1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/IVDescriptors.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/GenericDomTreeConstruction.h" 39 #include "llvm/Support/GraphWriter.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 42 #include <cassert> 43 #include <iterator> 44 #include <string> 45 #include <vector> 46 47 using namespace llvm; 48 extern cl::opt<bool> EnableVPlanNativePath; 49 50 #define DEBUG_TYPE "vplan" 51 52 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 53 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 54 VPSlotTracker SlotTracker( 55 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 56 V.print(OS, SlotTracker); 57 return OS; 58 } 59 60 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 61 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 62 if (Def) 63 Def->addDefinedValue(this); 64 } 65 66 VPValue::~VPValue() { 67 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 68 if (Def) 69 Def->removeDefinedValue(this); 70 } 71 72 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 73 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 74 Instr->print(OS, SlotTracker); 75 else 76 printAsOperand(OS, SlotTracker); 77 } 78 79 void VPValue::dump() const { 80 const VPInstruction *Instr = dyn_cast<VPInstruction>(this); 81 VPSlotTracker SlotTracker( 82 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 83 print(dbgs(), SlotTracker); 84 dbgs() << "\n"; 85 } 86 87 void VPRecipeBase::dump() const { 88 VPSlotTracker SlotTracker(nullptr); 89 print(dbgs(), "", SlotTracker); 90 dbgs() << "\n"; 91 } 92 93 VPUser *VPRecipeBase::toVPUser() { 94 if (auto *U = dyn_cast<VPInstruction>(this)) 95 return U; 96 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 97 return U; 98 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 99 return U; 100 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 101 return U; 102 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 103 return U; 104 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 105 return U; 106 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 107 return U; 108 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 109 return U; 110 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 111 return U; 112 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 113 return U; 114 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 115 return U; 116 return nullptr; 117 } 118 119 VPValue *VPRecipeBase::toVPValue() { 120 if (auto *V = dyn_cast<VPInstruction>(this)) 121 return V; 122 if (auto *V = dyn_cast<VPReductionRecipe>(this)) 123 return V; 124 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 125 return V; 126 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 127 return V; 128 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 129 return V; 130 if (auto *V = dyn_cast<VPWidenGEPRecipe>(this)) 131 return V; 132 if (auto *V = dyn_cast<VPWidenRecipe>(this)) 133 return V; 134 return nullptr; 135 } 136 137 const VPValue *VPRecipeBase::toVPValue() const { 138 if (auto *V = dyn_cast<VPInstruction>(this)) 139 return V; 140 if (auto *V = dyn_cast<VPReductionRecipe>(this)) 141 return V; 142 if (auto *V = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 143 return V; 144 if (auto *V = dyn_cast<VPWidenCallRecipe>(this)) 145 return V; 146 if (auto *V = dyn_cast<VPWidenSelectRecipe>(this)) 147 return V; 148 if (auto *V = dyn_cast<VPWidenGEPRecipe>(this)) 149 return V; 150 if (auto *V = dyn_cast<VPWidenRecipe>(this)) 151 return V; 152 return nullptr; 153 } 154 155 // Get the top-most entry block of \p Start. This is the entry block of the 156 // containing VPlan. This function is templated to support both const and non-const blocks 157 template <typename T> static T *getPlanEntry(T *Start) { 158 T *Next = Start; 159 T *Current = Start; 160 while ((Next = Next->getParent())) 161 Current = Next; 162 163 SmallSetVector<T *, 8> WorkList; 164 WorkList.insert(Current); 165 166 for (unsigned i = 0; i < WorkList.size(); i++) { 167 T *Current = WorkList[i]; 168 if (Current->getNumPredecessors() == 0) 169 return Current; 170 auto &Predecessors = Current->getPredecessors(); 171 WorkList.insert(Predecessors.begin(), Predecessors.end()); 172 } 173 174 llvm_unreachable("VPlan without any entry node without predecessors"); 175 } 176 177 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 178 179 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 180 181 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 182 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 183 const VPBlockBase *Block = this; 184 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 185 Block = Region->getEntry(); 186 return cast<VPBasicBlock>(Block); 187 } 188 189 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 190 VPBlockBase *Block = this; 