     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
82                              Builder.getInt32(VF.getKnownMinValue() - Lane));
83   case VPLane::Kind::First:
84     return Builder.getInt32(Lane);
85   }
86   llvm_unreachable("Unknown lane kind");
87 }
88 
89 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
90     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
91   if (Def)
92     Def->addDefinedValue(this);
93 }
94 
95 VPValue::~VPValue() {
96   assert(Users.empty() && "trying to delete a VPValue with remaining users");
97   if (Def)
98     Def->removeDefinedValue(this);
99 }
100 
101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
103   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
104     R->print(OS, "", SlotTracker);
105   else
106     printAsOperand(OS, SlotTracker);
107 }
108 
109 void VPValue::dump() const {
110   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
111   VPSlotTracker SlotTracker(
112       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
113   print(dbgs(), SlotTracker);
114   dbgs() << "\n";
115 }
116 
117 void VPDef::dump() const {
118   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
119   VPSlotTracker SlotTracker(
120       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
121   print(dbgs(), "", SlotTracker);
122   dbgs() << "\n";
123 }
124 #endif
125 
126 VPRecipeBase *VPValue::getDefiningRecipe() {
127   return cast_or_null<VPRecipeBase>(Def);
128 }
129 
130 const VPRecipeBase *VPValue::getDefiningRecipe() const {
131   return cast_or_null<VPRecipeBase>(Def);
132 }
133 
134 // Get the top-most entry block of \p Start. This is the entry block of the
135 // containing VPlan. This function is templated to support both const and non-const blocks
136 template <typename T> static T *getPlanEntry(T *Start) {
137   T *Next = Start;
138   T *Current = Start;
139   while ((Next = Next->getParent()))
140     Current = Next;
141 
142   SmallSetVector<T *, 8> WorkList;
143   WorkList.insert(Current);
144 
145   for (unsigned i = 0; i < WorkList.size(); i++) {
146     T *Current = WorkList[i];
147     if (Current->getNumPredecessors() == 0)
148       return Current;
149     auto &Predecessors = Current->getPredecessors();
150     WorkList.insert(Predecessors.begin(), Predecessors.end());
151   }
152 
153   llvm_unreachable("VPlan without any entry node without predecessors");
154 }
155 
156 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
157 
158 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
159 
160 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
161 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
162   const VPBlockBase *Block = this;
163   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
164     Block = Region->getEntry();
165   return cast<VPBasicBlock>(Block);
166 }
167 
168 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
169   VPBlockBase *Block = this;
170   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
171     Block = Region->getEntry();
172   return cast<VPBasicBlock>(Block);
173 }
174 
175 void VPBlockBase::setPlan(VPlan *ParentPlan) {
176   assert(
177       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
178       "Can only set plan on its entry or preheader block.");
179   Plan = ParentPlan;
180 }
181 
182 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
183 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
184   const VPBlockBase *Block = this;
185   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
186     Block = Region->getExiting();
187   return cast<VPBasicBlock>(Block);
188 }
189 
190 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
191   VPBlockBase *Block = this;
192   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
193     Block = Region->getExiting();
194   return cast<VPBasicBlock>(Block);
195 }
196 
197 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
198   if (!Successors.empty() || !Parent)
199     return this;
200   assert(Parent->getExiting() == this &&
201          "Block w/o successors not the exiting block of its parent.");
202   return Parent->getEnclosingBlockWithSuccessors();
203 }
204 
205 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
206   if (!Predecessors.empty() || !Parent)
207     return this;
208   assert(Parent->getEntry() == this &&
209          "Block w/o predecessors not the entry of its parent.");
210   return Parent->getEnclosingBlockWithPredecessors();
211 }
212 
213 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
214   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
215     delete Block;
216 }
217 
218 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
219   iterator It = begin();
220   while (It != end() && It->isPhi())
221     It++;
222   return It;
223 }
224 
225 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
226                                    DominatorTree *DT, IRBuilderBase &Builder,
227                                    InnerLoopVectorizer *ILV, VPlan *Plan)
228     : VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
229       LVer(nullptr), TypeAnalysis(Plan->getCanonicalIV()->getScalarType()) {}
230 
231 Value *VPTransformState::get(VPValue *Def, const VPLane &Lane) {
232   if (Def->isLiveIn())
233     return Def->getLiveInIRValue();
234 
235   if (hasScalarValue(Def, Lane))
236     return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
237 
238   if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
239       hasScalarValue(Def, VPLane::getFirstLane())) {
240     return Data.VPV2Scalars[Def][0];
241   }
242 
243   assert(hasVectorValue(Def));
244   auto *VecPart = Data.VPV2Vector[Def];
245   if (!VecPart->getType()->isVectorTy()) {
246     assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
247     return VecPart;
248   }
249   // TODO: Cache created scalar values.
250   Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
251   auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
252   // set(Def, Extract, Instance);
253   return Extract;
254 }
255 
256 Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
257   if (NeedsScalar) {
258     assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
259             !vputils::onlyFirstLaneUsed(Def) ||
260             (hasScalarValue(Def, VPLane(0)) &&
261              Data.VPV2Scalars[Def].size() == 1)) &&
262            "Trying to access a single scalar per part but has multiple scalars "
263            "per part.");
264     return get(Def, VPLane(0));
265   }
266 
267   // If Values have been set for this Def return the one relevant for \p Part.
268   if (hasVectorValue(Def))
269     return Data.VPV2Vector[Def];
270 
271   auto GetBroadcastInstrs = [this, Def](Value *V) {
272     bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
273     if (VF.isScalar())
274       return V;
275     // Place the code for broadcasting invariant variables in the new preheader.
276     IRBuilder<>::InsertPointGuard Guard(Builder);
277     if (SafeToHoist) {
278       BasicBlock *LoopVectorPreHeader =
279           CFG.VPBB2IRBB[Plan->getVectorPreheader()];
280       if (LoopVectorPreHeader)
281         Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
282     }
283 
284     // Place the code for broadcasting invariant variables in the new preheader.
285     // Broadcast the scalar into all locations in the vector.
286     Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
287 
288     return Shuf;
289   };
290 
291   if (!hasScalarValue(Def, {0})) {
292     assert(Def->isLiveIn() && "expected a live-in");
293     Value *IRV = Def->getLiveInIRValue();
294     Value *B = GetBroadcastInstrs(IRV);
295     set(Def, B);
296     return B;
297   }
298 
299   Value *ScalarValue = get(Def, VPLane(0));
300   // If we aren't vectorizing, we can just copy the scalar map values over
301   // to the vector map.
