xref: /llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision e42e5263bd5dd8fb8dd95d5081231f7cf4b82b6f)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanDominatorTree.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/IVDescriptors.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include <cassert>
44 #include <iterator>
45 #include <string>
46 #include <vector>
47 
48 using namespace llvm;
49 extern cl::opt<bool> EnableVPlanNativePath;
50 
51 #define DEBUG_TYPE "vplan"
52 
53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
54   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
55   VPSlotTracker SlotTracker(
56       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
57   V.print(OS, SlotTracker);
58   return OS;
59 }
60 
61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
62     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
63   if (Def)
64     Def->addDefinedValue(this);
65 }
66 
67 VPValue::~VPValue() {
68   assert(Users.empty() && "trying to delete a VPValue with remaining users");
69   if (Def)
70     Def->removeDefinedValue(this);
71 }
72 
73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
74   if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this))
75     Instr->print(OS, SlotTracker);
76   else
77     printAsOperand(OS, SlotTracker);
78 }
79 
80 void VPValue::dump() const {
81   const VPInstruction *Instr = dyn_cast<VPInstruction>(this);
82   VPSlotTracker SlotTracker(
83       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
84   print(dbgs(), SlotTracker);
85   dbgs() << "\n";
86 }
87 
88 void VPRecipeBase::dump() const {
89   VPSlotTracker SlotTracker(nullptr);
90   print(dbgs(), "", SlotTracker);
91   dbgs() << "\n";
92 }
93 
94 VPUser *VPRecipeBase::toVPUser() {
95   if (auto *U = dyn_cast<VPInstruction>(this))
96     return U;
97   if (auto *U = dyn_cast<VPWidenRecipe>(this))
98     return U;
99   if (auto *U = dyn_cast<VPWidenCallRecipe>(this))
100     return U;
101   if (auto *U = dyn_cast<VPWidenSelectRecipe>(this))
102     return U;
103   if (auto *U = dyn_cast<VPWidenGEPRecipe>(this))
104     return U;
105   if (auto *U = dyn_cast<VPBlendRecipe>(this))
106     return U;
107   if (auto *U = dyn_cast<VPInterleaveRecipe>(this))
108     return U;
109   if (auto *U = dyn_cast<VPReplicateRecipe>(this))
110     return U;
111   if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this))
112     return U;
113   if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this))
114     return U;
115   if (auto *U = dyn_cast<VPReductionRecipe>(this))
116     return U;
117   if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this))
118     return U;
119   return nullptr;
120 }
121 
122 VPValue *VPRecipeBase::toVPValue() {
123   if (auto *V = dyn_cast<VPInstruction>(this))
124     return V;
125   if (auto *V = dyn_cast<VPReductionRecipe>(this))
126     return V;
127   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) {
128     if (!V->isStore())
129       return V->getVPValue();
130     else
131       return nullptr;
132   }
133   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
134     return V;
135   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
136     return V;
137   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
138     return V;
139   if (auto *V = dyn_cast<VPWidenRecipe>(this))
140     return V;
141   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
142     return V;
143   return nullptr;
144 }
145 
146 const VPValue *VPRecipeBase::toVPValue() const {
147   if (auto *V = dyn_cast<VPInstruction>(this))
148     return V;
149   if (auto *V = dyn_cast<VPReductionRecipe>(this))
150     return V;
151   if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) {
152     if (!V->isStore())
153       return V->getVPValue();
154     else
155       return nullptr;
156   }
157   if (auto *V = dyn_cast<VPWidenCallRecipe>(this))
158     return V;
159   if (auto *V = dyn_cast<VPWidenSelectRecipe>(this))
160     return V;
161   if (auto *V = dyn_cast<VPWidenGEPRecipe>(this))
162     return V;
163   if (auto *V = dyn_cast<VPWidenRecipe>(this))
164     return V;
165   if (auto *V = dyn_cast<VPReplicateRecipe>(this))
166     return V;
167   return nullptr;
168 }
169 
170 // Get the top-most entry block of \p Start. This is the entry block of the
171 // containing VPlan. This function is templated to support both const and non-const blocks
172 template <typename T> static T *getPlanEntry(T *Start) {
173   T *Next = Start;
174   T *Current = Start;
175   while ((Next = Next->getParent()))
176     Current = Next;
177 
178   SmallSetVector<T *, 8> WorkList;
179   WorkList.insert(Current);
180 
181   for (unsigned i = 0; i < WorkList.size(); i++) {
182     T *Current = WorkList[i];
183     if (Current->getNumPredecessors() == 0)
184       return Current;
185     auto &Predecessors = Current->getPredecessors();
186     WorkList.insert(Predecessors.begin(), Predecessors.end());
187   }
188 
189   llvm_unreachable("VPlan without any entry node without predecessors");
190 }
191 
192 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
193 
194 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
195 
196 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
197 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
198   const VPBlockBase *Block = this;
199   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
200     Block = Region->getEntry();
201   return cast<VPBasicBlock>(Block);
202 }
203 
204 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
205   VPBlockBase *Block = this;
206   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
207     Block = Region->getEntry();
208   return cast<VPBasicBlock>(Block);
209 }