191 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 192 Block = Region->getEntry(); 193 return cast<VPBasicBlock>(Block); 194 } 195 196 void VPBlockBase::setPlan(VPlan *ParentPlan) { 197 assert(ParentPlan->getEntry() == this && 198 "Can only set plan on its entry block."); 199 Plan = ParentPlan; 200 } 201 202 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 203 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 204 const VPBlockBase *Block = this; 205 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 206 Block = Region->getExit(); 207 return cast<VPBasicBlock>(Block); 208 } 209 210 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 211 VPBlockBase *Block = this; 212 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 213 Block = Region->getExit(); 214 return cast<VPBasicBlock>(Block); 215 } 216 217 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 218 if (!Successors.empty() || !Parent) 219 return this; 220 assert(Parent->getExit() == this && 221 "Block w/o successors not the exit of its parent."); 222 return Parent->getEnclosingBlockWithSuccessors(); 223 } 224 225 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 226 if (!Predecessors.empty() || !Parent) 227 return this; 228 assert(Parent->getEntry() == this && 229 "Block w/o predecessors not the entry of its parent."); 230 return Parent->getEnclosingBlockWithPredecessors(); 231 } 232 233 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 234 SmallVector<VPBlockBase *, 8> Blocks; 235 236 VPValue DummyValue; 237 for (VPBlockBase *Block : depth_first(Entry)) { 238 // Drop all references in VPBasicBlocks and replace all uses with 239 // DummyValue. 240 if (auto *VPBB = dyn_cast<VPBasicBlock>(Block)) 241 VPBB->dropAllReferences(&DummyValue); 242 Blocks.push_back(Block); 243 } 244 245 for (VPBlockBase *Block : Blocks) 246 delete Block; 247 } 248 249 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 250 iterator It = begin(); 251 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 252 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 253 isa<VPPredInstPHIRecipe>(&*It) || 254 isa<VPWidenCanonicalIVRecipe>(&*It))) 255 It++; 256 return It; 257 } 258 259 BasicBlock * 260 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 261 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 262 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 263 BasicBlock *PrevBB = CFG.PrevBB; 264 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 265 PrevBB->getParent(), CFG.LastBB); 266 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 267 268 // Hook up the new basic block to its predecessors. 269 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 270 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 271 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 272 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 273 274 // In outer loop vectorization scenario, the predecessor BBlock may not yet 275 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 276 // vectorization. We do not encounter this case in inner loop vectorization 277 // as we start out by building a loop skeleton with the vector loop header 278 // and latch blocks. As a result, we never enter this function for the 279 // header block in the non VPlan-native path. 280 if (!PredBB) { 281 assert(EnableVPlanNativePath && 282 "Unexpected null predecessor in non VPlan-native path"); 283 CFG.VPBBsToFix.push_back(PredVPBB); 284 continue; 285 } 286 287 assert(PredBB && "Predecessor basic-block not found building successor."); 288 auto *PredBBTerminator = PredBB->getTerminator(); 289 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 290 if (isa<UnreachableInst>(PredBBTerminator)) { 291 assert(PredVPSuccessors.size() == 1 && 292 "Predecessor ending w/o branch must have single successor."); 293 PredBBTerminator->eraseFromParent(); 294 BranchInst::Create(NewBB, PredBB); 295 } else { 296 assert(PredVPSuccessors.size() == 2 && 297 "Predecessor ending with branch must have two successors."); 298 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 299 assert(!PredBBTerminator->getSuccessor(idx) && 300 "Trying to reset an existing successor block."); 301 PredBBTerminator->setSuccessor(idx, NewBB); 302 } 303 } 304 return NewBB; 305 } 306 307 void VPBasicBlock::execute(VPTransformState *State) { 308 bool Replica = State->Instance && 309 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 310 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 311 VPBlockBase *SingleHPred = nullptr; 312 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 313 314 // 1. Create an IR basic block, or reuse the last one if possible. 