302   if (VF.isScalar()) {
303     set(Def, ScalarValue);
304     return ScalarValue;
305   }
306 
307   bool IsUniform = vputils::isUniformAfterVectorization(Def);
308 
309   VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
310   // Check if there is a scalar value for the selected lane.
311   if (!hasScalarValue(Def, LastLane)) {
312     // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
313     // VPExpandSCEVRecipes can also be uniform.
314     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
315             isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
316             isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
317            "unexpected recipe found to be invariant");
318     IsUniform = true;
319     LastLane = 0;
320   }
321 
322   auto *LastInst = cast<Instruction>(get(Def, LastLane));
323   // Set the insert point after the last scalarized instruction or after the
324   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
325   // will directly follow the scalar definitions.
326   auto OldIP = Builder.saveIP();
327   auto NewIP =
328       isa<PHINode>(LastInst)
329           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
330           : std::next(BasicBlock::iterator(LastInst));
331   Builder.SetInsertPoint(&*NewIP);
332 
333   // However, if we are vectorizing, we need to construct the vector values.
334   // If the value is known to be uniform after vectorization, we can just
335   // broadcast the scalar value corresponding to lane zero. Otherwise, we
336   // construct the vector values using insertelement instructions. Since the
337   // resulting vectors are stored in State, we will only generate the
338   // insertelements once.
339   Value *VectorValue = nullptr;
340   if (IsUniform) {
341     VectorValue = GetBroadcastInstrs(ScalarValue);
342     set(Def, VectorValue);
343   } else {
344     // Initialize packing with insertelements to start from undef.
345     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
346     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
347     set(Def, Undef);
348     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
349       packScalarIntoVectorValue(Def, Lane);
350     VectorValue = get(Def);
351   }
352   Builder.restoreIP(OldIP);
353   return VectorValue;
354 }
355 
356 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
357   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
358   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
359 }
360 
361 void VPTransformState::addNewMetadata(Instruction *To,
362                                       const Instruction *Orig) {
363   // If the loop was versioned with memchecks, add the corresponding no-alias
364   // metadata.
365   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
366     LVer->annotateInstWithNoAlias(To, Orig);
367 }
368 
369 void VPTransformState::addMetadata(Value *To, Instruction *From) {
370   // No source instruction to transfer metadata from?
371   if (!From)
372     return;
373 
374   if (Instruction *ToI = dyn_cast<Instruction>(To)) {
375     propagateMetadata(ToI, From);
376     addNewMetadata(ToI, From);
377   }
378 }
379 
380 void VPTransformState::setDebugLocFrom(DebugLoc DL) {
381   const DILocation *DIL = DL;
382   // When a FSDiscriminator is enabled, we don't need to add the multiply
383   // factors to the discriminators.
384   if (DIL &&
385       Builder.GetInsertBlock()
386           ->getParent()
387           ->shouldEmitDebugInfoForProfiling() &&
388       !EnableFSDiscriminator) {
389     // FIXME: For scalable vectors, assume vscale=1.
390     unsigned UF = Plan->getUF();
391     auto NewDIL =
392         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
393     if (NewDIL)
394       Builder.SetCurrentDebugLocation(*NewDIL);
395     else
396       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
397                         << DIL->getFilename() << " Line: " << DIL->getLine());
398   } else
399     Builder.SetCurrentDebugLocation(DIL);
400 }
401 
402 void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
403                                                  const VPLane &Lane) {
404   Value *ScalarInst = get(Def, Lane);
405   Value *VectorValue = get(Def);
406   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
407                                             Lane.getAsRuntimeExpr(Builder, VF));
408   set(Def, VectorValue);
409 }
410 
411 BasicBlock *
412 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
413   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
414   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
415   BasicBlock *PrevBB = CFG.PrevBB;
416   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
417                                          PrevBB->getParent(), CFG.ExitBB);
418   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
419 
420   // Hook up the new basic block to its predecessors.
421   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
422     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
423     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
424     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
425 
426     assert(PredBB && "Predecessor basic-block not found building successor.");
427     auto *PredBBTerminator = PredBB->getTerminator();
428     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
429 
430     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
431     if (isa<UnreachableInst>(PredBBTerminator)) {
432       assert(PredVPSuccessors.size() == 1 &&
433              "Predecessor ending w/o branch must have single successor.");
434       DebugLoc DL = PredBBTerminator->getDebugLoc();
435       PredBBTerminator->eraseFromParent();
436       auto *Br = BranchInst::Create(NewBB, PredBB);
437       Br->setDebugLoc(DL);
438     } else if (TermBr && !TermBr->isConditional()) {
439       TermBr->setSuccessor(0, NewBB);
440     } else {
441       // Set each forward successor here when it is created, excluding
442       // backedges. A backward successor is set when the branch is created.
443       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
444       assert(!TermBr->getSuccessor(idx) &&
445              "Trying to reset an existing successor block.");
446       TermBr->setSuccessor(idx, NewBB);
447     }
448     CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
449   }
450   return NewBB;
451 }
452 
453 void VPIRBasicBlock::execute(VPTransformState *State) {
454   assert(getHierarchicalSuccessors().size() <= 2 &&
455          "VPIRBasicBlock can have at most two successors at the moment!");
456   State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator());
457   executeRecipes(State, getIRBasicBlock());
458   if (getSingleSuccessor()) {
459     assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator()));
460     auto *Br = State->Builder.CreateBr(getIRBasicBlock());
461     Br->setOperand(0, nullptr);
462     getIRBasicBlock()->getTerminator()->eraseFromParent();
463   }
464 
465   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
466     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
467     BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
468     assert(PredBB && "Predecessor basic-block not found building successor.");
469     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
470 
471     auto *PredBBTerminator = PredBB->getTerminator();
472     auto *TermBr = cast<BranchInst>(PredBBTerminator);
473     // Set each forward successor here when it is created, excluding
474     // backedges. A backward successor is set when the branch is created.
475     const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
476     unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
477     assert(!TermBr->getSuccessor(idx) &&
478            "Trying to reset an existing successor block.");
479     TermBr->setSuccessor(idx, IRBB);
480     State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
481   }
482 }
483 
484 void VPBasicBlock::execute(VPTransformState *State) {
485   bool Replica = bool(State->Lane);
486   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
487   VPBlockBase *SingleHPred = nullptr;
488   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
489 
490   auto IsLoopRegion = [](VPBlockBase *BB) {
491     auto *R = dyn_cast<VPRegionBlock>(BB);
492     return R && !R->isReplicator();
493   };
494 
495   // 1. Create an IR basic block.
