1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 304 State->Instance->Lane = Lane; 305 // Visit the VPBlocks connected to \p this, starting from it. 306 for (VPBlockBase *Block : RPOT) { 307 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 308 Block->execute(State); 309 } 310 } 311 } 312 313 // Exit replicating mode. 314 State->Instance.reset(); 315 } 316 317 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 318 assert(!Parent && "Recipe already in some VPBasicBlock"); 319 assert(InsertPos->getParent() && 320 "Insertion position not in any VPBasicBlock"); 321 Parent = InsertPos->getParent(); 322 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 323 } 324 325 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 326 assert(!Parent && "Recipe already in some VPBasicBlock"); 327 assert(InsertPos->getParent() && 328 "Insertion position not in any VPBasicBlock"); 329 Parent = InsertPos->getParent(); 330 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 331 } 332 333 void VPRecipeBase::removeFromParent() { 334 assert(getParent() && "Recipe not in any VPBasicBlock"); 335 getParent()->getRecipeList().remove(getIterator()); 336 Parent = nullptr; 337 } 338 339 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 340 assert(getParent() && "Recipe not in any VPBasicBlock"); 341 return getParent()->getRecipeList().erase(getIterator()); 342 } 343 344 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 345 removeFromParent(); 346 insertAfter(InsertPos); 347 } 348 349 void VPInstruction::generateInstruction(VPTransformState &State, 350 unsigned Part) { 351 IRBuilder<> &Builder = State.Builder; 352 353 if (Instruction::isBinaryOp(getOpcode())) { 354 Value *A = State.get(getOperand(0), Part); 355 Value *B = State.get(getOperand(1), Part); 356 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 357 State.set(this, V, Part); 358 return; 359 } 360 361 switch (getOpcode()) { 362 case VPInstruction::Not: { 363 Value *A = State.get(getOperand(0), Part); 364 Value *V = Builder.CreateNot(A); 365 State.set(this, V, Part); 366 break; 367 } 368 case VPInstruction::ICmpULE: { 369 Value *IV = State.get(getOperand(0), Part); 370 Value *TC = State.get(getOperand(1), Part); 371 Value *V = Builder.CreateICmpULE(IV, TC); 372 State.set(this, V, Part); 373 break; 374 } 375 case Instruction::Select: { 376 Value *Cond = State.get(getOperand(0), Part); 377 Value *Op1 = State.get(getOperand(1), Part); 378 Value *Op2 = State.get(getOperand(2), Part); 379 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 380 State.set(this, V, Part); 381 break; 382 } 383 default: 384 llvm_unreachable("Unsupported opcode for instruction"); 385 } 386 } 387 388 void VPInstruction::execute(VPTransformState &State) { 389 assert(!State.Instance && "VPInstruction executing an Instance"); 390 for (unsigned Part = 0; Part < State.UF; ++Part) 391 generateInstruction(State, Part); 392 } 393 394 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 395 VPSlotTracker &SlotTracker) const { 396 O << "\"EMIT "; 397 print(O, SlotTracker); 398 } 399 400 void VPInstruction::print(raw_ostream &O) const { 401 VPSlotTracker SlotTracker(getParent()->getPlan()); 402 print(O, SlotTracker); 403 } 404 405 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 406 if (hasResult()) { 407 printAsOperand(O, SlotTracker); 408 O << " = "; 409 } 410 411 switch (getOpcode()) { 412 case VPInstruction::Not: 413 O << "not"; 414 break; 415 case VPInstruction::ICmpULE: 416 O << "icmp ule"; 417 break; 418 case VPInstruction::SLPLoad: 419 O << "combined load"; 420 break; 421 case VPInstruction::SLPStore: 422 O << "combined store"; 423 break; 424 default: 425 O << Instruction::getOpcodeName(getOpcode()); 426 } 427 428 for (const VPValue *Operand : operands()) { 429 O << " "; 430 Operand->printAsOperand(O, SlotTracker); 431 } 432 } 433 434 /// Generate the code inside the body of the vectorized loop. Assumes a single 435 /// LoopVectorBody basic-block was created for this. Introduce additional 436 /// basic-blocks as needed, and fill them all. 437 void VPlan::execute(VPTransformState *State) { 438 // -1. Check if the backedge taken count is needed, and if so build it. 439 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 440 Value *TC = State->TripCount; 441 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 442 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 443 "trip.count.minus.1"); 444 auto VF = State->VF; 445 Value *VTCMO = 446 VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 447 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 448 State->set(BackedgeTakenCount, VTCMO, Part); 449 } 450 451 // 0. Set the reverse mapping from VPValues to Values for code generation. 