315 // The last IR basic block is reused, as an optimization, in three cases: 316 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 317 // B. when the current VPBB has a single (hierarchical) predecessor which 318 // is PrevVPBB and the latter has a single (hierarchical) successor; and 319 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 320 // is the exit of this region from a previous instance, or the predecessor 321 // of this region. 322 if (PrevVPBB && /* A */ 323 !((SingleHPred = getSingleHierarchicalPredecessor()) && 324 SingleHPred->getExitBasicBlock() == PrevVPBB && 325 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 326 !(Replica && getPredecessors().empty())) { /* C */ 327 NewBB = createEmptyBasicBlock(State->CFG); 328 State->Builder.SetInsertPoint(NewBB); 329 // Temporarily terminate with unreachable until CFG is rewired. 330 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 331 State->Builder.SetInsertPoint(Terminator); 332 // Register NewBB in its loop. In innermost loops its the same for all BB's. 333 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 334 L->addBasicBlockToLoop(NewBB, *State->LI); 335 State->CFG.PrevBB = NewBB; 336 } 337 338 // 2. Fill the IR basic block with IR instructions. 339 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 340 << " in BB:" << NewBB->getName() << '\n'); 341 342 State->CFG.VPBB2IRBB[this] = NewBB; 343 State->CFG.PrevVPBB = this; 344 345 for (VPRecipeBase &Recipe : Recipes) 346 Recipe.execute(*State); 347 348 VPValue *CBV; 349 if (EnableVPlanNativePath && (CBV = getCondBit())) { 350 Value *IRCBV = CBV->getUnderlyingValue(); 351 assert(IRCBV && "Unexpected null underlying value for condition bit"); 352 353 // Condition bit value in a VPBasicBlock is used as the branch selector. In 354 // the VPlan-native path case, since all branches are uniform we generate a 355 // branch instruction using the condition value from vector lane 0 and dummy 356 // successors. The successors are fixed later when the successor blocks are 357 // visited. 358 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 359 NewCond = State->Builder.CreateExtractElement(NewCond, 360 State->Builder.getInt32(0)); 361 362 // Replace the temporary unreachable terminator with the new conditional 363 // branch. 364 auto *CurrentTerminator = NewBB->getTerminator(); 365 assert(isa<UnreachableInst>(CurrentTerminator) && 366 "Expected to replace unreachable terminator with conditional " 367 "branch."); 368 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 369 CondBr->setSuccessor(0, nullptr); 370 ReplaceInstWithInst(CurrentTerminator, CondBr); 371 } 372 373 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 374 } 375 376 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 377 for (VPRecipeBase &R : Recipes) { 378 if (auto *VPV = R.toVPValue()) 379 VPV->replaceAllUsesWith(NewValue); 380 381 if (auto *User = R.toVPUser()) 382 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 383 User->setOperand(I, NewValue); 384 } 385 } 386 387 void VPRegionBlock::execute(VPTransformState *State) { 388 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 389 390 if (!isReplicator()) { 391 // Visit the VPBlocks connected to "this", starting from it. 392 for (VPBlockBase *Block : RPOT) { 393 if (EnableVPlanNativePath) { 394 // The inner loop vectorization path does not represent loop preheader 395 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 396 // vectorizing loop preheader block. In future, we may replace this 397 // check with the check for loop preheader. 398 if (Block->getNumPredecessors() == 0) 399 continue; 400 401 // Skip vectorizing loop exit block. In future, we may replace this 402 // check with the check for loop exit. 403 if (Block->getNumSuccessors() == 0) 404 continue; 405 } 406 407 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 408 Block->execute(State); 409 } 410 return; 411 } 412 413 assert(!State->Instance && "Replicating a Region with non-null instance."); 414 415 // Enter replicating mode. 416 State->Instance = {0, 0}; 417 418 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 419 State->Instance->Part = Part; 420 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 421 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 422 ++Lane) { 423 State->Instance->Lane = Lane; 424 // Visit the VPBlocks connected to \p this, starting from it. 425 for (VPBlockBase *Block : RPOT) { 426 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 427 Block->execute(State); 428 } 429 } 430 } 431 432 // Exit replicating mode. 433 State->Instance.reset(); 434 } 435 436 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 437 assert(!Parent && "Recipe already in some VPBasicBlock"); 438 assert(InsertPos->getParent() && 439 "Insertion position not in any VPBasicBlock"); 440 Parent = InsertPos->getParent(); 441 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 442 } 443 444 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 