1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 44 #include <cassert> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 54 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 55 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 56 VPSlotTracker SlotTracker( 57 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 58 V.print(OS, SlotTracker); 59 return OS; 60 } 61 #endif 62 63 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 64 const ElementCount &VF) const { 65 switch (LaneKind) { 66 case VPLane::Kind::ScalableLast: 67 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 68 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 69 Builder.getInt32(VF.getKnownMinValue() - Lane)); 70 case VPLane::Kind::First: 71 return Builder.getInt32(Lane); 72 } 73 llvm_unreachable("Unknown lane kind"); 74 } 75 76 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 77 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 78 if (Def) 79 Def->addDefinedValue(this); 80 } 81 82 VPValue::~VPValue() { 83 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 84 if (Def) 85 Def->removeDefinedValue(this); 86 } 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 90 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 91 R->print(OS, "", SlotTracker); 92 else 93 printAsOperand(OS, SlotTracker); 94 } 95 96 void VPValue::dump() const { 97 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 98 VPSlotTracker SlotTracker( 99 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 100 print(dbgs(), SlotTracker); 101 dbgs() << "\n"; 102 } 103 104 void VPDef::dump() const { 105 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 106 VPSlotTracker SlotTracker( 107 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 108 print(dbgs(), "", SlotTracker); 109 dbgs() << "\n"; 110 } 111 #endif 112 113 // Get the top-most entry block of \p Start. This is the entry block of the 114 // containing VPlan. This function is templated to support both const and non-const blocks 115 template <typename T> static T *getPlanEntry(T *Start) { 116 T *Next = Start; 117 T *Current = Start; 118 while ((Next = Next->getParent())) 119 Current = Next; 120 121 SmallSetVector<T *, 8> WorkList; 122 WorkList.insert(Current); 123 124 for (unsigned i = 0; i < WorkList.size(); i++) { 125 T *Current = WorkList[i]; 126 if (Current->getNumPredecessors() == 0) 127 return Current; 128 auto &Predecessors = Current->getPredecessors(); 129 WorkList.insert(Predecessors.begin(), Predecessors.end()); 130 } 131 132 llvm_unreachable("VPlan without any entry node without predecessors"); 133 } 134 135 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 136 137 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 138 139 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 140 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 141 const VPBlockBase *Block = this; 142 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 143 Block = Region->getEntry(); 144 return cast<VPBasicBlock>(Block); 145 } 146 147 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 148 VPBlockBase *Block = this; 149 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 150 Block = Region->getEntry(); 151 return cast<VPBasicBlock>(Block); 152 } 153 154 void VPBlockBase::setPlan(VPlan *ParentPlan) { 155 assert(ParentPlan->getEntry() == this && 156 "Can only set plan on its entry block."); 157 Plan = ParentPlan; 158 } 159 160 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 161 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 162 const VPBlockBase *Block = this; 163 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 164 Block = Region->getExiting(); 165 return cast<VPBasicBlock>(Block); 166 } 167 168 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 169 VPBlockBase *Block = this; 170 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 171 Block = Region->getExiting(); 172 return cast<VPBasicBlock>(Block); 173 } 174 175 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 176 if (!Successors.empty() || !Parent) 177 return this; 178 assert(Parent->getExiting() == this && 179 "Block w/o successors not the exiting block of its parent."); 180 return Parent->getEnclosingBlockWithSuccessors(); 181 } 182 183 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 184 if (!Predecessors.empty() || !Parent) 185 return this; 186 assert(Parent->getEntry() == this && 187 "Block w/o predecessors not the entry of its parent."); 188 return Parent->getEnclosingBlockWithPredecessors(); 189 } 190 191 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 192 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 193 194 for (VPBlockBase *Block : Blocks) 195 delete Block; 196 } 197 198 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 199 iterator It = begin(); 200 while (It != end() && It->isPhi()) 201 It++; 202 return It; 203 } 204 205 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 206 if (!Def->getDef()) 207 return Def->getLiveInIRValue(); 208 209 if (hasScalarValue(Def, Instance)) { 210 return Data 211 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 212 } 213 214 assert(hasVectorValue(Def, Instance.Part)); 215 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 216 if (!VecPart->getType()->isVectorTy()) { 217 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 218 return VecPart; 219 } 220 // TODO: Cache created scalar values. 221 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 222 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 223 // set(Def, Extract, Instance); 224 return Extract; 225 } 226 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 227 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 228 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 229 } 230 231 BasicBlock * 232 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 233 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 234 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 235 BasicBlock *PrevBB = CFG.PrevBB; 236 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 237 PrevBB->getParent(), CFG.ExitBB); 238 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 239 240 // Hook up the new basic block to its predecessors. 241 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 242 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 243 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 244 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 245 246 assert(PredBB && "Predecessor basic-block not found building successor."); 247 auto *PredBBTerminator = PredBB->getTerminator(); 248 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 249 250 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 251 if (isa<UnreachableInst>(PredBBTerminator)) { 252 assert(PredVPSuccessors.size() == 1 && 253 "Predecessor ending w/o branch must have single successor."); 254 DebugLoc DL = PredBBTerminator->getDebugLoc(); 255 PredBBTerminator->eraseFromParent(); 256 auto *Br = BranchInst::Create(NewBB, PredBB); 257 Br->setDebugLoc(DL); 258 } else if (TermBr && !TermBr->isConditional()) { 259 TermBr->setSuccessor(0, NewBB); 260 } else { 261 // Set each forward successor here when it is created, excluding 262 // backedges. A backward successor is set when the branch is created. 