452 for (auto &Entry : Value2VPValue) 453 State->VPValue2Value[Entry.second] = Entry.first; 454 455 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 456 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 457 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 458 459 // 1. Make room to generate basic-blocks inside loop body if needed. 460 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 461 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 462 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 463 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 464 // Remove the edge between Header and Latch to allow other connections. 465 // Temporarily terminate with unreachable until CFG is rewired. 466 // Note: this asserts the generated code's assumption that 467 // getFirstInsertionPt() can be dereferenced into an Instruction. 468 VectorHeaderBB->getTerminator()->eraseFromParent(); 469 State->Builder.SetInsertPoint(VectorHeaderBB); 470 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 471 State->Builder.SetInsertPoint(Terminator); 472 473 // 2. Generate code in loop body. 474 State->CFG.PrevVPBB = nullptr; 475 State->CFG.PrevBB = VectorHeaderBB; 476 State->CFG.LastBB = VectorLatchBB; 477 478 for (VPBlockBase *Block : depth_first(Entry)) 479 Block->execute(State); 480 481 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 482 // VPBB's successors. 483 for (auto VPBB : State->CFG.VPBBsToFix) { 484 assert(EnableVPlanNativePath && 485 "Unexpected VPBBsToFix in non VPlan-native path"); 486 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 487 assert(BB && "Unexpected null basic block for VPBB"); 488 489 unsigned Idx = 0; 490 auto *BBTerminator = BB->getTerminator(); 491 492 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 493 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 494 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 495 ++Idx; 496 } 497 } 498 499 // 3. Merge the temporary latch created with the last basic-block filled. 500 BasicBlock *LastBB = State->CFG.PrevBB; 501 // Connect LastBB to VectorLatchBB to facilitate their merge. 502 assert((EnableVPlanNativePath || 503 isa<UnreachableInst>(LastBB->getTerminator())) && 504 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 505 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 506 "Expected VPlan CFG to terminate with branch in NativePath"); 507 LastBB->getTerminator()->eraseFromParent(); 508 BranchInst::Create(VectorLatchBB, LastBB); 509 510 // Merge LastBB with Latch. 511 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 512 (void)Merged; 513 assert(Merged && "Could not merge last basic block with latch."); 514 VectorLatchBB = LastBB; 515 516 // We do not attempt to preserve DT for outer loop vectorization currently. 517 if (!EnableVPlanNativePath) 518 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 519 L->getExitBlock()); 520 } 521 522 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 523 LLVM_DUMP_METHOD 524 void VPlan::dump() const { dbgs() << *this << '\n'; } 525 #endif 526 527 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 528 BasicBlock *LoopLatchBB, 529 BasicBlock *LoopExitBB) { 530 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 531 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 532 // The vector body may be more than a single basic-block by this point. 533 // Update the dominator tree information inside the vector body by propagating 534 // it from header to latch, expecting only triangular control-flow, if any. 535 BasicBlock *PostDomSucc = nullptr; 536 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 537 // Get the list of successors of this block. 