496   if (PrevVPBB && /* A */
497       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
498         SingleHPred->getExitingBasicBlock() == PrevVPBB &&
499         PrevVPBB->getSingleHierarchicalSuccessor() &&
500         (SingleHPred->getParent() == getEnclosingLoopRegion() &&
501          !IsLoopRegion(SingleHPred))) &&         /* B */
502       !(Replica && getPredecessors().empty())) { /* C */
503     // The last IR basic block is reused, as an optimization, in three cases:
504     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
505     // B. when the current VPBB has a single (hierarchical) predecessor which
506     //    is PrevVPBB and the latter has a single (hierarchical) successor which
507     //    both are in the same non-replicator region; and
508     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
509     //    is the exiting VPBB of this region from a previous instance, or the
510     //    predecessor of this region.
511 
512     NewBB = createEmptyBasicBlock(State->CFG);
513     State->Builder.SetInsertPoint(NewBB);
514     // Temporarily terminate with unreachable until CFG is rewired.
515     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
516     // Register NewBB in its loop. In innermost loops its the same for all
517     // BB's.
518     if (State->CurrentVectorLoop)
519       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
520     State->Builder.SetInsertPoint(Terminator);
521     State->CFG.PrevBB = NewBB;
522   }
523 
524   // 2. Fill the IR basic block with IR instructions.
525   executeRecipes(State, NewBB);
526 }
527 
528 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
529   for (VPRecipeBase &R : Recipes) {
530     for (auto *Def : R.definedValues())
531       Def->replaceAllUsesWith(NewValue);
532 
533     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
534       R.setOperand(I, NewValue);
535   }
536 }
537 
538 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
539   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
540                     << " in BB:" << BB->getName() << '\n');
541 
542   State->CFG.VPBB2IRBB[this] = BB;
543   State->CFG.PrevVPBB = this;
544 
545   for (VPRecipeBase &Recipe : Recipes)
546     Recipe.execute(*State);
547 
548   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
549 }
550 
551 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
552   assert((SplitAt == end() || SplitAt->getParent() == this) &&
553          "can only split at a position in the same block");
554 
555   SmallVector<VPBlockBase *, 2> Succs(successors());
556   // First, disconnect the current block from its successors.
557   for (VPBlockBase *Succ : Succs)
558     VPBlockUtils::disconnectBlocks(this, Succ);
559 
560   // Create new empty block after the block to split.
561   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
562   VPBlockUtils::insertBlockAfter(SplitBlock, this);
563 
564   // Add successors for block to split to new block.
565   for (VPBlockBase *Succ : Succs)
566     VPBlockUtils::connectBlocks(SplitBlock, Succ);
567 
568   // Finally, move the recipes starting at SplitAt to new block.
569   for (VPRecipeBase &ToMove :
570        make_early_inc_range(make_range(SplitAt, this->end())))
571     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
572 
573   return SplitBlock;
574 }
575 
576 /// Return the enclosing loop region for region \p P. The templated version is
577 /// used to support both const and non-const block arguments.
578 template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
579   if (P && P->isReplicator()) {
580     P = P->getParent();
581     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
582            "unexpected nested replicate regions");
583   }
584   return P;
585 }
586 
587 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
588   return getEnclosingLoopRegionForRegion(getParent());
589 }
590 
591 const VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() const {
592   return getEnclosingLoopRegionForRegion(getParent());
593 }
594 
595 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
596   if (VPBB->empty()) {
597     assert(
598         VPBB->getNumSuccessors() < 2 &&
599         "block with multiple successors doesn't have a recipe as terminator");
600     return false;
601   }
602 
603   const VPRecipeBase *R = &VPBB->back();
604   bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
605                       match(R, m_BranchOnCond(m_VPValue())) ||
606                       match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
607   (void)IsCondBranch;
608 
609   if (VPBB->getNumSuccessors() >= 2 ||
610       (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
611     assert(IsCondBranch && "block with multiple successors not terminated by "
612                            "conditional branch recipe");
613 
614     return true;
615   }
616 
617   assert(
618       !IsCondBranch &&
619       "block with 0 or 1 successors terminated by conditional branch recipe");
620   return false;
621 }
622 
623 VPRecipeBase *VPBasicBlock::getTerminator() {
624   if (hasConditionalTerminator(this))
625     return &back();
626   return nullptr;
627 }
628 
629 const VPRecipeBase *VPBasicBlock::getTerminator() const {
630   if (hasConditionalTerminator(this))
631     return &back();
632   return nullptr;
633 }
634 
635 bool VPBasicBlock::isExiting() const {
636   return getParent() && getParent()->getExitingBasicBlock() == this;
637 }
638 
639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
640 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
641   if (getSuccessors().empty()) {
642     O << Indent << "No successors\n";
643   } else {
644     O << Indent << "Successor(s): ";
645     ListSeparator LS;
646     for (auto *Succ : getSuccessors())
647       O << LS << Succ->getName();
648     O << '\n';
649   }
650 }
651 
652 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
653                          VPSlotTracker &SlotTracker) const {
654   O << Indent << getName() << ":\n";
655 
656   auto RecipeIndent = Indent + "  ";
657   for (const VPRecipeBase &Recipe : *this) {
658     Recipe.print(O, RecipeIndent, SlotTracker);
659     O << '\n';
660   }
661 
662   printSuccessors(O, Indent);
663 }
664 #endif
665 
666 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
667 
668 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
669 // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
670 // Remapping of operands must be done separately. Returns a pair with the new
671 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
672 // region, return nullptr for the exiting block.
673 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
674   DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
675   VPBlockBase *Exiting = nullptr;
676   bool InRegion = Entry->getParent();
677   // First, clone blocks reachable from Entry.
678   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
679     VPBlockBase *NewBB = BB->clone();
680     Old2NewVPBlocks[BB] = NewBB;
681     if (InRegion && BB->getNumSuccessors() == 0) {
682       assert(!Exiting && "Multiple exiting blocks?");
683       Exiting = BB;
684     }
685   }
686   assert((!InRegion || Exiting) && "regions must have a single exiting block");
687 
688   // Second, update the predecessors & successors of the cloned blocks.
689   for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
690     VPBlockBase *NewBB = Old2NewVPBlocks[BB];
691     SmallVector<VPBlockBase *> NewPreds;
692     for (VPBlockBase *Pred : BB->getPredecessors()) {
693       NewPreds.push_back(Old2NewVPBlocks[Pred]);
694     }
695     NewBB->setPredecessors(NewPreds);
696     SmallVector<VPBlockBase *> NewSuccs;
697     for (VPBlockBase *Succ : BB->successors()) {
698       NewSuccs.push_back(Old2NewVPBlocks[Succ]);
699     }
700     NewBB->setSuccessors(NewSuccs);
701   }
702 
703 #if !defined(NDEBUG)
704   // Verify that the order of predecessors and successors matches in the cloned
705   // version.