263 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 264 assert(!TermBr->getSuccessor(idx) && 265 "Trying to reset an existing successor block."); 266 TermBr->setSuccessor(idx, NewBB); 267 } 268 } 269 return NewBB; 270 } 271 272 void VPBasicBlock::execute(VPTransformState *State) { 273 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 274 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 275 VPBlockBase *SingleHPred = nullptr; 276 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 277 278 auto IsLoopRegion = [](VPBlockBase *BB) { 279 auto *R = dyn_cast<VPRegionBlock>(BB); 280 return R && !R->isReplicator(); 281 }; 282 283 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 284 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 285 // ExitBB can be re-used for the exit block of the Plan. 286 NewBB = State->CFG.ExitBB; 287 State->CFG.PrevBB = NewBB; 288 289 // Update the branch instruction in the predecessor to branch to ExitBB. 290 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 291 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 292 assert(PredVPB->getSingleSuccessor() == this && 293 "predecessor must have the current block as only successor"); 294 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 295 // The Exit block of a loop is always set to be successor 0 of the Exiting 296 // block. 297 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 298 } else if (PrevVPBB && /* A */ 299 !((SingleHPred = getSingleHierarchicalPredecessor()) && 300 SingleHPred->getExitingBasicBlock() == PrevVPBB && 301 PrevVPBB->getSingleHierarchicalSuccessor() && 302 (SingleHPred->getParent() == getEnclosingLoopRegion() && 303 !IsLoopRegion(SingleHPred))) && /* B */ 304 !(Replica && getPredecessors().empty())) { /* C */ 305 // The last IR basic block is reused, as an optimization, in three cases: 306 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 307 // B. when the current VPBB has a single (hierarchical) predecessor which 308 // is PrevVPBB and the latter has a single (hierarchical) successor which 309 // both are in the same non-replicator region; and 310 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 311 // is the exiting VPBB of this region from a previous instance, or the 312 // predecessor of this region. 313 314 NewBB = createEmptyBasicBlock(State->CFG); 315 State->Builder.SetInsertPoint(NewBB); 316 // Temporarily terminate with unreachable until CFG is rewired. 317 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 318 // Register NewBB in its loop. In innermost loops its the same for all 319 // BB's. 320 if (State->CurrentVectorLoop) 321 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 322 State->Builder.SetInsertPoint(Terminator); 323 State->CFG.PrevBB = NewBB; 324 } 325 326 // 2. Fill the IR basic block with IR instructions. 327 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 328 << " in BB:" << NewBB->getName() << '\n'); 329 330 State->CFG.VPBB2IRBB[this] = NewBB; 331 State->CFG.PrevVPBB = this; 332 333 for (VPRecipeBase &Recipe : Recipes) 334 Recipe.execute(*State); 335 336 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 337 } 338 339 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 340 for (VPRecipeBase &R : Recipes) { 341 for (auto *Def : R.definedValues()) 342 Def->replaceAllUsesWith(NewValue); 343 344 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 345 R.setOperand(I, NewValue); 346 } 347 } 348 349 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 350 assert((SplitAt == end() || SplitAt->getParent() == this) && 351 "can only split at a position in the same block"); 352 353 SmallVector<VPBlockBase *, 2> Succs(successors()); 354 // First, disconnect the current block from its successors. 355 for (VPBlockBase *Succ : Succs) 356 VPBlockUtils::disconnectBlocks(this, Succ); 357 358 // Create new empty block after the block to split. 359 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 360 VPBlockUtils::insertBlockAfter(SplitBlock, this); 361 362 // Add successors for block to split to new block. 363 for (VPBlockBase *Succ : Succs) 364 VPBlockUtils::connectBlocks(SplitBlock, Succ); 365 366 // Finally, move the recipes starting at SplitAt to new block. 367 for (VPRecipeBase &ToMove : 368 make_early_inc_range(make_range(SplitAt, this->end()))) 369 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 370 371 return SplitBlock; 372 } 373 374 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 375 VPRegionBlock *P = getParent(); 376 if (P && P->isReplicator()) { 377 P = P->getParent(); 378 assert(!cast<VPRegionBlock>(P)->isReplicator() && 379 "unexpected nested replicate regions"); 380 } 381 return P; 382 } 383 384 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 385 if (VPBB->empty()) { 386 assert( 387 VPBB->getNumSuccessors() < 2 && 388 "block with multiple successors doesn't have a recipe as terminator"); 389 return false; 390 } 391 392 const VPRecipeBase *R = &VPBB->back(); 393 auto *VPI = dyn_cast<VPInstruction>(R); 394 bool IsCondBranch = 395 isa<VPBranchOnMaskRecipe>(R) || 396 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 397 VPI->getOpcode() == VPInstruction::BranchOnCount)); 398 (void)IsCondBranch; 399 400 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 401 assert(IsCondBranch && "block with multiple successors not terminated by " 402 "conditional branch recipe"); 403 404 return true; 405 } 406 407 assert( 408 !IsCondBranch && 409 "block with 0 or 1 successors terminated by conditional branch recipe"); 410 return false; 411 } 412 413 VPRecipeBase *VPBasicBlock::getTerminator() { 414 if (hasConditionalTerminator(this)) 415 return &back(); 416 return nullptr; 417 } 418 419 const VPRecipeBase *VPBasicBlock::getTerminator() const { 420 if (hasConditionalTerminator(this)) 421 return &back(); 422 return nullptr; 423 } 424 425 bool VPBasicBlock::isExiting() const { 426 return getParent()->getExitingBasicBlock() == this; 427 } 428 429 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 430 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 431 if (getSuccessors().empty()) { 432 O << Indent << "No successors\n"; 433 } else { 434 O << Indent << "Successor(s): "; 435 ListSeparator LS; 436 for (auto *Succ : getSuccessors()) 437 O << LS << Succ->getName(); 438 O << '\n'; 439 } 440 } 441 442 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 443 VPSlotTracker &SlotTracker) const { 444 O << Indent << getName() << ":\n"; 445 446 auto RecipeIndent = Indent + " "; 447 for (const VPRecipeBase &Recipe : *this) { 448 Recipe.print(O, RecipeIndent, SlotTracker); 449 O << '\n'; 450 } 451 452 printSuccessors(O, Indent); 453 } 454 #endif 455 456 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 457 for (VPBlockBase *Block : depth_first(Entry)) 458 // Drop all references in VPBasicBlocks and replace all uses with 459 // DummyValue. 460 Block->dropAllReferences(NewValue); 461 } 462 463 void VPRegionBlock::execute(VPTransformState *State) { 464 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 465 466 if (!isReplicator()) { 467 // Create and register the new vector loop. 468 Loop *PrevLoop = State->CurrentVectorLoop; 469 State->CurrentVectorLoop = State->LI->AllocateLoop(); 470 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 471 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 472 473 // Insert the new loop into the loop nest and register the new basic blocks 474 // before calling any utilities such as SCEV that require valid LoopInfo. 