538 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 539 assert(Succs.size() <= 2 && 540 "Basic block in vector loop has more than 2 successors."); 541 PostDomSucc = Succs[0]; 542 if (Succs.size() == 1) { 543 assert(PostDomSucc->getSinglePredecessor() && 544 "PostDom successor has more than one predecessor."); 545 DT->addNewBlock(PostDomSucc, BB); 546 continue; 547 } 548 BasicBlock *InterimSucc = Succs[1]; 549 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 550 PostDomSucc = Succs[1]; 551 InterimSucc = Succs[0]; 552 } 553 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 554 "One successor of a basic block does not lead to the other."); 555 assert(InterimSucc->getSinglePredecessor() && 556 "Interim successor has more than one predecessor."); 557 assert(PostDomSucc->hasNPredecessors(2) && 558 "PostDom successor has more than two predecessors."); 559 DT->addNewBlock(InterimSucc, BB); 560 DT->addNewBlock(PostDomSucc, BB); 561 } 562 // Latch block is a new dominator for the loop exit. 563 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 564 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 565 } 566 567 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 568 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 569 Twine(getOrCreateBID(Block)); 570 } 571 572 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 573 const std::string &Name = Block->getName(); 574 if (!Name.empty()) 575 return Name; 576 return "VPB" + Twine(getOrCreateBID(Block)); 577 } 578 579 void VPlanPrinter::dump() { 580 Depth = 1; 581 bumpIndent(0); 582 OS << "digraph VPlan {\n"; 583 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 584 if (!Plan.getName().empty()) 585 OS << "\\n" << DOT::EscapeString(Plan.getName()); 586 if (Plan.BackedgeTakenCount) { 587 OS << ", where:\\n"; 588 Plan.BackedgeTakenCount->print(OS, SlotTracker); 589 OS << " := BackedgeTakenCount"; 590 } 591 OS << "\"]\n"; 592 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 593 OS << "edge [fontname=Courier, fontsize=30]\n"; 594 OS << "compound=true\n"; 595 596 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 597 dumpBlock(Block); 598 599 OS << "}\n"; 600 } 601 602 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 603 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 604 dumpBasicBlock(BasicBlock); 605 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 606 dumpRegion(Region); 607 else 608 llvm_unreachable("Unsupported kind of VPBlock."); 609 } 610 611 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 612 bool Hidden, const Twine &Label) { 613 // Due to "dot" we print an edge between two regions as an edge between the 614 // exit basic block and the entry basic of the respective regions. 615 const VPBlockBase *Tail = From->getExitBasicBlock(); 616 const VPBlockBase *Head = To->getEntryBasicBlock(); 617 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 618 OS << " [ label=\"" << Label << '\"'; 619 if (Tail != From) 620 OS << " ltail=" << getUID(From); 621 if (Head != To) 622 OS << " lhead=" << getUID(To); 623 if (Hidden) 624 OS << "; splines=none"; 625 OS << "]\n"; 626 } 627 628 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 629 auto &Successors = Block->getSuccessors(); 630 if (Successors.size() == 1) 631 drawEdge(Block, Successors.front(), false, ""); 632 else if (Successors.size() == 2) { 633 drawEdge(Block, Successors.front(), false, "T"); 634 drawEdge(Block, Successors.back(), false, "F"); 635 } else { 636 unsigned SuccessorNumber = 0; 637 for (auto *Successor : Successors) 638 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 639 } 640 } 641 642 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 643 OS << Indent << getUID(BasicBlock) << " [label =\n"; 644 bumpIndent(1); 645 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 646 bumpIndent(1); 647 648 // Dump the block predicate. 649 const VPValue *Pred = BasicBlock->getPredicate(); 650 if (Pred) { 651 OS << " +\n" << Indent << " \"BlockPredicate: "; 652 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 653 PredI->printAsOperand(OS, SlotTracker); 654 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 655 << ")\\l\""; 656 } else 657 Pred->printAsOperand(OS, SlotTracker); 658 } 659 660 for (const VPRecipeBase &Recipe : *BasicBlock) { 661 OS << " +\n" << Indent; 662 Recipe.print(OS, Indent, SlotTracker); 663 OS << "\\l\""; 664 } 665 666 // Dump the condition bit. 667 const VPValue *CBV = BasicBlock->getCondBit(); 668 if (CBV) { 669 OS << " +\n" << Indent << " \"CondBit: "; 670 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 671 CBI->printAsOperand(OS, SlotTracker); 672 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 673 } else { 674 CBV->printAsOperand(OS, SlotTracker); 675 OS << "\""; 676 } 677 } 678 679 bumpIndent(-2); 680 OS << "\n" << Indent << "]\n"; 681 dumpEdges(BasicBlock); 682 } 683 684 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 685 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 686 bumpIndent(1); 687 OS << Indent << "fontname=Courier\n" 688 << Indent << "label=\"" 689 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 690 << DOT::EscapeString(Region->getName()) << "\"\n"; 691 // Dump the blocks of the region. 