706   for (const auto &[OldBB, NewBB] :
707        zip(vp_depth_first_shallow(Entry),
708            vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
709     for (const auto &[OldPred, NewPred] :
710          zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
711       assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
712 
713     for (const auto &[OldSucc, NewSucc] :
714          zip(OldBB->successors(), NewBB->successors()))
715       assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
716   }
717 #endif
718 
719   return std::make_pair(Old2NewVPBlocks[Entry],
720                         Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
721 }
722 
723 VPRegionBlock *VPRegionBlock::clone() {
724   const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
725   auto *NewRegion =
726       new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
727   for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
728     Block->setParent(NewRegion);
729   return NewRegion;
730 }
731 
732 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
733   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
734     // Drop all references in VPBasicBlocks and replace all uses with
735     // DummyValue.
736     Block->dropAllReferences(NewValue);
737 }
738 
739 void VPRegionBlock::execute(VPTransformState *State) {
740   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
741       RPOT(Entry);
742 
743   if (!isReplicator()) {
744     // Create and register the new vector loop.
745     Loop *PrevLoop = State->CurrentVectorLoop;
746     State->CurrentVectorLoop = State->LI->AllocateLoop();
747     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
748     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
749 
750     // Insert the new loop into the loop nest and register the new basic blocks
751     // before calling any utilities such as SCEV that require valid LoopInfo.
752     if (ParentLoop)
753       ParentLoop->addChildLoop(State->CurrentVectorLoop);
754     else
755       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
756 
757     // Visit the VPBlocks connected to "this", starting from it.
758     for (VPBlockBase *Block : RPOT) {
759       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
760       Block->execute(State);
761     }
762 
763     State->CurrentVectorLoop = PrevLoop;
764     return;
765   }
766 
767   assert(!State->Lane && "Replicating a Region with non-null instance.");
768 
769   // Enter replicating mode.
770   assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
771   State->Lane = VPLane(0);
772   for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
773        ++Lane) {
774     State->Lane = VPLane(Lane, VPLane::Kind::First);
775     // Visit the VPBlocks connected to \p this, starting from it.
776     for (VPBlockBase *Block : RPOT) {
777       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
778       Block->execute(State);
779     }
780   }
781 
782   // Exit replicating mode.
783   State->Lane.reset();
784 }
785 
786 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
787   InstructionCost Cost = 0;
788   for (VPRecipeBase &R : Recipes)
789     Cost += R.cost(VF, Ctx);
790   return Cost;
791 }
792 
793 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
794   if (!isReplicator()) {
795     InstructionCost Cost = 0;
796     for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
797       Cost += Block->cost(VF, Ctx);
798     InstructionCost BackedgeCost =
799         ForceTargetInstructionCost.getNumOccurrences()
800             ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
801             : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
802     LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
803                       << ": vector loop backedge\n");
804     Cost += BackedgeCost;
805     return Cost;
806   }
807 
808   // Compute the cost of a replicate region. Replicating isn't supported for
809   // scalable vectors, return an invalid cost for them.
810   // TODO: Discard scalable VPlans with replicate recipes earlier after
811   // construction.
812   if (VF.isScalable())
813     return InstructionCost::getInvalid();
814 
815   // First compute the cost of the conditionally executed recipes, followed by
816   // account for the branching cost, except if the mask is a header mask or
817   // uniform condition.
818   using namespace llvm::VPlanPatternMatch;
819   VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
820   InstructionCost ThenCost = Then->cost(VF, Ctx);
821 
822   // For the scalar case, we may not always execute the original predicated
823   // block, Thus, scale the block's cost by the probability of executing it.
824   if (VF.isScalar())
825     return ThenCost / getReciprocalPredBlockProb();
826 
827   return ThenCost;
828 }
829 
830 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
831 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
832                           VPSlotTracker &SlotTracker) const {
833   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
834   auto NewIndent = Indent + "  ";
835   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
836     O << '\n';
837     BlockBase->print(O, NewIndent, SlotTracker);
838   }
839   O << Indent << "}\n";
840 
841   printSuccessors(O, Indent);
842 }
843 #endif
844 
845 VPlan::~VPlan() {
846   for (auto &KV : LiveOuts)
847     delete KV.second;
848   LiveOuts.clear();
849 
850   if (Entry) {
851     VPValue DummyValue;
852     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
853       Block->dropAllReferences(&DummyValue);
854 
855     VPBlockBase::deleteCFG(Entry);
856 
857     Preheader->dropAllReferences(&DummyValue);
858     delete Preheader;
859   }
860   for (VPValue *VPV : VPLiveInsToFree)
861     delete VPV;
862   if (BackedgeTakenCount)
863     delete BackedgeTakenCount;
864 }
865 
866 VPIRBasicBlock *VPIRBasicBlock::fromBasicBlock(BasicBlock *IRBB) {
867   auto *VPIRBB = new VPIRBasicBlock(IRBB);
868   for (Instruction &I :
869        make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
870     VPIRBB->appendRecipe(new VPIRInstruction(I));
871   return VPIRBB;
872 }
873 
874 VPlanPtr VPlan::createInitialVPlan(Type *InductionTy,
875                                    PredicatedScalarEvolution &PSE,
876                                    bool RequiresScalarEpilogueCheck,
877                                    bool TailFolded, Loop *TheLoop) {
878   VPIRBasicBlock *Entry =
879       VPIRBasicBlock::fromBasicBlock(TheLoop->getLoopPreheader());
880   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
881   auto Plan = std::make_unique<VPlan>(Entry, VecPreheader);
882 
883   // Create SCEV and VPValue for the trip count.
884 
885   // Currently only loops with countable exits are vectorized, but calling
886   // getSymbolicMaxBackedgeTakenCount allows enablement work for loops with
887   // uncountable exits whilst also ensuring the symbolic maximum and known
888   // back-edge taken count remain identical for loops with countable exits.
889   const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
890   assert((!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
891           BackedgeTakenCountSCEV == PSE.getBackedgeTakenCount()) &&
892          "Invalid loop count");
893   ScalarEvolution &SE = *PSE.getSE();
894   const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
895                                                        InductionTy, TheLoop);
896   Plan->TripCount =
897       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
898 
899   // Create VPRegionBlock, with empty header and latch blocks, to be filled
900   // during processing later.