475 if (ParentLoop) 476 ParentLoop->addChildLoop(State->CurrentVectorLoop); 477 else 478 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 479 480 // Visit the VPBlocks connected to "this", starting from it. 481 for (VPBlockBase *Block : RPOT) { 482 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 483 Block->execute(State); 484 } 485 486 State->CurrentVectorLoop = PrevLoop; 487 return; 488 } 489 490 assert(!State->Instance && "Replicating a Region with non-null instance."); 491 492 // Enter replicating mode. 493 State->Instance = VPIteration(0, 0); 494 495 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 496 State->Instance->Part = Part; 497 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 498 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 499 ++Lane) { 500 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 501 // Visit the VPBlocks connected to \p this, starting from it. 502 for (VPBlockBase *Block : RPOT) { 503 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 504 Block->execute(State); 505 } 506 } 507 } 508 509 // Exit replicating mode. 510 State->Instance.reset(); 511 } 512 513 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 514 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 515 VPSlotTracker &SlotTracker) const { 516 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 517 auto NewIndent = Indent + " "; 518 for (auto *BlockBase : depth_first(Entry)) { 519 O << '\n'; 520 BlockBase->print(O, NewIndent, SlotTracker); 521 } 522 O << Indent << "}\n"; 523 524 printSuccessors(O, Indent); 525 } 526 #endif 527 528 bool VPRecipeBase::mayWriteToMemory() const { 529 switch (getVPDefID()) { 530 case VPWidenMemoryInstructionSC: { 531 return cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 532 } 533 case VPReplicateSC: 534 case VPWidenCallSC: 535 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 536 ->mayWriteToMemory(); 537 case VPBranchOnMaskSC: 538 return false; 539 case VPWidenIntOrFpInductionSC: 540 case VPWidenCanonicalIVSC: 541 case VPWidenPHISC: 542 case VPBlendSC: 543 case VPWidenSC: 544 case VPWidenGEPSC: 545 case VPReductionSC: 546 case VPWidenSelectSC: { 547 const Instruction *I = 548 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 549 (void)I; 550 assert((!I || !I->mayWriteToMemory()) && 551 "underlying instruction may write to memory"); 552 return false; 553 } 554 default: 555 return true; 556 } 557 } 558 559 bool VPRecipeBase::mayReadFromMemory() const { 560 switch (getVPDefID()) { 561 case VPWidenMemoryInstructionSC: { 562 return !cast<VPWidenMemoryInstructionRecipe>(this)->isStore(); 563 } 564 case VPReplicateSC: 565 case VPWidenCallSC: 566 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()) 567 ->mayReadFromMemory(); 568 case VPBranchOnMaskSC: 569 return false; 570 case VPWidenIntOrFpInductionSC: 571 case VPWidenCanonicalIVSC: 572 case VPWidenPHISC: 573 case VPBlendSC: 574 case VPWidenSC: 575 case VPWidenGEPSC: 576 case VPReductionSC: 577 case VPWidenSelectSC: { 578 const Instruction *I = 579 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 580 (void)I; 581 assert((!I || !I->mayReadFromMemory()) && 582 "underlying instruction may read from memory"); 583 return false; 584 } 585 default: 586 return true; 587 } 588 } 589 590 bool VPRecipeBase::mayHaveSideEffects() const { 591 switch (getVPDefID()) { 592 case VPBranchOnMaskSC: 593 return false; 594 case VPWidenIntOrFpInductionSC: 595 case VPWidenPointerInductionSC: 596 case VPWidenCanonicalIVSC: 597 case VPWidenPHISC: 598 case VPBlendSC: 599 case VPWidenSC: 600 case VPWidenGEPSC: 601 case VPReductionSC: 602 case VPWidenSelectSC: 603 case VPScalarIVStepsSC: { 604 const Instruction *I = 605 dyn_cast_or_null<Instruction>(getVPSingleValue()->getUnderlyingValue()); 606 (void)I; 607 assert((!I || !I->mayHaveSideEffects()) && 608 "underlying instruction has side-effects"); 609 return false; 610 } 611 case VPReplicateSC: { 612 auto *R = cast<VPReplicateRecipe>(this); 613 return R->getUnderlyingInstr()->mayHaveSideEffects(); 614 } 615 default: 616 return true; 617 } 618 } 619 620 void VPLiveOut::fixPhi(VPlan &Plan, VPTransformState &State) { 621 auto Lane = VPLane::getLastLaneForVF(State.VF); 622 VPValue *ExitValue = getOperand(0); 623 if (Plan.isUniformAfterVectorization(ExitValue)) 624 Lane = VPLane::getFirstLane(); 625 Phi->addIncoming(State.get(ExitValue, VPIteration(State.UF - 1, Lane)), 626 State.Builder.GetInsertBlock()); 627 } 628 629 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 630 assert(!Parent && "Recipe already in some VPBasicBlock"); 631 assert(InsertPos->getParent() && 632 "Insertion position not in any VPBasicBlock"); 633 Parent = InsertPos->getParent(); 634 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 635 } 636 637 void VPRecipeBase::insertBefore(VPBasicBlock &BB, 638 iplist<VPRecipeBase>::iterator I) { 639 assert(!Parent && "Recipe already in some VPBasicBlock"); 640 assert(I == BB.end() || I->getParent() == &BB); 641 Parent = &BB; 642 BB.getRecipeList().insert(I, this); 643 } 644 645 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 646 assert(!Parent && "Recipe already in some VPBasicBlock"); 647 assert(InsertPos->getParent() && 648 "Insertion position not in any VPBasicBlock"); 649 Parent = InsertPos->getParent(); 650 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 651 } 652 653 void VPRecipeBase::removeFromParent() { 654 assert(getParent() && "Recipe not in any VPBasicBlock"); 655 getParent()->getRecipeList().remove(getIterator()); 656 Parent = nullptr; 657 } 658 659 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 660 assert(getParent() && "Recipe not in any VPBasicBlock"); 661 return getParent()->getRecipeList().erase(getIterator()); 662 } 663 664 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 665 removeFromParent(); 666 insertAfter(InsertPos); 667 } 668 669 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 670 iplist<VPRecipeBase>::iterator I) { 671 removeFromParent(); 672 insertBefore(BB, I); 673 } 674 675 void VPInstruction::generateInstruction(VPTransformState &State, 676 unsigned Part) { 677 IRBuilderBase &Builder = State.Builder; 678 Builder.SetCurrentDebugLocation(DL); 679 680 if (Instruction::isBinaryOp(getOpcode())) { 681 Value *A = State.get(getOperand(0), Part); 682 Value *B = State.get(getOperand(1), Part); 683 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 684 State.set(this, V, Part); 685 return; 686 } 687 688 switch (getOpcode()) { 689 case VPInstruction::Not: { 690 Value *A = State.get(getOperand(0), Part); 691 Value *V = Builder.CreateNot(A); 692 State.set(this, V, Part); 693 break; 694 } 695 case VPInstruction::ICmpULE: { 696 Value *IV = State.get(getOperand(0), Part); 697 Value *TC = State.get(getOperand(1), Part); 698 Value *V = Builder.CreateICmpULE(IV, TC); 699 State.set(this, V, Part); 700 break; 701 } 702 case Instruction::Select: { 703 Value *Cond = State.get(getOperand(0), Part); 704 Value *Op1 = State.get(getOperand(1), Part); 705 Value *Op2 = State.get(getOperand(2), Part); 706 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 707 State.set(this, V, Part); 708 break; 709 } 710 case VPInstruction::ActiveLaneMask: { 711 // Get first lane of vector induction variable. 712 Value *VIVElem0 = State.get(getOperand(0), VPIteration(Part, 0)); 713 // Get the original loop tripcount. 714 Value *ScalarTC = State.get(getOperand(1), Part); 715 716 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 717 auto *PredTy = VectorType::get(Int1Ty, State.VF); 718 Instruction *Call = Builder.CreateIntrinsic( 719 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 720 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 721 State.set(this, Call, Part); 722 break; 723 } 724 case VPInstruction::FirstOrderRecurrenceSplice: { 725 // Generate code to combine the previous and current values in vector v3. 726 // 727 // vector.ph: 728 // v_init = vector(..., ..., ..., a[-1]) 729 // br vector.body 730 // 731 // vector.body 732 // i = phi [0, vector.ph], [i+4, vector.body] 733 // v1 = phi [v_init, vector.ph], [v2, vector.body] 734 // v2 = a[i, i+1, i+2, i+3]; 735 // v3 = vector(v1(3), v2(0, 1, 2)) 736 737 // For the first part, use the recurrence phi (v1), otherwise v2. 