692 assert(Region->getEntry() && "Region contains no inner blocks."); 693 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 694 dumpBlock(Block); 695 bumpIndent(-1); 696 OS << Indent << "}\n"; 697 dumpEdges(Region); 698 } 699 700 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 701 std::string IngredientString; 702 raw_string_ostream RSO(IngredientString); 703 if (auto *Inst = dyn_cast<Instruction>(V)) { 704 if (!Inst->getType()->isVoidTy()) { 705 Inst->printAsOperand(RSO, false); 706 RSO << " = "; 707 } 708 RSO << Inst->getOpcodeName() << " "; 709 unsigned E = Inst->getNumOperands(); 710 if (E > 0) { 711 Inst->getOperand(0)->printAsOperand(RSO, false); 712 for (unsigned I = 1; I < E; ++I) 713 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 714 } 715 } else // !Inst 716 V->printAsOperand(RSO, false); 717 RSO.flush(); 718 O << DOT::EscapeString(IngredientString); 719 } 720 721 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 722 VPSlotTracker &SlotTracker) const { 723 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 724 } 725 726 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 727 VPSlotTracker &SlotTracker) const { 728 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 729 << (InvariantCond ? " (condition is loop invariant)" : ""); 730 } 731 732 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 733 VPSlotTracker &SlotTracker) const { 734 O << "\"WIDEN\\l\""; 735 O << "\" " << VPlanIngredient(&Ingredient); 736 } 737 738 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 739 VPSlotTracker &SlotTracker) const { 740 O << "\"WIDEN-INDUCTION"; 741 if (Trunc) { 742 O << "\\l\""; 743 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 744 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 745 } else 746 O << " " << VPlanIngredient(IV); 747 } 748 749 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 750 VPSlotTracker &SlotTracker) const { 751 O << "\"WIDEN-GEP "; 752 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 753 size_t IndicesNumber = IsIndexLoopInvariant.size(); 754 for (size_t I = 0; I < IndicesNumber; ++I) 755 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 756 O << "\\l\""; 757 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 758 } 759 760 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 761 VPSlotTracker &SlotTracker) const { 762 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 763 } 764 765 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 766 VPSlotTracker &SlotTracker) const { 767 O << "\"BLEND "; 768 Phi->printAsOperand(O, false); 769 O << " ="; 770 if (getNumIncomingValues() == 1) { 771 // Not a User of any mask: not really blending, this is a 772 // single-predecessor phi. 773 O << " "; 774 getIncomingValue(0)->printAsOperand(O, SlotTracker); 775 } else { 776 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 777 O << " "; 778 getIncomingValue(I)->printAsOperand(O, SlotTracker); 779 O << "/"; 780 getMask(I)->printAsOperand(O, SlotTracker); 781 } 782 } 783 } 784 785 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 786 VPSlotTracker &SlotTracker) const { 787 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 788 << VPlanIngredient(Ingredient); 789 if (AlsoPack) 790 O << " (S->V)"; 791 } 792 793 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 794 VPSlotTracker &SlotTracker) const { 795 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 796 } 797 798 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 799 VPSlotTracker &SlotTracker) const { 800 O << "\"WIDEN " << VPlanIngredient(&Instr); 801 O << ", "; 802 getAddr()->printAsOperand(O, SlotTracker); 803 VPValue *Mask = getMask(); 804 if (Mask) { 805 O << ", "; 806 Mask->printAsOperand(O, SlotTracker); 807 } 808 } 809 810 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 811 Value *CanonicalIV = State.CanonicalIV; 812 Type *STy = CanonicalIV->getType(); 813 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 814 auto VF = State.VF; 815 Value *VStart = VF == 1 816 ? CanonicalIV 817 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 818 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 819 SmallVector<Constant *, 8> Indices; 820 for (unsigned Lane = 0; Lane < VF; ++Lane) 821 Indices.push_back(ConstantInt::get(STy, Part * VF + Lane)); 822 // If VF == 1, there is only one iteration in the loop above, thus the 823 // element pushed back into Indices is ConstantInt::get(STy, Part) 824 Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); 825 // Add the consecutive indices to the vector value. 