210 
211 void VPBlockBase::setPlan(VPlan *ParentPlan) {
212   assert(ParentPlan->getEntry() == this &&
213          "Can only set plan on its entry block.");
214   Plan = ParentPlan;
215 }
216 
217 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
218 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
219   const VPBlockBase *Block = this;
220   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
221     Block = Region->getExit();
222   return cast<VPBasicBlock>(Block);
223 }
224 
225 VPBasicBlock *VPBlockBase::getExitBasicBlock() {
226   VPBlockBase *Block = this;
227   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
228     Block = Region->getExit();
229   return cast<VPBasicBlock>(Block);
230 }
231 
232 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
233   if (!Successors.empty() || !Parent)
234     return this;
235   assert(Parent->getExit() == this &&
236          "Block w/o successors not the exit of its parent.");
237   return Parent->getEnclosingBlockWithSuccessors();
238 }
239 
240 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
241   if (!Predecessors.empty() || !Parent)
242     return this;
243   assert(Parent->getEntry() == this &&
244          "Block w/o predecessors not the entry of its parent.");
245   return Parent->getEnclosingBlockWithPredecessors();
246 }
247 
248 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
249   SmallVector<VPBlockBase *, 8> Blocks;
250 
251   for (VPBlockBase *Block : depth_first(Entry))
252     Blocks.push_back(Block);
253 
254   for (VPBlockBase *Block : Blocks)
255     delete Block;
256 }
257 
258 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
259   iterator It = begin();
260   while (It != end() && (isa<VPWidenPHIRecipe>(&*It) ||
261                          isa<VPWidenIntOrFpInductionRecipe>(&*It) ||
262                          isa<VPPredInstPHIRecipe>(&*It) ||
263                          isa<VPWidenCanonicalIVRecipe>(&*It)))
264     It++;
265   return It;
266 }
267 
268 BasicBlock *
269 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
270   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
271   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
272   BasicBlock *PrevBB = CFG.PrevBB;
273   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
274                                          PrevBB->getParent(), CFG.LastBB);
275   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
276 
277   // Hook up the new basic block to its predecessors.
278   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
279     VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
280     auto &PredVPSuccessors = PredVPBB->getSuccessors();
281     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
282 
283     // In outer loop vectorization scenario, the predecessor BBlock may not yet
284     // be visited(backedge). Mark the VPBasicBlock for fixup at the end of
285     // vectorization. We do not encounter this case in inner loop vectorization
286     // as we start out by building a loop skeleton with the vector loop header
287     // and latch blocks. As a result, we never enter this function for the
288     // header block in the non VPlan-native path.
289     if (!PredBB) {
290       assert(EnableVPlanNativePath &&
291              "Unexpected null predecessor in non VPlan-native path");
292       CFG.VPBBsToFix.push_back(PredVPBB);
293       continue;
294     }
295 
296     assert(PredBB && "Predecessor basic-block not found building successor.");
297     auto *PredBBTerminator = PredBB->getTerminator();
298     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
299     if (isa<UnreachableInst>(PredBBTerminator)) {
300       assert(PredVPSuccessors.size() == 1 &&
301              "Predecessor ending w/o branch must have single successor.");
302       PredBBTerminator->eraseFromParent();
303       BranchInst::Create(NewBB, PredBB);
304     } else {
305       assert(PredVPSuccessors.size() == 2 &&
306              "Predecessor ending with branch must have two successors.");
307       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
308       assert(!PredBBTerminator->getSuccessor(idx) &&
309              "Trying to reset an existing successor block.");
310       PredBBTerminator->setSuccessor(idx, NewBB);
311     }
312   }
313   return NewBB;
314 }
315 
316 void VPBasicBlock::execute(VPTransformState *State) {
317   bool Replica = State->Instance &&
318                  !(State->Instance->Part == 0 && State->Instance->Lane == 0);
319   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
320   VPBlockBase *SingleHPred = nullptr;
321   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
322 
323   // 1. Create an IR basic block, or reuse the last one if possible.
324   // The last IR basic block is reused, as an optimization, in three cases:
325   // A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
326   // B. when the current VPBB has a single (hierarchical) predecessor which
327   //    is PrevVPBB and the latter has a single (hierarchical) successor; and
328   // C. when the current VPBB is an entry of a region replica - where PrevVPBB
329   //    is the exit of this region from a previous instance, or the predecessor
330   //    of this region.
331   if (PrevVPBB && /* A */
332       !((SingleHPred = getSingleHierarchicalPredecessor()) &&
333         SingleHPred->getExitBasicBlock() == PrevVPBB &&
334         PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
335       !(Replica && getPredecessors().empty())) {       /* C */
336     NewBB = createEmptyBasicBlock(State->CFG);
337     State->Builder.SetInsertPoint(NewBB);
338     // Temporarily terminate with unreachable until CFG is rewired.