738 auto *V1 = State.get(getOperand(0), 0); 739 Value *PartMinus1 = Part == 0 ? V1 : State.get(getOperand(1), Part - 1); 740 if (!PartMinus1->getType()->isVectorTy()) { 741 State.set(this, PartMinus1, Part); 742 } else { 743 Value *V2 = State.get(getOperand(1), Part); 744 State.set(this, Builder.CreateVectorSplice(PartMinus1, V2, -1), Part); 745 } 746 break; 747 } 748 749 case VPInstruction::CanonicalIVIncrement: 750 case VPInstruction::CanonicalIVIncrementNUW: { 751 Value *Next = nullptr; 752 if (Part == 0) { 753 bool IsNUW = getOpcode() == VPInstruction::CanonicalIVIncrementNUW; 754 auto *Phi = State.get(getOperand(0), 0); 755 // The loop step is equal to the vectorization factor (num of SIMD 756 // elements) times the unroll factor (num of SIMD instructions). 757 Value *Step = 758 createStepForVF(Builder, Phi->getType(), State.VF, State.UF); 759 Next = Builder.CreateAdd(Phi, Step, "index.next", IsNUW, false); 760 } else { 761 Next = State.get(this, 0); 762 } 763 764 State.set(this, Next, Part); 765 break; 766 } 767 case VPInstruction::BranchOnCond: { 768 if (Part != 0) 769 break; 770 771 Value *Cond = State.get(getOperand(0), VPIteration(Part, 0)); 772 VPRegionBlock *ParentRegion = getParent()->getParent(); 773 VPBasicBlock *Header = ParentRegion->getEntryBasicBlock(); 774 775 // Replace the temporary unreachable terminator with a new conditional 776 // branch, hooking it up to backward destination for exiting blocks now and 777 // to forward destination(s) later when they are created. 778 BranchInst *CondBr = 779 Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), nullptr); 780 781 if (getParent()->isExiting()) 782 CondBr->setSuccessor(1, State.CFG.VPBB2IRBB[Header]); 783 784 CondBr->setSuccessor(0, nullptr); 785 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 786 break; 787 } 788 case VPInstruction::BranchOnCount: { 789 if (Part != 0) 790 break; 791 // First create the compare. 792 Value *IV = State.get(getOperand(0), Part); 793 Value *TC = State.get(getOperand(1), Part); 794 Value *Cond = Builder.CreateICmpEQ(IV, TC); 795 796 // Now create the branch. 797 auto *Plan = getParent()->getPlan(); 798 VPRegionBlock *TopRegion = Plan->getVectorLoopRegion(); 799 VPBasicBlock *Header = TopRegion->getEntry()->getEntryBasicBlock(); 800 801 // Replace the temporary unreachable terminator with a new conditional 802 // branch, hooking it up to backward destination (the header) now and to the 803 // forward destination (the exit/middle block) later when it is created. 804 // Note that CreateCondBr expects a valid BB as first argument, so we need 805 // to set it to nullptr later. 806 BranchInst *CondBr = Builder.CreateCondBr(Cond, Builder.GetInsertBlock(), 807 State.CFG.VPBB2IRBB[Header]); 808 CondBr->setSuccessor(0, nullptr); 809 Builder.GetInsertBlock()->getTerminator()->eraseFromParent(); 810 break; 811 } 812 default: 813 llvm_unreachable("Unsupported opcode for instruction"); 814 } 815 } 816 817 void VPInstruction::execute(VPTransformState &State) { 818 assert(!State.Instance && "VPInstruction executing an Instance"); 819 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 820 State.Builder.setFastMathFlags(FMF); 821 for (unsigned Part = 0; Part < State.UF; ++Part) 822 generateInstruction(State, Part); 823 } 824 825 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 826 void VPInstruction::dump() const { 827 VPSlotTracker SlotTracker(getParent()->getPlan()); 828 print(dbgs(), "", SlotTracker); 829 } 830 831 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 832 VPSlotTracker &SlotTracker) const { 833 O << Indent << "EMIT "; 834 835 if (hasResult()) { 836 printAsOperand(O, SlotTracker); 837 O << " = "; 838 } 839 840 switch (getOpcode()) { 841 case VPInstruction::Not: 842 O << "not"; 843 break; 844 case VPInstruction::ICmpULE: 845 O << "icmp ule"; 846 break; 847 case VPInstruction::SLPLoad: 848 O << "combined load"; 849 break; 850 case VPInstruction::SLPStore: 851 O << "combined store"; 852 break; 853 case VPInstruction::ActiveLaneMask: 854 O << "active lane mask"; 855 break; 856 case VPInstruction::FirstOrderRecurrenceSplice: 857 O << "first-order splice"; 858 break; 859 case VPInstruction::CanonicalIVIncrement: 860 O << "VF * UF + "; 861 break; 862 case VPInstruction::CanonicalIVIncrementNUW: 863 O << "VF * UF +(nuw) "; 864 break; 865 case VPInstruction::BranchOnCond: 866 O << "branch-on-cond"; 867 break; 868 case VPInstruction::BranchOnCount: 869 O << "branch-on-count "; 870 break; 871 default: 872 O << Instruction::getOpcodeName(getOpcode()); 873 } 874 875 O << FMF; 876 877 for (const VPValue *Operand : operands()) { 878 O << " "; 879 Operand->printAsOperand(O, SlotTracker); 880 } 881 882 if (DL) { 883 O << ", !dbg "; 884 DL.print(O); 885 } 886 } 887 #endif 888 889 void VPInstruction::setFastMathFlags(FastMathFlags FMFNew) { 890 // Make sure the VPInstruction is a floating-point operation. 891 assert((Opcode == Instruction::FAdd || Opcode == Instruction::FMul || 892 Opcode == Instruction::FNeg || Opcode == Instruction::FSub || 893 Opcode == Instruction::FDiv || Opcode == Instruction::FRem || 894 Opcode == Instruction::FCmp) && 895 "this op can't take fast-math flags"); 896 FMF = FMFNew; 897 } 898 899 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 900 Value *CanonicalIVStartValue, 901 VPTransformState &State) { 902 903 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 904 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 905 // Try to simplify BranchOnCount to 'BranchOnCond true' if TC <= VF * UF when 906 // preparing to execute the plan for the main vector loop. 907 if (!CanonicalIVStartValue && Term && 908 Term->getOpcode() == VPInstruction::BranchOnCount && 909 isa<ConstantInt>(TripCountV)) { 910 ConstantInt *C = cast<ConstantInt>(TripCountV); 911 uint64_t TCVal = C->getZExtValue(); 912 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 913 auto *BOC = 914 new VPInstruction(VPInstruction::BranchOnCond, 915 {getOrAddExternalDef(State.Builder.getTrue())}); 916 Term->eraseFromParent(); 917 ExitingVPBB->appendRecipe(BOC); 918 // TODO: Further simplifications are possible 919 // 1. Replace inductions with constants. 920 // 2. Replace vector loop region with VPBasicBlock. 921 } 922 } 923 924 // Check if the trip count is needed, and if so build it. 925 if (TripCount && TripCount->getNumUsers()) { 926 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 927 State.set(TripCount, TripCountV, Part); 928 } 929 930 // Check if the backedge taken count is needed, and if so build it. 931 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 932 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 933 auto *TCMO = Builder.CreateSub(TripCountV, 934 ConstantInt::get(TripCountV->getType(), 1), 935 "trip.count.minus.1"); 936 auto VF = State.VF; 937 Value *VTCMO = 938 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 939 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 940 State.set(BackedgeTakenCount, VTCMO, Part); 941 } 942 943 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 944 State.set(&VectorTripCount, VectorTripCountV, Part); 945 946 // When vectorizing the epilogue loop, the canonical induction start value 947 // needs to be changed from zero to the value after the main vector loop. 948 if (CanonicalIVStartValue) { 949 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 950 auto *IV = getCanonicalIV(); 951 assert(all_of(IV->users(), 952 [](const VPUser *U) { 953 if (isa<VPScalarIVStepsRecipe>(U)) 954 return true; 955 auto *VPI = cast<VPInstruction>(U); 956 return VPI->getOpcode() == 957 VPInstruction::CanonicalIVIncrement || 958 VPI->getOpcode() == 959 VPInstruction::CanonicalIVIncrementNUW; 960 }) && 961 "the canonical IV should only be used by its increments or " 962 "ScalarIVSteps when " 963 "resetting the start value"); 964 IV->setOperand(0, VPV); 965 } 966 } 967 968 /// Generate the code inside the preheader and body of the vectorized loop. 969 /// Assumes a single pre-header basic-block was created for this. Introduce 970 /// additional basic-blocks as needed, and fill them all. 971 void VPlan::execute(VPTransformState *State) { 972 // Set the reverse mapping from VPValues to Values for code generation. 