826 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 827 State.set(getVPValue(), CanonicalVectorIV, Part); 828 } 829 } 830 831 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 832 VPSlotTracker &SlotTracker) const { 833 O << "\"EMIT "; 834 getVPValue()->printAsOperand(O, SlotTracker); 835 O << " = WIDEN-CANONICAL-INDUCTION"; 836 } 837 838 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 839 840 void VPValue::replaceAllUsesWith(VPValue *New) { 841 for (VPUser *User : users()) 842 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 843 if (User->getOperand(I) == this) 844 User->setOperand(I, New); 845 } 846 847 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 848 if (const Value *UV = getUnderlyingValue()) { 849 OS << "ir<"; 850 UV->printAsOperand(OS, false); 851 OS << ">"; 852 return; 853 } 854 855 unsigned Slot = Tracker.getSlot(this); 856 if (Slot == unsigned(-1)) 857 OS << "<badref>"; 858 else 859 OS << "vp<%" << Tracker.getSlot(this) << ">"; 860 } 861 862 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 863 Old2NewTy &Old2New, 864 InterleavedAccessInfo &IAI) { 865 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 866 for (VPBlockBase *Base : RPOT) { 867 visitBlock(Base, Old2New, IAI); 868 } 869 } 870 871 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 872 InterleavedAccessInfo &IAI) { 873 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 874 for (VPRecipeBase &VPI : *VPBB) { 875 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 876 auto *VPInst = cast<VPInstruction>(&VPI); 877 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 878 auto *IG = IAI.getInterleaveGroup(Inst); 879 if (!IG) 880 continue; 881 882 auto NewIGIter = Old2New.find(IG); 883 if (NewIGIter == Old2New.end()) 884 Old2New[IG] = new InterleaveGroup<VPInstruction>( 885 IG->getFactor(), IG->isReverse(), IG->getAlign()); 886 887 if (Inst == IG->getInsertPos()) 888 Old2New[IG]->setInsertPos(VPInst); 889 890 InterleaveGroupMap[VPInst] = Old2New[IG]; 891 InterleaveGroupMap[VPInst]->insertMember( 892 VPInst, IG->getIndex(Inst), 893 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 894 : IG->getFactor())); 895 } 896 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 897 visitRegion(Region, Old2New, IAI); 898 else 899 llvm_unreachable("Unsupported kind of VPBlock."); 900 } 901 902 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 903 InterleavedAccessInfo &IAI) { 904 Old2NewTy Old2New; 905 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 906 } 907 908 void VPSlotTracker::assignSlot(const VPValue *V) { 909 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 910 const Value *UV = V->getUnderlyingValue(); 911 if (UV) 912 return; 913 const auto *VPI = dyn_cast<VPInstruction>(V); 914 if (VPI && !VPI->hasResult()) 915 return; 916 917 Slots[V] = NextSlot++; 918 } 919 920 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 921 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 922 assignSlots(Region); 923 else 924 assignSlots(cast<VPBasicBlock>(VPBB)); 925 } 926 927 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 928 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 929 for (const VPBlockBase *Block : RPOT) 930 assignSlots(Block); 931 } 932 933 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 934 for (const VPRecipeBase &Recipe : *VPBB) { 935 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 936 assignSlot(VPI); 937 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 938 assignSlot(VPIV->getVPValue()); 939 } 940 } 941 942 void VPSlotTracker::assignSlots(const VPlan &Plan) { 943 944 for (const VPValue *V : Plan.VPExternalDefs) 945 assignSlot(V); 946 947 for (auto &E : Plan.Value2VPValue) 948 if (!isa<VPInstruction>(E.second)) 949 assignSlot(E.second); 950 951 for (const VPValue *V : Plan.VPCBVs) 952 assignSlot(V); 953 954 if (Plan.BackedgeTakenCount) 955 assignSlot(Plan.BackedgeTakenCount); 956 957 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 958 for (const VPBlockBase *Block : RPOT) 959 assignSlots(Block); 960 } 961