445 assert(!Parent && "Recipe already in some VPBasicBlock"); 446 assert(InsertPos->getParent() && 447 "Insertion position not in any VPBasicBlock"); 448 Parent = InsertPos->getParent(); 449 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 450 } 451 452 void VPRecipeBase::removeFromParent() { 453 assert(getParent() && "Recipe not in any VPBasicBlock"); 454 getParent()->getRecipeList().remove(getIterator()); 455 Parent = nullptr; 456 } 457 458 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 459 assert(getParent() && "Recipe not in any VPBasicBlock"); 460 return getParent()->getRecipeList().erase(getIterator()); 461 } 462 463 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 464 removeFromParent(); 465 insertAfter(InsertPos); 466 } 467 468 void VPInstruction::generateInstruction(VPTransformState &State, 469 unsigned Part) { 470 IRBuilder<> &Builder = State.Builder; 471 472 if (Instruction::isBinaryOp(getOpcode())) { 473 Value *A = State.get(getOperand(0), Part); 474 Value *B = State.get(getOperand(1), Part); 475 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 476 State.set(this, V, Part); 477 return; 478 } 479 480 switch (getOpcode()) { 481 case VPInstruction::Not: { 482 Value *A = State.get(getOperand(0), Part); 483 Value *V = Builder.CreateNot(A); 484 State.set(this, V, Part); 485 break; 486 } 487 case VPInstruction::ICmpULE: { 488 Value *IV = State.get(getOperand(0), Part); 489 Value *TC = State.get(getOperand(1), Part); 490 Value *V = Builder.CreateICmpULE(IV, TC); 491 State.set(this, V, Part); 492 break; 493 } 494 case Instruction::Select: { 495 Value *Cond = State.get(getOperand(0), Part); 496 Value *Op1 = State.get(getOperand(1), Part); 497 Value *Op2 = State.get(getOperand(2), Part); 498 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 499 State.set(this, V, Part); 500 break; 501 } 502 case VPInstruction::ActiveLaneMask: { 503 // Get first lane of vector induction variable. 504 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 505 // Get the original loop tripcount. 506 Value *ScalarTC = State.TripCount; 507 508 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 509 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 510 Instruction *Call = Builder.CreateIntrinsic( 511 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 512 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 513 State.set(this, Call, Part); 514 break; 515 } 516 default: 517 llvm_unreachable("Unsupported opcode for instruction"); 518 } 519 } 520 521 void VPInstruction::execute(VPTransformState &State) { 522 assert(!State.Instance && "VPInstruction executing an Instance"); 523 for (unsigned Part = 0; Part < State.UF; ++Part) 524 generateInstruction(State, Part); 525 } 526 527 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 528 VPSlotTracker &SlotTracker) const { 529 O << "\"EMIT "; 530 print(O, SlotTracker); 531 } 532 533 void VPInstruction::print(raw_ostream &O) const { 534 VPSlotTracker SlotTracker(getParent()->getPlan()); 535 print(O, SlotTracker); 536 } 537 538 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 539 if (hasResult()) { 540 printAsOperand(O, SlotTracker); 541 O << " = "; 542 } 543 544 switch (getOpcode()) { 545 case VPInstruction::Not: 546 O << "not"; 547 break; 548 case VPInstruction::ICmpULE: 549 O << "icmp ule"; 550 break; 551 case VPInstruction::SLPLoad: 552 O << "combined load"; 553 break; 554 case VPInstruction::SLPStore: 555 O << "combined store"; 556 break; 557 case VPInstruction::ActiveLaneMask: 558 O << "active lane mask"; 559 break; 560 561 default: 562 O << Instruction::getOpcodeName(getOpcode()); 563 } 564 565 for (const VPValue *Operand : operands()) { 566 O << " "; 567 Operand->printAsOperand(O, SlotTracker); 568 } 569 } 570 571 /// Generate the code inside the body of the vectorized loop. Assumes a single 572 /// LoopVectorBody basic-block was created for this. Introduce additional 573 /// basic-blocks as needed, and fill them all. 574 void VPlan::execute(VPTransformState *State) { 575 // -1. Check if the backedge taken count is needed, and if so build it. 576 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 577 Value *TC = State->TripCount; 578 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 579 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 580 "trip.count.minus.1"); 581 auto VF = State->VF; 582 Value *VTCMO = 583 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 584 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 585 State->set(BackedgeTakenCount, VTCMO, Part); 586 } 587 588 // 0. Set the reverse mapping from VPValues to Values for code generation. 589 for (auto &Entry : Value2VPValue) 590 State->VPValue2Value[Entry.second] = Entry.first; 591 592 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 593 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 594 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 595 596 // 1. Make room to generate basic-blocks inside loop body if needed. 