973 for (auto &Entry : Value2VPValue) 974 State->VPValue2Value[Entry.second] = Entry.first; 975 976 // Initialize CFG state. 977 State->CFG.PrevVPBB = nullptr; 978 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 979 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 980 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 981 982 // Generate code in the loop pre-header and body. 983 for (VPBlockBase *Block : depth_first(Entry)) 984 Block->execute(State); 985 986 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 987 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 988 989 // Fix the latch value of canonical, reduction and first-order recurrences 990 // phis in the vector loop. 991 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 992 for (VPRecipeBase &R : Header->phis()) { 993 // Skip phi-like recipes that generate their backedege values themselves. 994 if (isa<VPWidenPHIRecipe>(&R)) 995 continue; 996 997 if (isa<VPWidenPointerInductionRecipe>(&R) || 998 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 999 PHINode *Phi = nullptr; 1000 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1001 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1002 } else { 1003 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1004 // TODO: Split off the case that all users of a pointer phi are scalar 1005 // from the VPWidenPointerInductionRecipe. 1006 if (WidenPhi->onlyScalarsGenerated(State->VF)) 1007 continue; 1008 1009 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1010 Phi = cast<PHINode>(GEP->getPointerOperand()); 1011 } 1012 1013 Phi->setIncomingBlock(1, VectorLatchBB); 1014 1015 // Move the last step to the end of the latch block. This ensures 1016 // consistent placement of all induction updates. 1017 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1018 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1019 continue; 1020 } 1021 1022 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1023 // For canonical IV, first-order recurrences and in-order reduction phis, 1024 // only a single part is generated, which provides the last part from the 1025 // previous iteration. For non-ordered reductions all UF parts are 1026 // generated. 1027 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 1028 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 1029 cast<VPReductionPHIRecipe>(PhiR)->isOrdered(); 1030 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1031 1032 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1033 Value *Phi = State->get(PhiR, Part); 1034 Value *Val = State->get(PhiR->getBackedgeValue(), 1035 SinglePartNeeded ? State->UF - 1 : Part); 1036 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1037 } 1038 } 1039 1040 // We do not attempt to preserve DT for outer loop vectorization currently. 1041 if (!EnableVPlanNativePath) { 1042 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 1043 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 1044 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 1045 State->CFG.ExitBB); 1046 } 1047 } 1048 1049 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1050 LLVM_DUMP_METHOD 1051 void VPlan::print(raw_ostream &O) const { 1052 VPSlotTracker SlotTracker(this); 1053 1054 O << "VPlan '" << Name << "' {"; 1055 1056 if (VectorTripCount.getNumUsers() > 0) { 1057 O << "\nLive-in "; 1058 VectorTripCount.printAsOperand(O, SlotTracker); 1059 O << " = vector-trip-count\n"; 1060 } 1061 1062 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1063 O << "\nLive-in "; 1064 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1065 O << " = backedge-taken count\n"; 1066 } 1067 1068 for (const VPBlockBase *Block : depth_first(getEntry())) { 1069 O << '\n'; 1070 Block->print(O, "", SlotTracker); 1071 } 1072 1073 if (!LiveOuts.empty()) 1074 O << "\n"; 1075 for (auto &KV : LiveOuts) { 1076 O << "Live-out "; 1077 KV.second->getPhi()->printAsOperand(O); 1078 O << " = "; 1079 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 1080 O << "\n"; 1081 } 1082 1083 O << "}\n"; 1084 } 1085 1086 LLVM_DUMP_METHOD 1087 void VPlan::printDOT(raw_ostream &O) const { 1088 VPlanPrinter Printer(O, *this); 1089 Printer.dump(); 1090 } 1091 1092 LLVM_DUMP_METHOD 1093 void VPlan::dump() const { print(dbgs()); } 1094 #endif 1095 1096 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1097 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1098 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1099 } 1100 1101 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 1102 BasicBlock *LoopLatchBB, 1103 BasicBlock *LoopExitBB) { 1104 // The vector body may be more than a single basic-block by this point. 1105 // Update the dominator tree information inside the vector body by propagating 1106 // it from header to latch, expecting only triangular control-flow, if any. 1107 BasicBlock *PostDomSucc = nullptr; 1108 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 1109 // Get the list of successors of this block. 1110 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 1111 assert(Succs.size() <= 2 && 1112 "Basic block in vector loop has more than 2 successors."); 1113 PostDomSucc = Succs[0]; 1114 if (Succs.size() == 1) { 1115 assert(PostDomSucc->getSinglePredecessor() && 1116 "PostDom successor has more than one predecessor."); 1117 DT->addNewBlock(PostDomSucc, BB); 1118 continue; 1119 } 1120 BasicBlock *InterimSucc = Succs[1]; 1121 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 1122 PostDomSucc = Succs[1]; 1123 InterimSucc = Succs[0]; 1124 } 1125 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 1126 "One successor of a basic block does not lead to the other."); 1127 assert(InterimSucc->getSinglePredecessor() && 1128 "Interim successor has more than one predecessor."); 1129 assert(PostDomSucc->hasNPredecessors(2) && 1130 "PostDom successor has more than two predecessors."); 1131 DT->addNewBlock(InterimSucc, BB); 1132 DT->addNewBlock(PostDomSucc, BB); 1133 } 1134 // Latch block is a new dominator for the loop exit. 1135 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 1136 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 1137 } 1138 1139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1140 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1141 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1142 Twine(getOrCreateBID(Block)); 1143 } 1144 1145 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1146 const std::string &Name = Block->getName(); 1147 if (!Name.empty()) 1148 return Name; 1149 return "VPB" + Twine(getOrCreateBID(Block)); 1150 } 1151 1152 void VPlanPrinter::dump() { 1153 Depth = 1; 1154 bumpIndent(0); 1155 OS << "digraph VPlan {\n"; 1156 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1157 if (!Plan.getName().empty()) 1158 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1159 if (Plan.BackedgeTakenCount) { 1160 OS << ", where:\\n"; 1161 Plan.BackedgeTakenCount->print(OS, SlotTracker); 1162 OS << " := BackedgeTakenCount"; 1163 } 1164 OS << "\"]\n"; 1165 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1166 OS << "edge [fontname=Courier, fontsize=30]\n"; 1167 OS << "compound=true\n"; 1168 1169 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 1170 dumpBlock(Block); 1171 1172 OS << "}\n"; 1173 } 1174 1175 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1176 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1177 dumpBasicBlock(BasicBlock); 1178 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1179 dumpRegion(Region); 1180 else 1181 llvm_unreachable("Unsupported kind of VPBlock."); 1182 } 1183 1184 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1185 bool Hidden, const Twine &Label) { 1186 // Due to "dot" we print an edge between two regions as an edge between the 1187 // exiting basic block and the entry basic of the respective regions. 