901   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
902   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
903   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
904   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
905                                       false /*isReplicator*/);
906 
907   VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
908   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
909   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
910 
911   VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
912   if (!RequiresScalarEpilogueCheck) {
913     VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
914     return Plan;
915   }
916 
917   // If needed, add a check in the middle block to see if we have completed
918   // all of the iterations in the first vector loop.  Three cases:
919   // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
920   //    Thus if tail is to be folded, we know we don't need to run the
921   //    remainder and we can set the condition to true.
922   // 2) If we require a scalar epilogue, there is no conditional branch as
923   //    we unconditionally branch to the scalar preheader.  Do nothing.
924   // 3) Otherwise, construct a runtime check.
925   BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
926   auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
927   // The connection order corresponds to the operands of the conditional branch.
928   VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
929   VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
930 
931   auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
932   // Here we use the same DebugLoc as the scalar loop latch terminator instead
933   // of the corresponding compare because they may have ended up with
934   // different line numbers and we want to avoid awkward line stepping while
935   // debugging. Eg. if the compare has got a line number inside the loop.
936   VPBuilder Builder(MiddleVPBB);
937   VPValue *Cmp =
938       TailFolded
939           ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
940                 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
941           : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
942                                &Plan->getVectorTripCount(),
943                                ScalarLatchTerm->getDebugLoc(), "cmp.n");
944   Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
945                        ScalarLatchTerm->getDebugLoc());
946   return Plan;
947 }
948 
949 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
950                              Value *CanonicalIVStartValue,
951                              VPTransformState &State) {
952   Type *TCTy = TripCountV->getType();
953   // Check if the backedge taken count is needed, and if so build it.
954   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
955     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
956     auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
957                                    "trip.count.minus.1");
958     BackedgeTakenCount->setUnderlyingValue(TCMO);
959   }
960 
961   VectorTripCount.setUnderlyingValue(VectorTripCountV);
962 
963   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
964   // FIXME: Model VF * UF computation completely in VPlan.
965   assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
966   unsigned UF = getUF();
967   if (VF.getNumUsers()) {
968     Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
969     VF.setUnderlyingValue(RuntimeVF);
970     VFxUF.setUnderlyingValue(
971         UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
972                : RuntimeVF);
973   } else {
974     VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
975   }
976 
977   // When vectorizing the epilogue loop, the canonical induction start value
978   // needs to be changed from zero to the value after the main vector loop.
979   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
980   if (CanonicalIVStartValue) {
981     VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
982     auto *IV = getCanonicalIV();
983     assert(all_of(IV->users(),
984                   [](const VPUser *U) {
985                     return isa<VPScalarIVStepsRecipe>(U) ||
986                            isa<VPScalarCastRecipe>(U) ||
987                            isa<VPDerivedIVRecipe>(U) ||
988                            cast<VPInstruction>(U)->getOpcode() ==
989                                Instruction::Add;
990                   }) &&
991            "the canonical IV should only be used by its increment or "
992            "ScalarIVSteps when resetting the start value");
993     IV->setOperand(0, VPV);
994   }
995 }
996 
997 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
998 /// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
999 /// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
1000 /// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
1001 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
1002   VPIRBasicBlock *IRVPBB = VPIRBasicBlock::fromBasicBlock(IRBB);
1003   for (auto &R : make_early_inc_range(*VPBB)) {
1004     assert(!R.isPhi() && "Tried to move phi recipe to end of block");
1005     R.moveBefore(*IRVPBB, IRVPBB->end());
1006   }
1007 
1008   VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
1009 
1010   delete VPBB;
1011 }
1012 
1013 /// Generate the code inside the preheader and body of the vectorized loop.
1014 /// Assumes a single pre-header basic-block was created for this. Introduce
1015 /// additional basic-blocks as needed, and fill them all.
1016 void VPlan::execute(VPTransformState *State) {
1017   // Initialize CFG state.
1018   State->CFG.PrevVPBB = nullptr;
1019   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
1020   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
1021   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
1022 
1023   // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
1024   cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
1025   State->CFG.DTU.applyUpdates(
1026       {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
1027 
1028   // Replace regular VPBB's for the middle and scalar preheader blocks with
1029   // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
1030   // skeleton creation, so we can only create the VPIRBasicBlocks now during
1031   // VPlan execution rather than earlier during VPlan construction.
1032   BasicBlock *MiddleBB = State->CFG.ExitBB;
1033   VPBasicBlock *MiddleVPBB =
1034       cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
1035   // Find the VPBB for the scalar preheader, relying on the current structure
1036   // when creating the middle block and its successrs: if there's a single
1037   // predecessor, it must be the scalar preheader. Otherwise, the second
1038   // successor is the scalar preheader.
1039   BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1040   auto &MiddleSuccs = MiddleVPBB->getSuccessors();
1041   assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) &&
1042          "middle block has unexpected successors");
1043   VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>(
1044       MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]);
1045   assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) &&
1046          "scalar preheader cannot be wrapped already");
1047   replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh);
1048   replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1049 
1050   // Disconnect the middle block from its single successor (the scalar loop
1051   // header) in both the CFG and DT. The branch will be recreated during VPlan
1052   // execution.
1053   auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1054   BrInst->insertBefore(MiddleBB->getTerminator());
1055   MiddleBB->getTerminator()->eraseFromParent();
1056   State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1057 
1058   // Generate code in the loop pre-header and body.
1059   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1060     Block->execute(State);
1061 
1062   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1063   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1064 
1065   // Fix the latch value of canonical, reduction and first-order recurrences
1066   // phis in the vector loop.
1067   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1068   for (VPRecipeBase &R : Header->phis()) {
1069     // Skip phi-like recipes that generate their backedege values themselves.
1070     if (isa<VPWidenPHIRecipe>(&R))
1071       continue;
1072 
1073     if (isa<VPWidenPointerInductionRecipe>(&R) ||
1074         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1075       PHINode *Phi = nullptr;
1076       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1077         Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1078       } else {
1079         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1080         assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1081                "recipe generating only scalars should have been replaced");
1082         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1083         Phi = cast<PHINode>(GEP->getPointerOperand());
1084       }
1085 
1086       Phi->setIncomingBlock(1, VectorLatchBB);
1087 
1088       // Move the last step to the end of the latch block. This ensures
1089       // consistent placement of all induction updates.
1090       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1091       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1092 
1093       // Use the steps for the last part as backedge value for the induction.