339     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
340     State->Builder.SetInsertPoint(Terminator);
341     // Register NewBB in its loop. In innermost loops its the same for all BB's.
342     Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
343     L->addBasicBlockToLoop(NewBB, *State->LI);
344     State->CFG.PrevBB = NewBB;
345   }
346 
347   // 2. Fill the IR basic block with IR instructions.
348   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
349                     << " in BB:" << NewBB->getName() << '\n');
350 
351   State->CFG.VPBB2IRBB[this] = NewBB;
352   State->CFG.PrevVPBB = this;
353 
354   for (VPRecipeBase &Recipe : Recipes)
355     Recipe.execute(*State);
356 
357   VPValue *CBV;
358   if (EnableVPlanNativePath && (CBV = getCondBit())) {
359     Value *IRCBV = CBV->getUnderlyingValue();
360     assert(IRCBV && "Unexpected null underlying value for condition bit");
361 
362     // Condition bit value in a VPBasicBlock is used as the branch selector. In
363     // the VPlan-native path case, since all branches are uniform we generate a
364     // branch instruction using the condition value from vector lane 0 and dummy
365     // successors. The successors are fixed later when the successor blocks are
366     // visited.
367     Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0);
368     NewCond = State->Builder.CreateExtractElement(NewCond,
369                                                   State->Builder.getInt32(0));
370 
371     // Replace the temporary unreachable terminator with the new conditional
372     // branch.
373     auto *CurrentTerminator = NewBB->getTerminator();
374     assert(isa<UnreachableInst>(CurrentTerminator) &&
375            "Expected to replace unreachable terminator with conditional "
376            "branch.");
377     auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond);
378     CondBr->setSuccessor(0, nullptr);
379     ReplaceInstWithInst(CurrentTerminator, CondBr);
380   }
381 
382   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
383 }
384 
385 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
386   for (VPRecipeBase &R : Recipes) {
387     if (auto *VPV = R.toVPValue())
388       VPV->replaceAllUsesWith(NewValue);
389 
390     if (auto *User = R.toVPUser())
391       for (unsigned I = 0, E = User->getNumOperands(); I != E; I++)
392         User->setOperand(I, NewValue);
393   }
394 }
395 
396 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
397   for (VPBlockBase *Block : depth_first(Entry))
398     // Drop all references in VPBasicBlocks and replace all uses with
399     // DummyValue.
400     Block->dropAllReferences(NewValue);
401 }
402 
403 void VPRegionBlock::execute(VPTransformState *State) {
404   ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
405 
406   if (!isReplicator()) {
407     // Visit the VPBlocks connected to "this", starting from it.
408     for (VPBlockBase *Block : RPOT) {
409       if (EnableVPlanNativePath) {
410         // The inner loop vectorization path does not represent loop preheader
411         // and exit blocks as part of the VPlan. In the VPlan-native path, skip
412         // vectorizing loop preheader block. In future, we may replace this
413         // check with the check for loop preheader.
414         if (Block->getNumPredecessors() == 0)
415           continue;
416 
417         // Skip vectorizing loop exit block. In future, we may replace this
418         // check with the check for loop exit.
419         if (Block->getNumSuccessors() == 0)
420           continue;
421       }
422 
423       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
424       Block->execute(State);
425     }
426     return;
427   }
428 
429   assert(!State->Instance && "Replicating a Region with non-null instance.");
430 
431   // Enter replicating mode.
432   State->Instance = {0, 0};
433 
434   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
435     State->Instance->Part = Part;
436     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
437     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
438          ++Lane) {
439       State->Instance->Lane = Lane;
440       // Visit the VPBlocks connected to \p this, starting from it.
441       for (VPBlockBase *Block : RPOT) {
442         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
443         Block->execute(State);
444       }
445     }
446   }
447 
448   // Exit replicating mode.