1188 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1189 const VPBlockBase *Head = To->getEntryBasicBlock(); 1190 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1191 OS << " [ label=\"" << Label << '\"'; 1192 if (Tail != From) 1193 OS << " ltail=" << getUID(From); 1194 if (Head != To) 1195 OS << " lhead=" << getUID(To); 1196 if (Hidden) 1197 OS << "; splines=none"; 1198 OS << "]\n"; 1199 } 1200 1201 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1202 auto &Successors = Block->getSuccessors(); 1203 if (Successors.size() == 1) 1204 drawEdge(Block, Successors.front(), false, ""); 1205 else if (Successors.size() == 2) { 1206 drawEdge(Block, Successors.front(), false, "T"); 1207 drawEdge(Block, Successors.back(), false, "F"); 1208 } else { 1209 unsigned SuccessorNumber = 0; 1210 for (auto *Successor : Successors) 1211 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1212 } 1213 } 1214 1215 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1216 // Implement dot-formatted dump by performing plain-text dump into the 1217 // temporary storage followed by some post-processing. 1218 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1219 bumpIndent(1); 1220 std::string Str; 1221 raw_string_ostream SS(Str); 1222 // Use no indentation as we need to wrap the lines into quotes ourselves. 1223 BasicBlock->print(SS, "", SlotTracker); 1224 1225 // We need to process each line of the output separately, so split 1226 // single-string plain-text dump. 1227 SmallVector<StringRef, 0> Lines; 1228 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1229 1230 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1231 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1232 }; 1233 1234 // Don't need the "+" after the last line. 1235 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1236 EmitLine(Line, " +\n"); 1237 EmitLine(Lines.back(), "\n"); 1238 1239 bumpIndent(-1); 1240 OS << Indent << "]\n"; 1241 1242 dumpEdges(BasicBlock); 1243 } 1244 1245 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1246 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1247 bumpIndent(1); 1248 OS << Indent << "fontname=Courier\n" 1249 << Indent << "label=\"" 1250 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1251 << DOT::EscapeString(Region->getName()) << "\"\n"; 1252 // Dump the blocks of the region. 1253 assert(Region->getEntry() && "Region contains no inner blocks."); 1254 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 1255 dumpBlock(Block); 1256 bumpIndent(-1); 1257 OS << Indent << "}\n"; 1258 dumpEdges(Region); 1259 } 1260 1261 void VPlanIngredient::print(raw_ostream &O) const { 1262 if (auto *Inst = dyn_cast<Instruction>(V)) { 1263 if (!Inst->getType()->isVoidTy()) { 1264 Inst->printAsOperand(O, false); 1265 O << " = "; 1266 } 1267 O << Inst->getOpcodeName() << " "; 1268 unsigned E = Inst->getNumOperands(); 1269 if (E > 0) { 1270 Inst->getOperand(0)->printAsOperand(O, false); 1271 for (unsigned I = 1; I < E; ++I) 1272 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1273 } 1274 } else // !Inst 1275 V->printAsOperand(O, false); 1276 } 1277 1278 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 1279 VPSlotTracker &SlotTracker) const { 1280 O << Indent << "WIDEN-CALL "; 1281 1282 auto *CI = cast<CallInst>(getUnderlyingInstr()); 1283 if (CI->getType()->isVoidTy()) 1284 O << "void "; 1285 else { 1286 printAsOperand(O, SlotTracker); 1287 O << " = "; 1288 } 1289 1290 O << "call @" << CI->getCalledFunction()->getName() << "("; 1291 printOperands(O, SlotTracker); 1292 O << ")"; 1293 } 1294 1295 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 1296 VPSlotTracker &SlotTracker) const { 1297 O << Indent << "WIDEN-SELECT "; 1298 printAsOperand(O, SlotTracker); 1299 O << " = select "; 1300 getOperand(0)->printAsOperand(O, SlotTracker); 1301 O << ", "; 1302 getOperand(1)->printAsOperand(O, SlotTracker); 1303 O << ", "; 1304 getOperand(2)->printAsOperand(O, SlotTracker); 1305 O << (InvariantCond ? " (condition is loop invariant)" : ""); 1306 } 1307 1308 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 1309 VPSlotTracker &SlotTracker) const { 1310 O << Indent << "WIDEN "; 1311 printAsOperand(O, SlotTracker); 1312 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 1313 printOperands(O, SlotTracker); 1314 } 1315 1316 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1317 VPSlotTracker &SlotTracker) const { 1318 O << Indent << "WIDEN-INDUCTION"; 1319 if (getTruncInst()) { 1320 O << "\\l\""; 1321 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 1322 O << " +\n" << Indent << "\" "; 1323 getVPValue(0)->printAsOperand(O, SlotTracker); 1324 } else 1325 O << " " << VPlanIngredient(IV); 1326 1327 O << ", "; 1328 getStepValue()->printAsOperand(O, SlotTracker); 1329 } 1330 1331 void VPWidenPointerInductionRecipe::print(raw_ostream &O, const Twine &Indent, 1332 VPSlotTracker &SlotTracker) const { 1333 O << Indent << "EMIT "; 1334 printAsOperand(O, SlotTracker); 1335 O << " = WIDEN-POINTER-INDUCTION "; 1336 getStartValue()->printAsOperand(O, SlotTracker); 1337 O << ", " << *IndDesc.getStep(); 1338 } 1339 1340 #endif 1341 1342 bool VPWidenIntOrFpInductionRecipe::isCanonical() const { 1343 auto *StartC = dyn_cast<ConstantInt>(getStartValue()->getLiveInIRValue()); 1344 auto *StepC = dyn_cast<SCEVConstant>(getInductionDescriptor().getStep()); 1345 return StartC && StartC->isZero() && StepC && StepC->isOne(); 1346 } 1347 1348 VPCanonicalIVPHIRecipe *VPScalarIVStepsRecipe::getCanonicalIV() const { 1349 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)); 1350 } 1351 1352 bool VPScalarIVStepsRecipe::isCanonical() const { 1353 auto *CanIV = getCanonicalIV(); 1354 // The start value of the steps-recipe must match the start value of the 1355 // canonical induction and it must step by 1. 1356 if (CanIV->getStartValue() != getStartValue()) 1357 return false; 1358 auto *StepVPV = getStepValue(); 1359 if (StepVPV->getDef()) 1360 return false; 1361 auto *StepC = dyn_cast_or_null<ConstantInt>(StepVPV->getLiveInIRValue()); 1362 return StepC && StepC->isOne(); 1363 } 1364 1365 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1366 void VPScalarIVStepsRecipe::print(raw_ostream &O, const Twine &Indent, 1367 VPSlotTracker &SlotTracker) const { 1368 O << Indent; 1369 printAsOperand(O, SlotTracker); 1370 O << Indent << "= SCALAR-STEPS "; 1371 printOperands(O, SlotTracker); 1372 } 1373 1374 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 1375 VPSlotTracker &SlotTracker) const { 1376 O << Indent << "WIDEN-GEP "; 1377 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 1378 size_t IndicesNumber = IsIndexLoopInvariant.size(); 1379 for (size_t I = 0; I < IndicesNumber; ++I) 1380 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 1381 1382 O << " "; 1383 printAsOperand(O, SlotTracker); 1384 O << " = getelementptr "; 1385 printOperands(O, SlotTracker); 1386 } 1387 1388 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1389 VPSlotTracker &SlotTracker) const { 1390 O << Indent << "WIDEN-PHI "; 1391 1392 auto *OriginalPhi = cast<PHINode>(getUnderlyingValue()); 1393 // Unless all incoming values are modeled in VPlan print the original PHI 1394 // directly. 