1094       if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1095         Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1096       continue;
1097     }
1098 
1099     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1100     bool NeedsScalar =
1101         isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1102         (isa<VPReductionPHIRecipe>(PhiR) &&
1103          cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1104     Value *Phi = State->get(PhiR, NeedsScalar);
1105     Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1106     cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1107   }
1108 
1109   State->CFG.DTU.flush();
1110   assert(State->CFG.DTU.getDomTree().verify(
1111              DominatorTree::VerificationLevel::Fast) &&
1112          "DT not preserved correctly");
1113 }
1114 
1115 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1116   // For now only return the cost of the vector loop region, ignoring any other
1117   // blocks, like the preheader or middle blocks.
1118   return getVectorLoopRegion()->cost(VF, Ctx);
1119 }
1120 
1121 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1122 void VPlan::printLiveIns(raw_ostream &O) const {
1123   VPSlotTracker SlotTracker(this);
1124 
1125   if (VF.getNumUsers() > 0) {
1126     O << "\nLive-in ";
1127     VF.printAsOperand(O, SlotTracker);
1128     O << " = VF";
1129   }
1130 
1131   if (VFxUF.getNumUsers() > 0) {
1132     O << "\nLive-in ";
1133     VFxUF.printAsOperand(O, SlotTracker);
1134     O << " = VF * UF";
1135   }
1136 
1137   if (VectorTripCount.getNumUsers() > 0) {
1138     O << "\nLive-in ";
1139     VectorTripCount.printAsOperand(O, SlotTracker);
1140     O << " = vector-trip-count";
1141   }
1142 
1143   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1144     O << "\nLive-in ";
1145     BackedgeTakenCount->printAsOperand(O, SlotTracker);
1146     O << " = backedge-taken count";
1147   }
1148 
1149   O << "\n";
1150   if (TripCount->isLiveIn())
1151     O << "Live-in ";
1152   TripCount->printAsOperand(O, SlotTracker);
1153   O << " = original trip-count";
1154   O << "\n";
1155 }
1156 
1157 LLVM_DUMP_METHOD
1158 void VPlan::print(raw_ostream &O) const {
1159   VPSlotTracker SlotTracker(this);
1160 
1161   O << "VPlan '" << getName() << "' {";
1162 
1163   printLiveIns(O);
1164 
1165   if (!getPreheader()->empty()) {
1166     O << "\n";
1167     getPreheader()->print(O, "", SlotTracker);
1168   }
1169 
1170   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1171     O << '\n';
1172     Block->print(O, "", SlotTracker);
1173   }
1174 
1175   if (!LiveOuts.empty())
1176     O << "\n";
1177   for (const auto &KV : LiveOuts) {
1178     KV.second->print(O, SlotTracker);
1179   }
1180 
1181   O << "}\n";
1182 }
1183 
1184 std::string VPlan::getName() const {
1185   std::string Out;
1186   raw_string_ostream RSO(Out);
1187   RSO << Name << " for ";
1188   if (!VFs.empty()) {
1189     RSO << "VF={" << VFs[0];
1190     for (ElementCount VF : drop_begin(VFs))
1191       RSO << "," << VF;
1192     RSO << "},";
1193   }
1194 
1195   if (UFs.empty()) {
1196     RSO << "UF>=1";
1197   } else {
1198     RSO << "UF={" << UFs[0];
1199     for (unsigned UF : drop_begin(UFs))
1200       RSO << "," << UF;
1201     RSO << "}";
1202   }
1203 
1204   return Out;
1205 }
1206 
1207 LLVM_DUMP_METHOD
1208 void VPlan::printDOT(raw_ostream &O) const {
1209   VPlanPrinter Printer(O, *this);
1210   Printer.dump();
1211 }
1212 
1213 LLVM_DUMP_METHOD
1214 void VPlan::dump() const { print(dbgs()); }
1215 #endif
1216 
1217 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
1218   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
1219   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
1220 }
1221 
1222 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1223                           DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1224   // Update the operands of all cloned recipes starting at NewEntry. This
1225   // traverses all reachable blocks. This is done in two steps, to handle cycles
1226   // in PHI recipes.
1227   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1228       OldDeepRPOT(Entry);
1229   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1230       NewDeepRPOT(NewEntry);
1231   // First, collect all mappings from old to new VPValues defined by cloned
1232   // recipes.
1233   for (const auto &[OldBB, NewBB] :
1234        zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1235            VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1236     assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1237            "blocks must have the same number of recipes");
1238     for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1239       assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1240              "recipes must have the same number of operands");
1241       assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1242              "recipes must define the same number of operands");
1243       for (const auto &[OldV, NewV] :
1244            zip(OldR.definedValues(), NewR.definedValues()))
1245         Old2NewVPValues[OldV] = NewV;
1246     }
1247   }
1248 
1249   // Update all operands to use cloned VPValues.
1250   for (VPBasicBlock *NewBB :
1251        VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1252     for (VPRecipeBase &NewR : *NewBB)
1253       for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1254         VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1255         NewR.setOperand(I, NewOp);
1256       }
1257   }
1258 }
1259 
1260 VPlan *VPlan::duplicate() {
1261   // Clone blocks.
1262   VPBasicBlock *NewPreheader = Preheader->clone();
1263   const auto &[NewEntry, __] = cloneFrom(Entry);
1264 
1265   // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1266   auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
1267   DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1268   for (VPValue *OldLiveIn : VPLiveInsToFree) {
1269     Old2NewVPValues[OldLiveIn] =
1270         NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1271   }
1272   Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1273   Old2NewVPValues[&VF] = &NewPlan->VF;
1274   Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1275   if (BackedgeTakenCount) {
1276     NewPlan->BackedgeTakenCount = new VPValue();
1277     Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1278   }
1279   assert(TripCount && "trip count must be set");
1280   if (TripCount->isLiveIn())
1281     Old2NewVPValues[TripCount] =
1282         NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1283   // else NewTripCount will be created and inserted into Old2NewVPValues when
1284   // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1285 
1286   remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1287   remapOperands(Entry, NewEntry, Old2NewVPValues);
1288 
1289   // Clone live-outs.
1290   for (const auto &[_, LO] : LiveOuts)
1291     NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
1292 
1293   // Initialize remaining fields of cloned VPlan.
1294   NewPlan->VFs = VFs;
1295   NewPlan->UFs = UFs;
1296   // TODO: Adjust names.