597 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 598 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 599 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 600 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 601 // Remove the edge between Header and Latch to allow other connections. 602 // Temporarily terminate with unreachable until CFG is rewired. 603 // Note: this asserts the generated code's assumption that 604 // getFirstInsertionPt() can be dereferenced into an Instruction. 605 VectorHeaderBB->getTerminator()->eraseFromParent(); 606 State->Builder.SetInsertPoint(VectorHeaderBB); 607 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 608 State->Builder.SetInsertPoint(Terminator); 609 610 // 2. Generate code in loop body. 611 State->CFG.PrevVPBB = nullptr; 612 State->CFG.PrevBB = VectorHeaderBB; 613 State->CFG.LastBB = VectorLatchBB; 614 615 for (VPBlockBase *Block : depth_first(Entry)) 616 Block->execute(State); 617 618 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 619 // VPBB's successors. 620 for (auto VPBB : State->CFG.VPBBsToFix) { 621 assert(EnableVPlanNativePath && 622 "Unexpected VPBBsToFix in non VPlan-native path"); 623 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 624 assert(BB && "Unexpected null basic block for VPBB"); 625 626 unsigned Idx = 0; 627 auto *BBTerminator = BB->getTerminator(); 628 629 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 630 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 631 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 632 ++Idx; 633 } 634 } 635 636 // 3. Merge the temporary latch created with the last basic-block filled. 637 BasicBlock *LastBB = State->CFG.PrevBB; 638 // Connect LastBB to VectorLatchBB to facilitate their merge. 639 assert((EnableVPlanNativePath || 640 isa<UnreachableInst>(LastBB->getTerminator())) && 641 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 642 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 643 "Expected VPlan CFG to terminate with branch in NativePath"); 644 LastBB->getTerminator()->eraseFromParent(); 645 BranchInst::Create(VectorLatchBB, LastBB); 646 647 // Merge LastBB with Latch. 648 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 649 (void)Merged; 650 assert(Merged && "Could not merge last basic block with latch."); 651 VectorLatchBB = LastBB; 652 653 // We do not attempt to preserve DT for outer loop vectorization currently. 654 if (!EnableVPlanNativePath) 655 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 656 L->getExitBlock()); 657 } 658 659 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 660 LLVM_DUMP_METHOD 661 void VPlan::dump() const { dbgs() << *this << '\n'; } 662 #endif 663 664 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 665 BasicBlock *LoopLatchBB, 666 BasicBlock *LoopExitBB) { 667 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 668 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 669 // The vector body may be more than a single basic-block by this point. 670 // Update the dominator tree information inside the vector body by propagating 671 // it from header to latch, expecting only triangular control-flow, if any. 672 BasicBlock *PostDomSucc = nullptr; 673 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 674 // Get the list of successors of this block. 675 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 676 assert(Succs.size() <= 2 && 677 "Basic block in vector loop has more than 2 successors."); 678 PostDomSucc = Succs[0]; 679 if (Succs.size() == 1) { 680 assert(PostDomSucc->getSinglePredecessor() && 681 "PostDom successor has more than one predecessor."); 682 DT->addNewBlock(PostDomSucc, BB); 683 continue; 684 } 685 BasicBlock *InterimSucc = Succs[1]; 686 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 687 PostDomSucc = Succs[1]; 688 InterimSucc = Succs[0]; 689 } 690 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 691 "One successor of a basic block does not lead to the other."); 692 assert(InterimSucc->getSinglePredecessor() && 693 "Interim successor has more than one predecessor."); 694 assert(PostDomSucc->hasNPredecessors(2) && 695 "PostDom successor has more than two predecessors."); 696 DT->addNewBlock(InterimSucc, BB); 697 DT->addNewBlock(PostDomSucc, BB); 698 } 699 // Latch block is a new dominator for the loop exit. 700 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 701 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 702 } 703 704 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 705 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 706 Twine(getOrCreateBID(Block)); 707 } 708 709 