449   State->Instance.reset();
450 }
451 
452 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) {
453   assert(!Parent && "Recipe already in some VPBasicBlock");
454   assert(InsertPos->getParent() &&
455          "Insertion position not in any VPBasicBlock");
456   Parent = InsertPos->getParent();
457   Parent->getRecipeList().insert(InsertPos->getIterator(), this);
458 }
459 
460 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) {
461   assert(!Parent && "Recipe already in some VPBasicBlock");
462   assert(InsertPos->getParent() &&
463          "Insertion position not in any VPBasicBlock");
464   Parent = InsertPos->getParent();
465   Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this);
466 }
467 
468 void VPRecipeBase::removeFromParent() {
469   assert(getParent() && "Recipe not in any VPBasicBlock");
470   getParent()->getRecipeList().remove(getIterator());
471   Parent = nullptr;
472 }
473 
474 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() {
475   assert(getParent() && "Recipe not in any VPBasicBlock");
476   return getParent()->getRecipeList().erase(getIterator());
477 }
478 
479 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) {
480   removeFromParent();
481   insertAfter(InsertPos);
482 }
483 
484 void VPInstruction::generateInstruction(VPTransformState &State,
485                                         unsigned Part) {
486   IRBuilder<> &Builder = State.Builder;
487 
488   if (Instruction::isBinaryOp(getOpcode())) {
489     Value *A = State.get(getOperand(0), Part);
490     Value *B = State.get(getOperand(1), Part);
491     Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
492     State.set(this, V, Part);
493     return;
494   }
495 
496   switch (getOpcode()) {
497   case VPInstruction::Not: {
498     Value *A = State.get(getOperand(0), Part);
499     Value *V = Builder.CreateNot(A);
500     State.set(this, V, Part);
501     break;
502   }
503   case VPInstruction::ICmpULE: {
504     Value *IV = State.get(getOperand(0), Part);
505     Value *TC = State.get(getOperand(1), Part);
506     Value *V = Builder.CreateICmpULE(IV, TC);
507     State.set(this, V, Part);
508     break;
509   }
510   case Instruction::Select: {
511     Value *Cond = State.get(getOperand(0), Part);
512     Value *Op1 = State.get(getOperand(1), Part);
513     Value *Op2 = State.get(getOperand(2), Part);
514     Value *V = Builder.CreateSelect(Cond, Op1, Op2);
515     State.set(this, V, Part);
516     break;
517   }
518   case VPInstruction::ActiveLaneMask: {
519     // Get first lane of vector induction variable.
520     Value *VIVElem0 = State.get(getOperand(0), {Part, 0});
521     // Get the original loop tripcount.
522     Value *ScalarTC = State.TripCount;
523 
524     auto *Int1Ty = Type::getInt1Ty(Builder.getContext());
525     auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue());
526     Instruction *Call = Builder.CreateIntrinsic(
527         Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()},
528         {VIVElem0, ScalarTC}, nullptr, "active.lane.mask");
529     State.set(this, Call, Part);
530     break;
531   }
532   default:
533     llvm_unreachable("Unsupported opcode for instruction");
534   }
535 }
536 
537 void VPInstruction::execute(VPTransformState &State) {
538   assert(!State.Instance && "VPInstruction executing an Instance");
539   for (unsigned Part = 0; Part < State.UF; ++Part)
540     generateInstruction(State, Part);
541 }
542 
543 void VPInstruction::print(raw_ostream &O, const Twine &Indent,
544                           VPSlotTracker &SlotTracker) const {
545   O << "\"EMIT ";
546   print(O, SlotTracker);
547 }
548 
549 void VPInstruction::print(raw_ostream &O) const {
550   VPSlotTracker SlotTracker(getParent()->getPlan());
551   print(O, SlotTracker);
552 }
553 
554 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const {
555   if (hasResult()) {
556     printAsOperand(O, SlotTracker);
557     O << " = ";
558   }
559 
560   switch (getOpcode()) {
561   case VPInstruction::Not:
562     O << "not";
563     break;
564   case VPInstruction::ICmpULE:
565     O << "icmp ule";
566     break;
567   case VPInstruction::SLPLoad:
568     O << "combined load";
569     break;
570   case VPInstruction::SLPStore:
571     O << "combined store";
572     break;
573   case VPInstruction::ActiveLaneMask:
574     O << "active lane mask";
575     break;
576 
577   default:
578     O << Instruction::getOpcodeName(getOpcode());
579   }
580 
581   for (const VPValue *Operand : operands()) {
582     O << " ";
583     Operand->printAsOperand(O, SlotTracker);
584   }
585 }
586 
587 /// Generate the code inside the body of the vectorized loop. Assumes a single
588 /// LoopVectorBody basic-block was created for this. Introduce additional
589 /// basic-blocks as needed, and fill them all.
590 void VPlan::execute(VPTransformState *State) {
591   // -1. Check if the backedge taken count is needed, and if so build it.
592   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
593     Value *TC = State->TripCount;
594     IRBuilder<> Builder(State->CFG.PrevBB->getTerminator());
595     auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1),
596                                    "trip.count.minus.1");
597     auto VF = State->VF;
598     Value *VTCMO =
599         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
600     for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part)
601       State->set(BackedgeTakenCount, VTCMO, Part);
602   }
603 
604   // 0. Set the reverse mapping from VPValues to Values for code generation.
605   for (auto &Entry : Value2VPValue)
606     State->VPValue2Value[Entry.second] = Entry.first;
607 
608   BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
609   BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
610   assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
611 
612   // 1. Make room to generate basic-blocks inside loop body if needed.
613   BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock(
614       VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
615   Loop *L = State->LI->getLoopFor(VectorHeaderBB);
616   L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
617   // Remove the edge between Header and Latch to allow other connections.