1297   NewPlan->Name = Name;
1298   assert(Old2NewVPValues.contains(TripCount) &&
1299          "TripCount must have been added to Old2NewVPValues");
1300   NewPlan->TripCount = Old2NewVPValues[TripCount];
1301   return NewPlan;
1302 }
1303 
1304 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1305 
1306 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1307   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1308          Twine(getOrCreateBID(Block));
1309 }
1310 
1311 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1312   const std::string &Name = Block->getName();
1313   if (!Name.empty())
1314     return Name;
1315   return "VPB" + Twine(getOrCreateBID(Block));
1316 }
1317 
1318 void VPlanPrinter::dump() {
1319   Depth = 1;
1320   bumpIndent(0);
1321   OS << "digraph VPlan {\n";
1322   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1323   if (!Plan.getName().empty())
1324     OS << "\\n" << DOT::EscapeString(Plan.getName());
1325 
1326   {
1327     // Print live-ins.
1328   std::string Str;
1329   raw_string_ostream SS(Str);
1330   Plan.printLiveIns(SS);
1331   SmallVector<StringRef, 0> Lines;
1332   StringRef(Str).rtrim('\n').split(Lines, "\n");
1333   for (auto Line : Lines)
1334     OS << DOT::EscapeString(Line.str()) << "\\n";
1335   }
1336 
1337   OS << "\"]\n";
1338   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1339   OS << "edge [fontname=Courier, fontsize=30]\n";
1340   OS << "compound=true\n";
1341 
1342   dumpBlock(Plan.getPreheader());
1343 
1344   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1345     dumpBlock(Block);
1346 
1347   OS << "}\n";
1348 }
1349 
1350 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1351   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1352     dumpBasicBlock(BasicBlock);
1353   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1354     dumpRegion(Region);
1355   else
1356     llvm_unreachable("Unsupported kind of VPBlock.");
1357 }
1358 
1359 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1360                             bool Hidden, const Twine &Label) {
1361   // Due to "dot" we print an edge between two regions as an edge between the
1362   // exiting basic block and the entry basic of the respective regions.
1363   const VPBlockBase *Tail = From->getExitingBasicBlock();
1364   const VPBlockBase *Head = To->getEntryBasicBlock();
1365   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1366   OS << " [ label=\"" << Label << '\"';
1367   if (Tail != From)
1368     OS << " ltail=" << getUID(From);
1369   if (Head != To)
1370     OS << " lhead=" << getUID(To);
1371   if (Hidden)
1372     OS << "; splines=none";
1373   OS << "]\n";
1374 }
1375 
1376 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1377   auto &Successors = Block->getSuccessors();
1378   if (Successors.size() == 1)
1379     drawEdge(Block, Successors.front(), false, "");
1380   else if (Successors.size() == 2) {
1381     drawEdge(Block, Successors.front(), false, "T");
1382     drawEdge(Block, Successors.back(), false, "F");
1383   } else {
1384     unsigned SuccessorNumber = 0;
1385     for (auto *Successor : Successors)
1386       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1387   }
1388 }
1389 
1390 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1391   // Implement dot-formatted dump by performing plain-text dump into the
1392   // temporary storage followed by some post-processing.
1393   OS << Indent << getUID(BasicBlock) << " [label =\n";
1394   bumpIndent(1);
1395   std::string Str;
1396   raw_string_ostream SS(Str);
1397   // Use no indentation as we need to wrap the lines into quotes ourselves.
1398   BasicBlock->print(SS, "", SlotTracker);
1399 
1400   // We need to process each line of the output separately, so split
1401   // single-string plain-text dump.
1402   SmallVector<StringRef, 0> Lines;
1403   StringRef(Str).rtrim('\n').split(Lines, "\n");
1404 
1405   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1406     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1407   };
1408 
1409   // Don't need the "+" after the last line.
1410   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1411     EmitLine(Line, " +\n");
1412   EmitLine(Lines.back(), "\n");
1413 
1414   bumpIndent(-1);
1415   OS << Indent << "]\n";
1416 
1417   dumpEdges(BasicBlock);
1418 }
1419 
1420 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1421   OS << Indent << "subgraph " << getUID(Region) << " {\n";
1422   bumpIndent(1);
1423   OS << Indent << "fontname=Courier\n"
1424      << Indent << "label=\""
1425      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1426      << DOT::EscapeString(Region->getName()) << "\"\n";
1427   // Dump the blocks of the region.
1428   assert(Region->getEntry() && "Region contains no inner blocks.");
1429   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1430     dumpBlock(Block);
1431   bumpIndent(-1);
1432   OS << Indent << "}\n";
1433   dumpEdges(Region);
1434 }
1435 
1436 void VPlanIngredient::print(raw_ostream &O) const {
1437   if (auto *Inst = dyn_cast<Instruction>(V)) {
1438     if (!Inst->getType()->isVoidTy()) {
1439       Inst->printAsOperand(O, false);
1440       O << " = ";
1441     }
1442     O << Inst->getOpcodeName() << " ";
1443     unsigned E = Inst->getNumOperands();
1444     if (E > 0) {
1445       Inst->getOperand(0)->printAsOperand(O, false);
1446       for (unsigned I = 1; I < E; ++I)
1447         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1448     }
1449   } else // !Inst
1450     V->printAsOperand(O, false);
1451 }
1452 
1453 #endif
1454 
1455 bool VPValue::isDefinedOutsideLoopRegions() const {
1456   return !hasDefiningRecipe() ||
1457          !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1458 }
1459 
1460 void VPValue::replaceAllUsesWith(VPValue *New) {
1461   replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1462 }
1463 
1464 void VPValue::replaceUsesWithIf(
1465     VPValue *New,
1466     llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1467   // Note that this early exit is required for correctness; the implementation
1468   // below relies on the number of users for this VPValue to decrease, which
1469   // isn't the case if this == New.
1470   if (this == New)
1471     return;
1472 
1473   for (unsigned J = 0; J < getNumUsers();) {
1474     VPUser *User = Users[J];
1475     bool RemovedUser = false;
1476     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1477       if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1478         continue;
1479 
1480       RemovedUser = true;
1481       User->setOperand(I, New);
1482     }
1483     // If a user got removed after updating the current user, the next user to
1484     // update will be moved to the current position, so we only need to
1485     // increment the index if the number of users did not change.