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 710 const std::string &Name = Block->getName(); 711 if (!Name.empty()) 712 return Name; 713 return "VPB" + Twine(getOrCreateBID(Block)); 714 } 715 716 void VPlanPrinter::dump() { 717 Depth = 1; 718 bumpIndent(0); 719 OS << "digraph VPlan {\n"; 720 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 721 if (!Plan.getName().empty()) 722 OS << "\\n" << DOT::EscapeString(Plan.getName()); 723 if (Plan.BackedgeTakenCount) { 724 OS << ", where:\\n"; 725 Plan.BackedgeTakenCount->print(OS, SlotTracker); 726 OS << " := BackedgeTakenCount"; 727 } 728 OS << "\"]\n"; 729 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 730 OS << "edge [fontname=Courier, fontsize=30]\n"; 731 OS << "compound=true\n"; 732 733 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 734 dumpBlock(Block); 735 736 OS << "}\n"; 737 } 738 739 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 740 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 741 dumpBasicBlock(BasicBlock); 742 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 743 dumpRegion(Region); 744 else 745 llvm_unreachable("Unsupported kind of VPBlock."); 746 } 747 748 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 749 bool Hidden, const Twine &Label) { 750 // Due to "dot" we print an edge between two regions as an edge between the 751 // exit basic block and the entry basic of the respective regions. 752 const VPBlockBase *Tail = From->getExitBasicBlock(); 753 const VPBlockBase *Head = To->getEntryBasicBlock(); 754 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 755 OS << " [ label=\"" << Label << '\"'; 756 if (Tail != From) 757 OS << " ltail=" << getUID(From); 758 if (Head != To) 759 OS << " lhead=" << getUID(To); 760 if (Hidden) 761 OS << "; splines=none"; 762 OS << "]\n"; 763 } 764 765 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 766 auto &Successors = Block->getSuccessors(); 767 if (Successors.size() == 1) 768 drawEdge(Block, Successors.front(), false, ""); 769 else if (Successors.size() == 2) { 770 drawEdge(Block, Successors.front(), false, "T"); 771 drawEdge(Block, Successors.back(), false, "F"); 772 } else { 773 unsigned SuccessorNumber = 0; 774 for (auto *Successor : Successors) 775 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 776 } 777 } 778 779 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 780 OS << Indent << getUID(BasicBlock) << " [label =\n"; 781 bumpIndent(1); 782 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 783 bumpIndent(1); 784 785 // Dump the block predicate. 786 const VPValue *Pred = BasicBlock->getPredicate(); 787 if (Pred) { 788 OS << " +\n" << Indent << " \"BlockPredicate: "; 789 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 790 PredI->printAsOperand(OS, SlotTracker); 791 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 792 << ")\\l\""; 793 } else 794 Pred->printAsOperand(OS, SlotTracker); 795 } 796 797 for (const VPRecipeBase &Recipe : *BasicBlock) { 798 OS << " +\n" << Indent; 799 Recipe.print(OS, Indent, SlotTracker); 800 OS << "\\l\""; 801 } 802 803 // Dump the condition bit. 804 const VPValue *CBV = BasicBlock->getCondBit(); 805 if (CBV) { 806 OS << " +\n" << Indent << " \"CondBit: "; 807 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 808 CBI->printAsOperand(OS, SlotTracker); 809 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 810 } else { 811 CBV->printAsOperand(OS, SlotTracker); 812 OS << "\""; 813 } 814 } 815 816 bumpIndent(-2); 817 OS << "\n" << Indent << "]\n"; 818 dumpEdges(BasicBlock); 819 } 820 821 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 822 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 823 bumpIndent(1); 824 OS << Indent << "fontname=Courier\n" 825 << Indent << "label=\"" 826 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 827 << DOT::EscapeString(Region->getName()) << "\"\n"; 828 // Dump the blocks of the region. 829 assert(Region->getEntry() && "Region contains no inner blocks."); 830 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 831 dumpBlock(Block); 832 bumpIndent(-1); 833 OS << Indent << "}\n"; 834 dumpEdges(Region); 835 } 836 837 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 838 std::string IngredientString; 839 raw_string_ostream RSO(IngredientString); 840 if (auto *Inst = dyn_cast<Instruction>(V)) { 841 if (!Inst->getType()->isVoidTy()) { 842 Inst->printAsOperand(RSO, false); 843 RSO << " = "; 844 } 845 RSO << Inst->getOpcodeName() << " "; 846 unsigned E = Inst->getNumOperands(); 847 if (E > 0) { 848 Inst->getOperand(0)->printAsOperand(RSO, false); 849 for (unsigned I = 1; I < E; ++I) 850 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 851 } 852 } else // !Inst 853 V->printAsOperand(RSO, false); 854 RSO.flush(); 855 O << DOT::EscapeString(IngredientString); 856 } 857 858 