618   // Temporarily terminate with unreachable until CFG is rewired.
619   // Note: this asserts the generated code's assumption that
620   // getFirstInsertionPt() can be dereferenced into an Instruction.
621   VectorHeaderBB->getTerminator()->eraseFromParent();
622   State->Builder.SetInsertPoint(VectorHeaderBB);
623   UnreachableInst *Terminator = State->Builder.CreateUnreachable();
624   State->Builder.SetInsertPoint(Terminator);
625 
626   // 2. Generate code in loop body.
627   State->CFG.PrevVPBB = nullptr;
628   State->CFG.PrevBB = VectorHeaderBB;
629   State->CFG.LastBB = VectorLatchBB;
630 
631   for (VPBlockBase *Block : depth_first(Entry))
632     Block->execute(State);
633 
634   // Setup branch terminator successors for VPBBs in VPBBsToFix based on
635   // VPBB's successors.
636   for (auto VPBB : State->CFG.VPBBsToFix) {
637     assert(EnableVPlanNativePath &&
638            "Unexpected VPBBsToFix in non VPlan-native path");
639     BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB];
640     assert(BB && "Unexpected null basic block for VPBB");
641 
642     unsigned Idx = 0;
643     auto *BBTerminator = BB->getTerminator();
644 
645     for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) {
646       VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock();
647       BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]);
648       ++Idx;
649     }
650   }
651 
652   // 3. Merge the temporary latch created with the last basic-block filled.
653   BasicBlock *LastBB = State->CFG.PrevBB;
654   // Connect LastBB to VectorLatchBB to facilitate their merge.
655   assert((EnableVPlanNativePath ||
656           isa<UnreachableInst>(LastBB->getTerminator())) &&
657          "Expected InnerLoop VPlan CFG to terminate with unreachable");
658   assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) &&
659          "Expected VPlan CFG to terminate with branch in NativePath");
660   LastBB->getTerminator()->eraseFromParent();
661   BranchInst::Create(VectorLatchBB, LastBB);
662 
663   // Merge LastBB with Latch.
664   bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
665   (void)Merged;
666   assert(Merged && "Could not merge last basic block with latch.");
667   VectorLatchBB = LastBB;
668 
669   // We do not attempt to preserve DT for outer loop vectorization currently.
670   if (!EnableVPlanNativePath)
671     updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB,
672                         L->getExitBlock());
673 }
674 
675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
676 LLVM_DUMP_METHOD
677 void VPlan::dump() const { dbgs() << *this << '\n'; }
678 #endif
679 
680 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
681                                 BasicBlock *LoopLatchBB,
682                                 BasicBlock *LoopExitBB) {
683   BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
684   assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
685   // The vector body may be more than a single basic-block by this point.
686   // Update the dominator tree information inside the vector body by propagating
687   // it from header to latch, expecting only triangular control-flow, if any.
688   BasicBlock *PostDomSucc = nullptr;
689   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
690     // Get the list of successors of this block.
691     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
692     assert(Succs.size() <= 2 &&
693            "Basic block in vector loop has more than 2 successors.");
694     PostDomSucc = Succs[0];
695     if (Succs.size() == 1) {
696       assert(PostDomSucc->getSinglePredecessor() &&
697              "PostDom successor has more than one predecessor.");
698       DT->addNewBlock(PostDomSucc, BB);
699       continue;
700     }
701     BasicBlock *InterimSucc = Succs[1];
702     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
703       PostDomSucc = Succs[1];
704       InterimSucc = Succs[0];
705     }
706     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
707            "One successor of a basic block does not lead to the other.");
708     assert(InterimSucc->getSinglePredecessor() &&
709            "Interim successor has more than one predecessor.");
710     assert(PostDomSucc->hasNPredecessors(2) &&
711            "PostDom successor has more than two predecessors.");
712     DT->addNewBlock(InterimSucc, BB);
713     DT->addNewBlock(PostDomSucc, BB);
714   }
715   // Latch block is a new dominator for the loop exit.
716   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
717   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
718 }
719 
720 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
721   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
722          Twine(getOrCreateBID(Block));
723 }
724 
725 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
726   const std::string &Name = Block->getName();
727   if (!Name.empty())
728     return Name;
729   return "VPB" + Twine(getOrCreateBID(Block));
730 }
731 
732 void VPlanPrinter::dump() {
733   Depth = 1;
734   bumpIndent(0);
735   OS << "digraph VPlan {\n";
736   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
737   if (!Plan.getName().empty())
738     OS << "\\n" << DOT::EscapeString(Plan.getName());
739   if (Plan.BackedgeTakenCount) {
740     OS << ", where:\\n";
741     Plan.BackedgeTakenCount->print(OS, SlotTracker);
742     OS << " := BackedgeTakenCount";
743   }
744   OS << "\"]\n";
745   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
746   OS << "edge [fontname=Courier, fontsize=30]\n";
747   OS << "compound=true\n";
748 
749   for (const VPBlockBase *Block : depth_first(Plan.getEntry()))
750     dumpBlock(Block);
751 
752   OS << "}\n";
753 }
754 
755 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
756   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
757     dumpBasicBlock(BasicBlock);
758   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
759     dumpRegion(Region);
760   else
761     llvm_unreachable("Unsupported kind of VPBlock.");
762 }
763 
764 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
765                             bool Hidden, const Twine &Label) {
766   // Due to "dot" we print an edge between two regions as an edge between the
767   // exit basic block and the entry basic of the respective regions.