1486     if (!RemovedUser)
1487       J++;
1488   }
1489 }
1490 
1491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1492 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1493   OS << Tracker.getOrCreateName(this);
1494 }
1495 
1496 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1497   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1498     Op->printAsOperand(O, SlotTracker);
1499   });
1500 }
1501 #endif
1502 
1503 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1504                                           Old2NewTy &Old2New,
1505                                           InterleavedAccessInfo &IAI) {
1506   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1507       RPOT(Region->getEntry());
1508   for (VPBlockBase *Base : RPOT) {
1509     visitBlock(Base, Old2New, IAI);
1510   }
1511 }
1512 
1513 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1514                                          InterleavedAccessInfo &IAI) {
1515   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1516     for (VPRecipeBase &VPI : *VPBB) {
1517       if (isa<VPWidenPHIRecipe>(&VPI))
1518         continue;
1519       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1520       auto *VPInst = cast<VPInstruction>(&VPI);
1521 
1522       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1523       if (!Inst)
1524         continue;
1525       auto *IG = IAI.getInterleaveGroup(Inst);
1526       if (!IG)
1527         continue;
1528 
1529       auto NewIGIter = Old2New.find(IG);
1530       if (NewIGIter == Old2New.end())
1531         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1532             IG->getFactor(), IG->isReverse(), IG->getAlign());
1533 
1534       if (Inst == IG->getInsertPos())
1535         Old2New[IG]->setInsertPos(VPInst);
1536 
1537       InterleaveGroupMap[VPInst] = Old2New[IG];
1538       InterleaveGroupMap[VPInst]->insertMember(
1539           VPInst, IG->getIndex(Inst),
1540           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1541                                 : IG->getFactor()));
1542     }
1543   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1544     visitRegion(Region, Old2New, IAI);
1545   else
1546     llvm_unreachable("Unsupported kind of VPBlock.");
1547 }
1548 
1549 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1550                                                  InterleavedAccessInfo &IAI) {
1551   Old2NewTy Old2New;
1552   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1553 }
1554 
1555 void VPSlotTracker::assignName(const VPValue *V) {
1556   assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1557   auto *UV = V->getUnderlyingValue();
1558   auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1559   if (!UV && !(VPI && !VPI->getName().empty())) {
1560     VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1561     NextSlot++;
1562     return;
1563   }
1564 
1565   // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1566   // appending ".Number" to the name if there are multiple uses.
1567   std::string Name;
1568   if (UV) {
1569     raw_string_ostream S(Name);
1570     UV->printAsOperand(S, false);
1571   } else
1572     Name = VPI->getName();
1573 
1574   assert(!Name.empty() && "Name cannot be empty.");
1575   StringRef Prefix = UV ? "ir<" : "vp<%";
1576   std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1577 
1578   // First assign the base name for V.
1579   const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1580   // Integer or FP constants with different types will result in he same string
1581   // due to stripping types.
1582   if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1583     return;
1584 
1585   // If it is already used by C > 0 other VPValues, increase the version counter
1586   // C and use it for V.
1587   const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1588   if (!UseInserted) {
1589     C->second++;
1590     A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1591   }
1592 }
1593 
1594 void VPSlotTracker::assignNames(const VPlan &Plan) {
1595   if (Plan.VF.getNumUsers() > 0)
1596     assignName(&Plan.VF);
1597   if (Plan.VFxUF.getNumUsers() > 0)
1598     assignName(&Plan.VFxUF);
1599   assignName(&Plan.VectorTripCount);
1600   if (Plan.BackedgeTakenCount)
1601     assignName(Plan.BackedgeTakenCount);
1602   for (VPValue *LI : Plan.VPLiveInsToFree)
1603     assignName(LI);
1604   assignNames(Plan.getPreheader());
1605 
1606   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1607       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1608   for (const VPBasicBlock *VPBB :
1609        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1610     assignNames(VPBB);
1611 }
1612 
1613 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1614   for (const VPRecipeBase &Recipe : *VPBB)
1615     for (VPValue *Def : Recipe.definedValues())
1616       assignName(Def);
1617 }
1618 
1619 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1620   std::string Name = VPValue2Name.lookup(V);
1621   if (!Name.empty())
1622     return Name;
1623 
1624   // If no name was assigned, no VPlan was provided when creating the slot
1625   // tracker or it is not reachable from the provided VPlan. This can happen,
1626   // e.g. when trying to print a recipe that has not been inserted into a VPlan
1627   // in a debugger.
1628   // TODO: Update VPSlotTracker constructor to assign names to recipes &
1629   // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1630   // here.
1631   const VPRecipeBase *DefR = V->getDefiningRecipe();
1632   (void)DefR;
1633   assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1634          "VPValue defined by a recipe in a VPlan?");
1635 
1636   // Use the underlying value's name, if there is one.
1637   if (auto *UV = V->getUnderlyingValue()) {
1638     std::string Name;
1639     raw_string_ostream S(Name);
1640     UV->printAsOperand(S, false);
1641     return (Twine("ir<") + Name + ">").str();
1642   }
1643 
1644   return "<badref>";
1645 }
1646 
1647 bool LoopVectorizationPlanner::getDecisionAndClampRange(
1648     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1649   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1650   bool PredicateAtRangeStart = Predicate(Range.Start);
1651 
1652   for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1653     if (Predicate(TmpVF) != PredicateAtRangeStart) {
1654       Range.End = TmpVF;
1655       break;
1656     }
1657 
1658   return PredicateAtRangeStart;
1659 }
1660 
1661 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1662 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1663 /// of VF's starting at a given VF and extending it as much as possible. Each
1664 /// vectorization decision can potentially shorten this sub-range during
1665 /// buildVPlan().
1666 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
1667                                            ElementCount MaxVF) {
1668   auto MaxVFTimes2 = MaxVF * 2;
1669   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1670     VFRange SubRange = {VF, MaxVFTimes2};
1671     auto Plan = buildVPlan(SubRange);
1672     VPlanTransforms::optimize(*Plan);
1673     VPlans.push_back(std::move(Plan));
1674     VF = SubRange.End;
1675   }
1676 }
1677 
1678 VPlan &LoopVectorizationPlanner::getPlanFor(ElementCount VF) const {
1679   assert(count_if(VPlans,
1680                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1681              1 &&
1682          "Multiple VPlans for VF.");
1683 
1684   for (const VPlanPtr &Plan : VPlans) {
1685     if (Plan->hasVF(VF))
1686       return *Plan.get();
1687   }
1688   llvm_unreachable("No plan found!");
1689 }
1690 
1691 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1692 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
1693   if (VPlans.empty()) {
1694     O << "LV: No VPlans built.\n";
1695     return;
1696   }
1697   for (const auto &Plan : VPlans)
1698     if (PrintVPlansInDotFormat)
1699       Plan->printDOT(O);
1700     else
1701       Plan->print(O);
1702 }
1703 #endif
1704 
1705 TargetTransformInfo::OperandValueInfo
1706 VPCostContext::getOperandInfo(VPValue *V) const {
1707   if (!V->isLiveIn())
1708     return {};
1709 
1710   return TTI::getOperandInfo(V->getLiveInIRValue());
1711 }
1712