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 859 VPSlotTracker &SlotTracker) const { 860 O << "\"WIDEN-CALL "; 861 862 auto *CI = cast<CallInst>(getUnderlyingInstr()); 863 if (CI->getType()->isVoidTy()) 864 O << "void "; 865 else { 866 printAsOperand(O, SlotTracker); 867 O << " = "; 868 } 869 870 O << "call @" << CI->getCalledFunction()->getName() << "("; 871 printOperands(O, SlotTracker); 872 O << ")"; 873 } 874 875 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 876 VPSlotTracker &SlotTracker) const { 877 O << "\"WIDEN-SELECT "; 878 printAsOperand(O, SlotTracker); 879 O << " = select "; 880 getOperand(0)->printAsOperand(O, SlotTracker); 881 O << ", "; 882 getOperand(1)->printAsOperand(O, SlotTracker); 883 O << ", "; 884 getOperand(2)->printAsOperand(O, SlotTracker); 885 O << (InvariantCond ? " (condition is loop invariant)" : ""); 886 } 887 888 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 889 VPSlotTracker &SlotTracker) const { 890 O << "\"WIDEN "; 891 printAsOperand(O, SlotTracker); 892 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 893 printOperands(O, SlotTracker); 894 } 895 896 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 897 VPSlotTracker &SlotTracker) const { 898 O << "\"WIDEN-INDUCTION"; 899 if (Trunc) { 900 O << "\\l\""; 901 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 902 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 903 } else 904 O << " " << VPlanIngredient(IV); 905 } 906 907 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 908 VPSlotTracker &SlotTracker) const { 909 O << "\"WIDEN-GEP "; 910 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 911 size_t IndicesNumber = IsIndexLoopInvariant.size(); 912 for (size_t I = 0; I < IndicesNumber; ++I) 913 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 914 915 O << " "; 916 printAsOperand(O, SlotTracker); 917 O << " = getelementptr "; 918 printOperands(O, SlotTracker); 919 } 920 921 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 922 VPSlotTracker &SlotTracker) const { 923 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 924 } 925 926 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 927 VPSlotTracker &SlotTracker) const { 928 O << "\"BLEND "; 929 Phi->printAsOperand(O, false); 930 O << " ="; 931 if (getNumIncomingValues() == 1) { 932 // Not a User of any mask: not really blending, this is a 933 // single-predecessor phi. 934 O << " "; 935 getIncomingValue(0)->printAsOperand(O, SlotTracker); 936 } else { 937 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 938 O << " "; 939 getIncomingValue(I)->printAsOperand(O, SlotTracker); 940 O << "/"; 941 getMask(I)->printAsOperand(O, SlotTracker); 942 } 943 } 944 } 945 946 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 947 VPSlotTracker &SlotTracker) const { 948 O << "\"REDUCE "; 949 printAsOperand(O, SlotTracker); 950 O << " = "; 951 getChainOp()->printAsOperand(O, SlotTracker); 952 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getRecurrenceBinOp()) 953 << " ("; 954 getVecOp()->printAsOperand(O, SlotTracker); 955 if (getCondOp()) { 956 O << ", "; 957 getCondOp()->printAsOperand(O, SlotTracker); 958 } 959 O << ")"; 960 } 961 962 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 963 VPSlotTracker &SlotTracker) const { 964 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 965 << VPlanIngredient(Ingredient); 966 if (AlsoPack) 967 O << " (S->V)"; 968 } 969 970 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 971 VPSlotTracker &SlotTracker) const { 972 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 973 } 974 975 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 976 VPSlotTracker &SlotTracker) const { 977 O << "\"WIDEN "; 978 979 if (!isStore()) { 980 printAsOperand(O, SlotTracker); 981 O << " = "; 982 } 983 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 984 985 printOperands(O, SlotTracker); 986 } 987 988 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 989 Value *CanonicalIV = State.CanonicalIV; 990 Type *STy = CanonicalIV->getType(); 991 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 992 ElementCount VF = State.VF; 993 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 994 Value *VStart = VF.isScalar() 995 ? CanonicalIV 996 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 997 CanonicalIV, "broadcast"); 998 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 999 SmallVector<Constant *, 8> Indices; 1000 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1001 Indices.push_back( 1002 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1003 // If VF == 1, there is only one iteration in the loop above, thus the 1004 // element pushed back into Indices is ConstantInt::get(STy, Part) 1005 Constant *VStep = 1006 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1007 // Add the consecutive indices to the vector value. 