768   const VPBlockBase *Tail = From->getExitBasicBlock();
769   const VPBlockBase *Head = To->getEntryBasicBlock();
770   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
771   OS << " [ label=\"" << Label << '\"';
772   if (Tail != From)
773     OS << " ltail=" << getUID(From);
774   if (Head != To)
775     OS << " lhead=" << getUID(To);
776   if (Hidden)
777     OS << "; splines=none";
778   OS << "]\n";
779 }
780 
781 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
782   auto &Successors = Block->getSuccessors();
783   if (Successors.size() == 1)
784     drawEdge(Block, Successors.front(), false, "");
785   else if (Successors.size() == 2) {
786     drawEdge(Block, Successors.front(), false, "T");
787     drawEdge(Block, Successors.back(), false, "F");
788   } else {
789     unsigned SuccessorNumber = 0;
790     for (auto *Successor : Successors)
791       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
792   }
793 }
794 
795 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
796   OS << Indent << getUID(BasicBlock) << " [label =\n";
797   bumpIndent(1);
798   OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
799   bumpIndent(1);
800 
801   // Dump the block predicate.
802   const VPValue *Pred = BasicBlock->getPredicate();
803   if (Pred) {
804     OS << " +\n" << Indent << " \"BlockPredicate: ";
805     if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) {
806       PredI->printAsOperand(OS, SlotTracker);
807       OS << " (" << DOT::EscapeString(PredI->getParent()->getName())
808          << ")\\l\"";
809     } else
810       Pred->printAsOperand(OS, SlotTracker);
811   }
812 
813   for (const VPRecipeBase &Recipe : *BasicBlock) {
814     OS << " +\n" << Indent;
815     Recipe.print(OS, Indent, SlotTracker);
816     OS << "\\l\"";
817   }
818 
819   // Dump the condition bit.
820   const VPValue *CBV = BasicBlock->getCondBit();
821   if (CBV) {
822     OS << " +\n" << Indent << " \"CondBit: ";
823     if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) {
824       CBI->printAsOperand(OS, SlotTracker);
825       OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\"";
826     } else {
827       CBV->printAsOperand(OS, SlotTracker);
828       OS << "\"";
829     }
830   }
831 
832   bumpIndent(-2);
833   OS << "\n" << Indent << "]\n";
834   dumpEdges(BasicBlock);
835 }
836 
837 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
838   OS << Indent << "subgraph " << getUID(Region) << " {\n";
839   bumpIndent(1);
840   OS << Indent << "fontname=Courier\n"
841      << Indent << "label=\""
842      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
843      << DOT::EscapeString(Region->getName()) << "\"\n";
844   // Dump the blocks of the region.
845   assert(Region->getEntry() && "Region contains no inner blocks.");
846   for (const VPBlockBase *Block : depth_first(Region->getEntry()))
847     dumpBlock(Block);
848   bumpIndent(-1);
849   OS << Indent << "}\n";
850   dumpEdges(Region);
851 }
852 
853 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) {
854   std::string IngredientString;
855   raw_string_ostream RSO(IngredientString);
856   if (auto *Inst = dyn_cast<Instruction>(V)) {
857     if (!Inst->getType()->isVoidTy()) {
858       Inst->printAsOperand(RSO, false);
859       RSO << " = ";
860     }
861     RSO << Inst->getOpcodeName() << " ";
862     unsigned E = Inst->getNumOperands();
863     if (E > 0) {
864       Inst->getOperand(0)->printAsOperand(RSO, false);
865       for (unsigned I = 1; I < E; ++I)
866         Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
867     }
868   } else // !Inst
869     V->printAsOperand(RSO, false);
870   RSO.flush();
871   O << DOT::EscapeString(IngredientString);
872 }
873 
874 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
875                               VPSlotTracker &SlotTracker) const {
876   O << "\"WIDEN-CALL ";
877 
878   auto *CI = cast<CallInst>(getUnderlyingInstr());
879   if (CI->getType()->isVoidTy())
880     O << "void ";
881   else {
882     printAsOperand(O, SlotTracker);
883     O << " = ";
884   }
885 
886   O << "call @" << CI->getCalledFunction()->getName() << "(";
887   printOperands(O, SlotTracker);
888   O << ")";
889 }
890 
891 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
892                                 VPSlotTracker &SlotTracker) const {
893   O << "\"WIDEN-SELECT ";
894   printAsOperand(O, SlotTracker);
895   O << " = select ";
896   getOperand(0)->printAsOperand(O, SlotTracker);
897   O << ", ";
898   getOperand(1)->printAsOperand(O, SlotTracker);
899   O << ", ";
900   getOperand(2)->printAsOperand(O, SlotTracker);
901   O << (InvariantCond ? " (condition is loop invariant)" : "");
902 }
903 
904 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent,
905                           VPSlotTracker &SlotTracker) const {