1395 // TODO: Remove once all VPWidenPHIRecipe instances keep all relevant incoming 1396 // values as VPValues. 1397 if (getNumOperands() != OriginalPhi->getNumOperands()) { 1398 O << VPlanIngredient(OriginalPhi); 1399 return; 1400 } 1401 1402 printAsOperand(O, SlotTracker); 1403 O << " = phi "; 1404 printOperands(O, SlotTracker); 1405 } 1406 1407 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 1408 VPSlotTracker &SlotTracker) const { 1409 O << Indent << "BLEND "; 1410 Phi->printAsOperand(O, false); 1411 O << " ="; 1412 if (getNumIncomingValues() == 1) { 1413 // Not a User of any mask: not really blending, this is a 1414 // single-predecessor phi. 1415 O << " "; 1416 getIncomingValue(0)->printAsOperand(O, SlotTracker); 1417 } else { 1418 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 1419 O << " "; 1420 getIncomingValue(I)->printAsOperand(O, SlotTracker); 1421 O << "/"; 1422 getMask(I)->printAsOperand(O, SlotTracker); 1423 } 1424 } 1425 } 1426 1427 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 1428 VPSlotTracker &SlotTracker) const { 1429 O << Indent << "REDUCE "; 1430 printAsOperand(O, SlotTracker); 1431 O << " = "; 1432 getChainOp()->printAsOperand(O, SlotTracker); 1433 O << " +"; 1434 if (isa<FPMathOperator>(getUnderlyingInstr())) 1435 O << getUnderlyingInstr()->getFastMathFlags(); 1436 O << " reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) << " ("; 1437 getVecOp()->printAsOperand(O, SlotTracker); 1438 if (getCondOp()) { 1439 O << ", "; 1440 getCondOp()->printAsOperand(O, SlotTracker); 1441 } 1442 O << ")"; 1443 if (RdxDesc->IntermediateStore) 1444 O << " (with final reduction value stored in invariant address sank " 1445 "outside of loop)"; 1446 } 1447 1448 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 1449 VPSlotTracker &SlotTracker) const { 1450 O << Indent << (IsUniform ? "CLONE " : "REPLICATE "); 1451 1452 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 1453 printAsOperand(O, SlotTracker); 1454 O << " = "; 1455 } 1456 if (auto *CB = dyn_cast<CallBase>(getUnderlyingInstr())) { 1457 O << "call @" << CB->getCalledFunction()->getName() << "("; 1458 interleaveComma(make_range(op_begin(), op_begin() + (getNumOperands() - 1)), 1459 O, [&O, &SlotTracker](VPValue *Op) { 1460 Op->printAsOperand(O, SlotTracker); 1461 }); 1462 O << ")"; 1463 } else { 1464 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 1465 printOperands(O, SlotTracker); 1466 } 1467 1468 if (AlsoPack) 1469 O << " (S->V)"; 1470 } 1471 1472 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1473 VPSlotTracker &SlotTracker) const { 1474 O << Indent << "PHI-PREDICATED-INSTRUCTION "; 1475 printAsOperand(O, SlotTracker); 1476 O << " = "; 1477 printOperands(O, SlotTracker); 1478 } 1479 1480 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 1481 VPSlotTracker &SlotTracker) const { 1482 O << Indent << "WIDEN "; 1483 1484 if (!isStore()) { 1485 getVPSingleValue()->printAsOperand(O, SlotTracker); 1486 O << " = "; 1487 } 1488 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 1489 1490 printOperands(O, SlotTracker); 1491 } 1492 #endif 1493 1494 void VPCanonicalIVPHIRecipe::execute(VPTransformState &State) { 1495 Value *Start = getStartValue()->getLiveInIRValue(); 1496 PHINode *EntryPart = PHINode::Create( 1497 Start->getType(), 2, "index", &*State.CFG.PrevBB->getFirstInsertionPt()); 1498 1499 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1500 EntryPart->addIncoming(Start, VectorPH); 1501 EntryPart->setDebugLoc(DL); 1502 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1503 State.set(this, EntryPart, Part); 1504 } 1505 1506 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1507 void VPCanonicalIVPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1508 VPSlotTracker &SlotTracker) const { 1509 O << Indent << "EMIT "; 1510 printAsOperand(O, SlotTracker); 1511 O << " = CANONICAL-INDUCTION"; 1512 } 1513 #endif 1514 1515 bool VPWidenPointerInductionRecipe::onlyScalarsGenerated(ElementCount VF) { 1516 bool IsUniform = vputils::onlyFirstLaneUsed(this); 1517 return all_of(users(), 1518 [&](const VPUser *U) { return U->usesScalars(this); }) && 1519 (IsUniform || !VF.isScalable()); 1520 } 1521 1522 void VPExpandSCEVRecipe::execute(VPTransformState &State) { 1523 assert(!State.Instance && "cannot be used in per-lane"); 1524 const DataLayout &DL = State.CFG.PrevBB->getModule()->getDataLayout(); 1525 SCEVExpander Exp(SE, DL, "induction"); 1526 1527 Value *Res = Exp.expandCodeFor(Expr, Expr->getType(), 1528 &*State.Builder.GetInsertPoint()); 1529 1530 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 1531 State.set(this, Res, Part); 1532 } 1533 1534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1535 void VPExpandSCEVRecipe::print(raw_ostream &O, const Twine &Indent, 1536 VPSlotTracker &SlotTracker) const { 1537 O << Indent << "EMIT "; 1538 getVPSingleValue()->printAsOperand(O, SlotTracker); 1539 O << " = EXPAND SCEV " << *Expr; 1540 } 1541 #endif 1542 1543 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 1544 Value *CanonicalIV = State.get(getOperand(0), 0); 1545 Type *STy = CanonicalIV->getType(); 1546 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 1547 ElementCount VF = State.VF; 1548 Value *VStart = VF.isScalar() 1549 ? CanonicalIV 1550 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 1551 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1552 Value *VStep = createStepForVF(Builder, STy, VF, Part); 1553 if (VF.isVector()) { 1554 VStep = Builder.CreateVectorSplat(VF, VStep); 1555 VStep = Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->getType())); 1556 } 1557 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1558 State.set(this, CanonicalVectorIV, Part); 1559 } 1560 } 1561 1562 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1563 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1564 VPSlotTracker &SlotTracker) const { 1565 O << Indent << "EMIT "; 1566 printAsOperand(O, SlotTracker); 1567 O << " = WIDEN-CANONICAL-INDUCTION "; 1568 printOperands(O, SlotTracker); 1569 } 1570 #endif 1571 1572 void VPFirstOrderRecurrencePHIRecipe::execute(VPTransformState &State) { 1573 auto &Builder = State.Builder; 1574 // Create a vector from the initial value. 1575 auto *VectorInit = getStartValue()->getLiveInIRValue(); 1576 1577 Type *VecTy = State.VF.isScalar() 1578 ? VectorInit->getType() 1579 : VectorType::get(VectorInit->getType(), State.VF); 1580 1581 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1582 if (State.VF.isVector()) { 1583 auto *IdxTy = Builder.getInt32Ty(); 1584 auto *One = ConstantInt::get(IdxTy, 1); 1585 IRBuilder<>::InsertPointGuard Guard(Builder); 1586 Builder.SetInsertPoint(VectorPH->getTerminator()); 1587 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, State.VF); 1588 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 1589 VectorInit = Builder.CreateInsertElement( 1590 PoisonValue::get(VecTy), VectorInit, LastIdx, "vector.recur.init"); 1591 } 1592 1593 // Create a phi node for the new recurrence. 