1008 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1009 State.set(getVPValue(), CanonicalVectorIV, Part); 1010 } 1011 } 1012 1013 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1014 VPSlotTracker &SlotTracker) const { 1015 O << "\"EMIT "; 1016 getVPValue()->printAsOperand(O, SlotTracker); 1017 O << " = WIDEN-CANONICAL-INDUCTION"; 1018 } 1019 1020 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1021 1022 void VPValue::replaceAllUsesWith(VPValue *New) { 1023 for (unsigned J = 0; J < getNumUsers();) { 1024 VPUser *User = Users[J]; 1025 unsigned NumUsers = getNumUsers(); 1026 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1027 if (User->getOperand(I) == this) 1028 User->setOperand(I, New); 1029 // If a user got removed after updating the current user, the next user to 1030 // update will be moved to the current position, so we only need to 1031 // increment the index if the number of users did not change. 1032 if (NumUsers == getNumUsers()) 1033 J++; 1034 } 1035 } 1036 1037 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1038 if (const Value *UV = getUnderlyingValue()) { 1039 OS << "ir<"; 1040 UV->printAsOperand(OS, false); 1041 OS << ">"; 1042 return; 1043 } 1044 1045 unsigned Slot = Tracker.getSlot(this); 1046 if (Slot == unsigned(-1)) 1047 OS << "<badref>"; 1048 else 1049 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1050 } 1051 1052 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1053 bool First = true; 1054 for (VPValue *Op : operands()) { 1055 if (!First) 1056 O << ", "; 1057 Op->printAsOperand(O, SlotTracker); 1058 First = false; 1059 } 1060 } 1061 1062 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1063 Old2NewTy &Old2New, 1064 InterleavedAccessInfo &IAI) { 1065 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1066 for (VPBlockBase *Base : RPOT) { 1067 visitBlock(Base, Old2New, IAI); 1068 } 1069 } 1070 1071 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1072 InterleavedAccessInfo &IAI) { 1073 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1074 for (VPRecipeBase &VPI : *VPBB) { 1075 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1076 auto *VPInst = cast<VPInstruction>(&VPI); 1077 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1078 auto *IG = IAI.getInterleaveGroup(Inst); 1079 if (!IG) 1080 continue; 1081 1082 auto NewIGIter = Old2New.find(IG); 1083 if (NewIGIter == Old2New.end()) 1084 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1085 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1086 1087 if (Inst == IG->getInsertPos()) 1088 Old2New[IG]->setInsertPos(VPInst); 1089 1090 InterleaveGroupMap[VPInst] = Old2New[IG]; 1091 InterleaveGroupMap[VPInst]->insertMember( 1092 VPInst, IG->getIndex(Inst), 1093 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1094 : IG->getFactor())); 1095 } 1096 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1097 visitRegion(Region, Old2New, IAI); 1098 else 1099 llvm_unreachable("Unsupported kind of VPBlock."); 1100 } 1101 1102 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1103 InterleavedAccessInfo &IAI) { 1104 Old2NewTy Old2New; 1105 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1106 } 1107 1108 void VPSlotTracker::assignSlot(const VPValue *V) { 1109 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1110 const Value *UV = V->getUnderlyingValue(); 1111 if (UV) 1112 return; 1113 const auto *VPI = dyn_cast<VPInstruction>(V); 1114 if (VPI && !VPI->hasResult()) 1115 return; 1116 1117 Slots[V] = NextSlot++; 1118 } 1119 1120 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1121 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1122 assignSlots(Region); 1123 else 1124 assignSlots(cast<VPBasicBlock>(VPBB)); 1125 } 1126 1127 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1128 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1129 for (const VPBlockBase *Block : RPOT) 1130 assignSlots(Block); 1131 } 1132 1133 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1134 for (const VPRecipeBase &Recipe : *VPBB) { 1135 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 1136 assignSlot(VPI); 1137 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 1138 assignSlot(VPIV->getVPValue()); 1139 } 1140 } 1141 1142 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1143 1144 for (const VPValue *V : Plan.VPExternalDefs) 1145 assignSlot(V); 1146 1147 for (auto &E : Plan.Value2VPValue) 1148 if (!isa<VPInstruction>(E.second)) 1149 assignSlot(E.second); 1150 1151 for (const VPValue *V : Plan.VPCBVs) 1152 assignSlot(V); 1153 1154 if (Plan.BackedgeTakenCount) 1155 assignSlot(Plan.BackedgeTakenCount); 1156 1157 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1158 for (const VPBlockBase *Block : RPOT) 1159 assignSlots(Block); 1160 } 1161