906   O << "\"WIDEN ";
907   printAsOperand(O, SlotTracker);
908   O << " = " << getUnderlyingInstr()->getOpcodeName() << " ";
909   printOperands(O, SlotTracker);
910 }
911 
912 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent,
913                                           VPSlotTracker &SlotTracker) const {
914   O << "\"WIDEN-INDUCTION";
915   if (Trunc) {
916     O << "\\l\"";
917     O << " +\n" << Indent << "\"  " << VPlanIngredient(IV) << "\\l\"";
918     O << " +\n" << Indent << "\"  " << VPlanIngredient(Trunc);
919   } else
920     O << " " << VPlanIngredient(IV);
921 }
922 
923 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent,
924                              VPSlotTracker &SlotTracker) const {
925   O << "\"WIDEN-GEP ";
926   O << (IsPtrLoopInvariant ? "Inv" : "Var");
927   size_t IndicesNumber = IsIndexLoopInvariant.size();
928   for (size_t I = 0; I < IndicesNumber; ++I)
929     O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]";
930 
931   O << " ";
932   printAsOperand(O, SlotTracker);
933   O << " = getelementptr ";
934   printOperands(O, SlotTracker);
935 }
936 
937 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent,
938                              VPSlotTracker &SlotTracker) const {
939   O << "\"WIDEN-PHI " << VPlanIngredient(Phi);
940 }
941 
942 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent,
943                           VPSlotTracker &SlotTracker) const {
944   O << "\"BLEND ";
945   Phi->printAsOperand(O, false);
946   O << " =";
947   if (getNumIncomingValues() == 1) {
948     // Not a User of any mask: not really blending, this is a
949     // single-predecessor phi.
950     O << " ";
951     getIncomingValue(0)->printAsOperand(O, SlotTracker);
952   } else {
953     for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) {
954       O << " ";
955       getIncomingValue(I)->printAsOperand(O, SlotTracker);
956       O << "/";
957       getMask(I)->printAsOperand(O, SlotTracker);
958     }
959   }
960 }
961 
962 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent,
963                               VPSlotTracker &SlotTracker) const {
964   O << "\"REDUCE ";
965   printAsOperand(O, SlotTracker);
966   O << " = ";
967   getChainOp()->printAsOperand(O, SlotTracker);
968   O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp())
969     << " (";
970   getVecOp()->printAsOperand(O, SlotTracker);
971   if (getCondOp()) {
972     O << ", ";
973     getCondOp()->printAsOperand(O, SlotTracker);
974   }
975   O << ")";
976 }
977 
978 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent,
979                               VPSlotTracker &SlotTracker) const {
980   O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ");
981 
982   if (!getUnderlyingInstr()->getType()->isVoidTy()) {
983     printAsOperand(O, SlotTracker);
984     O << " = ";
985   }
986   O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " ";
987   printOperands(O, SlotTracker);
988 
989   if (AlsoPack)
990     O << " (S->V)";
991 }
992 
993 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent,
994                                 VPSlotTracker &SlotTracker) const {
995   O << "\"PHI-PREDICATED-INSTRUCTION ";
996   printOperands(O, SlotTracker);
997 }
998 
999 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent,
1000                                            VPSlotTracker &SlotTracker) const {
1001   O << "\"WIDEN ";
1002 
1003   if (!isStore()) {
1004     getVPValue()->printAsOperand(O, SlotTracker);
1005     O << " = ";
1006   }
1007   O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " ";
1008 
1009   printOperands(O, SlotTracker);
1010 }
1011 
1012 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) {
1013   Value *CanonicalIV = State.CanonicalIV;
1014   Type *STy = CanonicalIV->getType();
1015   IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
1016   ElementCount VF = State.VF;
1017   assert(!VF.isScalable() && "the code following assumes non scalables ECs");
1018   Value *VStart = VF.isScalar()
1019                       ? CanonicalIV
1020                       : Builder.CreateVectorSplat(VF.getKnownMinValue(),
1021                                                   CanonicalIV, "broadcast");
1022   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) {
1023     SmallVector<Constant *, 8> Indices;
1024     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
1025       Indices.push_back(
1026           ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane));
1027     // If VF == 1, there is only one iteration in the loop above, thus the
1028     // element pushed back into Indices is ConstantInt::get(STy, Part)
1029     Constant *VStep =
1030         VF.isScalar() ? Indices.back() : ConstantVector::get(Indices);
1031     // Add the consecutive indices to the vector value.