1594 PHINode *EntryPart = PHINode::Create( 1595 VecTy, 2, "vector.recur", &*State.CFG.PrevBB->getFirstInsertionPt()); 1596 EntryPart->addIncoming(VectorInit, VectorPH); 1597 State.set(this, EntryPart, 0); 1598 } 1599 1600 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1601 void VPFirstOrderRecurrencePHIRecipe::print(raw_ostream &O, const Twine &Indent, 1602 VPSlotTracker &SlotTracker) const { 1603 O << Indent << "FIRST-ORDER-RECURRENCE-PHI "; 1604 printAsOperand(O, SlotTracker); 1605 O << " = phi "; 1606 printOperands(O, SlotTracker); 1607 } 1608 #endif 1609 1610 void VPReductionPHIRecipe::execute(VPTransformState &State) { 1611 PHINode *PN = cast<PHINode>(getUnderlyingValue()); 1612 auto &Builder = State.Builder; 1613 1614 // In order to support recurrences we need to be able to vectorize Phi nodes. 1615 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 1616 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 1617 // this value when we vectorize all of the instructions that use the PHI. 1618 bool ScalarPHI = State.VF.isScalar() || IsInLoop; 1619 Type *VecTy = 1620 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 1621 1622 BasicBlock *HeaderBB = State.CFG.PrevBB; 1623 assert(State.CurrentVectorLoop->getHeader() == HeaderBB && 1624 "recipe must be in the vector loop header"); 1625 unsigned LastPartForNewPhi = isOrdered() ? 1 : State.UF; 1626 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1627 Value *EntryPart = 1628 PHINode::Create(VecTy, 2, "vec.phi", &*HeaderBB->getFirstInsertionPt()); 1629 State.set(this, EntryPart, Part); 1630 } 1631 1632 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 1633 1634 // Reductions do not have to start at zero. They can start with 1635 // any loop invariant values. 1636 VPValue *StartVPV = getStartValue(); 1637 Value *StartV = StartVPV->getLiveInIRValue(); 1638 1639 Value *Iden = nullptr; 1640 RecurKind RK = RdxDesc.getRecurrenceKind(); 1641 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK) || 1642 RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) { 1643 // MinMax reduction have the start value as their identify. 1644 if (ScalarPHI) { 1645 Iden = StartV; 1646 } else { 1647 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1648 Builder.SetInsertPoint(VectorPH->getTerminator()); 1649 StartV = Iden = 1650 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 1651 } 1652 } else { 1653 Iden = RdxDesc.getRecurrenceIdentity(RK, VecTy->getScalarType(), 1654 RdxDesc.getFastMathFlags()); 1655 1656 if (!ScalarPHI) { 1657 Iden = Builder.CreateVectorSplat(State.VF, Iden); 1658 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 1659 Builder.SetInsertPoint(VectorPH->getTerminator()); 1660 Constant *Zero = Builder.getInt32(0); 1661 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 1662 } 1663 } 1664 1665 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1666 Value *EntryPart = State.get(this, Part); 1667 // Make sure to add the reduction start value only to the 1668 // first unroll part. 1669 Value *StartVal = (Part == 0) ? StartV : Iden; 1670 cast<PHINode>(EntryPart)->addIncoming(StartVal, VectorPH); 1671 } 1672 } 1673 1674 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1675 void VPReductionPHIRecipe::print(raw_ostream &O, const Twine &Indent, 1676 VPSlotTracker &SlotTracker) const { 1677 O << Indent << "WIDEN-REDUCTION-PHI "; 1678 1679 printAsOperand(O, SlotTracker); 1680 O << " = phi "; 1681 printOperands(O, SlotTracker); 1682 } 1683 #endif 1684 1685 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1686 1687 void VPValue::replaceAllUsesWith(VPValue *New) { 1688 for (unsigned J = 0; J < getNumUsers();) { 1689 VPUser *User = Users[J]; 1690 unsigned NumUsers = getNumUsers(); 1691 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1692 if (User->getOperand(I) == this) 1693 User->setOperand(I, New); 1694 // If a user got removed after updating the current user, the next user to 1695 // update will be moved to the current position, so we only need to 1696 // increment the index if the number of users did not change. 1697 if (NumUsers == getNumUsers()) 1698 J++; 1699 } 1700 } 1701 1702 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1703 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1704 if (const Value *UV = getUnderlyingValue()) { 1705 OS << "ir<"; 1706 UV->printAsOperand(OS, false); 1707 OS << ">"; 1708 return; 1709 } 1710 1711 unsigned Slot = Tracker.getSlot(this); 1712 if (Slot == unsigned(-1)) 1713 OS << "<badref>"; 1714 else 1715 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1716 } 1717 1718 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1719 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1720 Op->printAsOperand(O, SlotTracker); 1721 }); 1722 } 1723 #endif 1724 1725 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1726 Old2NewTy &Old2New, 1727 InterleavedAccessInfo &IAI) { 1728 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1729 for (VPBlockBase *Base : RPOT) { 1730 visitBlock(Base, Old2New, IAI); 1731 } 1732 } 1733 1734 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1735 InterleavedAccessInfo &IAI) { 1736 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1737 for (VPRecipeBase &VPI : *VPBB) { 1738 if (isa<VPHeaderPHIRecipe>(&VPI)) 1739 continue; 1740 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1741 auto *VPInst = cast<VPInstruction>(&VPI); 1742 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1743 auto *IG = IAI.getInterleaveGroup(Inst); 1744 if (!IG) 1745 continue; 1746 1747 auto NewIGIter = Old2New.find(IG); 1748 if (NewIGIter == Old2New.end()) 1749 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1750 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1751 1752 if (Inst == IG->getInsertPos()) 1753 Old2New[IG]->setInsertPos(VPInst); 1754 1755 InterleaveGroupMap[VPInst] = Old2New[IG]; 1756 InterleaveGroupMap[VPInst]->insertMember( 1757 VPInst, IG->getIndex(Inst), 1758 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1759 : IG->getFactor())); 1760 } 1761 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1762 visitRegion(Region, Old2New, IAI); 1763 else 1764 llvm_unreachable("Unsupported kind of VPBlock."); 1765 } 1766 1767 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1768 InterleavedAccessInfo &IAI) { 1769 Old2NewTy Old2New; 1770 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1771 } 1772 1773 void VPSlotTracker::assignSlot(const VPValue *V) { 1774 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1775 Slots[V] = NextSlot++; 1776 } 1777 1778 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1779 1780 for (const auto &P : Plan.VPExternalDefs) 1781 assignSlot(P.second); 1782 1783 assignSlot(&Plan.VectorTripCount); 1784 if (Plan.BackedgeTakenCount) 1785 assignSlot(Plan.BackedgeTakenCount); 1786 1787 ReversePostOrderTraversal< 1788 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1789 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1790 Plan.getEntry())); 1791 for (const VPBasicBlock *VPBB : 1792 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1793 for (const VPRecipeBase &Recipe : *VPBB) 1794 for (VPValue *Def : Recipe.definedValues()) 1795 assignSlot(Def); 1796 } 1797 1798 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1799 return all_of(Def->users(), 1800 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1801 } 1802 1803 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1804 ScalarEvolution &SE) { 1805 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1806 return Plan.getOrAddExternalDef(E->getValue()); 1807 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1808 return Plan.getOrAddExternalDef(E->getValue()); 1809 1810 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1811 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1812 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1813 return Step; 1814 } 1815