1032     Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv");
1033     State.set(getVPValue(), CanonicalVectorIV, Part);
1034   }
1035 }
1036 
1037 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent,
1038                                      VPSlotTracker &SlotTracker) const {
1039   O << "\"EMIT ";
1040   getVPValue()->printAsOperand(O, SlotTracker);
1041   O << " = WIDEN-CANONICAL-INDUCTION";
1042 }
1043 
1044 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1045 
1046 void VPValue::replaceAllUsesWith(VPValue *New) {
1047   for (unsigned J = 0; J < getNumUsers();) {
1048     VPUser *User = Users[J];
1049     unsigned NumUsers = getNumUsers();
1050     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1051       if (User->getOperand(I) == this)
1052         User->setOperand(I, New);
1053     // If a user got removed after updating the current user, the next user to
1054     // update will be moved to the current position, so we only need to
1055     // increment the index if the number of users did not change.
1056     if (NumUsers == getNumUsers())
1057       J++;
1058   }
1059 }
1060 
1061 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1062   if (const Value *UV = getUnderlyingValue()) {
1063     OS << "ir<";
1064     UV->printAsOperand(OS, false);
1065     OS << ">";
1066     return;
1067   }
1068 
1069   unsigned Slot = Tracker.getSlot(this);
1070   if (Slot == unsigned(-1))
1071     OS << "<badref>";
1072   else
1073     OS << "vp<%" << Tracker.getSlot(this) << ">";
1074 }
1075 
1076 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1077   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1078     Op->printAsOperand(O, SlotTracker);
1079   });
1080 }
1081 
1082 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1083                                           Old2NewTy &Old2New,
1084                                           InterleavedAccessInfo &IAI) {
1085   ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
1086   for (VPBlockBase *Base : RPOT) {
1087     visitBlock(Base, Old2New, IAI);
1088   }
1089 }
1090 
1091 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1092                                          InterleavedAccessInfo &IAI) {
1093   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1094     for (VPRecipeBase &VPI : *VPBB) {
1095       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1096       auto *VPInst = cast<VPInstruction>(&VPI);
1097       auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue());
1098       auto *IG = IAI.getInterleaveGroup(Inst);
1099       if (!IG)
1100         continue;
1101 
1102       auto NewIGIter = Old2New.find(IG);
1103       if (NewIGIter == Old2New.end())
1104         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1105             IG->getFactor(), IG->isReverse(), IG->getAlign());
1106 
1107       if (Inst == IG->getInsertPos())
1108         Old2New[IG]->setInsertPos(VPInst);
1109 
1110       InterleaveGroupMap[VPInst] = Old2New[IG];
1111       InterleaveGroupMap[VPInst]->insertMember(
1112           VPInst, IG->getIndex(Inst),
1113           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1114                                 : IG->getFactor()));
1115     }
1116   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1117     visitRegion(Region, Old2New, IAI);
1118   else
1119     llvm_unreachable("Unsupported kind of VPBlock.");
1120 }
1121 
1122 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1123                                                  InterleavedAccessInfo &IAI) {
1124   Old2NewTy Old2New;
1125   visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI);
1126 }
1127 
1128 void VPSlotTracker::assignSlot(const VPValue *V) {
1129   assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!");
1130   const Value *UV = V->getUnderlyingValue();
1131   if (UV)
1132     return;
1133   const auto *VPI = dyn_cast<VPInstruction>(V);
1134   if (VPI && !VPI->hasResult())
1135     return;
1136 
1137   Slots[V] = NextSlot++;
1138 }
1139 
1140 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) {
1141   if (auto *Region = dyn_cast<VPRegionBlock>(VPBB))
1142     assignSlots(Region);
1143   else
1144     assignSlots(cast<VPBasicBlock>(VPBB));
1145 }
1146 
1147 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) {
1148   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry());
1149   for (const VPBlockBase *Block : RPOT)
1150     assignSlots(Block);
1151 }
1152 
1153 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1154   for (const VPRecipeBase &Recipe : *VPBB) {
1155     if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe))
1156       assignSlot(VPI);
1157     else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe))
1158       assignSlot(VPIV->getVPValue());
1159   }
1160 }
1161 
1162 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1163 
1164   for (const VPValue *V : Plan.VPExternalDefs)
1165     assignSlot(V);
1166 
1167   for (auto &E : Plan.Value2VPValue)
1168     if (!isa<VPInstruction>(E.second))
1169       assignSlot(E.second);
1170 
1171   for (const VPValue *V : Plan.VPCBVs)
1172     assignSlot(V);
1173 
1174   if (Plan.BackedgeTakenCount)
1175     assignSlot(Plan.BackedgeTakenCount);
1176 
1177   ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry());
1178   for (const VPBlockBase *Block : RPOT)
1179     assignSlots(Block);
1180 }
1181